CS365 Mathematics of Computer Science Fall 2006 – Dr. George Bebis Midterm Exam 1:00-2:15 PM

Name:_____

- 1. (25 points) True/False Questions To get credit, you must give brief reasons for each answer!
 - **T F** The statement "1 + 2 = 4" is a valid proposition.
 - **T F** The proposition $q \lor p \lor (p \rightarrow q)$ is a tautology.

T F $\forall x \exists y (y^2 = x)$

T F $\exists x (P(x) \land Q(x)) \Leftrightarrow (\exists x P(x)) \land (\exists x Q(x))$

T F For any two sets A, B, we have $A - B = A \cap \overline{B}$

2. (15 points) Using symbolic derivations (i.e., not truth tables), show that the proposition below is a tautology. $(p \land q) \rightarrow (p \lor q)$

3. (20 points) Construct an argument using rules of inference to show that the hypotheses "Linda, a student in this class, owns a red convertible", "Everyone who owns a red convertible has gotten at least on speeding ticket", imply the conclusion "Someone in this class has gotten a speeding ticket". Indicate clearly which inference rule you use at each step of your derivation.

4. (25 points) Prove the equality below **without** using Venn diagrams or membership tables.

$\overline{A \cup B} = \overline{A} \cap \overline{B}$

5. (**15 points**) Prove the following statement: *"The sum of two odd integers is even"*