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Abstract

Feature subset selection has received considerable atten-
tion in the machine learning literature, however, it has
not been fully explored or exploited in the computer vision
area. In this paper, we consider the problem of object de-
tection using Genetic Algorithms (GAs) for feature subset
selection. We argue that feature selection is an important
problem in object detection, and demonstrate that GAs pro-
vide a simple, general, and powerful framework for select-
ing good sets of features, leading to lower detection error
rates. As a case study, we have chosen to perform feature
extraction using the popular method of Principal Compo-
nent Analysis (PCA) and classification using Support Vec-
tor Machines (SVMs). We have tested this framework on
two difficult and practical object detection problems: vehicle
detection and face detection. Experimental results demon-
strate significant performance improvements in both cases.

I. Introduction

In recent years, object detection has received an increas-
ing amount of attention in the literature. In this paper, we
concentrate on two representative object detection prob-
lems using supervised learning: vehicle detection and face
detection.

Robust and reliable vehicle detection in images acquired
by a moving vehicle (i.e., on-road vehicle detection) is an
important problem with application to driver assistance
systems or autonomous, self-guided vehicles. This is a
very challenging task in general[l]. Research on vehicle
detection within the last ten years has been quite active.
Matthews et al. use PCA for feature extraction and Neu-
ral Networks (NNs) for classification [2]. Goerick et al.[3]
employ Local Orientation Coding (LOC) to encode edge
information and NNs to learn the characteristics of vehi-
cles. A statistical model was investigated by [4] Schnei-
derman et al., where PCA and wavelet features were used
to represent vehicle and and nonvehicle appearances. A
different statistical model was investigated by Weber et al
[5]. They represented each vehicle image as a constella-
tion of local features and used the EM algorithm to learn
the parameters of the probability distribution of the con-
stellations. An interest operator, followed by clustering, is
used to identify a small number of local features in vehicle
images. In [6], Papageorgiou et al. proposed using Haar

wavelets for feature extraction and SVMs for classification.
Sun et al. [1] fused Gabor and Haar wavelet features to
improve the detection accuracy [1].

Similarly to on-road vehicle detection, face detection
from a single image is a difficult task due to variability
in scale, location, orientation, pose, race, facial expression,
and occlusion. Rowley [7] proposed a NN-based face de-
tection method, where pre-processed image intensity values
were used to train a multilayer NN to learn the face and
nonface patterns from face and nonface examples. Sung et
al. [8] developed a distribution-based system which con-
sists of two components, (i) a distribution-based model for
face/nonface and (ii) a multilayer NN. SVMs were first ap-
plied to face detection by Osuna et al.[9]. In that work, the
inputs to the SVM were again pre-processed image inten-
sity values as in [7]. SVMs have also been used to detect
faces using wavelet features [6]. Viola et al. [10] have re-
cently developed a very fast face detection system using
very simple features and the AdaBoost learning algorithm.
Two recent comprehensive surveys on face detection can
be found in [11], [12].

A. Feature Selection

The majority of real-world object detection problems re-
quire supervised learning where each training instance is
associated with a class label. Building an object detection
system under this scenario involves two main steps: (i) ex-
tracting a number of features and (ii) training a classifier
using the extracted features to distinguish among different
class instances. In most cases, relevant features are often
unknown a priori. Often, a large number of features are
extracted to better represent the target concepts, however,
without employing some kind of feature selection strategy,
many of them could be either redundant or even irrelevant
to the classification task. As a result, the classifier might
not be able to reach optimum performance.

It would be ideal if we could use only those features which
have great separability power while ignoring or paying less
attention to the rest. For example, in order to allow a
vehicle detector to generalize nicely, it would be nice if we
could exclude features encoding fine details which might
be present in particular vehicles only. Finding out which
feature to use for the task at hand is referred to as feature
selection. Specifically, the problem of feature selection can
be defined as follows: given a set of d features, select a
subset of size m that leads to the smallest classification
error.



A number of feature selection approaches have been pro-
posed in the literature (Jain et al [13], Yang et al [14] for
comprehensive surveys). According to the search strategy
involved and expected results, feature selection algorithms
fall into one of the three categories: (i) optimal feature se-
lection, (ii) heuristic feature selection, and (iii) randomized
feature selection.

Exhaustive search is the most straightforward approach
to the optimal solution However, the number of possible
subsets grows combinatorially, which makes the exhaustive
search impractical for even moderate size of features. Se-
quential Forward Selection (SFS) and Sequential Backward
Selection (SBS) are two well-known heuristic feature selec-
tion schemes [15]. Combining SFS and SBS gives birth to
the "plus l-take away r” feature selection method[16], which
first enlarges the feature subset by [ using SFS and then
deletes r features using SBS. Sequential Forward Floating
search (SFFS) and Sequential Backward Floating Search
(SBES) [17] are generalizations of the“plus 1 - take away
r” method . The values of 1 and r are determined auto-
matically and updated dynamically in SFFS and SBFS.
Since these strategies make local decisions, they cannot be
expected to find globally optimal solutions.

Randomized search is another feature selection strategy.
The relief algorithm [18] and several extension of it [19] are
the typical randomized search approaches. Recently, GAs
[20] have attracted more and more attention as an opti-
mization tool for feature selection. Siedlecki et al [21] pre-
sented one of the earliest studies of GA-based feature selec-
tion in the context of k-nearest-neighbor classifiers. Yang
et al [14] proposed a feature selection approach based on
GAs using a NN classifier. However, by using the test set in
the fitness function evaluation, they introduced some bias.
Chtioui et al [22] investigated a GA-based feature selection
scheme in a seed discrimination problem. In Sun et al. [23],
[24] used GAs to select gender-orientated features to boost
gender classification.

B. Proposed Work

In this paper, we propose using GAs to select good fea-
ture subsets to improve object detection. This is in con-
trast to common approaches in the literature which use
all the features or a subset selected manually or based on
some heuristics. An exemption to the above is the recent
work of Viola et al. [10] where increasingly more complex
classifiers are combined in a cascade using the AdaBoost
algorithm. The boosting process they used selects a weak
classifier at each stage of the cascade which can been seen
as a feature selection process. The proposed approach has
the advantage that it is simple, general, and powerful. The
work proposed here has similarities with the work of Sun
et al. [23], [24], however, the size of the two classes consid-
ered here (e.g., object vs non-object) are in principle very
different.

To demonstrate the proposed approach, we have consid-
ered the well known methods of PCA for feature extraction
and SVM for classification. Feature extraction using PCA

has received considerable attention in the computer vision
area [25], [11], [12]. Feature extraction using PCA entails to
representing an image in a low dimensional space spanned
by the principal components of the covariance matrix of
the data. Although PCA provides a way to represent an
image in an optimum way, several studies have shown that
not all of the principal eigenvectors encode useful informa-
tion for classification purposes (e.g., Swets et al [26] have
reported that several principal eigenvectors seem to encode
mostly lighting information). Here, GAs are used to select
a subset, of features from the low dimensional representa-
tion of the image by disregarding certain eigenvectors that
do not seem to encode important information about the
target concepts. This framework has been tested on two
difficult object detection problems: vehicle detection and
face detection.

The rest of the paper is organized as follows: In Section
B, we present a brief overview of eigenspace representa-
tions. Section C presents a brief review on SVMs. Feature
selection in the context of face and vehicle detections are
addressed in Section D. In section E, we present the genetic
search approach for eigen-feature selection. The proposed
framework is experimentally tested in Section F(vehicle de-
tection) and Section G. Finally, Section H summarizes the
main results of the paper and presents possible directions
for future work.

II. Eigenspace Representation

Eigenspace representations of images use PCA [25] to
linearly project an image in a low-dimensional space. This
space is spanned by the principal components (i.e., eigen-
vectors corresponding to the largest eigenvalues ) of the
distribution of the training images. After an image has
been projected in the eigenspace, a feature vector contain-
ing the coefficients of the projection is used to represent the
image. We refer to these features as eigen-features. Here,
we just summarize the main ideas [25]:

Representing each image I(x,y) as a N x N vector I';,
first the average face ¥ is computed:

1 R
v=—3T, 1
R; (1)

where R is the number of faces in the training set. Next, the
difference ® of each face from the average face is computed:
®, =T; — U. Then the covariance matrix is estimated by:

R
1
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where, A = [®1P5...Pg]. The eigenspace can then be
defined by computing the eigenvectors u; of C. Since C' is
very large (N x N), computing its eigenvector will be very
expensive. Instead, we can compute v;, the eigenvectors of
AT A, an R x R matrix. Then p; can be computed from v;
as follows:

R
J=1



Usually, we only need to keep a smaller number of eigen-
vectors Ry, corresponding to the largest eigenvalues. Given
a new image, I', we subtract the mean (® =T — ¥) and
compute the projection:

¢ = sz‘lh‘- (4)

i=1

where w; = ,uz-Tl" are the coefficients of the projection. In
this paper, {w;} are our eigen-features.

The projection coefficients allow us to represent images
as linear combinations of the eigenvectors. It is well known
that the projection coefficients define a compact image rep-
resentation and that a given image can be reconstructed
from its projection coefficients and the eigenvectors (i.e.,
basis). The eigenspace representation of images is very
powerful and has been used in various applications such as
image compression and face recognition.

III. Support Vector Machines

SVMs are primarily two-class classifiers that have been
shown to be an attractive and more systematic approach
to learning linear or non-linear decision boundaries [27].
Given a set of points, which belong to either of two classes,
SVM finds the hyperplane leaving the largest possible frac-
tion of points of the same class on the same side, while
maximizing the distance of either class from the hyper-
plane. This is equivalent to performing structural risk min-
imization to achieve good generalization [27]. Assuming !
examples from two classes

(21, y1)(x2,y2) (21, 1), i € RN, y; € {=1,+1}  (5)

finding the optimal hyper-plane implies solving a con-
strained optimization problem using quadratic program-
ming. The optimization criterion is the width of the mar-
gin between the classes. The discriminate hyperplane is
defined as:

=

l
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where k(z,x;) is a kernel function and the sign of f(x)
indicates the membership of z. Constructing the optimal
hyperplane is equivalent to find all the nonzero a;. Any
data point x; corresponding to a nonzero a; is a support
vector of the optimal hyperplane.

Suitable kernel functions can be expressed as a dot prod-
uct in some space and satisfy the Mercer’s condition [27].
By using different kernels, SVMs implement a variety of
learning machines (e.g., a sigmoidal kernel corresponding
to a two-layer sigmoidal neural network while a Gaussian
kernel corresponding to a radial basis function (RBF) neu-
ral network). The Gaussian radial basis kernel is given by

[z — |

) 7

The Gaussian kernel is used in this study (i.e., our exper-
iments have shown that the Gaussian kernel outperforms
other kernels in the context of our application).

k(x,2;) = exp(—

IV. Feature Selection

We represent each image in terms of a set of eigen-
features. It has been found in several studies that different
eigenvectors encode different kind of information. For ex-
ample, the first few eigenvectors seem to encode lighting
while other eigenvectors seem to encode some local fea-
tures. We have made very similar observations in our case
by analyzing the eigenvectors obtained from our training
sets. Fig.1, for example, shows some of the eigenvectors
computed from our vehicle detection training data. Ob-
viously, eigenvectors 2 and 4 encode illumination informa-
tion, while eigenvectors 8 and 12 encode some local infor-
mation. Similar comments can be made for the eigenvec-
tors derived from our face detection training data set Fig.2.
Once again eigenvectors 2 and 5 seem to encode mostly il-
lumination while eigenvectors 8, 9 and 22 seem to encode
mostly local information. Eigenvector 150 seems to encode
mostly noise in both cases.

Although many eigen-features might be are very impor-
tant for recognition purposes, they might actually confuse
the classifier in other applications such as in detection. For
instance, the general shape might be more important in-
formation for detecting a vehicle in images caught under
unconstrained environments than the illumination or some
local features. In this paper, we consider using GAs to se-
lect a good subset of eigen-features in order to boost object
detection performance.
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Fig. 1. Eigenvectors from vehicle detection dataset
EV#1  EV#2 EV#3 EV#4 EV#5
. - - o -
e
EV#8 EV#9 EV#22 EV#27T EV#150

Fig. 2. Eigenvectors from face detection dataset



V. Genetic Feature Selection
A. A Brief Review of GAs

GAs are a class of optimization procedures inspired by
the mechanisms of natural selection [20]. GAs operate it-
eratively on a population of structures, each of which rep-
resents a candidate solution to the problem, encoded as a
string of symbols (chromosome). A randomly generated set
of such strings forms the initial population from which the
GA starts its search. Three basic genetic operators guide
this search: selection, crossover and mutation

B. Overview of the Proposed Method

The main steps of the proposed method are as follows:

(i) Eigen-feature extraction using PCA

(ii) Optimal eigen-feature subset selection using GAs

(iii) Training of the SVMs

(vi) Classification of novel images

A binary encoding scheme is used to represent the pres-
ence or absence of a particular eigenvector from the linear
expansion of the training images. Each individual in a gen-
eration represents an eigen-feature subset which is used to
train SVMs. The performance of the SVMs classifier on the
validation data set is used to provide a measure of fitness
used to guide the GA.

C. Encoding

Each image is represented as a vector of eigen-features
which are the coefficients of the linear expansion of the im-
age in the eigenspace. In our encoding scheme, the chro-
mosome is a bit string whose length is determined by the
number of eigenvectors. Each eigenvector, computed using
PCA, is associated with one bit in the string. If the ith
bit is 1, then the i*" eigenvector is selected, otherwise, that
component is ignored. Each chromosome thus represents a
different eigen-feature subset.

D. Fitness Evaluation

The goal of feature subset selection is to use fewer fea-
tures to achieve the same or better performance. Therefore,
the fitness evaluation contains two terms: (a) accuracy and
(b) number of features used. Only the features in the eigen-
feature subset encoded by an individual are used to train
the SVMs classifier. The performance of the SVMs is esti-
mated using a validation data set and used to guide the GA.
Each feature subset contains a certain number of features.
If two subsets achieve the same performance, while con-
taining different number of features, the subset with fewer
features is preferred. Between accuracy and feature subset
size, accuracy is our major concern. Combining these two
terms, the fitness function is given as:

fitness = 10* Accuracy + 0.5Zeros (8)

where Accuracy is the accuracy rate that an individual
achieves, and Zeros is the number of zeros in the chromo-
some. The accuracy ranges roughly from 0.5 to 1 (i.e., the
first term assumes values in the interval 5000 to 10000).
The number of zeros ranges from 0 to L where L is the
length of the chromosome (i.e., the second term assumes
values in the interval 0 to 100 since L = 200 here).

Overall, the higher the accuracy is, the higher the fitness
is. Also, the fewer the number of features used the higher
the number of zeros and as a result, the higher the fitness.
It should be noted that individuals with higher accuracy
will outweigh individuals with lower accuracy, no matter
how many features they contain.

E. Initial Population

In general, the initial population is generated randomly,
(e.g., each bit in an individual is set by flipping a coin). In
this way, however, we will end up with a population where
each individual contains the same number of 1’s and 0’s
on the average. To explore subsets of different numbers of
features, the number of 1’s for each individual is generated
randomly. Then, the 1’s are randomly scattered in the
chromosome.

F. Crossover

In general, we do not know how the eigenfeatures de-
pend on each other. If dependent features are far apart
in the chromosome, it is more probable that traditional 1-
point crossover, will destroy the schemata. To avoid this
problem, uniform crossover is used here.

G. Mutation

Mutation is a very low probability operator and just flips
a specific bit. It plays the role of restoring lost genetic
material. Our selection strategy was cross generational.
Assuming a population of size N | the offspring double the
size of the population and we select the best N individuals
from the combined parent-offspring population.

VI. Genetic Feature Subset Selection For
Vehicle Detection

In this subsection, we consider the problem of vehicle de-
tection from gray-scale images. A first step of any vehicle
detection system is hypothesizing the locations in images
where vehicles are present. Then, verification is applied
to test the hypotheses. Both steps are equally important
and challenging. Approaches to generate the hypothetical
locations of vehicles in images include using motion infor-
mation, symmetry, shadows, and vertical /horizontal edges.
Our emphasis here is on improving the performance of the
verification step by selecting some representative features.

A. Vehicle Data

The images used in our experiments were collected in
Dearborn, Michigan during two different sessions, one in



the Summer of 2001 and one in the Fall of 2001. To ensure
a good variety of data in each session, the images were
caught during different times, different days, and on five
different highways. The training set contains subimages of
rear vehicle views and non-vehicles which were extracted
manually from the Fall 2001 data set. A total of 1051 ve-
hicle subimages and 1051 non-vehicle subimages were ex-
tracted (see Figure 3). In [6], the subimages were aligned
by wrapping the bumpers to approximately the same posi-
tion. We have not attempted to align the data in our case
since alignment requires detecting certain features on the
vehicle accurately. Moreover, we believe that some variabil-
ity in the extraction of the subimages can actually improve
performance. Each subimage in the training and test sets
was scaled to 32 x 32 and preprocessed to account for dif-
ferent lighting conditions and contrast followed the method
suggested in [28].

To evaluate the performance of the proposed approach,
the average error (ER) was recorded using a three-fold
cross-validation procedure. Specifically, we split the train-
ing dataset randomly three times (Set!, Set2 and Set3)
by keeping 80% of the vehicle subimages and 80% of the
non-vehicle subimages (i.e., 841 vehicle subimages and 841
non-vehicle subimages) for training. The rest 20% of the
data was used for validation during feature selection. For
testing, we used a fixed set of 231 vehicle and non-vehicle
subimages which were extracted from the Summer 2001
data set.

w
e

Fig. 3. Examples of vehicle and nonvehicle images used for training.

B. Experimental Results

We have performed a number of experiments and com-
parisons to demonstrate the importance of the feature se-
lection for vehicle detection. First, SVMs were tested using
manually selected eigen-features. We ran several experi-
ments by varying the number of eigenvector from 50 to
200, Fig.4.a summarizes the results. By using the top 50,
100, 150, and 200 eigenvectors, the error rates are 18.21%,
10.89%, 10.24%, and 10.80% respectively.

For comparison purposes, we also implemented the SFBS
feature selection method. SFBS is an advanced version of
plus | —take away r method that first enlarges the feature
subset by [ features using forward selection and then re-
moves r features using backward selection. In contrast to
the plus | — take away r, the number of forward and back-
ward steps in SFBS is dynamically controlled and updated
by the classifier’s performance. The average number of the
features selected by SFBS was 87, and the error rate was
9.07%, which is only slightly better than the best results
(10.24%) using manually selected features.

In the last experiment, we used GAs to select an op-
timum subset of eigen-features. The GA parameters we
used are as follows: population size: 2000, number of gen-
erations:200, crossover rate:0.66 and mutation rate: 0.04.
In all cases, the GA converged in less than 200 generations.
Fig.4.a shows the error rate using the GA-selected feature
subsets. Using the feature subset, the SVM achieved a
6.49% error rate, which is better than both using the man-
ually selected feature subsets or subsets based on SFBS. In
terms of the number of features contained in the feature
subsets, SFBS preserves 87 features, which is 43.5% of the
complete feature set while GAs keep only 46 features, 23%
of the compete feature set.
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Fig. 4. Detection error rates of various methods. a. Vehicle detection
results, b. Face detection results.
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Fig. 5. The distributions of eigenvectors selected by (a) GAs for
vehicle detection , (b) SFBS for vehicle detection, (c) GAs for
face detection, (d) SFBS for face detection.

To get an idea regarding the optimal set of eigenvec-
tors selected by GAs or SFBS, we compute the histogram
(see Fig.5), showing the average distribution of the selected
eigenvectors, (i.e. over the three training sets). The x-axis
corresponds to the eigenvectors, ordered by their eigen-
values, and has been divided into intervals of length 10.
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Fig. 6. Reconstructed images using the selected feature subsets.
First row: original images; Second row: using top 50 eigenvectors;
Third row: using the eigenvectors selected by SFBS; Fourth row:
using the eigenvectors selected by GAs.

The y-axis corresponds to the average number of times
an eigenvector within some interval has been selected by
the GAs (or SFBS correspondingly) in the final solution.
Fig.5.a-b illustrate that the feature subsets selected by GAs
is sparser than those by SFBS. As we have discussed in Sec-
tion D, different eigenvectors seems to encode different kind
of information. For visualization purposes, we have recon-
structed the vehicle subimages using the selected eigenvec-
tors only (Fig.6). Two interesting comments can be made
through observing the reconstructed images using feature
subsets selected by GAs. First of all, it is obvious that
the reconstructed images contain much less details - they
all look fairly similar to each other. These features can be
thought as features that represent the“concept vehicle”,
but not individual vehicles. In contrast, the reconstructed
images using top 50 eigenvectors or feature subset selected
by SFBS method do reveal more vehicle identity informa-
tion as can be seen from the images in the second and third
rows. Second, the eigenvectors encoding features unimpor-
tant to representing the vehicle class, such as illumination,
seem to have been discarded by the GA. This is obvious
by observing the reconstructed images in the fourth row -
all of them seem to have been normalized with respect to
illumination (notice in particular the image in the fourth
column).

VII. Genetic Feature Subset Selection For
Face Detection

To detect faces in an image, a fixed window is run across
the input image. Each time, the contents of the window are
fed to a classifier which verifies whether there is a face in
the window or not. To account for differences in face size,
the input image is represented at different scales and the
same procedure is repeated at each scale. Alternatively,
candidate face locations in an image can be found using
color, texture, or motion information. As it was the case for
vehicle detection, here we concentrate on the verification
part only.

A. Face Data

The training set contains 616 faces and 616 nonfaces
subimages which were extracted manually from a gender
dataset and the CMU face detection dataset [7]. For test-
ing, we used a fixed set of 268 face and non-face subim-
ages which were also extracted from disjoint set of images
from the CMU face detection data set. Each subimage in
the training and test sets was scaled to 32 x 32 and pre-
processed to account for different lighting conditions and
contrast [28].

To evaluate the performance of the proposed approach,
we used a three-fold cross-validation procedure, splitting
the training dataset randomly three times (Set1, Set2 and
Set3) by keeping 84% of the face subimages and 84% of
the non-face subimages (i.e., 516 vehicle subimages and
516 non-face subimages) for training. The rest 16% of the
data was used for validation during feature selection.

=E=1

Fig. 7. Examples of face and nonface images used for training.

B. Experimental Results

For comparison purposes, SVMs were first tested using
manually selected eigen-features. We ran several experi-
ments, as we did for vehicle detection, by varying the num-
ber of eigenvectors from 50 to 200, Fig.4.b summarizes the
results. By using the top 50, 100, 150, and 200 eigen-
vectors, the error rates are 12.31%, 11.57%, 13.81%, and
14.93% respectively.

SFBS was also applied on the face detection data. The
average number of features selected by SFBS was 68, and
error rate was 10.45%, which is better than the best results
(11.57%) using manually selected features.

In the last experiment, we used GAs to select an op-
timum subset of eigen-features for SVMs. The GA pa-
rameters we used are exactly the same to those used in
the vehicle detection experiments. Fig.4.b shows the error
rate using the GAs selected feature subsets. The proposed
method achieves 8.21% error rate, which is better than
those using manually selected feature subsets and features
selected using SFBS. In terms of number of features con-
tained in the feature subsets, SFBS preserved 68 features,
which is 34% of the complete feature set while GAs kept
only 34 features, that is, 17% of the compete feature set.

The average distributions of the selected eigenvectors by
GAs and SFBS are shown in Fig.5.c-d. The reconstructed
images using the selected eigenvectors are shown in Fig.8.
It can be observed that the reconstructed images using
the GA-selected features appear more blurred (i.e., have
less details) than the original images or the ones recon-
structed using the manually selected or SFBS-based eigen-



eatures. Obviously, identity information has not been pre-
served which might be the key to successful face detection.
Another interesting observation is that the reconstructed
face images using the GA-selected features look more nor-
malized (e.g., notice the image in the fifth column where it
seems that feature selection has disregarded the effects of
rotation).
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Fig. 8. Reconstructed images using the selected feature subsets.
First row: original images; Second row: using top 50 eigenvectors;
Third row: using the eigenvectors selected by SFBS; Fourth row:
using the eigenvectors selected by GAs.

VIII. Conclusions

We have proposed using feature selection for boosting
the performance of object detection. In particular, we pro-
posed using GAs to select detection-specific feature subsets
in order to improve the performance of object detection.
Our results demonstrate that GAs are capable of remov-
ing detection-irrelevant features, outperforming the tradi-
tional approach of using the complete feature set. We have
tested the proposed method on two difficult object detec-
tion problems: vehicle detection and face detection. Exper-
imental results show that the proposed method does boost
the performance of both systems using SVMs for classifica-
tion. For future work, we plan to investigate the proposed
feature selection scheme across different feature extraction
spaces. We envision that GAs will be able to select the
complementary information offered by different feature ex-
traction methods and improve the object detection system
performance further.
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