
Automatic Segmentation and Quantification of
Filamentous Structures in Electron Tomography

Leandro A. Lossa*

George Bebisc

Hang Changa

Manfred Auerb
Purbasha Sarkarb

Bahram Parvina*

aLife Sciences Division
Lawrence Berkeley Nat Lab

*laloss,hchang,*b parvin@lbl.gov

bEnergy Biosciences Institute
Univ of California, Berkeley

psarkar,auer@ebi.gov

cDept of Computer Science
University of Nevada, Reno

bebis@cse.unr.edu

ABSTRACT
Electron tomography is a promising technology for imaging
ultrastructures at nanoscale resolutions. However, image
and quantitative analyses are often hindered by high levels
of noise, staining heterogeneity, and material damage either
as a result of the electron beam or sample preparation. We
have developed and built a framework that allows for au-
tomatic segmentation and quantification of filamentous ob-
jects in 3D electron tomography. Our approach consists of
three steps: (i) local enhancement of filaments by Hessian
filtering; (ii) detection and completion (e.g., gap filling) of
filamentous structures through tensor voting; and (iii) delin-
eation of the filamentous networks. Our approach allows for
quantification of filamentous networks in terms of their com-
positional and morphological features. We first validate our
approach using a set of specifically designed synthetic data.
We then apply our segmentation framework to tomograms of
plant cell walls that have undergone different chemical treat-
ments for polysaccharide extraction. The subsequent com-
positional and morphological analyses of the plant cell walls
reveal their organizational characteristics and the effects of
the different chemical protocols on specific polysaccharides.

Categories and Subject Descriptors
I.4.6 [Computing Methodologies]: Image Processing and
Computer Vision—Segmentation

General Terms
3d segmentation, tensor voting, plant cell wall, electron to-
mography

1. INTRODUCTION
Electron tomography provides us with a new view of the

nature and its nanometric structures. One of the main
challenges in the analysis of a tomogram involves segmen-
tation of 3D filamentous organizations underlying intrinsic
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architectural phenotype. Automatic segmentation is often
complicated by material damage and high levels of noise,
which are ubiquitous in the current electron tomographic
data. Heterogeneity in the staining and the material dam-
age caused by chemical treatments, as in the case of stained,
resin-embedded samples, add an extra layer of deterioration
to the imaging quality. As a result, otherwise continuous
3D filamentous networks are often imaged in fragments that
show heterogeneous contrast and poor signal to noise ratio.

Despite the mentioned challenges, we have developed a
framework for automatic segmentation of 3D filamentous
structures and networks from tomographic data. We explore
the efficacy of our approach by determining the composition
and 3D architecture of plant cell walls through tomographic
imaging of resin-embedded and cryo-preserved samples. In
this context, our goal is to develop an ultrastructural orga-
nizational understanding of plant cell walls that will ulti-
mately allow the re-engineering of cell wall properties, e.g.,
for improved lignocellulytic degradation of the biomass and
fermentation into renewable transportation fuels/biofuels,
while withstanding biochemical and microbial attack upon
plant growth and development.

Current plant cell wall models assume a tightly packed
network of two major types of polysaccharides, namely cellu-
lose and hemicellulose. The space in-between is filled by pec-
tic polysaccharides and/or polymeric aromatic lignin with
irregular chemical structure, as well as some glycoproteins.
Previous attempts on imaging the cell wall architecture used
transmission electron microscopy (TEM) of fast-frozen, deep-
etched, rotary-shadowed replicas of cell walls [14]; Field Emis-
sion Scanning Electron Microscopy (FESEM) of chemically
extracted, freeze-fractured cell walls [20, 11]; and atomic
force microscopy (AFM) of fully hydrated cell walls [1]. Al-
though these studies have provided an interesting insight
into the in situ filamentous structure dimensions and ori-
entations, as well as the degree of connections between the
cell wall components, the information obtained is typically
restricted to two dimensions or is topographical in nature.
Electron tomography is the only method currently available
that has provided a three-dimensional view of the plant cell
walls at a molecular resolution [22, 23].

Insight into the 3D organization of the plant cell wall re-
quires analyses of a large number of tomograms in order to
attain statistics. Therefore, interactive segmentation needs
to be replaced by automated detection, classification and
geometric analysis algorithms. Since the 3D organization of



the cell wall is not known and ground truth cannot be estab-
lished, we resorted to an analysis, under different experimen-
tal conditions, that aims at removing increasing portions of
the respective cell wall polymers. We then asked whether
our approach could account for the anticipated reduction in
material and/or change in the organization.
The main barriers to the analysis of electron tomographic

images are non-uniform foreground signature, heterogeneity
of background contrast, and the presence of noise. Com-
bined, these features can cause fragmentation in the struc-
tural organization of the sample. Consequently, these bar-
riers inhibit the use of standard methods (e.g., threshold-
ing, skeletonization) for detecting and delineating filamen-
tous structures. Previous researchers have utilized model-
based approaches for filament detection and tracking. In
[5], a computational pipeline is introduced to first enhance
the signal using a combination of data and model driven
frameworks. This is followed by segmentation using shape
priors and tracing along the medial axis. In a recently pub-
lished approach, a cascade of operators to denoise and track
filaments with a cylindrical templates was utilized [16].
The core of our approach relies on Tensor Voting [15] to

group local features by enforcing continuity, and to construct
a global representation. Tensor voting is based on entities
that deform under the influence of their vicinity to reveal
perceptual structures. This influence is inferred through a
voting system, where voxels in an image propagate, within
their vicinity, information that is relative to their partic-
ular nature. The interpretation of these local interactions
leads to a global understanding of the structural context
these voxels participate. Very importantly, tensor voting
does not rely on shape priors and templates. In the past,
we applied tensor voting in different configurations and to
different problems [9, 10]. Based on our experience, tensor
voting depends on interaction from voxel to voxel and can be
fairly expensive when applied to large and dense (e.g., not
thresholded) 3D images. Therefore, in the approach pre-
sented here, Hessian filtering is used to enhance the stained
filamentous structure so a thresholded input can be provided
to tensor voting. This pre-processing step also provides an
estimate of the voxels’ local directions, which promotes an
even larger improvement in the tensor voting’s performance,
both in running time and quality of structural inference.
Once filaments are detected and gaps are bridged, a curve
tracking algorithm traces along filamentous structures and
detects junctions, providing a rich representation that al-
lows for quantitative analysis of the structural organization
of the filamentous networks. We demonstrate the utility of
our approach both through synthetic images and 3D electron
tomograms of plant cell walls that were chemically treated
for controlled extraction of specific polysaccharides.
This manuscript develops as follows: Section 2 presents a

detailed description of our computational framework. Sec-
tion 3 describes our experiments and presents a discussion
on the obtained results. Section 4 concludes this work with
an overall view of the approach and the achieved results.

2. COMPUTATIONAL FRAMEWORK
Here we describe our approach to segmenting filamentous

structures in plant cell walls from 3D electron tomograms.
The segmentation is achieved through a three-step approach,
as depicted in Figure 1. First, Hessian filtering enhances the
stained filamentous regions by computing a second-order dif-

ferential operator. Second, tensor voting is applied for de-
tection and completion (e.g., gap filling) of the filaments.
Third, curve tracking is employed, with filaments and junc-
tions then being segmented for subsequent quantification.
In the following sections, we present details about each step
and how these steps are coupled together.

Figure 1: Our approach segments filamentous net-
works from 3D electron tomograms through a three-
step computational protocol. As depicted in this
diagram, Hessian filtering, tensor voting and curve
tracking are coupled together to produce high qual-
ity segmentations of the filamentous structures.

2.1 Enhancement by Hessian filtering
As a first step, our approach filters a 3D tomogram to en-

hance the locations where filamentous structures are present.
The approach is based on the fact that filamentous struc-
tures form an organized network of continuous and elongated
fragments, and the encounter of 2 or more filaments forms a
junction. Previous works by [17, 8, 3] discuss the suitability
of using a second order differential operator for segmentation
of curvilinear structures. In structural inference, the similar-
ity among these works is in the interpretation of the eigen-
values and eigenvectors of the image resulting from Hessian
filtering. However, the cited approaches and their particular
interpretations proved insufficient to deal with our data and
goals. Instead, we utilize Hessian only as a pre-filtering step,
as described below. More elaborated formulations imposed
a higher computational load, with little or no gain to the
overall result. In general, an image is Hessian filtered using

Equation 1, where ∂2I
∂•∂◦ = ∂

∂• (
∂I
∂◦ ),

∂I
∂◦ = σI × ∂

∂◦G(σ), and
G(σ) is a Gaussian function with standard deviation σ. The
term σI promotes scale normalization, as proposed in [7].
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For structural analysis, the outcome of Hessian filtering
H(I(x, y, z)) is decomposed into eigenvalues (|λ1| ≥ |λ2| ≥
|λ3|) and eigenvectors (−→e 1,

−→e 2,
−→e 3). Here, we apply Hes-

sian filtering for enhancement of filaments in the plant cell
wall, that are visualized through chemical staining. In order
to enhance the filamentous structures and junctions that are
imaged as bright signal against a non-stained background,
we must compute an intensity map based on eigenvalues
with the largest negative magnitude. To this end, λ1 is ze-
roed if positive (e.g., dark structures), and inverted if neg-
ative (e.g., bright structures). In addition, eigenvectors as-
sociated with the smallest magnitude eigenvalues (−→e 3) are
used to define the tangential direction of the filament. In
summary, the intensity map computed at this step is com-



posed of a measure of likelihood of bright structure, PH(x,y,z),

and a local estimate of structure direction,
−→
P H(x,y,z).

2.2 Detection and completion by tensor voting
The next step of our approach explores the intensity map

computed from Hessian filtering to locate filaments and to
fill in the gaps. This is done by Tensor Voting [15]. In Tensor
Voting, structural saliency is estimated through vote casting
between primitives of an image. Such primitives are repre-
sented by tensors, mathematical entities whose capability for
encoding magnitude and orientation make tensor voting par-
ticularly efficient for detecting perceptually organized struc-
tures, such as edges, lines and regions. In 3D, tensors are
represented analytically as second order non-negative defi-
nite matrices or geometrically as ellipsoids, shaped by the
tensors’ eigenvalues’ magnitude and eigenvectors’ directions.
Initialized with a certain size, shape and orientation, input
tensors are gradually deformed due to the accumulation of
votes cast by other neighboring tensors. Similar to Hessian
filtering, the tensor’s size and shape are given by its eigen-
values (λ1 ≥ λ2 ≥ λ3 ≥ 0), while its orientation is given by
the respective eigenvectors (−→e 1,

−→e 2,
−→e 3).

Figure 2: (a) A sketch of two tensors and their spa-
tial relationship in the x′, y′, z′ coordinate system to
produce the vote V (u, v, w) in Equation 2: briefly
speaking, the vote from a tensor at (x, y, z) to an-
other tensor at (u, v, w) with tangent t depends only
on their relative distance l and angle θ (see text for
full description). (b) The figure depicts the ten-
sor voting stick field with tensors shown along their
tangential direction: since the votes are computed
solely from the relative position of neighboring ten-
sors, a voting field can be pre-computed.

Votes are also tensors composed of magnitude and ori-
entation, which encode the Gestalt principles of proximity,
smoothness and good continuation [21]. Given two tensors
positioned in space, for example, at (x, y, z) and (u, v, w) as
depicted in Figure 2(a), the distance l between them and
the angle θ between the tangent of the osculating circle
at (x, y, z) and the line that connects (x, y, z) to (u, v, w)
are used to calculate the primitives’ relative arc length s =
θl/sin(θ) and curvature κ = 2sin(θ)/l, which together pro-
duce V (u, v, w), (x, y, z)’s vote to (u, v, w), as shown in Equa-
tion 2. Without any prior knowledge, the path defined by
the osculating circle with center C is the most likely smooth
path since its curvature is kept constant.

V (u, v, w) = e
−
s2 + cκ2

σ2 −→
t
−→
t T (2)

In the expression above,
−→
t is the vector tangent to the

osculating circle at location (u, v, w). The scale factor σ is
the only free parameter in this expression and determines
the extension of the voting neighborhood. The parameter
c is a function of the scale and controls the decay in high
curvature areas. It is traditionally set to c = −16log(0.1)×
(σ − 1) × π−2. Intuitively, the vote intensity decays expo-
nentially as a function of the distance between the voter and
the recipient, and the vote orientation determined by their
osculating circle.

A voting field can be formed by calculating all votes that
can be cast from a tensor located in the center of the field to
its neighboring tensors (Figure 2(b)). Its extension is limited
by σ, and it can only exist at |θ| ≤ 45◦, as beyond this angle
the osculating circle ceases to represent the smoothest path
between the tensors.

The deformation imposed to each tensor by accumulating
the magnitude and orientation of the votes eventually re-
veals behavioral coherence among image primitives. Prim-
itives that lie on the same salient feature (e.g. a curve or
a region) strongly support each other and deform the ten-
sor at those sites according to the underlying structure ori-
entation. The accumulation of votes involves simply ten-
sor additions (e.g., summation of matrices), and can be al-
gebraically represented by Txyz =

∑
Tuvw

V (x, y, z), where

Txyz is the resulting tensor at location (x, y, z), after receiv-
ing the votes V (x, y, z) from its neighboring tensors Tuvw at
locations (u, v, w). Naturally, Txyz’s size and orientation are
obtained from its eigen-decomposition Txyz = λ1

−→e 1
−→e T

1 +
λ2

−→e 2
−→e T

2 + λ3
−→e 3

−→e T
3 . Each kind of structure is expected

to produce tensors of a particular shape, for example, very
elongated tensors (high λ1 − λ2) for curvilinear structures,
and more rounded ones (e.g., low λ1 − λ2 or low λ1 − λ3)
for other structures. Figure 3 exemplifies how a set of input
primitives are encoded as tensors, whose deformations re-
sulting from accumulated votes reveal an underlying salient
curvilinear structure.

Figure 3: Tensor voting allows for inference of orga-
nized structures through low-level interactions be-
tween image elements. (a) input primitives com-
posed by points in the image plane; (b) primitives
encoded as second-order tensors; (c) deformed ten-
sors resulting from voting; (d) underlying curve re-
vealed by grouping tensors with similar properties.

Here, in our review of tensor voting, we briefly summarize
concepts that were introduced earlier [15]. Basically, the
voting process can be either sparse or dense. Sparse vot-
ing restricts the tensors so that they only cast votes on the
input set within their vicinity. In contrast, dense voting per-
mits tensors to vote within a local neighborhood that may
not be part of the input set. Therefore, dense voting allows
for inference of structures beyond the initial input maps,
yielding structure detection as well as gap completion. In
both sparse and dense voting, structures are inferred from
thresholding a saliency map, which is created by the partic-
ular combination of eigenvalues that best suits the detection
requirements (e.g., λ1−λ2 for filaments, λ3 for regions, etc).



Yet another aspect of the tensor voting framework, tensors
and tensor operations can be replaced by vectors and vector
operations, respectively. Due to the different outcome ob-
tained by using vector operations, a new map is produced by
computing the resulting vector’s norm. Roughly speaking,
this new map encodes, at each location, the direction where
the majority of votes come from (e.g., polarity of votes).
Given its characteristics, this polarity map has been used to
determine the boundaries or the extremities of structures.
Tensor voting has been shown to have high immunity to
noise and have little sensitivity to parameter setting.
Regarding the problem on our hands, the first step in

applying tensor voting is the construction of a voting space.
We start by translating the Hessian intensity map into input

tensor field H. Analytically, H = (PH(x,y,z) ∗
−→
P H(x,y,z)) ×

(PH(x,y,z)

−→
P H(x,y,z))

T , which is simply the encoding of the

vector
−→
P H(x,y,z)), with magnitude PH(x,y,z), as a tensor.

Here, the locations with low PH(x,y,z) are thresholded out
from the tensor voting input map. Together, the threshold-
ing of low magnitude values and the encoding of the direc-
tions estimated by Hessian help reduce the overall compu-
tational time significantly.
After the voting space is constructed, a dense tensor vot-

ing pass is executed using the stick tensor field (Figure 2(b)).
The deformation caused by locally accumulating votes re-
veals, although still inaccurately, the presence or absence
of structures in the image. Votes cast outside the input
map potentially create paths between disconnected struc-
tures. The resulting magnitude (λ1, λ2, λ3) and direction
(−→e 1,

−→e 2,
−→e 3) are obtained by recomputing the tensor’s eigen-

decomposition at each location.
From the point of view of vote analysis, filamentous struc-

tures are characterized by an unbalanced distribution of
elements along one main direction. In contrast to other
structures whose tensors tend to deform more evenly due
to the influence from different directions, curvilinear struc-
tures produce elongated tensors. Therefore, tensors from fil-
amentous structures are likely to be evidenced on the stick
saliency map (defined as the image formed by computing
λ1−λ2 at each location (x, y, z)). Similarly, filament bound-
aries are evidenced on the polarity map.

2.3 Representation by 3D curve tracking
In the next step, 3D curve tracking allows for detection

and labeling filaments and junctions, which can subsequently
be quantified. We developed a curve tracking algorithm that
iterates between (i) finding voxels to serve as seeds for track-
ing and (ii) linking adjacent voxels along a consistent direc-
tion. A pool of seed voxels is selected from locations (x, y, z)
with high saliency (λ1 − λ2), which must be larger than a
threshold. This threshold is set based on a percentage of the
maximum saliency in the image, which we call Tsglobal . It
determines the stop criterion for tracking all the filaments in
the image. Starting from a seed, voxels are recursively linked
along their tangential direction until the saliency value drops
below another threshold, which forms a curve. This new
threshold is set based on a percentage of the saliency of the
seed that initiated the curve, which we refer to as Tslocal . It
determines one of the stop criteria needed for tracking each
of the filaments. Also, being local, it is less sensitive to sig-
nal heterogeneity across the image. Tangential directions for
the voxels are obtained from the previously computed tensor
voting map, i.e., −→e 1 at location (x, y, z). Both −→e 1 and −−→e 1

are analyzed and the one that agrees the best (i.e., small-
est dot product) with the curve’s direction is used. Curve
smoothness is guaranteed by inhibiting sharp edges. Specif-
ically, a second stop criterion for tracking each filament is
determined by linking voxels with directions forming angles
larger than 45◦ with the curve direction. Linking voxels
must be locally maximum within the 3x3 planar neighbor-
hood that is perpendicular to the tracking curve’s direction.
Since the seed can be a voxel in the middle of a filament,
tracking is first performed in one direction and then in the
reverse direction, starting again from the same seed. The
two curve segments are then concatenated to form a fila-
ment. Voxels are marked once they have been linked. To
avoid tracking of the same filament multiple times, all voxels
within the aforementioned 3x3 planar neighborhood, includ-
ing those from the pool of seeds, are also marked and cannot
be linked to another curve. Although our filament tracking
approach is susceptible to slight jagging which is caused by
angular quantization, it is fast and precise in regards to the
main properties of the filament, i.e., location, direction and
length. If the intuit is improved visualization, the tracked
structures can be interpolated with splines.

Junction locations are detected from delineated filaments
that intersect one another during tracking. This simplifies
the process of detecting junctions directly from the tensor
voting saliency map (as suggested by [15]), which can be
non-trivial and time consuming. In addition, the filament
width is approximated by the position of the peak in the po-
larity map by traversing it in the normal direction of linked
voxels (−→e 2). This is possible because, while saliency results
in a bell shape intensity profile along the filament’s center
line (the tracking direction), polarity results in a bell shape
intensity profile along the edges of the filament.

3. EXPERIMENTAL RESULTS
3.1 Synthetic data

The proposed approach was initially evaluated on a syn-
thetic 3D image of a 5 voxel-thick helix The helix is centered
in an image affected by artifacts such as noise, pores and
gaps. The image is binary with the background set at in-
tensity “0,” and the foreground (e.g., the helix) at intensity
“1.” We opted for a helix because of its perceived similarity
with the filamentous structures observed in the plant cell
wall. To evaluate our computational approach in less than
ideal scenarios, two experiments were designed to corrupt
the image and the helix structure: In the first experiment,
we induced different levels of noise on the background and
different levels of pores in the helix. In the second exper-
iment, we added gaps of different lengths to the synthetic
helix. The parameter setting was kept constant across all ex-
periments at σHessian = 4, σTensorV oting = 10, Tslocal = 0.3
and Tsglobal = 0.3.

Table 1: Precision and Recall ([P R]) results on syn-

thetic helix affected by noise, “n”, and porosity, “p”.
aaaaap n 0% 1% 2% 5%

0% [1 1] [1 1] [.99 1] [.95 1]

25% [1 1] [1 1] [.99 .99] [.95 .99]

50% [1 1] [1 .99] [.94 .99] [.93 .99]

75% [1 .99] [.97 .99] [.93 .99] [.88 .98]

95% [.99 .98] [.89 .98] [.85 .97] [.79 .97]



More specifically, in the first experiment, the image con-
taining the helix structure was altered either by randomly
adding noise (“n”) to the background or randomly adding
pores (“p”) to the foreground (e.g., removing voxels from
the helix). This policy leads to a perturbation matrix as
shown in Table 1. Here, n = 2% means that, on average,
2 out of every 100 background voxels had a value of “1.”
Similarly, p = 25% means that, on average, 25 out of ev-
ery 100 foreground voxels had value “0.” For a quantitative
assessment of the approach’s outcome, Precision and Recall
rates were computed. The precision rate is a measure of
the amount of noise present in the solution, while the Recall
rate is a measure of the amount of segmented ground truth.
They are computed by using:

Precision =
TP

TP + FP
,

and
Recall =

TP

TP + FN
,

where TP, FP and FN stand for True Positive, False Posi-
tive and False Negative, respectively. All three measures are
computed based on the number of segmented voxels. TP is
the number of segmented voxels that are in the true fila-
ments; FP is the number of segmented voxels that are not
in the true filaments; FN is the number of non-segmented
voxels in the true filaments.
An analysis of Table 1 indicates that, as expected, segmen-

tation deteriorated as a function of increased background
noise and signal porosity. The precision rate definitely ap-
pears to be more seriously compromised at higher noise lev-
els, which may mostly be a result of spurious filaments be-
ing created out of fortuitously aligned voxels (see Figure
4(bottom-right)). However, the consistent 97% or higher re-
call rate confirms the reliability of our approach in retrieving
the filament structures even in severely corrupted images.
Figure 4 shows representatives of the data set (left col-

umn) and the corresponding segmentation results (right col-
umn). Despite the deterioration caused by increased corrup-
tion, it is clear that the helix can still be reliably retrieved.
In the second experiment, gaps of varying lengths were

introduced in the helix structure. Figure 5 shows repre-
sentatives of the segmentation results at 5, 10, 20, and 30
voxels lengths. It is evident that at shorter gap lengths, the
system performance is stable and the approach successfully
reconnected the disrupted helix. It should be noted that
the filament completion is a function of σTensorV oting and
imposes a trade-off between correct bridging of a disrupted
signal and an erroneous connection of independent filaments,
which ultimately can limit interpolation.

3.2 Experiments with real samples
Our computational approach was designed to detect, com-

plete and delineate filamentous structures in full 3D images.
To this end, we prepared a set of 3D electron tomograms of
plant cell wall samples to provide a real scenario for evalu-
ation of our automatic framework. Regarding TEM sample
preparation, we used a microwave-assisted chemical fixation,
room temperature dehydration and resin-embedding proto-
col. We grew wild type Arabidopsis thaliana seeds (Col 0)
in MS-agar media with 16:8 h LD cycle at 21◦C for 4 weeks.
1mm-long stem segments were fixed in 4% paraformaldehyde
and 2% glutaraldehyde in 0.03M phosphate buffer (pH 7.4),
with 0.5mg/ml ruthenium red, at 4◦C overnight. Samples
were then rinsed in the same buffer and consecutive stem

Figure 4: Synthetic helix at different levels of noise
and porosity (left column), and the results produced
by our approach (right column). Top row: n=0%,
p=0%; middle row: n=0%, p=95%; bottom row:
n=2%, p=75%. In summary, our approach performs
well in a range of scenarios, properly detecting the
helix at high porosity and noise levels. However,
when noise reaches an extreme limit, spurious fila-
ments begin to form. See Table 1 for reports of the
quantitative results.

segments from the same plants were treated in parallel with
three different treatments: (a) Control samples, without any
further chemical treatment; (b) 0.5% ammonium oxalate at
60◦C for 48 hours for pectin removal; and (c) pectin re-
moval as in (b) followed by 4% NaOH at RT for 96 h to
remove hemicelluloses and non-cellulosic polysaccharides [4,
18]. All samples were rinsed in distilled water before being
fixed in 0.1% osmium tetroxide in 0.03 M phosphate buffer
(pH 7.4), with 0.5mg/ml Ruthenium red, for 1 h at RT.
The samples were subsequently dehydrated in acetone se-
ries (10%, 25%, 50%, 75%, 95%, 100%, twice for 45 s at 250
W for each concentration) and infiltrated in Epon-Araldite
resin-acetone series (10%, 25%, 50%, 75%, 100%, thrice for
3 min at 450W for each concentration), using the Leica EM
AMW automatic microwave tissue processor. Samples were
incubated overnight in 100% resin and then polymerized at
60◦C in a conventional oven for 2-3 days. 150 nm thick
sections were cut using the Leica EM U26 ultramicrotome.

For imaging purposes, the sections were labeled with 5 nm
gold fiducials on both sides, post-stained with 2% uranyl ac-
etate in methanol for 5 min, followed by lead citrate staining
for 2 min. Comparable primary cell wall areas from similar
cell types (xylem tracheary elements) were located in each



Figure 5: Results from filament completion for a
disrupted synthetic helix. The segmented helix (in
red) with gap length, in voxels, equal to (a) 6 (b) 12;
(c) 21; (d) 27. In general, the method fails to bridge
gaps much larger than twice the size of the tensor
voting neighborhood (Here, σTensorV oting = 10).

section with a Tecnai12 TEM (FEI), for electron tomogra-
phy. Dual axis tilt series [12] were collected from +65◦ to
-65◦ with 1◦ increments, underdefocus of 1 µm, and a voxel
size of 0.79 nm, at 120 kV accelerating voltage, using the
SerialEM software package [13]. Marker-based alignment of
dual-axis tilt-series and their reconstruction into tomograms
were done using the IMOD package [6]. Figure 6 illustrates
sample views of such tomograms.

Figure 6: TEM imaging of samples prepared
through microwave-assisted chemical fixation, room
temperature dehydration and resin-embedding pro-
tocol. Images show the filamentous nature of the
cell wall and the increasing level of extraction from
untreated (left-most) to treated with ammonium ox-
alate (center) and treated with ammonium oxalate
plus NaOH (right-most) plant samples.

Three biological replicates were collected from each treat-
ment group: (a) Control, (b) Ammonium Oxalate, and (c)
Ammonium Oxalate+NaOH. Tomograms of 2000x2000xZ
voxels length were then partitioned into 3 smaller regions
of interest of 800x800xZ voxels for a total of 27 images. Z
varied from 178 to 220 layers and was automatically pro-
duced by IMOD.

Ultimately, our computational method allows for quan-
tification of the filamentous structures. Computed filament
properties include morphometric attributes (e.g., length and
width of a filament), and compositional properties (e.g.,
number of filaments and junctions, and percentage of polysac-
charides in the image). Figure 7 shows representatives of the
original tomographic images and the computed representa-
tion. Figure 8 shows that the loss in polysaccharides caused
by the chemical treatments is evident.

Figure 7: Results after enhancement, detection and
completion of filaments from images in Figure 6. Im-
ages show maximum projection views of the results.

From a quantitative perspective, Figure 9(a) indicates a
reduction of polysaccharides relative to the whole image for
each treatment condition. It is well known that ammo-
nium oxalate mainly removes pectins from the cell walls. It
has been reported that primary cell walls in dicotyledonous
plants are composed of around 35% pectins [19], and hence
in reasonable agreement with the 45.3% of detectable car-
bohydrate loss (Figure 9(a)), particularly because our data
includes the middle lamella known to contain higher con-
centration of pectin [2]. Additional treatment with sodium
hydroxide is known to remove hemicelluloses from the cell
walls. Hemicelluloses represent 20-40% of the carbohydrates
in primary cell walls, hence our observed 81.5% is in reason-
able agreement with the expectation of up to 75% loss of
material for the combined two chemical treatments. This
finding is consistent with the literature.

We observed that after the double treatment, the cell walls
retained 18.5% of the total wall polysaccharides. However,
neither of the treatments are known to remove cellulose.
Trace amounts of hemicellulose, if tightly bound to the cel-
lulose microfibrils, are most likely to remain unextracted as
well. The residual volume of polysaccharides after double
treatment accounts for the unextracted cellulose and hemi-
celluloses. The expected amount of cellulose is 15-30% in
primary cell walls [19], and our findings are within this
range. However, it should be noted here that pure cellulose
does not take up the stains used for electron microscopy and
hence, some of the cellulose microfibrils that are stripped of
all the hemicelluloses and pectins might not be detected.

Generally speaking, pectins are heavily branched polysac-
charides that are thought to make cross-connections among
themselves and with other cell wall polysaccharides. In con-
trast, hemicelluloses are long filamentous polysaccharides
with less branching compared to pectins. Hemicelluloses are
also thought to interact with the cellulose microfibrils either
by coating some parts of it or creating junctions with an-
other cellulose microfibrils in the same local neighborhood.
Hemicelluloses may possibly interact with cell wall pectins
as well [2]. An important contribution of our computational
protocol is that it goes beyond volumetric quantification of
the samples by concomitantly characterizing compositional
and morphometric attributes of the plant cell wall. Our



Figure 8: Left column shows 3D views of the results
after enhancement, detection and completion of fil-
aments. Right column shows filamentous structures
after curve tracking. Per our chemical treatments,
top row shows control, middle row shows ammonium
oxalate and bottom row shows ammonium oxalate +
NaOH. Our scheme evidentiates the expected loss
of polysaccharides resulting from different chemical
treatments.

analyses show that ammonium oxalate caused (i) a decrease
in number of filaments by 17.6% (Figure 9(b)) and (ii) a de-
crease in junctions by 25.7% (Figure 9(c)). After subsequent
extraction with sodium hydroxide, the number of filaments
decreased by 44.0% (Figure 9(b)), where 26.4% loss of fila-
ments was due to sodium hydroxide treatment alone. Due to
the same treatment, the number of junctions decreased by
43.0% (Figure 9(c)) out of which, only 17.3% was caused by
sodium hydroxide treatment alone. The loss of large num-
ber of junctions in addition to filaments is consistent with
reports from the literature in that pectins and hemicelluloses
make cross-connections in primary cell walls. However, in
absolute terms, the number of junctions between filaments
are not consistent with the literature under control (e.g.,
untreated) conditions. Our qualitative observation indicate
that larger number of junctions may be simply not visible.
This is the current area of our research in improving the
sample preparation.
In a deeper look into the structural properties of filaments,

our analysis shows that even though the treatments caused
loss in cell wall polysaccharides, the distribution of length
and width of filaments remained unchanged after the chem-
ical treatments (Figure 10). The breakdown products of
ammonium oxalate and sodium hydroxide are soluble in the

Figure 9: Quantification of the plant cell wall com-
position across chemical treatments. (Top left) Vol-
ume of polysaccharides per treatment relative to
whole imaged volume; (top right) number of fila-
ments per treatment; (bottom) number of junctions
per treatment. Bars show the average value among
replicates within each treatment category. The error
lines represent the variation between minimum and
maximum values within replicates from the same
treatment category. Cross lines show the composi-
tion change across treatments, while numbers inside
the bars represent their height, both in percentage.

treatment chemicals and most likely are washed away dur-
ing sample processing. This could explain the lack of in-
crease in number of smaller fragments in spite of decrease
in number of long filaments in the chemically treated walls
(Figure 10(a)). Note that cellulose microfibrils are reported
to be 3-10 nm in diameter [2]. Width of hemicelluloses and
pectins are not known with certainty, but based on their
chemical formula they can be expected to range between 2
and 4 nm. The filaments detected in our analysis possibly
account for cellulose microfibrils coated with hemicellulose
and pectins. It should be noted here that the stains used
for electron microscopy also add to the filament width. The
fact that we see higher loss of thick filaments because of the
treatments (Figure 10(b)), more so with sodium hydroxide
removal of hemicelluloses, also supports the idea that the
thicker filaments are most likely to be cellulose microfibrils
coated with hemicellulose and pectins. When the cellulose
microfibrils are completely stripped of the other polysaccha-
rides due to the treatments, they will be closer to 2-3 nm in
width and most likely become undetectable due to known
staining limitations of pure cellulose [22].

4. CONCLUSIONS
We presented a computational protocol for automatic seg-

mentation of filamentous structures imaged by tomographic
electron microscopy. Our approach is based on enhance-
ment, detection, completion and segmentation of filamen-
tous networks. The tensor voting framework is a fundamen-
tal part the proposed approach. It does not use shape priors
or shape templates and is shown to inhibit noise while en-
hancing signal and maintaining structural integrity through
gap filling. We have validated the utility of our approach by
using synthetic data and by introducing artifacts to the data.



Figure 10: Histograms of length (left) and width
(right) reveal the profile of filamentous structures
and how they change as a function of the chemi-
cal treatments. Such results permit quantification
of the progressive change in filament morphometric
properties caused by chemical removal of polysac-
charides. The relative loss of material is illustrated
at the histogram location that showed the maximum
variation across treatments.

Subsequently, the method was applied to biological sam-
ples under different treatment conditions to quantify both
compositional and morphometric properties of the plant cell
wall. Our results were validated with prior literature, indi-
cating consistency; however, new research questions were si-
multaneously raised. In summary, proposed computational
protocol is a promising approach for quantifying composi-
tion of filamentous structures from different species and/or
within species under different experimental conditions. Ulti-
mately, these methods can be utilized for better understand-
ing of the mechanical property of the plant cell wall.
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