CS 308 Data Structues
Spring 2003 - Dr George Bebis
Programming Assignment 2

Due date: 4/25/03

In the nat two assignments (i.e, 2&3), you will implement a simple system to perform coin
recognition from gray-kel images. In assignment 2, you will implement the first part of the coin
recognition system whichwolves counting and labeling the coirgi@s (no recognition to be
performed yet).To implement this part, you euld need to usstadks andqueues Figure 1 il-

lustrates the main steps of the subsystem you are supposed to implement in this assignment. The
output of your program should be the number gfars and the labeled image (you can assign
different colors to the ggons for visualization purposes). The objeesid the assignment are

the following:

» Improve your understanding of recursion
* Improve your skills with manipulating stacks and queues.
* lllustrate hav to convert a recursie dgorithm to an iteratie me.
» Learn more about image processing.
 Learn to document and describe your programs.
Input Image

Compute and Display
Image Histogram

'

Choose Threshold and
perform Thresholding

'

[Remove Small Holes]

'

‘ Count Coins Using ’

Connected Components

'

Display Labeled Image
Report Number of Coins

Figure 1 The steps for counting the coins in an image.

-2

Thresholding: The goal of thresholding is to produce a binary (black/white) image from a gray-
level (or color image). This is a required step for snapplications where we need to detect
objects of "interest" in an image (e.g., coiR&ds).

Figure 2 The original coins image (left) and its thresholded counterpart (right).

threshold(image, thesh): Given an input image (only gray-lel images will be considered in

this assignment), this function should compute a binary image of the input. idhseslooking

at each pigl in the input image and deciding whether to enthle corresponding pel in the out-

put image white (255) or black (0). The decision is generally made by comparing the numeric
pixel value(s) aginst a fixed number called a threshold. If thegdixalue is less than the thresh-

old, the piel is set to zero; otherwise, it becomes 258.istrate thresholding beloassuming

a gay-level image:

o Dssif I, j)>T
O 1= if1G,j)<=T

wherel is the input imageQ is the output (binary) image, amds the threshold.

Holes within regions: In most cases when we perform thresholding, the results are not com-
pletely perfect (e.g., the gmns might contain small holes because thelpitensity within a
region is not uniform). Anxample is shan belaw. In such cases, we ould like to fill in the

holes before dracting important features for recognition. Belave describe tw operators that

will be useful for allgiating some of these problems.

-3-
dilate(image): Given abinary (black/white) image, dilation performs the follimg operation:

Oyli. j) = (P55 if at leastone neighboiis 255
V=30, 1) otherwise

Specifically to determine the &lue of piel (i,j) in the output imag®,, we mnsider all the
neighbors of that ped in the input image. If all the neighbors of the (i,j) pet are "black” (0),
then we seOq(i, j) = I(i, j), otherwise, we seD4(i, j) = 255 The overall effect of dilation is that
it expands rgions. Implement this function as a client function.

(i) O i)

|
255 0 | 0 | ™

0 | o 255 255
0
0
0
0

0
4
0 y

erode(image):Given abinary (black/white) image, erosion performs the faling operation:

Ouli.) = (P55 if all neighborsare 255
e (i,j) otherwise

Specifically to determine the alue of piel (i,j) in the output imag®,, we wnsider all the

neighbors of that ped in the input image. If all the neighbors of the (i,)) pet are "white"

(255), then we sed.(i, j) = 255 otherwise, we seDg(i, j) = I(i, j). The werall effect of erosion

is that it shrinks rgions. i o

L — T

255 0 | O

0 | 255] 255 0

0 0| o

255 | 255 255

255 25§ 255 255

255 | 255 | 255 f

Using dilation and erosion: To get rid of small holes in a geon, first we apply dilation. An
example is shan belav (note that most holes inside the coigioms hae been remued).

-4 -

Although dilation will eliminate small holes, it will also increase the size of thieme by one
layer of piels. To revese this dict, we would hare to goply erosion on the result of dilation.

An example is sher below. Please note that erosion cannot bring back the holes that were elimi-
nated by dilation, hoever, larger holes that were not completely eliminated by dilation will still
be present after erosion. Implement this function as a client function.

displayHistogram(image): this function computes and displays the histogram of an image
which is simply a bar graph of the pixvalue frequencies (i.e., the number of times eadhev
occurs in the image). Use an array of "counters" to store tleéfpgquencies. The figure balo
illustrates a simplexample. The horizontal axis corresponds to thieht \alues in an image
(e.g., for PGM images, there are 256 possiblees from 0 to 255) and thenical axis corre-
sponds to the number of times a particuug occurs in the image.

freq.

0 0 1 0 2 0 20
1 0| 7 2|7 0 frequenci es

f(0)= 18 15
0 71010 |7 0 f(1)= 6
1|o0|0|7|2]0 f(2)=2 10
ol ol 7|1 ol 1 f(3)=f(4)=f(5)=f(6) = 0

f(7)=10 5
1 0 7 7 7 0 |

01 2 3 4 5 6 7
gray-levels

Figure 3 The histogram of the coins image (Fig2, left).

You can display the histogram as an image. First, you need to initialize the histogram image to O.
Then, you need to dnathe bars (one ped wide) one by one using the counters.olvd suggest

-5-

that you normalize the height of the bars before yow din@ histogram image (certain counters
might have pretty high \alues if a particular ped value appears in the imagery frequently).
You can normalize the counters using the failag formula:

c
max_c

500

(@]

wherec is the original counteralue,max c is the lagest counteralue, ancc is the normalized
value. The abwe formula will scale eery value in the interal [0, 500]. According to this ner
malization scheme, the number olvoof the histogram image will be 500 (500 is just zame

ple, you can choose warother number that might be more appropriate) and the number of
columns 256 (for PGM images). Implement this function as a "client" function.

Connected Components LabelingOne of the most common operations in machine vision is
finding the connected components in an image. The points in a connected component form a can-
didate rgion for representing an objedtet us considerfor example, the 16 by 16 image st

below. There are tw connected components (stao in black - note that the components will be
white in the thresholded imagesphwwill mark these pigls in a ner blank image with the com-

ponent numbeiThus for the image on the left, your output will be another image with tleéspix

in the top-left connected component metkwith a alue of 1 and the pets in the bottom-right

marked with a alue of 2.

®N On oW N e
— T

©

Figure 4. A simple image with tw regons (left); the labeled image (right).

A connected component labeling algorithm finds all connected components in an image and
assigns a unique label to all points in the same component. namalications, it is desirable to
compute characteristics (such as size, position etc.) of the components. Theceagertiims

for connected components: recuesend sequential. Bel is the pseudo-code for the recwesi
connected components algorithm.

assign it a new label L.
2. Recursively assign the label L to all of its 255 neighbors.
3. Stop if there are no more unlabeled 255 pixels.
4. Gotostep 1

The neighbors of the pek(i, j) are simply the closest mis to it as sheon in Figure 5. Belw, |
have povided for you the frameork for implementing the connected components algorithm.

-6-

You need to implement tw functions: connectedComponents(jand findComponent(). The
second function findComponentis the function that finds each component reselgi (as
described by the pseudo-code a)ownhile the first function fonnectedComponeitsalls the
recursve function. connectedComponents(yeturns a labeled image (i.e., same as the input
image it with each component labeled with eliént gray-leel value) and the number of con-
nected components @@ns). | will not gie you the description of the parameter listinlCom-
ponentitis part of the assignment to decide what you need to pdssl@omponent

int connectedComponents(inputimage, outputimage)

{
...

set outputimage to white (255) // unlabeled
connComp = 0;

for(i=0; i<N; i++)
for(j=0; j<M; j++)
if(inputimageli][j] == 255 && outputimageli][j] == 255) {
++connComp;
label = connComp; // new label
findComponent(parameters); // recursive function

// non-recursive function (see below)

/I findComponentBFS(inputimage, outputimage, i, j, label);

/I findComponentDFS(inputimage, outputimage, i, j, label);
}

return connComp;

}

As we hae dscussed in class, recursiimplementations are notfigient when the depth of
recursion is ery high. Here, you will also implement awiteratve veasions of the same algo-
rithm. The first ersion is called th@&readth-krst-Seach BFS)algorithm and uses a queue as
its main data structure while the second algorithm is called#pgh-Frst-Seach (DFS) and
uses a stack.

i-1,j-1 -1, |i-1,j+1

ij-1 i ij+1

i+1,j-1 i+1,j | i+1,j+1

8-neighbors
Figure 5 The eight neighbors of p&k(, j).

-7 -

findComponentBFS(inpulmage, outputimage, i, j, label) this function finds the connected
component ofnputimage which includes pigl (i,j) (we call this the "seed" pgX) and labels all
the piels in the same component using "labatputimage needs to be a binary image (i.e.,
already thresholded with small holes resebusing erosion and dilation).

The main data structure used by BFS is the queue. BasiBBB/uses a queue to "remember”
the neighbors of a pet (i, j) that need to be labeled in future iterations. Because of the FIFO
property of queues, the mbs that will be labeled first, \gn (i, j), will be the closest neighbors

of (i, j). In other words, BFS will first label all pels at distance 1 frof, j), then piels at dis-
tance 2, distance 3, etc. The pseudo-code for BFSes elow:

findComponentBFS(inpulmage, outputimage, i, j, label)

{
Queue.MakeEmpty();

Queue.Enqueue((i,j)); //initialize Queue

while (!Queue.IsEmpty()) {
Queue.Dequeue((pi, pj));
outputlmage(pi,pj) = label; // label this pixel
for each neighbor (ni, nj) of (pi, pj) // Enqueue neighbors
if (inputimage(ni, nj) == inputimage(pi, pj) and outputimage(ni, nj) == 255) {
outputlmage(ni, nj) = -1; // mark this location
Queue.Enqueue((ni, nj));
}
}
}

findComponentDFS(inpulmage, outputlmage, i, j, label) this function finds the connected
component ofnputimage which includes pigl (i,j) (we call this the "seed" pgX) and labels all
the piels in the same component using "labatputimage needs to be a binary image (i.e.,
already thresholded with small holes resebusing erosion and dilation).

The main data structure used by DFS is the stack. Basio&lfy uses a stack to "remember” the
neighbors of a p# (i, j) that need to be labeled in future iterations. Because of the LIFO prop-
erty of stacks, the pets to be labeled first,\gn (i, j), ae the most recently visited pbs of (i,))

(i.e., notnecessarily the closest neighborgiof)). EssentiallyDFS labels pigls by folloving a

path as deep as possible in the image. When the path ends, DFS backtracks to the most recently
visited pixel. The pseudo-code for DFS ivgn below:

-8-

findComponentDFS(inpulmage, outputimage, i, j, label)

{
Stack.MakeEmpty():

Stack.Push((i,))); //initialize Stack

while (!Stack.IsEmpty()) {
Stack.Pop((pi, pj));
outputimage(pi,pj) = label; // label this pixel
for each neighbor (ni, nj) of (pi, pj) // Stack neighbors
if (inputimage(ni, nj) == inputimage(pi, pj) and outputimage(ni, nj) == 255) {
outputimage(ni, nj) = -1; // mark this location
Stack.Push((ni, nj));
}
}
}

An illustration of the tw gpproaches, using Figure 4, is shobelav:

seed-x =2
seed-y = 6

4,8
DFS 27
4,6
3,8

28 | e
3,7 2,6
3,6 3,6 3,6
35 35 35
2,6 2.7 2.7 2,7
push pop push pop push

seed nei ghbor s nei ghbors
of (2,6) of (3,7)
BFS
Enqueue
‘ 2,6 Enqueue ‘3,5‘3,6‘ 3,7‘ 2,6‘ 2,8‘ 38 neighbors
of (2,7)
‘ Dequeue ‘ ‘3,6‘ 3,7‘ 2,6‘ 2,8 ‘ 3,8 Dequeue
‘ 2’7‘ 3’5‘ 3,6‘ 3,7 Enqueue

nei ghbor s
of (2,6)

Dequeue
‘ 3,5‘ 3,6‘ 3,7

Figure 6. Demonstration of BFS and DFS using the simple imagesto Figure 4.

Instructions

Implement the abe@ functions as client functions. Each function should be discussed in a sepa-
rate section with the name of the section being the same as the name of the function. Functions
you have implemented in the pveous assignments do not need to be describaih dogre (only

if you have made significant changes). The sections should be clearly separated from each other
In this assignment, your program should output the labeled image and the numlggortd re
(coins) found. ¥u will not do ag coin-identification in this assignment (thabwd be the goal

of the na&t assignment).

Questions

Answering the follaving questions does not require that youehgior knovledge of image pro-
cessing. Just spend some time thinking about them sadgyiyour best possible answers along
with some justification. du do not hee © do any extra coding rgarding these questionsibyou

are encouraged to do stnteresting ideas which are implemented and demonstrated will get
extra credit !' Make aure that you document in your reporiyaxtensions you might iva made.

In addition, mak aure that you mention this to thé& Quring the demo.

1. (2pts extra)Although it is a simple matter to comt an image to a binary image using thresh-
olding, it is much harder to do it in such ayvhat important information in the image is pre-
sened. The problem is choosing the threshoddug appropriatelylf we dhoose a &ry high
threshold, then we might miss important information. On the other haretydow threshold

will not segment the objects properlin general, choosing a good threshold automatically is a
difficult problem, in certain cases,wever, the histogram of the image can yide us with good
hints for selecting good thresholds. Can you think bite image histogram can help us in this
regard? You can illustrate your ideas using the coin or character image Ineae &ailable
from the coursa webpage.

2. (2pts extra) There are cases in image processing whevengn image containing arious
objects, we \ant to sgment specific objects onlifor example, consider the image sitobelav.
Suppose that we justamt to sgment the By and and coin. Is there aay to sgement these
objects only using the thresholding function you implementege@bry various thresholdal-
ues to cowmince yourself). If your answer is yes, pide in your report the thresholdle that
does that. If your answer is no, discussy\lhis is not possible. Can you think of otheays to
solwve this problem?

-10 -

3. (2pts extra)The erosion/dilation functions you implemented can only eliminate small holes in
a regon as it is olious from the gample | preided abee. Can you suggest ays to impree
these functions so that thean handle lager holes? Discuss your ideas as well as possible disad-
vantages.

4. (2pts extra)lt is very common when we use thresholding to find some objects of interest that
some rgions in an image are due to noise (e.g., look carefully at the thresholded imagersho
Figure 2; there is aery small rgion at the bottom-right of the image). Can you suggest ho
connected components can help us to eliminate sgatms®

5. (2pts extra) The connected components algorithm you implemented in this assignment oper
ates on binary images (i.e., thresholded) .oDly you think it is possible to generalize the con-
nected components algorithm to gray-scaleven @olor images? Describe woyou would do it.

What would be the major ditulty in this case?

6. (2pts extra) Although you will not be doing gncoin recognition in this assignment, it is a
good idea to start thinking about it. Wavould you approach this problem? In otherds, hev

would you recognize the coins present in an image? What featordd wou use for recogni-

tion? Discuss your ideas as well as possible problems (i.e., identify cases where your solution
might fail).

