CS485/685 Computer Vision

Spring 2010 - Dr. George Bebis Homework 2 - Solutions

1. Consider the subimage shown below. Find the gradient magnitude and gradient direction at the center entry using (i) the Peewit operator, (ii) the Sobel operator.

41613
32772
25737
14713
01644
(i) Prewitt (ii) Model
$M_{x}=\begin{array}{ccc}-1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1\end{array}$

$$
M_{x}=\begin{array}{lll}
-1 & 0 & 1 \\
-2 & 0 & 2 \\
-1 & 0 & 1
\end{array}
$$

$$
M_{y}=\begin{array}{ccc}
-1 & -1 & -1 \\
0 & 0 & 0 \\
1 & 1 & 1
\end{array}
$$

$$
M_{y}=\begin{array}{ccc}
-1 & -2 & -1 \\
0 & 0 & 0 \\
1 & 2 & 1
\end{array}
$$

$$
\begin{aligned}
& \text { Using Peewit: } \\
& \text { (2) } \\
& f x=2 \cdot(-1)+7(0)+7(1)+5(-1)+7(0)+3(1)+4(-1)+7(0)+(1)= \\
& =0 \\
& f y=2(-1)+7(-1)+7(-1)+5(0)+7(0)+3(0)+y(1)+7(1)+(1)= \\
& =-4 \\
& M=\left|f_{x}\right|+\left|f_{y}\right|=4 \\
& D=\operatorname{atan}^{-1}\left(\mathrm{fy} / \mathrm{bx}_{x}\right)=-90^{\circ} \\
& \text { Using nobel: } \\
& f_{x}=2(-1)+7(0)+7(1)+5(-2)+7(0)+3(2)+4(1)+7(0)+(1)= \\
& =-2 \\
& \begin{aligned}
f y & =2(-1)+7(-2)+7(-1)+5(0)+7(0)+3(0)+4(1)+7(2)+(1)= \\
& =-4
\end{aligned} \\
& =-4 \\
& M=\left|f_{x}\right|+\left|f_{y}\right|=6 \\
& D=\operatorname{atan}^{-1}\left(\mathrm{fy}_{y} f_{x}\right)=-116.6^{\circ}
\end{aligned}
$$

$a, b)$ The result is the same using the 2D mask or the 1-D masks.

Let un suppose an $N_{+} M$ ianaze.
At each pixel location, we need to reply a mask of size $n \times m$. This would require $n+m$ multiplication. Thertatal would be $n \times m+N \times M=n^{2} N \times M \quad(n=m)$. f we now assume $1 D$ masks of size n, it would require n multiplication at each pixel. Since we have to convolve price (once for the rows, one Quelletber, we would reed $2 n$ multiplications. The total would be $2 \eta \times N \times M$.

King big-O notation $O\left(\eta^{2} N M\right)$
21) care: $O\left(N^{2}\right)$
11) care: $O(\eta N M)$ - caper.

3. Problem 7 (OpenCV book, page 191)

The larger the difference between the low and high thresholds, the more pixels falls into the uncertainty interval and they might become edge points. The smaller the difference between the low and high thresholds, the more edges will be filled in. This is obvious by observing the results below. Decreasing the low threshold will increase the number of edge points (also, it will allow more noise to pass) while increasing the high threshold will decrease the number or edge points (also, some strong edges will be eliminated).

4. Generate the mask for

 the nearest integer.```
7
/1
This program calculate the Laplacian-Gaussian mask
 //--
 #include <iostream.h>
 #include <iomanip.h>
 #include <math.h>
 int main ()
 l
 double sigma, elementValue;
 int maskSize,i,j;
 cout << "Enter the variance of the Gaussian mask:";
 cin >> sigma;
 //Determine the mask size
 maskSize= int (5* sigma +0.5);
 if (maskSize % 2 == 0) maskSize ++;
 cout << endl << "The optimal mask size is: " << maskSize << endl << endl;
 cout << "The elements in the Laplacian-Gaussian mask are:" << endl << endl;
 //Calculate the melements in the mask
. for (i=-maskSize/2 ; i<=maskSize/2; i++)
`1
 for (j=maskSize/2; j>=-maskSize/2; j--)
 {
 elementValue = int (255*(i*i+j*j-2*pow(sigma,2))*exp(-(i*i+j*j)/2.0/sigma/sigma)/p
 OW(sigma,4));
 cout << setw(7) << elementValue;
 }
 cout << endl;
 }
 return 0;
}
/* Test case:
Enter the variance of the Gaussian mask:1
The optimal mask size is: 5
The elements in the Laplacian-caussian mosk are:
```


## Graduate Students Only:

Prove the following properties of the Gaussian function $G(x)=e^{\frac{-x^{2}}{2 \sigma^{2}}}$
(a) Symmetry: $G(x)=G(-x)$
(b) Scaling: $G^{\sigma}(x) * G^{\sigma}(x)=G^{\sqrt{2} \sigma}(x)$

Using property (b), propose a more efficient way to compute $\left(f(x) * G^{\sigma}(x)\right) * G^{\sigma}(x)$. Justify your answer by comparing the number of calculations (ie., multiplications/additions) required.
) $G(x)=e^{-x^{2} / 2 \sigma^{2}}$
(d) $\quad G(-x)=e^{-\left(-x^{2} / 2 \sigma^{2}\right.}=e^{-x^{2} / 2 \sigma^{2}}=G(x)$
(b) $G^{\sigma}(x)+G(x)=G^{\sigma}(x)$

$$
G(x) * G(x)=\int e^{-t^{2} / 2 \sigma^{2}} e^{-(x-t)^{2} / 2 \sigma^{2}} d t
$$

$$
=\int e^{-\left(x^{2}-2 x t+2 t^{2}\right) / 2 \delta^{2}} d t=
$$

$$
=\int e^{-\left(x^{2} / 2-2 x t+2 t^{2}+x^{2} / 2\right) / 2 \sigma^{2}} d t
$$

$$
\begin{aligned}
& =e^{-x / 4 \sigma^{2}} \int e \\
& \text { substitute } \sqrt{2 t}-x=s \Rightarrow \\
& =\sqrt{2} e^{-x^{2} / 4 \sigma^{2}} \int e^{-s^{2} / 2 \sigma^{2}} d s=
\end{aligned}
$$

$$
2 \sigma \sqrt{\pi} e^{-x^{2} / 2(\sqrt{2 r})^{2}}
$$

We want to coapute $(\underbrace{\left(f(x) * G^{\sigma}(x)\right.}_{Z(x)}) * G^{\sigma}(x)$
or:

$$
\text { mask size }=5 \sigma
$$

Instaod of using 2 steps, we can
use ane step: $W(x)=f(x) * G^{\sqrt{2 s}}(x)$
Totol: $5 \sqrt{2} \sigma$ multiplication/Pried (Cheoper!!)

$$
\begin{aligned}
& Z(x)=f(x)+G^{\sigma}(x) \longrightarrow 50 \text { multiplicariom/ping } \\
& W(x)=Z(x) * G^{\sigma}(x) \rightleftharpoons S \sigma \quad H \square \\
& \text { Total: } 5 \sigma+5 \sigma=2 \times 5 \sigma \\
& \text { multiplication/firel }
\end{aligned}
$$

