CS477/677 Analysis of Algorithms
 Fall 2007 - Dr. George Bebis Homework 9

Due Date: N/A

1. (U-required) Exercise 24.1-3 (page 591)
2. (U-required) Exercise 24.3-2 (page 600)
3. (U-required) Here are the adjacency lists (with edge weights in parentheses) for a directed graph:

A: B(4), F(2)
$B: A(1), C(3), D(4)$
C: $A(6), B(3), D(7)$
D: A(6), E(2)
E: D(5)
$F: D(2), E(3)$
(a) This directed graph has three shortest paths from C to E. Find them (list the sequence of vertices in each path).
(b) Which of these paths is the one that would be found by Dijkstra's shortest-path algorithm? (give a convincing explanation or show the main steps of the algorithm).
4. (U-required) Exercise 24.3-3 (page 600)
5. (U-required) Suppose that you want to count the number of distinct shortest paths from s to u for every u in V. Indicate how you would modify the shortest path algorithms.

