
-- --

CS 308 Data Structures

Spring 2003 - Dr. George Bebis

Programming Assignment 2

Due date: 4/25/03

In the next two assignments (i.e, 2&3), you will implement a simple system to perform coin
recognition from gray-level images. In assignment 2, you will implement the first part of the coin
recognition system which involves counting and labeling the coin regions (no recognition to be
performed yet).To implement this part, you would need to usestacks andqueues. Figure 1 il-
lustrates the main steps of the subsystem you are supposed to implement in this assignment. The
output of your program should be the number of regions and the labeled image (you can assign
different colors to the regions for visualization purposes). The objectives of the assignment are
the following:

• Improve your understanding of recursion
• Improve your skills with manipulating stacks and queues.
• Illustrate how to convert a recursive algorithm to an iterative one.
• Learn more about image processing.
• Learn to document and describe your programs.

Compute and Display

Input Image

Choose Threshold and 

perform Thresholding

Image Histogram 

Remove Small Holes

Connected Components
Count Coins Using

Display Labeled Image

Report Number of Coins

Figure 1. The steps for counting the coins in an image.



-- --

- 2 -

Thr esholding:The goal of thresholding is to produce a binary (black/white) image from a gray-
level (or color image). This is a required step for many applications where we need to detect
objects of "interest" in an image (e.g., coins, faces).

Figure 2. The original coins image (left) and its thresholded counterpart (right).

thr eshold(image, thresh): Given an input image (only gray-level images will be considered in
this assignment), this function should compute a binary image of the input. This involves looking
at each pixel in the input image and deciding whether to make the corresponding pixel in the out-
put image white (255) or black (0). The decision is generally made by comparing the numeric
pixel value(s) against a fixed number called a threshold. If the pixel value is less than the thresh-
old, the pixel is set to zero; otherwise, it becomes 255. We illustrate thresholding below assuming
a gray-level image:

O(i , j ) =


î

255

0

if I (i , j ) > T

if I (i , j ) <= T

whereI is the input image,O is the output (binary) image, andT is the threshold.

Holes within regions: In most cases when we perform thresholding, the results are not com-
pletely perfect (e.g., the regions might contain small holes because the pixel intensity within a
region is not uniform). An example is shown below. In such cases, we would like to fill in the
holes before extracting important features for recognition. Below, we describe two operators that
will be useful for alleviating some of these problems.



-- --

- 3 -

dilate(image):Given abinary (black/white) image, dilation performs the following operation:

Od(i , j ) =


î

255

I (i , j )

if at leastone neighboris 255

otherwise

Specifically, to determine the value of pixel (i,j) in the output imageOd, we consider all the
neighbors of that pixel in the input imageI . If all the neighbors of the (i,j) pixel are "black" (0),
then we setOd(i , j ) = I (i , j ), otherwise, we setOd(i , j ) = 255. The overall effect of dilation is that
it expands regions. Implement this function as a client function.

I(i,j)

255 0 0

0 255

0 0 0

0 0 0

000

0 0 0

0

0 255

O (i,j)d

erode(image):Given abinary (black/white) image, erosion performs the following operation:

Oe(i , j ) =


î

255

I (i , j )

if all neighborsare 255

otherwise

Specifically, to determine the value of pixel (i,j) in the output imageOe, we consider all the
neighbors of that pixel in the input imageI . If all the neighbors of the (i,j) pixel are "white"
(255), then we setOe(i , j ) = 255, otherwise, we setOe(i , j ) = I (i , j ). The overall effect of erosion
is that it shrinks regions. I(i,j)

255

255 0 0

0 255 255

0 0 0

255255 255

255 255 255

255 255 255

0

O (i,j)e

Using dilation and erosion: To get rid of small holes in a region, first we apply dilation. An
example is shown below (note that most holes inside the coin regions have been removed).



-- --

- 4 -

Although dilation will eliminate small holes, it will also increase the size of the regions by one
layer of pixels. To rev erse this effect, we would have to apply erosion on the result of dilation.
An example is show below. Please note that erosion cannot bring back the holes that were elimi-
nated by dilation, however, larger holes that were not completely eliminated by dilation will still
be present after erosion. Implement this function as a client function.

displayHistogram(image): this function computes and displays the histogram of an image
which is simply a bar graph of the pixel value frequencies (i.e., the number of times each value
occurs in the image). Use an array of "counters" to store the pixel frequencies. The figure below
illustrates a simple example. The horizontal axis corresponds to the different values in an image
(e.g., for PGM images, there are 256 possible values from 0 to 255) and the vertical axis corre-
sponds to the number of times a particular value occurs in the image.

0

7

0 0 1 0 2 0

1 0 7 7 7 0

0 7 0 0 7 0

1 0 0 7 2 0

0 7 1 0 1

1 0 7 7 0

0 2 3 4 51 6 7

frequencies

f(0)= 18

f(1)= 6

f(2)= 2

f(3)=f(4)=f(5)=f(6) = 0

f(7) = 10

freq.

5

10

15

20

gray-levels

Figure 3. The histogram of the coins image (Fig2, left).

You can display the histogram as an image. First, you need to initialize the histogram image to 0.
Then, you need to draw the bars (one pixel wide) one by one using the counters. I would suggest



-- --

- 5 -

that you normalize the height of the bars before you draw the histogram image (certain counters
might have pretty high values if a particular pixel value appears in the image very frequently).
You can normalize the counters using the following formula:

c =
c

max_c
500

wherec is the original counter value,max_c is the largest counter value, andc is the normalized
value. The above formula will scale every value in the interval [0, 500]. According to this nor-
malization scheme, the number of rows of the histogram image will be 500 (500 is just an exam-
ple, you can choose any other number that might be more appropriate) and the number of
columns 256 (for PGM images). Implement this function as a "client" function.

Connected Components Labeling:One of the most common operations in machine vision is
finding the connected components in an image. The points in a connected component form a can-
didate region for representing an object.Let us consider, for example, the 16 by 16 image shown
below. There are two connected components (shown in black - note that the components will be
white in the thresholded images). You will mark these pixels in a new blank image with the com-
ponent number. Thus for the image on the left, your output will be another image with the pixels
in the top-left connected component marked with a value of 1 and the pixels in the bottom-right
marked with a value of 2.

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10

11

12

13

16

15

14

5

4

3

2

1

7

6

8

9

21 3 4 5 6 7 8 9 10 11 12 13 14 15 16

10

11

12

13

16

15

14

5

4

3

2

1

7

6

8

9

1 1 1

11111

1 1 1 1 1 1

111

1 1

11

111

111

1 1
1

22

222

222

22

22

22

222

Figure 4. A simple image with two regions (left); the labeled image (right).

A connected component labeling algorithm finds all connected components in an image and
assigns a unique label to all points in the same component. In many applications, it is desirable to
compute characteristics (such as size, position etc.) of the components. There are two algorithms
for connected components: recursive and sequential. Below is the pseudo-code for the recursive
connected components algorithm.

assign it a new label L.
2. Recursively assign the label L to all of its 255 neighbors.
3. Stop if there are no more unlabeled 255 pixels.
4. Go to step 1

The neighbors of the pixel (i , j ) are simply the closest pixels to it as shown in Figure 5. Below, I
have provided for you the framework for implementing the connected components algorithm.



-- --

- 6 -

You need to implement two functions:connectedComponents()and findComponent(). The
second function (findComponent) is the function that finds each component recursively (as
described by the pseudo-code above) while the first function (connectedComponents) calls the
recursive function. connectedComponents()returns a labeled image (i.e., same as the input
image but with each component labeled with a different gray-level value) and the number of con-
nected components (regions). I will not give you the description of the parameter list offindCom-
ponent; it is part of the assignment to decide what you need to pass tofindComponent.

int connectedComponents(inputImage, outputImage)
{
// ...
set outputImage to white (255) // unlabeled
connComp = 0;

for(i=0; i<N; i++)
for(j=0; j<M; j++)

if(inputImage[i][j] == 255 && outputImage[i][j] == 255) {
++connComp;
label = connComp; // new label
findComponent(parameters); // recursive function

// non-recursive function (see below)
// findComponentBFS(inputImage, outputImage, i, j, label);
// findComponentDFS(inputImage, outputImage, i, j, label);

}

retur n connComp;
}

As we have discussed in class, recursive implementations are not efficient when the depth of
recursion is very high. Here, you will also implement two iterative versions of the same algo-
rithm. The first version is called theBreadth-First-Search (BFS)algorithm and uses a queue as
its main data structure while the second algorithm is called theDepth-First-Search (DFS) and
uses a stack.

i+1,j−1 i+1,j i+1,j+1

i−1,j+1i−1,ji−1,j−1

i,j+1i,j−1 i,j

8−neighbors

Figure 5. The eight neighbors of pixel (i , j ).



-- --

- 7 -

findComponentBFS(inpuImage, outputImage, i, j, label): this function finds the connected
component ofinputImage which includes pixel (i,j) (we call this the "seed" pixel) and labels all
the pixels in the same component using "label".inputImage needs to be a binary image (i.e.,
already thresholded with small holes removed using erosion and dilation).

The main data structure used by BFS is the queue. Basically, BFS uses a queue to "remember"
the neighbors of a pixel (i , j ) that need to be labeled in future iterations. Because of the FIFO
property of queues, the pixels that will be labeled first, given (i , j ), will be the closest neighbors
of (i , j ). In other words, BFS will first label all pixels at distance 1 from(i , j ), then pixels at dis-
tance 2, distance 3, etc. The pseudo-code for BFS is given below:

findComponentBFS(inpuImage, outputImage, i, j, label)
{
Queue.MakeEmpty();

Queue.Enqueue((i,j)); //initialize Queue

while (!Queue.IsEmpty()) {
Queue.Dequeue((pi, pj));
outputImage(pi,pj) = label; // label this pixel
for each neighbor (ni, nj) of (pi, pj) // Enqueue neighbors

if (inputImage(ni, nj) == inputImage(pi, pj) and outputImage(ni, nj) == 255) {
outputImage(ni, nj) = -1; // mark this location
Queue.Enqueue((ni, nj));

}
}

}

findComponentDFS(inpuImage, outputImage, i, j, label): this function finds the connected
component ofinputImage which includes pixel (i,j) (we call this the "seed" pixel) and labels all
the pixels in the same component using "label".inputImage needs to be a binary image (i.e.,
already thresholded with small holes removed using erosion and dilation).

The main data structure used by DFS is the stack. Basically, DFS uses a stack to "remember" the
neighbors of a pixel (i , j ) that need to be labeled in future iterations. Because of the LIFO prop-
erty of stacks, the pixels to be labeled first, given (i , j ), are the most recently visited pixels of (i,j)
(i.e., notnecessarily the closest neighbors of(i , j )). Essentially, DFS labels pixels by following a
path as deep as possible in the image. When the path ends, DFS backtracks to the most recently
visited pixel. The pseudo-code for DFS is given below:



-- --

- 8 -

findComponentDFS(inpuImage, outputImage, i, j, label)
{
Stack.MakeEmpty();

Stack.Push((i,j)); //initialize Stack

while (!Stack.IsEmpty()) {
Stack.Pop((pi, pj));
outputImage(pi,pj) = label; // label this pixel
for each neighbor (ni, nj) of (pi, pj) // Stack neighbors

if (inputImage(ni, nj) == inputImage(pi, pj) and outputImage(ni, nj) == 255) {
outputImage(ni, nj) = -1; // mark this location
Stack.Push((ni, nj));

}
}

}

An illustration of the two approaches, using Figure 4, is shown below:

2,6 2,7

3,5

3,6

3,7

2,7

3,5

3,6 3,6

2,6
2,8
3,8
4,6
4,7

4,8

2,7

3,5

push pop push pop push

seed neighbors

of (2,6)

neighbors

of (3,7)

......

2,6 Enqueue

Dequeue

Enqueue
neighbors

3,73,63,52,7

of (2,6)

Dequeue
3,73,63,5

Enqueue
neighbors
of (2,7)

3,6 3,82,83,5 3,7 2,6

3,6 3,82,83,7 2,6 Dequeue

DFS

BFS

seed-x = 2
seed-y = 6

Figure 6. Demonstration of BFS and DFS using the simple image shown in Figure 4.



-- --

- 9 -

Instructions

Implement the above functions as client functions. Each function should be discussed in a sepa-
rate section with the name of the section being the same as the name of the function. Functions
you have implemented in the previous assignments do not need to be described again here (only
if you have made significant changes). The sections should be clearly separated from each other.
In this assignment, your program should output the labeled image and the number of regions
(coins) found. You will not do any coin-identification in this assignment (that would be the goal
of the next assignment).

Questions

Answering the following questions does not require that you have prior knowledge of image pro-
cessing. Just spend some time thinking about them and give us your best possible answers along
with some justification. You do not have to do any extra coding regarding these questions but you
are encouraged to do so.Interesting ideas which are implemented and demonstrated will get
extra credit !! Make sure that you document in your report any extensions you might have made.
In addition, make sure that you mention this to the TA during the demo.

1. (2pts extra)Although it is a simple matter to convert an image to a binary image using thresh-
olding, it is much harder to do it in such a way that important information in the image is pre-
served. The problem is choosing the threshold value appropriately. If we choose a very high
threshold, then we might miss important information. On the other hand, a very low threshold
will not segment the objects properly. In general, choosing a good threshold automatically is a
difficult problem, in certain cases, however, the histogram of the image can provide us with good
hints for selecting good thresholds. Can you think how the image histogram can help us in this
regard? You can illustrate your ideas using the coin or character images I have made available
from the course’s webpage.

2. (2pts extra)There are cases in image processing where, given an image containing various
objects, we want to segment specific objects only. For example, consider the image shown below.
Suppose that we just want to segment the key and and coin. Is there a way to segement these
objects only using the thresholding function you implemented above? (try various threshold val-
ues to convince yourself). If your answer is yes, provide in your report the threshold value that
does that. If your answer is no, discuss why this is not possible. Can you think of other ways to
solve this problem?



-- --

- 10 -

3. (2pts extra)The erosion/dilation functions you implemented can only eliminate small holes in
a region as it is obvious from the example I provided above. Can you suggest ways to improve
these functions so that they can handle larger holes? Discuss your ideas as well as possible disad-
vantages.

4. (2pts extra)It is very common when we use thresholding to find some objects of interest that
some regions in an image are due to noise (e.g., look carefully at the thresholded image shown in
Figure 2; there is a very small region at the bottom-right of the image). Can you suggest how
connected components can help us to eliminate such regions?

5. (2pts extra)The connected components algorithm you implemented in this assignment oper-
ates on binary images (i.e., thresholded) only. Do you think it is possible to generalize the con-
nected components algorithm to gray-scale or even color images? Describe how you would do it.
What would be the major difficulty in this case?

6. (2pts extra)Although you will not be doing any coin recognition in this assignment, it is a
good idea to start thinking about it. How would you approach this problem? In other words, how
would you recognize the coins present in an image? What features would you use for recogni-
tion? Discuss your ideas as well as possible problems (i.e., identify cases where your solution
might fail).

-- --


