
Vector Quantizing Feature Space with a Regular Lattice

Tinne Tuytelaars ∗

K.U.Leuven, ESAT-PSI
Tinne.Tuytelaars@esat.kuleuven.be

Cordelia Schmid
INRIA, LEAR

schmid@inrialpes.fr

Abstract

Most recent class-level object recognition systems work
with visual words, i.e., vector quantized local descrip-
tors. In this paper we examine the feasibility of a data-
independent approach to construct such a visual vocabu-
lary, where the feature space is discretized using a regular
lattice. Using hashing techniques, only non-empty bins are
stored, and fine-grained grids become possible in spite of
the high dimensionality of typical feature spaces. Based
on this representation, we can explore the structure of the
feature space, and obtain state-of-the-art pixelwise classi-
fication results. In the case of image classification, we in-
troduce a class-specific feature selection step, which takes
the spatial structure of SIFT-like descriptors into account.
Results are reported on the Graz02 dataset.

1. Introduction

Many current object recognition systems use as basic
components vector-quantized local features, also referred
to as ‘textons’ [16], ‘object parts’ [7], ‘visual words’ [26],
or ‘codebooks’ [15]. Local features can be extracted ei-
ther at interest points (e.g. [7, 15]) or sampled densely
(e.g. [6, 13, 19, 20, 24]). In the context of category recog-
nition, dense sampling has been shown to be advantageous,
since interest points do not capture the entire appearance of
a class. In this paper we use dense features and present a
new approach for creating visual vocabularies.

Vector quantizing dense descriptors is especially diffi-
cult due to the number of descriptors and their distribu-
tion in space – there do not exist separate clusters. Exist-
ing solutions which improve over standard k-means include
the use of mean-shift based clustering [9], hierarchical k-
means [21], agglomerative clustering [14], and randomized
trees [20]. They all present a compromise between accuracy
and speed. In this paper we introduce an accurate and fast
solution which differs significantly from existing solutions,
as it does not rely on clustering techniques. Furthermore,

∗Work performed during stay at INRIA.

our approach allows to explore the feature space and neigh-
bourhood relations between visual words.

The basic idea behind our approach is to directly dis-
cretize the feature space using a regular lattice, i.e., in a
fully data-independent way. Each dimension is divided into
k partitions, resulting in Nk bins for a N-dimensional fea-
ture space. Several authors have claimed that this approach
is unfeasible for high values of N , since the number of bins
grows exponentially with N . Indeed, in a 128-dimensional
space, even when only 2 subdivisions for each dimension
are used, this results in more than 1038 bins. With 4 sub-
divisions for each dimension, used in our experiments, this
number increases even further to 1077 bins. However, most
of these bins are empty. This is a typical phenomenon for
high-dimensional spaces, re-enforced by the fact that all our
features lie on the unit hypersphere (due to normalization).
Moreover, some feature dimensions are highly correlated,
which makes many combinations very unlikely in real im-
ages. As a result, only a small fraction of the bins need to be
actually stored and can easily be accessed with a hashtable.

In short, our method consists of the following steps.
First, dense descriptors are extracted from an image and
collected in a sparse histogram, storing only the non-empty
bins using hashing techniques (see section 2). This repre-
sentation allows us to explore the feature space and to ob-
tain a better insight in how features are distributed over this
space, both in general as well as for images of a specific
object class (see section 3). Additionally, we construct a
fixed-size class-specific visual vocabulary by selecting the
most discriminative bins and their neighbours. We exper-
iment with different neighbourhood definitions, reflecting
the spatial structure of the feature space (see section 2.5).
We show experimental results in the context of localiza-
tion (pixelwise classification) as well as image classifica-
tion, both in a weakly supervised setting (section 4). Sec-
tion 5 concludes the paper.

Previous work. Laptev et al. [12], Levi and Weiss [17],
and Shoton et al. [25] have also proposed to start from
densely sampled image patches. They then select discrim-
inative descriptors using boosting. However, they heavily
rely on the provided segmentations for the training data,

1



whereas our method works in a weakly supervised setting.
We do not rely on bounding boxes or segmentations during
training but only use class labels. Moreover, our method is
more generic, in that it provides a probability distribution as
well as a visual vocabulary, which can then be used as input
for any local features based object recognition system.

Lookup tables have been used before for object recog-
nition. The best known example is probably the work on
geometric hashing by Lamdan and Wolfson [11]. However,
there the lookup table is not the actual image representation.
The same holds for locality sensitive hashing, which has
mostly been applied in the context of database retrieval [3].

Probably most similar to ours is the work of Jurie et
al. [20] on building fast and discriminative visual code-
books using randomized clustering forests. They do not
perform a traditional clustering of the feature space, but di-
vide it in bins based on a set of randomized trees. The trees
are selected so as to ensure high discriminativity. This al-
lows for fast recognition, while maintaining state-of-the-art
performance. We compare to their approach with respect to
recognition accuracy (section 4) as well as computational
complexity (section 2.6).

Several authors [13, 24, 27] have proposed to integrate
the clustering with the subsequent classification problem, as
we do in our feature selection (section 2.4). This allows to
improve the classification results, but the resulting vocab-
ulary is tuned towards the classification method used, and
may be less suited for other methods.

In a sense, our work is also akin to the work of Kon-
ishi and Yuille [10], who investigate the use of colour and
texture filter output statistics to perform a pixelwise classi-
fication of images into road, building, edge, vegetation, air,
and other. Yet, they report problems with less homogeneous
classes such as buildings. In contrast, our high-dimensional
gradient orientation based descriptors are well suited espe-
cially for these structured classes.

2. Our Approach
2.1. Initial image description

We start by densely sampling the image – and when we
say ’densely’, we really mean ’densely’: we use highly
overlapping patches, with a spatial sampling rate starting
at 1 pixel for the lowest scale, and a scalar sampling rate
of 1.2, starting from 16 × 16 patches up to patches of size
120×120. This results in 1.433.254 patches for an image of
size 640 × 480. The reason for this very dense sampling is
that we want to extract sufficient statistics from the training
images to obtain accurate probability distributions and to
limit the effect of discretization errors. For the time being,
the same sampling scheme is also used during recognition.
This can probably be relaxed, resulting in faster recognition
performance, with minimal loss in performance.

Each of these patches is then described by a robust SIFT-
like descriptor [18], computing distributions over gradient
orientations for different subpatches. We experimented with
Ns ×Ns = 2 × 2 and 4 × 4 subpatches, with No = 8 dif-
ferent discretization levels for the orientations, resulting in
feature vectors of respectively N = Ns×Ns×No = 32 and
128 dimensions. To keep the computation time reasonable,
we do not smooth the images (in contrast to SIFT). Instead,
we compute the gradients only once at a single scale. Then,
we use integral images to efficiently add up gradient magni-
tudes corresponding to a given orientation over a subpatch
of our descriptor, in the spirit of [2]. The resulting feature
vectors are subsequently normalized, except for homoge-
neous patches (i.e. those patches with all elements in the
feature vector below a predetermined threshold), which are
all set to zero.

2.2. Discretizing high-dimensional feature spaces

Each dimension of our feature space is then discretized
in four different levels, such that it can be described by two
bits. This results in no less than 4N bins (i.e. on the order
of 1019 or 1077 respectively for 2×2 and 4×4 subpatches)
– a huge visual vocabulary indeed.

A square grid may not be the optimal lattice [1] for our
feature space, with SIFT-like descriptors, which are typi-
cally compared using Euclidean distance (but see also sec-
tion 2.5). Nevertheless, we prefer this simple lattice struc-
ture as it is more intuitive and allows for easy interpretation
and exploration of the feature space (see section 3).

2.3. Practical implementation: Hashing

We exploit the fact that most of the bins after a direct
discretization of the feature space are empty. With 2 bits
for each dimension, a bin can be specified using an index of
2N bits. Rather than storing all N4 possible bins in mem-
ory, we use a hash table and store only the non-empty bins.
Constant time table lookup, i.e., independent of the size of
the visual vocabulary, can then be guaranteed.

To reduce problems with hash collisions, we use dou-
ble hashing [8]. The original index x of 2N bits is hashed
using a first hash function h1(x). This value is used as a
starting point in our hashtable. We, then, repeatedly ad-
vance steps of h2(x) to another address until the desired
value is located or an empty location is reached. By using
varied step sizes, determined by the second hash function
h2(x), double hashing avoids the problem of clustering, i.e.,
a high probability of repeated collisions. Constant-time ta-
ble lookup is then guaranteed and only depends on the load
factor α, defined as the ratio between the number of ele-
ments to be stored and the size of the hash table. To ensure
that search requires less than t comparisons on average, it
suffices to set α < (1 − 1/t). Double hashing has been
shown to be asymptotically equivalent to the ideal uniform



hashing [8]. If, for example, α = 0.1, the chance of having
a collision is one in ten but the chance that more than 10
addresses need to be checked is only α10 = 10−10.

We use a first hash table to store the number of occur-
rences of a particular bin, i.e., the feature histogram or bag-
of-words representation of an image or a set of images. The
same data structure is also used to store for each bin the
probability for a given class, the discriminativity (see be-
low), or the visual word ID.

2.4. Feature selection

Our very high-dimensional bag-of-features representa-
tion can be used to explore the feature space (see section 3),
or to perform weakly supervised pixel-wise classification
(see section 4). However, the histogram is simply too large
to be used as input for standard classifiers such as support
vector machines. We have, therefore, implemented a mech-
anism to reduce the visual vocabulary to a predefined size.
Note that we do not merge bins as in [27], but instead select
the most discriminative bins (and their immediate neigh-
bours) and ignore all the others. This is in contrast to ex-
isting visual vocabularies, where all features are assigned
to their closest cluster center irrespective of the actual dis-
tance. This is reasonable in our case, as due to the dense
sampling most of the features are very basic and not dis-
criminative at all, see section 3. It is, therefore, better to
ignore them right away. Discriminativity is measured by
comparing the relative frequencies of a bin x for a set of
images of an object class and a set of background images:

r =
p(x|class)

p(x|background)

It has been argued that feature selection prior to learning a
support vector machine does not improve performance [4].
However, this is based on the assumption that the SVM can
be trained on the entire dataset, which does not hold in our
case, i.e., for extremely high-dimensional vectors.

2.5. Neighbourhood definition

During the feature selection process, we exploit the fact
that thanks to our regular lattice discretization, it is easy
to retrieve neighbouring bins in feature space. However,
not all 2N neighbours are equally similar, due to the spa-
tial structure of SIFT-like descriptors. Indeed, some dimen-
sions are ’closer’, e.g., dimensions corresponding to similar
orientations in adjacent subpatches, or adjacent orientations
within the same subpatch. This affects the chance that a fea-
ture lie in the other bin due to discretization errors. We de-
fine four different types of ’neighbours’ (see also figure 1):

• Euclidean neighbours (E): identical descriptors,
except for increasing or decreasing one element with
one bit (one discretization level),

original Eucl. orient. spatial edge

Figure 1. Examples of the different types of SIFT neighbours
(darker arrows indicate stronger edges).

• Orientation neighbours (O): identical descriptors,
except for moving one bit from one element to another
from the same subpatch and with adjacent orientation,

• Spatial neighbours (S): identical descriptors, except
for moving one bit from one element to another with
the same orientation and from an adjacent subpatch,

• Edge strength neighbours (D): identical descriptors,
except for changing one non-zero element by one bit.

Note that edge strength neighbours are a subset of the
Euclidean neighbours. Intuitively, spatial and orientation
neighbours have a higher similarity with the original fea-
ture vector than some of the Euclidean neighbours. Never-
theless, their Euclidean distance is larger.

The number of nearest neighbours depends on the neigh-
bourhood type, and also on the actual feature vector (since
we have to stay within the four discretization levels). On
average, for the 4×4 patches there are 131 Euclidean neigh-
bours, 11 orientation neighbours, 16 spatial neighbours, and
10 edge neighbours. For the 2 × 2 patches, these numbers
are 36 and three times 11 respectively.

A reduced visual vocabulary can then be constructed as
follows. We select the most discriminative bin, assign it an
ID, assign the same ID to its immediate neighbours, and re-
move these bins from the original hashtable. We iterate this
process until a vocabulary of the desired size is obtained.
By varying the neighbourhood type, we effectively vary the
specificity of the visual words.

2.6. Complexity analysis

Building the full visual vocabulary (without feature se-
lection) only involves hashing. Learning the distribution of
features over the lattice takes O(NtrainD), with Ntrain the
number of patches in the training images and D the dimen-
sionality of the feature space. The dependency on D is due
to the computation of the descriptor, the discretization step,
as well as the computation of the hash functions. Testing
takes again O(D) per feature or O(NtestD) for all Ntest

patches in the test image(s).
To build the fixed-size, class-specific visual vocabulary,

we first build the full visual vocabulary, as above. Next, we
compute the discriminative power for each bin. This step
is linear in the size of our hashtable H , which has a pre-
determined fixed size. In our experiments, we typically set
H = 5 × 107 to guarantee a low load factor and a limited



Table 1. Average within-cluster standard deviation.
Nb. of clusters Avg. standard deviation

KMeans 100 0.612
KMeans 1.000 0.549
KMeans 10.000 0.503
Ours 0.397

number of collisions. We then select the top B most dis-
criminative bins, again with complexity O(H). The value
for B is chosen such that it is slightly larger than the ex-
pected number of bins in our final vocabulary. The top B
bins are sorted (O(B log(B))) and the top k most discrim-
inative bins are iteratively selected and added to the final
visual vocabulary together with their neighbours. With on
average m neighbours, this takes O(kmD). Since B is only
a fraction of Ntrain and also H is typically significantly
smaller than Ntrain, the whole training procedure takes on
the order of O(NtrainD). Testing involves only feature ex-
traction, O(Ntest), and hashing, O(NtestD).

This is comparable to the complexity reported
for randomized trees in [20], where training takes
O(
√

DNtrainlog(k)) and testing O(Ntestlog(k)), with k
the number of clusters/leaf nodes before pruning.

3. Exploring the Feature Space
We now investigate the distribution of the features, both

in general as well as for images of a specific object class.
This allows us to analyze the structure of the feature space,
and answer some intriguing questions. For convenience,
we only report results on the 128-dimensional feature space
here. Statistics are derived based on the Graz02 dataset [22].

Question 1: How empty is the feature space ? For a
specific object class, we obtain on the order of 106 non-
empty bins. For the more varied background images, this
increases up to 107. Compared to the total number of bins
spanning the entire unit hypercube (1077), this confirms our
expectations that indeed most of the space is empty.

Question 2: How ’compact’ are these bins, compared to
results obtained with k-means ? To measure the compact-
ness of a bin, we compute the mean and standard deviation
of the features it contains. With our direct discretization ap-
proach, we obtain an average standard deviation of 0.397.
This value is significantly lower than the average standard
deviation obtained with K-Means, even when a relatively
large number of clusters is used, as shown in table 1. This
indicates that our visual words are more specific.

Question 3: How are the features distributed over the
bins ? As shown in fig. 2, some bins contain a very large
number of features. However, the number of features per
bin decreases fast. The most frequently visited bins cor-
respond to very simple image structures, such as homoge-
neous patches and simple edge or line structures. More
complex patterns typically occur less frequently (see fig. 2).

Figure 2. Top: Average number of features per bin for the 190 odd-
numbered background images, with bins sorted by the number of
features they contain (note the logarithmic scales). Bottom: For
each range of bins, we visualize the central bin (i.e. bin nb. 1, 5,
50, 500, . . . ) to give an indication of the complexity of the image
structures they represent (thicker arrows indicate stronger edges).

Figure 3. Number of image patches ’explained’ by top N most
frequent bins.

Question 4: Is it sufficient to focus on the top N most
frequent bins only ? This depends on the application. Even
though some bins are very frequent, they still only repre-
sent a limited percentage of the data. To highlight this phe-
nomenon, we display the information of fig. 2 differently
in fig. 3. There seems to be a logarithmic relation between
the percentage of image patches explained and the number
of bins needed for this. For this experiment, we again use
the 190 odd-numbered background images. We sort the bins
based on frequency, and then check which percentage of the
image patches falls within the top N most frequent bins, for
varying values of N . The first bin already explains about
30% of the data. This does not come as a surprise, since it
corresponds to homogeneous or near-homogeneous patches
which indeed abound in many images. With the top 10.000
bins, over 75% of the image patches is accounted for. How-
ever, many more bins are needed to cover the remaining
25%. If we repeat the same experiment with image patches
from the test set (the 190 even-numbered background im-
ages), we get approximately the same result (see fig. 3), ex-
cept that we never reach 100%: 6% of the patches are in
bins that were never activated in the training images.

Question 5: How similar are distributions learned over
different image sets ? To evaluate the similarity between



Figure 4. Histogram over bins based on discriminativity r.

two distributions d1 and d2, we compute for each bin its dis-
criminativity r, i.e., how more likely is it to find a feature be-
longing to this bin in images of d1 than in images of d2. The
number of highly discriminative bins then gives an indica-
tion of how (dis)similar the two distributions are. First, we
compare the distributions computed over the odd-numbered
and even-numbered bike segmentations (see fig. 4). Only a
limited number of bins have a discriminativity larger than
10 or smaller than 1/10. So within a particular category,
distributions learnt over different images sets are quite sim-
ilar. When comparing the distribution of the bike segmen-
tations with the distribution of background images, on the
other hand, many more discriminative bins appear. So the
learnt distributions have a class-specific component. These
are the important bins to discriminate between bikes and
background. Finally, we repeat the same experiment but
now using the entire bike images instead of the segmenta-
tions. The most discriminative bins (r > 20) are relatively
stable. This suggests a weakly supervised setting may suf-
fice in some settings.

Question 6: What are the most discriminative bins ?
Fig. 5 visualizes some of the most discriminative bins

for the object classes bike, car, and person (extracted in
a weakly supervised setting). The most discriminative
patches for bikes contain diagonal structures. Somewhat
surprisingly, our method does not find the wheels among the
most distinctive patterns for cars. This is in contrast to what
has been observed in many interest point based methods. In-
stead, combinations of horizontal and diagonal edges, typi-
cal for car windows, are most discriminative. This may be
due to the fact that the typical bins representing wheels are
not very frequent for cars (with at best 2 occurrences per
car). For persons, non-perfect vertical structures (e.g. on
people’s legs) and rounded structures score well. The most
discriminative bins have a relatively high complexity.

Question 7: Are these results data-dependent ?
Finally, it is important to check whether these results are

generic or not. To this end, we repeat the same analysis
as above on the MSRC dataset [25]. This time, we do use
the segmentations, as each image contains multiple object
classes. Due to space constraints, we cannot show all the
graphs, but the overall trends and conclusions are the same,
except maybe for question 5. We observe that the ’overlap’
between distributions of different categories is much larger.
Some of the classes, like grass and road, are rather textures
than true object categories. If the texture is too finegrained,

Bikes
649 421 402 1176 810 497

Cars
232 154 150 431 420 410

Persons
764 680 435 1018 625 598

Figure 5. Visualization of the most discriminative bins, computed
over the odd-numbered images of the Graz02 dataset. The dis-
criminativity is mentioned underneath each visualization.

sky aeroplane water sign book boat
Figure 6. Visualization of the most discriminative bins for some of
the MSRC categories.

it cannot be captured by our descriptors. Moreover, often
color is the only cue to discriminate between these classes,
and this is currently not included in our descriptor. For the
more structured classes, like book, building, or aeroplane,
on the other hand, the results are more similar to the results
on the Graz02 dataset.

In figure 6 we show the most discriminative bins for
some of the MSRC categories. The most discriminative bin
for sky seems to capture horizons. Other highly discrimi-
native bins for sky (not shown here) are triggered on cloud
fragments. For aeroplanes, horizontal line structures seem
important. The two opposite arrows in the same subpatch
in the most discriminative bin for water correspond to small
ripples on the water. For signs, vertical line structures as
can be found in many letters are a good cue. The book im-
ages mainly contain book shelves, with many parallel ver-
tical lines, and these can be detected well with the fifth bin
of figure 6. For boats, finally, short horizontal structures
are important. These are found a lot both on the boat as in
the surrounding water, which is sometimes included in the
segmentation for boat.

4. Experimental results

From the above discussion, it is clear that by direct dis-
cretization an accurate, albeit large visual vocabulary can
be obtained. Moreover, we have observed that a large num-
ber of features reside in a few bins, corresponding to very
simple patterns. They are not really informative nor dis-
criminative. As a result, they do not contribute much to



image classification. This justifies our approach of feature
selection based on discriminativity.

On the other hand, using hashing techniques, lookup
times do not depend on the size of the visual vocabulary.
Hence we only apply such feature selection when a smaller
vocabulary is really needed, e.g. to train a support vector
machine classifier. For other applications, such as the pix-
elwise classification, the full visual vocabulary can be used.

For our experiments, we use the Graz02 dataset [22]. For
the first 300 images of each class, segmentations are pro-
vided. We use these only for the evaluation of the pixel-
wise classification, and never for training. Unless otherwise
mentioned, we use odd images for training and even im-
ages for testing. Default parameters are 4 × 4 patches and,
in case of feature selection, 10.000 visual words including
edge strength, orientation and spatial neighbours.

Use of resources. For an image of size 640× 480 and us-
ing a standard PC, it takes 0.26ms to compute the integral
images. Computing the descriptors for 1000 features then
takes an additional 12ms, discretizing them 1.4ms, and the
final hashing less than 0.5ms. On the downside, the hashta-
bles take a lot of memory, especially for the full visual vo-
cabulary: we use a hashtable of size 5× 107, which results
in a file of 5×107×(4×4×8×2+32)/8 = 1.8Gbyte. After
feature selection, this can be reduced to about 20Mbyte for
a visual vocabulary of size 1000. This is a result of the hash-
ing approach, which tries to find a tradeoff between memory
and speed, by avoiding collisions. A linked-list hash table
would probably take less space, but can in a worst case sce-
nario result in a time complexity linear in the number of
features stored in the hashtable.

4.1. Pixelwise classification

Based on the distributions learnt during training, each
patch can be classified as being more or less likely to be-
long to a specific object class, by retrieving the discrimi-
nativity (or likelihood ratios) of the bin it falls in from the
corresponding hash tables. To turn these patch-wise classi-
fications into a pixel-wise classification, we make the sim-
plifying assumption that the likelihoods for all patches are
independent, even if they largely overlap. The likelihood
for a specific pixel is then given by the product of the like-
lihoods of all patches containing that pixel. This results in
likelihood maps as shown in figure 7. Note that these are
obtained in a weakly supervised manner, i.e., without using
the segmentation masks or the bounding boxes. Neverthe-
less, the system has learnt which parts of the images are
relevant for a specific class, resulting in relatively accurate
segmentations, in spite of a wide range of viewpoint and
intra-class variations. This is remarkable, since only local
image information is exploited, without imposing any spa-
tial smoothness or consistency.

Figure 8. Precision-recall curves for pixelwise classification (left)
and image classification (right)

Table 2. Comparison of classification rate with state-of-the-art

Method Bikes Cars Persons
Opelt et al. [22] 76.5 70.7 81.0
Jurie et al. [20] 84.4 79.9 /
Ours 89.5 80.2 85.2

Even though the background class was conceived to be
unbiased, it contains some context information. For in-
stance, road markings have a high probability under the car
model, and so do bicycle racks for the bicycle model, as can
be seen in some of the examples of figure 7.

To quantitatively evaluate the performance of the pixel-
wise classification, we show the precision-recall curve for
the bikes in figure 8. Somewhat surprisingly, 2× 2 patches
seem to outperform their 4 × 4 counterparts in this exper-
iment. We also show the result obtained by Pantofaru et
al. [23]. Even though we only use local measurements, and
not information from a larger context and/or image segmen-
tation as they do, similar performance is obtained. Using
image segment classification as an intermediary step be-
tween patch-wise classification and pixel-wise classification
is likely to give a further increase in the classification accu-
racy. Finally, the quality of these likelihood maps could be
improved further by taking into account spatial consistency,
e.g. using Markov Random Fields.

4.2. Image classification

Based on the reduced visual vocabulary construction ex-
plained in section 2.4, we can build a more compact bag-
of-words representation of the image, and use that to train a
SVM-classifier. In our experiments, we used SVMs with a
linear kernel. This results in EER rates of 89.5% for bikes,
80.2% for cars, and 85.2% for persons (each time for the
optimal parameter settings, see below). To our knowledge,
this outperforms previously reported classification results
on this dataset, as can be seen from table 2. Precision versus
recall is shown in fig. 8.

Effect of parameter settings Table 3 summarizes the ef-
fect of some of the parameter settings. For SVM-based clas-
sification, 4 × 4 patches slightly outperform 2 × 2 patches



Figure 7. Pixelwise classification for a few example images (based on 4× 4 patches). (Top): Bikes, (Bottom Left): Cars, (Bottom Right):
Persons. Dark green means a negative log likelihood (unlikely to be the object of interest); Light green and yellow indicate a positive log
likelihood. Zero log likelihood corresponds to value 100 on the colorbar (best viewed in color).

Table 3. Effect of different parameter settings. (’E’ refers to Eu-
clidean neighbours, ’D’ to edge strength neighbours, ’O’ to orien-
tation neighbours, ’S’ to spatial neighbours - see also figure 1)

neighb. Bikes Cars Pers. Bikes Cars Pers.
type 4× 4 4× 4 4× 4 2× 2 2× 2 2× 2

/ 86.0 71.8 81.5 79.6 68.3 76.2
E 85.6 77.0 84.1 87.1 78.5 82.0
D 88.1 77.7 85.2 87.4 78.5 82.9

OD 87.4 77.5 85.2 86.0 71.5 84.6
SD 88.4 77.5 84.1 86.8 80.2 84.3

OSD 89.5 76.1 84.6 87.1 79.7 84.6

Table 4. Effect of visual vocabulary size and neighbour type for
the Graz02 bikes - same naming convention as in table 3.

50 100 500 1000 5000 10.000
/ 66.4 76.1 85.2 87.9 85.2 86.0
E 78.7 81.4 82.8 82.5 88.3 85.6
D 77.5 82.0 83.6 82.2 87.2 88.1
OD 72.0 82.2 84.1 81.8 89.2 87.4
SD 78.11 83.1 83.6 85.5 88.5 88.4
OSD 77.7 83.6 83.9 85.8 89.5 89.0

for bikes and persons, but not for cars. Adding neighbours
helps to improve the results with a few percent. Orientation
and/or spatial neighbours typically yield slightly better re-
sults than what is obtained with Euclidean neighbours, but
the difference is not significant.

Table 4 shows the effect of changing the size of the vi-
sual vocabulary. Note that, contrary to traditional clustering
approaches, in our case the average number of features for
a visual word is determined solely by the neighbourhood
type, and does not depend on the size of the vocabulary.
Indeed, the smaller visual vocabularies are just subsets of
the larger ones. As a result, one can expect the larger vo-
cabularies to perform better: they contain more informa-
tion, and the SVM classifier is able to ignore the redundant
features. This is indeed what happens. Nevertheless, at a
certain point the newly added features do not have much
discriminative power, and the curves saturate or even de-
grade slightly. Remarkably, vocabularies of just 50 or 100
features already achieve state-of-the-art results. Moreover,
whereas adding neighbours increased the classification ac-
curacy for large size vocabularies, the opposite is true for
smaller size vocabularies (500 − 1000). More specific vi-
sual words seem to be advantageous in that case. But when
the size of the vocabulary gets really small, this strategy
breaks down, and adding neighbours again works better.

Other datasets. We did some preliminary experiments on
the MSRC and Pascal VOC 2006 datasets [25, 5], using the
same parameter settings and setup as for Graz02. However,
in contrast to Graz02, they do not have a clean background
dataset and, as observed in section 3, the categories show
larger overlap in their distributions. This affects the feature
selection step and, as a result, also the performance of the



final classifiers (which gave slightly above average results
compared to all Pascal VOC participants). Exploiting the
bounding boxes during training and/or more parameter tun-
ing could probably improve these results.

5. Conclusion
To summarize, we have developed an efficient method

for vector quantizing feature space which is independent
of the training data. Our approach directly discretizes the
feature space using a regular lattice. In spite of the high
dimensionality the access is fast thanks to hashing, as the
space is mainly empty. By using a regular lattice we stay
close to the original SIFT-like representation. This allows
for easy interpretation of visual words, for fast retrieval of
neighbouring bins in feature space, and for exploring the
structure of the feature space. Additionally, we experiment
with different types of neighbours, that exploit the spatial
structure of SIFT-like descriptors. State-of-the-art results
are demonstrated both for pixelwise classification as well
as image classification.

As future work, we plan to experiment with other de-
scriptors, including different shapes of patches, as well as
combinations of different descriptors. Another line of re-
search involves bringing in spatial information and spatial
consistency for improved pixelwise classification.

Acknowledgements The authors acknowledge support
from European project CLASS, Network of Excellence
PASCAL, the INRIA visiting professor program, and the
Fund for Scientific Research Flanders.

References
[1] E. Agrell and T. Eriksson. Optimization of lattices for quanti-

zation. IEEE Transactions on Information Theory, 44:1814–
1828, 1998.

[2] H. Bay, T. Tuytelaars, and L. Van Gool. Surf: Speeded up
robust features. In ECCV, 2006.

[3] T. Darrell, P. Indyk, and G. e. Shakhnarovich. Nearest neigh-
bor methods in learning and vision: Theory and practice.
MIT Press, 2006.

[4] G. Dorko and C. Schmid. Selection of scale-invariant parts
for object class recognition. In ICCV, 2005.

[5] M. Everingham, A. Zisserman, C. K. I. Williams, and
L. Van Gool. The PASCAL Visual Object Classes Challenge
2006 (VOC2006) Results.

[6] L. FeiFei and P. Perona. A bayesian hierarchical model for
learning natural scene categories. In IEEE Conference on
Computer Vision and Pattern Recognition, 2005.

[7] R. Fergus, P. Perona, and A. Zisserman. Object class recog-
nition by unsupervised scale-invariant learning. In CVPR,
volume 2, pages 264–271, 2003.

[8] L. Guibas and E. Szemeredi. The analysis of double hash-
ing. Journal of Computer and System Sciences, 16:226–274,
1978.

[9] F. Jurie and B. Triggs. Creating efficient codebooks for vi-
sual recognition. In ICCV, 2005.

[10] S. M. Konishi and A. Yuille. Statistical cues for domain
specific image segmentation with performance analysis. In
Conf. on Computer Vision and Pattern Recognition, 1999.

[11] Y. Lamdan and H. Wolfson. Geometric hashing: A general
and efficient model-based recognition scheme. In Int. Conf.
on Computer Vision, pages 238–249, 1988.

[12] I. Laptev. Improvements of object detection using boosted
histograms. In British Machine Vision Conference, volume
III, pages 949–958, 2006.

[13] D. Larlus and F. Jurie. Latent mixture vocabularies for object
categorization. In British Machine Vision Conf., 2006.

[14] B. Leibe, K. Mikolajczyk, and B. Schiele. Efficient clus-
tering and matching for object class recognition. In British
Machine Vision Conference, 2006.

[15] B. Leibe and B. Schiele. Interleaved object categorization
and segmentation. In British Machine Vision Conf., 2003.

[16] T. Leung and J. Malik. Representing and recognizing the vi-
sual appearance of materials using threedimensional textons.
Int. Journal of Computer Vision, 43(1):29–44, 2001.

[17] K. Levi and Y. Weiss. Learning object detection from a small
number of examples: The importance of good features. In
IEEE Conference on Computer Vision and Pattern Recogni-
tion, volume II, pages 53–60, 2004.

[18] D. Lowe. Distinctive image features from scale-invariant
keypoints. International Journal of Computer Vision,
60(2):91–110, 2004.

[19] R. Marée, P. Geurts, J. Piater, and L. Wehenkel. Random sub-
windows for robust image classification. In Conf. on Com-
puter Vision and Pattern Recognition, pages 34–40, 2005.

[20] F. Moosmann, B. Triggs, and F. Jurie. Randomized cluster-
ing forests for building fast and discriminative visual vocab-
ularies. In NIPS, 2006.

[21] D. Nistér and H. Stewénius. Scalable recognition with a vo-
cabulary tree. In IEEE Conference on Computer Vision and
Pattern Recognition, volume 2, pages 2161–2168, 2006.

[22] A. Opelt and A. Pinz. Object localization with boosting and
weak supervision for generic object recognition. In Scandi-
navian Conference on Image Analysis, 2005.

[23] C. Pantofaru, G. Dorkó, C. Schmid, and M. Hebert. Com-
bining regions and patches for object class localization. In
CVPR06 Beyond Patches Workshop, 2006.

[24] F. Perronnin, C. Dance, G. Csurka, and M. Bressan. Adapted
vocabularies for generic visual categorization. In European
Conference on Computer Vision, 2006.

[25] J. Shotton, J. Winn, C. Rother, and A. Criminisi. Texton-
boost: Joint appearance, shape and context modeling for
multi-class object recognition and segmentation. In Euro-
pean Conference on Computer Vision, 2006.

[26] J. Sivic and A. Zisserman. Video Google: A text retrieval
approach to object matching in videos. In ICCV, volume 2,
pages 1470–1477, 2003.

[27] J. Winn, A. Criminisi, and T. Minka. Object categorization
by learned universal visual dictionary. In International Con-
ference on Computer Vision, 2006.


