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Abstract—This paper presents a method for face recognition across variations in pose, ranging from frontal to profile views, and

across a wide range of illuminations, including cast shadows and specular reflections. To account for these variations, the algorithm

simulates the process of image formation in 3D space, using computer graphics, and it estimates 3D shape and texture of faces from

single images. The estimate is achieved by fitting a statistical, morphable model of 3D faces to images. The model is learned from a set

of textured 3D scans of heads. We describe the construction of the morphable model, an algorithm to fit the model to images, and a

framework for face identification. In this framework, faces are represented by model parameters for 3D shape and texture. We present

results obtained with 4,488 images from the publicly available CMU-PIE database and 1,940 images from the FERET database.

Index Terms—Face recognition, shape estimation, deformable model, 3D faces, pose invariance, illumination invariance.
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1 INTRODUCTION

IN face recognition from images, the gray-level or color
values provided to the recognition system depend not

only on the identity of the person, but also on parameters
such as head pose and illumination. Variations in pose and
illumination, which may produce changes larger than the
differences between different people’s images, are the main
challenge for face recognition [39]. The goal of recognition
algorithms is to separate the characteristics of a face, which
are determined by the intrinsic shape and color (texture) of
the facial surface, from the random conditions of image
generation. Unlike pixel noise, these conditions may be
described consistently across the entire image by a
relatively small set of extrinsic parameters, such as camera
and scene geometry, illumination direction and intensity.
Methods in face recognition range within two fundamental
strategies: One approach is to treat these parameters as
separate variables and model their functional role explicitly.
The other approach does not formally distinguish between
intrinsic and extrinsic parameters, and the fact that extrinsic
parameters are not diagnostic for faces is only captured
statistically.

The latter strategy is taken in algorithms that analyze
intensity images directly using statistical methods or neural
networks (for an overview, see Section 3.2 in [39]).

To obtain a separate parameter for orientation, some
methods parameterize the manifold formed by different
views of an individual within the eigenspace of images [16],
or define separate view-based eigenspaces [28]. Another
way of capturing the viewpoint dependency is to represent
faces by eigen-lightfields [17].

Two-dimensional face models represent gray values

and their image locations independently [3], [4], [18], [23],

[13], [22]. These models, however, do not distinguish

between rotation angle and shape, and only some of them

separate illumination from texture [18]. Since large rota-

tions cannot be generated easily by the 2D warping used

in these algorithms due to occlusions, multiple view-based

2D models have to be combined [36], [11]. Another

approach that separates the image locations of facial

features from their appearance uses an approximation of

how features deform during rotations [26].
Complete separation of shape and orientation is

achieved by fitting a deformable 3D model to images. Some

algorithms match a small number of feature vertices to

image positions, and interpolate deformations of the surface

in between [21]. Others use restricted, but class-specific

deformations, which can be defined manually [24], or

learned from images [10], from nontextured [1] or textured

3D scans of heads [8].
In order to separate texture (albedo) from illumination

conditions, some algorithms, which are derived from shape-

from-shading, use models of illumination that explicitly

consider illumination direction and intensity for Lamber-

tian [15], [38] or non-Lambertian shading [34]. After

analyzing images with shape-from-shading, some algo-

rithms use a 3D head model to synthesize images at novel

orientations [15], [38].
The face recognition system presented in this paper

combines deformable 3D models with a computer graphics

simulation of projection and illumination. This makes

intrinsic shape and texture fully independent of extrinsic

parameters [8], [7]. Given a single image of a person, the

algorithm automatically estimates 3D shape, texture, and all

relevant 3D scene parameters. In our framework, rotations

in depth or changes of illumination are very simple

operations, and all poses and illuminations are covered by

a single model. Illumination is not restricted to Lambertian

reflection, but takes into account specular reflections and
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cast shadows, which have considerable influence on the
appearance of human skin.

Our approach is based on a morphable model of 3D faces
that captures the class-specific properties of faces. These
properties are learned automatically from a data set of
3D scans. The morphable model represents shapes and
textures of faces as vectors in a high-dimensional face space,
and involves a probability density function of natural faces
within face space.

Unlike previous systems [8], [7], the algorithm presented
in this paper estimates all 3D scene parameters automati-
cally, including head position and orientation, focal length
of the camera, and illumination direction. This is achieved
by a new initialization procedure that also increases
robustness and reliability of the system considerably. The
new initialization uses image coordinates of between six
and eight feature points. Currently, most face recognition
algorithms require either some initialization, or they are,
unlike our system, restricted to front views or to faces that
are cut out from images.

In this paper, we give a comprehensive description of the
algorithms involved in 1) constructing the morphable
model from 3D scans (Section 3), 2) fitting the model to
images for 3D shape reconstruction (Section 4), which
includes a novel algorithm for parameter optimization
(Appendix B), and 3) measuring similarity of faces for
recognition (Section 5). Recognition results for the image
databases of CMU-PIE [33] and FERET [29] are presented in
Section 5. We start in Section 2 by describing two general
strategies for face recognition with 3D morphable models.

2 PARADIGMS FOR MODEL-BASED RECOGNITION

In face recognition, the set of images that shows all
individuals who are known to the system is often referred
to as gallery [39], [30]. In this paper, one gallery image per
person is provided to the system. Recognition is then
performed on novel probe images. We consider two
particular recognition tasks: For identification, the system
reports which person from the gallery is shown on the
probe image. For verification, a person claims to be a
particular member of the gallery. The system decides if the
probe and the gallery image show the same person (cf. [30]).

Fitting the 3D morphable model to images can be used in
twoways for recognition across different viewing conditions:

Paradigm 1. After fitting the model, recognition can be
based on model coefficients, which represent intrinsic shape
and texture of faces, and are independent of the imaging
conditions. For identification, all gallery images are ana-
lyzed by the fitting algorithm, and the shape and texture
coefficients are stored (Fig. 1). Given a probe image, the
fitting algorithm computes coefficients which are then
compared with all gallery data in order to find the nearest
neighbor. Paradigm 1 is the approach taken in this paper
(Section 5).

Paradigm 2. Three-dimension face reconstruction can
also be employed to generate synthetic views from gallery
or probe images [3], [35], [15], [38]. The synthetic views are
then transferred to a second, viewpoint-dependent recogni-
tion system. This paradigm has been evaluated with 10 face
recognition systems in the Face Recognition Vendor Test

2002 [30]: For 9 out of 10 systems, our morphable model and
fitting procedure (Sections 3 and 4) improved performance
on nonfrontal faces substantially.

In many applications, synthetic views have to meet
standard imaging conditions, which may be defined by the
properties of the recognition algorithm, by the way the
gallery images are taken (mug shots), or by a fixed camera
setup for probe images. Standard conditions can be
estimated from an example image by our system (Fig. 2).
If more than one image is required for the second system or
no standard conditions are defined, it may be useful to
synthesize a set of different views of each person.

3 A MORPHABLE MODEL OF 3D FACES

The morphable face model is based on a vector space
representation of faces [36] that is constructed such that any
convex combination1 of shape and texture vectors Si and Ti

of a set of examples describes a realistic human face:

S ¼
Xm
i¼1

aiSi; T ¼
Xm
i¼1

biTi: ð1Þ

Continuous changes in the model parameters ai generate
a smooth transition such that each point of the initial
surface moves toward a point on the final surface. Just as in
morphing, artifacts in intermediate states of the morph are
avoided only if the initial and final points are correspond-
ing structures in the face, such as the tip of the nose.
Therefore, dense point-to-point correspondence is crucial
for defining shape and texture vectors. We describe an
automated method to establish this correspondence in
Section 3.2, and give a definition of S and T in Section 3.3.

3.1 Database of Three-Dimensional Laser Scans

The morphable model was derived from 3D scans of
100 males and 100 females, aged between 18 and 45 years.
One person is Asian, all others are Caucasian. Applied to
image databases that cover a much larger ethnic variety
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Fig. 1. Derived from a database of laser scans, the 3D morphable face

model is used to encode gallery and probe images. For identification, the

model coefficients �i, �i of the probe image are compared with the

stored coefficients of all gallery images.

1. To avoid changes in overall size and brightness, ai and bi should sum
to 1. The additional constraints ai; bi 2 ½0; 1� imposed on convex combina-
tions will be replaced by a probabilistic criterion in Section 3.4.



(Section 5), the model seemed to generalize well beyond

ethnic boundaries. Still, a more diverse set of examples

would certainly improve performance.
Recorded with a CyberwareTM 3030PS laser scanner, the

scans represent face shape in cylindrical coordinates

relative to a vertical axis centered with respect to the head.

In 512 angular steps � covering 360� and 512 vertical steps h

at a spacing of 0.615mm, the device measures radius r,

along with red, green, and blue components of surface

texture R;G;B. We combine radius and texture data:

Iðh; �Þ ¼ rðh; �Þ; Rðh; �Þ; Gðh; �Þ; Bðh; �Þð ÞT ;
h; � 2 f0; . . . ; 511g:

ð2Þ

Preprocessing of raw scans involves:

1. filling holes and removing spikes in the surface with
an interactive tool,

2. automated 3D alignment of the faces with the
method of 3D-3D Absolute Orientation [19],

3. semiautomatic trimming along the edge of a bathing
cap, and

4. a vertical, planar cut behind the ears and a
horizontal cut at the neck, to remove the back of
the head, and the shoulders.

3.2 Correspondence Based on Optic Flow

The core step of building a morphable face model is to

establish dense point-to-point correspondence between

each face and a reference face. The representation in

cylindrical coordinates provides a parameterization of the

two-dimensional manifold of the facial surface by para-

meters h and �. Correspondence is given by a dense vector

field vðh; �Þ ¼ ð�hðh; �Þ;��ðh; �ÞÞT such that each point

I1ðh; �Þ on the first scan corresponds to the point I2ðhþ
�h; �þ��Þ on the second scan. We employ a modified

optic flow algorithm to determine this vector field. The

following two sections describe the original algorithm and

our modifications.

Optic Flow on Gray-Level Images. Many optic flow

algorithms (e.g., [20], [25], [2]) are based on the assumption

that objects in image sequences Iðx; y; tÞ retain their bright-

nesses as they move across the image at a velocity ðvx; vyÞT .
This implies

dI

dt
¼ vx

@I

@x
þ vy

@I

@y
þ @I

@t
¼ 0: ð3Þ

For pairs of images I1; I2 taken at two discrete moments,

temporal derivatives vx, vy,
@I
@t in (3) are approximated by

finite differences�x,�y, and�I ¼ I2 � I1. If the images are

not from a temporal sequence, but show two different

objects, corresponding points can no longer be assumed to

have equal brightnesses. Still, optic flow algorithms may be

applied successfully.
A unique solution for both components of v ¼ ðvx; vyÞT

from (3) can be obtained if v is assumed to be constant on

each neighborhood Rðx0; y0Þ, and the following expression

[25], [2] is minimized in each point ðx0; y0Þ:

Eðx0; y0Þ ¼
X

x;y2Rðx0;y0Þ
vx

@Iðx; yÞ
@x

þ vy
@Iðx; yÞ

@y
þ�Iðx; yÞ

� �2

:

ð4Þ

We use a 5� 5 pixel neighborhood Rðx0; y0Þ. In each

point ðx0; y0Þ, vðx0; y0Þ can be found by solving a 2� 2 linear

system (Appendix A).
In order to deal with large displacements v, the

algorithm of Bergen and Hingorani [2] employs a coarse-

to-fine strategy using Gaussian pyramids of downsampled

images: With the gradient-based method described above,

the algorithm computes the flow field on the lowest level of

resolution and refines it on each subsequent level.
Generalization to three-dimensional surfaces. For pro-

cessing 3D laser scans Iðh; �Þ, (4) is replaced by
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Fig. 2. In 3D model fitting, light direction and intensity are estimated automatically, and cast shadows are taken into account. The figure shows

original PIE images (top), reconstructions rendered into the originals (second row), and the same reconstructions rendered with standard illumination

(third row) taken from the top right image.



E ¼
X
h;�2R

vh
@Iðh; �Þ

@h
þ v�

@Iðh; �Þ
@�

þ�I

���� ����2; ð5Þ

with a norm Ik k2¼ wrr
2 þ wRR

2 þ wGG
2 þ wBB

2: ð6Þ

Weights wr, wR, wG, and wB compensate for different
variations within the radius data and the red, green, and
blue texture components, and control the overall weighting
of shape versus texture information. The weights are chosen
heuristically. The minimum of (5) is again given by a 2� 2
linear system (Appendix A).

Correspondence between scans of different individuals,
who may differ in overall brightness and size, is improved
by using Laplacian pyramids (band-pass filtering) rather
than Gaussian pyramids (low-pass filtering). Additional
quantities, such as Gaussian curvature, mean curvature, or
surface normals, may be incorporated in Iðh; �Þ. To obtain
reliable results even in regions of the face with no salient
structures, a specifically designed smoothing and interpola-
tion algorithm (Appendix A.1) is added to the matching
procedure on each level of resolution.

3.3 Definition of Face Vectors

The definition of shape and texture vectors is based on a
reference face I0, which can be any three-dimensional face
model. Our reference face is a triangular mesh with
75,972 vertices derived from a laser scan. Let the vertices
k 2 f1; . . . ; ng of this mesh be located at ðhk; �k; rðhk; �kÞÞ
in cylindrical and at ðxk; yk; zkÞ in Cartesian coordinates
and have colors ðRk;Gk;BkÞ. Reference shape and texture
vectors are then defined by

S0 ¼ ðx1; y1; z1; x2; . . . ; xn; yn; znÞT ; ð7Þ
T0 ¼ ðR1; G1; B1; R2; . . . ; Rn;Gn;BnÞT : ð8Þ

To encode a novel scan I (Fig. 3, bottom), we compute
the flow field from I0 to I, and convert Iðh0; �0Þ to
Cartesian coordinates xðh0; �0Þ, yðh0; �0Þ, zðh0; �0Þ. Coordi-
nates ðxk; yk; zkÞ and color values ðRk;Gk;BkÞ for the

shape and texture vectors S and T are then sampled at

h0
k ¼ hk þ�hðhk; �kÞ, �0

k ¼ �k þ v�ðhk; �kÞ.

3.4 Principal Component Analysis

We perform a Principal Component Analysis (PCA, see

[12]) on the set of shape and texture vectors Si and Ti of

example faces i ¼ 1 . . .m. Ignoring the correlation between

shape and texture data, we analyze shape and texture

separately.
For shape, we subtract the average s ¼ 1

m

Pm
i¼1 Si from

each shape vector, ai ¼ Si � s, and define a data matrix
A ¼ ða1; a2; . . . ; amÞ.

The essential step of PCA is to compute the eigenvec-

tors s1; s2; . . . of the covariance matrix C ¼ 1
mAAT ¼

1
m

Pm
i¼1 aia

T
i , which can be achieved by a Singular Value

Decomposition [31] of A. The eigenvalues of C,

�2S;1 � �2
S;2 � . . . , are the variances of the data along each

eigenvector. By the same procedure, we obtain texture

eigenvectors ti and variances �2
T;i. Results are visualized

in Fig. 4. The eigenvectors form an orthogonal basis,

S ¼ sþ
Xm�1

i¼1

�i � si; T ¼ tþ
Xm�1

i¼1

�i � ti ð9Þ

and PCA provides an estimate of the probability density
within face space:

pSðSÞ � e
�1

2

P
i

�2
i

�2
S;i ; pT ðTÞ � e

�1
2

P
i

�2
i

�2
T;i : ð10Þ

3.5 Segments

From a given set of examples, a larger variety of different

faces can be generated if linear combinations of shape and

texture are formed separately for different regions of the

face. In our system, these regions are the eyes, nose, mouth,

and the surrounding area [8]. Once manually defined on the

reference face, the segmentation applies to the entire

morphable model.
For continuous transitions between the segments, we

apply a modification of the image blending technique of [9]:

x; y; z coordinates and colors R;G;B are stored in arrays

xðh; �Þ, ... based on the mapping i 7! ðhi; �iÞ of the reference
face. The blending technique interpolates x; y; z and R;G;B

across an overlap in the ðh; �Þ-domain, which is large for

low spatial frequencies and small for high frequencies.
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Fig. 3. For 3D laser scans parameterized by cylindrical coordinates

ðh; �Þ, the flow field that maps each point of the reference face (top) to

the corresponding point of the example (bottom) is used to form shape

and texture vectors S and T.

Fig. 4. The average and the first two principal components of a data set

of 200 3D face scans, visualized by adding �3�S;isi and �3�T;iti to the

average face.



4 MODEL-BASED IMAGE ANALYSIS

The goal of model-based image analysis is to represent a

novel face in an image by model coefficients �i and �i (9)

and provide a reconstruction of 3D shape. Moreover, it

automatically estimates all relevant parameters of the three-

dimensional scene, such as pose, focal length of the camera,

light intensity, color, and direction.
In an analysis-by-synthesis loop, the algorithm finds

model parameters and scene parameters such that the

model, rendered by computer graphics algorithms, pro-

duces an image as similar as possible to the input image

Iinput (Fig. 5).2 The iterative optimization starts from the

average face and standard rendering conditions (front view,

frontal illumination, cf. Fig. 6).
For initialization, the system currently requires image

coordinates of about seven facial feature points, such as the

corners of the eyes or the tip of the nose (Fig. 6). With an

interactive tool, the user defines these points j ¼ 1 . . . 7 by

alternately clicking on a point of the reference head to select

a vertex kj of the morphable model and on the correspond-

ing point qx;j; qy;j in the image. Depending on what part of

the face is visible in the image, different vertices kj may be

selected for each image. Some salient features in images,

such as the contour line of the cheek, cannot be attributed to

a single vertex of the model, but depend on the particular

viewpoint and shape of the face. The user can define such

points in the image and label them as contours. During the

fitting procedure, the algorithm determines potential con-

tour points of the 3D model based on the angle between

surface normal and viewing direction and selects the closest

contour point of the model as kj in each iteration.
The following section summarizes the image synthesis

from the model, and Section 4.2 describes the analysis-by-

synthesis loop for parameter estimation.

4.1 Image Synthesis

The three-dimensional positions and the color values of the

model’s vertices are given by the coefficients �i and �i and

(9). Rendering an image includes the following steps.

4.1.1 Image Positions of Vertices

A rigid transformation maps the object-centered coordi-
nates xk ¼ ðxk; yk; zkÞT of each vertex k to a position relative
to the camera:

ðwx;k; wy;k; wz;kÞT ¼ R�R�R�xk þ tw: ð11Þ

The angles � and � control in-depth rotations around the
vertical and horizontal axis, and � defines a rotation around
the camera axis. tw is a spatial shift.

A perspective projection then maps vertex k to image
plane coordinates px;k; py;k:

px;k ¼ Px þ f
wx;k

wz;k
; py;k ¼ Py � f

wy;k

wz;k
: ð12Þ

f is the focal length of the camera which is located in the
origin, and ðPx; PyÞ defines the image-plane position of the
optical axis (principal point).

4.1.2 Illumination and Color

Shading of surfaces depends on the direction of the surface
normals n. The normal vector to a triangle k1k2k3 of the
face mesh is given by a vector product of the edges,
ðxk1 � xk2Þ � ðxk1 � xk3Þ, which is normalized to unit length
and rotated along with the head (11). For fitting the model
to an image, it is sufficient to consider the centers of
triangles only, most of which are about 0:2mm2 in size. The
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2. Fig. 5 is illustrated with linear combinations of example faces
according to (1) rather than principal components (9) for visualization.

Fig. 5. The goal of the fitting process is to find shape and texture

coefficients �i and �i describing a three-dimensional face model such

that rendering R� produces an image Imodel that is as similar as possible

to Iinput.

Fig. 6. Face reconstruction from a single image (top, left) and a set of
feature points (top, center): Starting from standard pose and illumination
(top, right), the algorithm computes a rigid transformation and a slight
deformation to fit the features. Subsequently, illumination is estimated.
Shape, texture, transformation, and illumination are then optimized for
the entire face and refined for each segment (second row). From the
reconstructed face, novel views can be generated (bottom row).



three-dimensional coordinate and color of the center are the
arithmetic means of the corners’ values. In the following,
we do not formally distinguish between triangle centers
and vertices k.

The face is illuminated by ambient light with red, green,
and blue intensities Lr;amb, Lg;amb, Lb;amb and by directed,
parallel light with intensities Lr;dir, Lg;dir, Lb;dir from a
direction l defined by two angles �l and �l:

l ¼ ðcosð�lÞ sinð�lÞ; sinð�lÞ; cosð�lÞ cosð�lÞÞT : ð13Þ

The illumination model of Phong (see [14]) approxi-
mately describes the diffuse and specular reflection of a
surface. In each vertex k, the red channel is

Lr;k

¼ Rk � Lr;amb þRk � Lr;dir � nk; lh i þ ks � Lr;dir rk; bvvkh i�;
ð14Þ

where Rk is the red component of the diffuse reflection
coefficient stored in the texture vector T, ks is the specular
reflectance, � defines the angular distribution of the
specular reflections, bvvk is the viewing direction, and rk ¼
2 � nk; lh ink � l is the direction of maximum specular
reflection [14].

Input images may vary a lot with respect to the overall
tone of color. In order to be able to handle a variety of color
images as well as gray-level images and even paintings, we
apply gains gr; gg; gb, offsets or; og; ob, and a color contrast c
to each channel. The overall luminance L of a colored point
is [14]

L ¼ 0:3 � Lr þ 0:59 � Lg þ 0:11 � Lb: ð15Þ

Color contrast interpolates between the original color
value and this luminance, so, for the red channel, we set

Ir ¼ gr � ðcLr þ ð1� cÞLÞ þ or: ð16Þ

Green and blue channels are computed in the same way.
The colors Ir, Ig, and Ib are drawn at a position ðpx; pyÞ in the
final image Imodel.

Visibility of each point is tested with a z-buffer
algorithm, and cast shadows are calculated with another
z-buffer pass relative to the illumination direction (see, for
example, [14].)

4.2 Fitting the Model to an Image

The fitting algorithm optimizes shape coefficients �� ¼
ð�1; �2; . . .ÞT and texture coefficients �� ¼ ð�1; �2; . . .ÞT along
with 22 rendering parameters, concatenated into a vector ��:
pose angles �, �, and �, 3D translation tw, focal length f ,
ambient light intensities Lr;amb; Lg;amb; Lb;amb, directed light
intensities Lr;dir; Lg;dir; Lb;dir, the angles �l and �l of the
directed light, color contrast c, and gains and offsets of color
channels gr; gg; gb, or; og; ob.

4.2.1 Cost Function

Given an input image

Iinputðx; yÞ ¼ ðIrðx; yÞ; Igðx; yÞ; Ibðx; yÞÞT ;

the primary goal in analyzing a face is to minimize the sum
of square differences over all color channels and all pixels
between this image and the synthetic reconstruction,

EI ¼
X
x;y

Iinputðx; yÞ � Imodelðx; yÞ
�� ��2: ð17Þ

The first iterations exploit the manually defined feature

points ðqx;j; qy;jÞ and the positions ðpx;kj ; py;kjÞ of the

corresponding vertices kj in an additional function

EF ¼
X
j

k qx;j
qy;i

� �
� px;kj

py;kj

� �
k2: ð18Þ

Minimization of these functions with respect to ��, ��, ��

may cause overfitting effects similar to those observed in

regression problems (see, for example, [12]). We therefore

employ a maximum a posteriori estimator (MAP): Given

the input image Iinput and the feature points F , the task is to

find model parameters with maximum posterior probability

pð��; ��; �� j Iinput; F Þ. According to Bayes rule,

p ��; ��; �� j Iinput; F
� �

� p Iinput; F j ��; ��; ��
� �

� P ��; ��; ��ð Þ: ð19Þ

If we neglect correlations between some of the variables,

the right-hand side is

p Iinput j ��; ��; ��
� �

� p F j ��; ��; ��ð Þ � P ��ð Þ � P ��ð Þ � P ��ð Þ: ð20Þ

The prior probabilities P ð��Þ and P ð��Þ were estimated

with PCA (10). We assume that P ð��Þ is a normal

distribution and use the starting values for ��i and ad hoc

values for �R;i.
For Gaussian pixel noise with a standard deviation �I ,

the likelihood of observing Iinput, given ��; ��; ��, is a product

of one-dimensional normal distributions, with one distribu-

tion for each pixel and each color channel. This can be

rewritten as pðIinputj��; ��; ��Þ � expð�1
2�2

I

� EIÞ. In the same way,

feature point coordinates may be subject to noise, so

pðF j ��; ��; ��Þ � expð �1
2�2

F

� EF Þ.
Posterior probability is then maximized by minimizing

E ¼ �2 � log p ��; ��; �� j Iinput; F
� �

E ¼ 1

�2
I

EI þ
1

�2
F

EF þ
X
i

�2
i

�2
S;i

þ
X
i

�2
i

�2
T;i

þ
X
i

�i � �ið Þ2

�2
R;i

:

ð21Þ

Ad hoc choices of �I and �F are used to control the relative

weights of EI , EF , and the prior probability terms in (21). At

the beginning, prior probability and EF are weighted high.

The final iterations put more weight on EI and no longer

rely on EF .

4.2.2 Optimization Procedure

The core of the fitting procedure is a minimization of the

cost function (21) with a stochastic version of Newton’s

method (Appendix B). The stochastic optimization avoids

local minima by searching a larger portion of parameter

space and reduces computation time: In EI , contributions of

the pixels of the entire image would be redundant.

Therefore, the algorithm selects a set K of 40 random

triangles in each iteration and evaluates EI and its gradient

only at their centers:
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EI;approx: ¼
X
k2K

kIinputðpx;k; py;kÞ � Imodel;kÞk2: ð22Þ

To make the expectation value of EI;approx: equal to EI , we

set the probability of selecting a particular triangle propor-

tional to its area in the image. Areas are calculated along

with occlusions and cast shadows at the beginning of the

process and once every 1,000 iterations by rendering the

entire face model.

The fitting algorithm computes the gradient of the cost

function (21), (22) analytically using chain rule. Texture

coefficients �i and illumination parameters only influence

the color values Imodel;k of a vertex. Shape coefficients �i and

rigid transformation, however, influence both the image

coordinates ðpx;k; py;kÞ and color values Imodel;k due to the

effect of geometry on surface normals and shading (14).

The first iterations only optimize the first parameters

�i; �i; i 2 f1; . . . ; 10g and all parameters �i. Subsequent

iterations consider more and more coefficients. From the

principal components of a database of 200 faces, we only

use the most relevant 99 coefficients �i, �i. After fitting the

entire face model to the image, the eyes, nose, mouth, and

the surrounding region (Section 3.5) are optimized sepa-

rately. The fitting process takes 4.5 minutes on a work-

station with a 2GHz Pentium 4 processor.

5 RESULTS

Model fitting and identification were tested on two publicly

available databases of images. The individuals in these

databases are not contained in the set of 3D scans that form

the morphable face model (Section 3.1).

The colored images in the PIE database from CMU [33]

vary in pose and illumination. We selected the portion of

this database where each of 68 individuals is photographed

from three viewpoints (front, side, and profile, labeled

as camera 27, 05, 22) and at 22 different illuminations

(66 images per individual). Illuminations include flashes

from different directions and one condition with ambient

light only.

From the gray-level images of the FERET database

[29], we selected a portion that contains 11 poses (labeled

ba – bk) per individual. We discarded pose bj, where

participants have various facial expressions. The remain-

ing 10 views, most of them at a neutral expression, are

available for 194 individuals (labeled 01013 – 01206).

While illumination in images ba – bj is fixed, bk is

recorded at a different illumination.

Both databases cover a wide ethnic variety. Some of the

faces are partially occluded by hair and some individuals

wear glasses (28 in the CMU-PIE database, none in the

FERET database.) We do not explicitly compensate for these

effects. Optimizing the overall appearance, the algorithm

tends to ignore image structures that are not represented by

the morphable model.

5.1 Results of Model Fitting

The reconstruction algorithm was run on all 4,488 PIE
and 1,940 FERET images. For all images, the starting

condition was the average face at a front view, with
frontal illumination, rendered in color from a viewing
distance of two meters (Fig. 6).

On each image, we manually defined between six and

eight feature points (Fig. 7). For each viewing direction,

there was a standard set of feature points, such as the

corners of the eyes, the tip of the nose, corners of the

mouth, ears, and up to three points on the contour (cheeks,

chin, and forehead). If any of these were not visible in an

image, the fitting algorithm was provided with fewer point

coordinates.

Results of 3D face reconstruction are shown in Figs. 8

and 9. The algorithm had to cope with a large variety of

illuminations. In the third column of Fig. 9, part of the

specular reflections were attributed to texture by the

algorithm. This may be due to shortcomings of the Phong

illumination model for reflection at grazing angles or to a

prior probability that penalizes illumination from behind

too much.

The influence of different illuminations is shown in a

comparison in Fig. 2. The fitting algorithm adapts to

different illuminations, and we can generate standard

images with fixed illumination from the reconstructions.

In Fig. 2, the standard illumination conditions are the

estimates obtained from a photograph (top right).
For each image, the fitting algorithm provides an

estimate of pose angle. Heads in the CMU-PIE database
are not fully aligned in space, but, since front, side, and
profile images are taken simultaneously, the relative angles
between views should be constant. Table 1 shows that the
error of pose estimates is within a few degrees.

5.2 Recognition From Model Coefficients

For face recognition according to Paradigm 1 described in

Section 2, we represent shape and texture by a set of

coefficients �� ¼ ð�1; . . . ; �99ÞT and �� ¼ ð�1; . . . ; �99ÞT for the

entire face and one set ��, �� for each of the four segments of

the face (Section 3.5). Rescaled according to the standard

deviations �S;i, �T;i of the 3D examples (Section 3.4), we

combine all of these 5 � 2 � 99 ¼ 990 coefficients �i

�S;i
, �i
�T;i

to a

vector c 2 IR990.

Comparing two faces c1 and c2, we can use the sum of

the Mahalanobis distances [12] of the segments’ shapes and

textures, dM ¼ kc1 � c2k2. An alternative measure for

similarity is the cosine of the angle between two vectors

[6], [27]: dA ¼ c1;c2h i
c1k k� c2k k .

Another similarity measure that is evaluated in the

following section takes into account variations of model

BLANZ AND VETTER: FACE RECOGNITION BASED ON FITTING A 3D MORPHABLE MODEL 1069

Fig. 7. Up to seven feature points were manually labeled in front and

side views, up to eight were labeled in profile views.



coefficients obtained from different images of the same

person. These variations may be due to ambiguities of the

fitting problem, such as skin complexion versus intensity of

illumination, and residual errors of optimization. Estimated

from the CMU-PIE database, we apply these variations to

the FERET images and vice versa, using a method

motivated by Maximum-Likelihood Classifiers and Linear

Discriminant Analysis (see [12]): Deviations of each

persons’ coefficients c from their individual average are

pooled and analyzed by PCA. The covariance matrix CW of

this within-subject variation then defines

dW ¼ c1; c2h iW
c1k kW � c2k kW

;with c1; c2h iW¼ c1;C
�1
W c2

� �
: ð23Þ

5.3 Recognition Performance

For evaluation on the CMU-PIE data set, we used a front,

side, and profile gallery, respectively. Each gallery con-

tained one view per person, at illumination number 13. The
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Fig. 8. Reconstructions of 3D shape and texture from FERET images (top row). In the second row, results are rendered into the original images with
pose and illumination recovered by the algorithm. The third row shows novel views.

Fig. 9. Three-dimensional reconstructions from CMU-PIE images. Top: originals, middle: reconstructions rendered into originals, bottom: novel
views. The pictures shown here are difficult due to harsh illumination, profile views, or eye glasses. Illumination in the third image is not fully
recovered, so part of the reflections are attributed to texture.



gallery for the FERET set was formed by one front view

(pose ba) per person. The gallery and probe sets are always

disjoint, but show the same individuals.
Table 2 provides a comparison of dM , dA, and dW for

identification (Section 2). dW is clearly superior to dM and
dA. All subsequent data are therefore based on dW . The
higher performance of angular measures (dW and dA)
compared to dM indicates that directions of coefficient
vectors c, relative to the average face c ¼ 0, are diagnostic
for faces, while distances from the average may vary,
causing variations in dM . In our MAP approach, this may be
due to the trade off between likelihood and prior prob-
ability ((19) and (21)): Depending on image quality, this
may produce distinctive or conservative estimates.

A detailed comparison of different probe and gallery
views for the PIE database is given in Table 3. In an
identification task, performance is measured on probe sets
of 68 � 21 images if probe and gallery viewpoint is equal (yet
illumination differs; diagonal cells in the table) and 68 � 22
images otherwise (off-diagonal cells). Overall performance
is best for the side-view gallery (95.0 percent correct). Table 4
lists the percentages of correct identifications on the FERET
set, based on front view gallery images ba, along with the

estimated head poses obtained from fitting. In total,
identification was correct in 95.9 percent of the trials.

Fig. 10 shows face recognition ROC curves [12] for a
verification task (Section 2): Given pairs of images of the
same person (one probe and one gallery image), hit rate is
the percentage of correct verifications. Given pairs of
images of different persons, false alarm rate is the
percentage that is falsely accepted as the same person.
For the CMU-PIE database, gallery images were side views
(camera 05, light 13), the probe set was all 4,420 other
images. For FERET, front views ba were gallery, and all
other 1,746 images were probe images. At 1 percent false
alarm rate, the hit rate is 77.5 percent for CMU-PIE and
87.9 percent for FERET.
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TABLE 1
The Precision of Pose Estimates in Terms of the

Rotation Angle between Two Views for
Each Individual in the CMU-PIE Database

Angles are a 3D combination of �, �, and �. The table lists averages and
standard deviations, based on 68 individuals, for illumination number 13.
True angles are computed from the 3D coordinates provided with the
database.

TABLE 2
Overall Percentage of Successful Identifications

for Different Criteria of Comparing Faces

For CMU-PIE images, data were computed for the side view gallery.

TABLE 3
Mean Percentages of Correct Identification on the

CMU-PIE Data Set, Averaged over All Lighting Conditions
for Front, Side, and Profile View Galleries

In brackets are percentages for the worst and best illumination within
each probe set.

TABLE 4
Percentages of Correct Identification on the FERET Data Set

The gallery images were front views ba. � is the average estimated
azimuth pose angle of the face. Ground truth for � is not available.
Condition bk has different illumination than the others.

Fig. 10. ROC curves of verification across pose and illumination from a single side view for the CMU-PIE data set (a) and from a front view for

FERET (b). At 1 percent false alarm rate, hit rate is 77.5 percent for CMU-PIE and 87.9 percent for FERET.



6 CONCLUSIONS

In this paper, we have addressed three issues: 1) learning

class-specific information about human faces from a data

set of examples, 2) estimating 3D shape and texture, along

with all relevant 3D scene parameters, from a single image

at any pose and illumination, and 3) representing and

comparing faces for recognition tasks. Tested on two

databases of images covering large variations in pose and

illumination, our algorithm achieved promising results

(95.0 and 95.9 percent correct identifications, respectively).

This indicates that the 3D morphable model is a powerful

and versatile representation for human faces. In image

analysis, our explicit modeling of imaging parameters, such

as head orientation and illumination, may help to achieve

an invariant description of the identity of faces.

It is straightforward to extend our morphable model to

different ages, ethnic groups, and facial expressions by

including face vectors from more 3D scans. Our system

currently ignores glasses, beards, or strands of hair

covering part of the face, which are found in many images

of the CMU-PIE and FERET sets. Considering these effects

in the algorithm may improve 3D reconstructions and

identification.
Future work will also concentrate on automated initi-

alization and a faster fitting procedure. In applications that

require a fully automated system, our algorithm may be

combined with an additional feature detector. For applica-

tions where manual interaction is permissible, we have

presented a complete image analysis system.

APPENDIX A

OPTIC FLOW CALCULATION

Optic flow v between gray-level images at a given point

ðx0; y0Þ can be defined as the minimum v of a quadratic

function (4). This minimum is given by [25], [2]

Wv ¼ �b ð24Þ

W ¼
P

@xI
2

P
@xI � @yIP

@xI � @yI
P

@yI
2

 !
;

b ¼
P

@xI ��IP
@yI ��I

� �
:

v is easy to find by means of a diagonalization of the 2� 2

symmetrical matrix W.
For 3D laser scans, the minimum of (5) is again given by

(24), but now

W ¼
P

@hIk k2
P

@hI; @�I
� �P

@hI; @�I
� � P

@�I
�� ��2

 !
;

b ¼
P

@hI;�Ih iP
@�I;�I
� � !

;

ð25Þ

using the scalar product related to (6). v is found by

diagonalizing W.

A.1 Smoothing and Interpolation of Flow Fields

On regions of the face where both shape and texture are
almost uniform, optic flow produces noisy and unreliable
results. The desired flow field would be a smooth
interpolation between the flow vectors of more reliable
regions, such as the eyes and the mouth. We therefore apply
a method that is motivated by a set of connected springs or
a continuous membrane, that is fixed to reliable landmark
points, sliding along reliably matched edges, and free to
assume a minimum energy state everywhere else. Adjacent
flow vectors of the smooth flow field vsðh; �Þ, are connected
by a potential

Ec ¼
X
h

X
�

vsðhþ 1; �Þ � vsðh; �Þk k2

þ
X
h

X
�

vsðh; �þ 1Þ � vsðh; �Þk k2:
ð26Þ

The coupling of vsðh; �Þ to the original flow field v0ðh; �Þ
depends on the rank of the 2� 2 matrix W in (25), which
determines if (24) has a unique solution or not: Let 	1 � 	2

be the two eigenvalues of W and a1, a2 be the eigenvectors.
Choosing a threshold s � 0, we set

E0ðh; �Þ ¼
0 if 	1; 	2 	 s

a1;vsðh; �Þ � v0ðh; �Þh i2 if 	1 � s � 	2

vsðh; �Þ � v0ðh; �Þk k2 if 	1; 	2 � s:

8<:
In the first case, which occurs if W 
 0 and @hI; @�I 
 0

in R, the output vs will only be controlled by its neighbors.
The second case occurs if (24) restricts v0 only in one
direction a1. This happens if there is a consistent edge
structure within R, and the derivatives of I are linearly
dependent in R. vs is then free to slide along the edge. In the
third case, v0 is uniquely defined by (24) and, therefore, vs

is restricted in all directions. To compute vs, we apply
Conjugate Gradient Descent [31] to minimize the energy

E ¼ 
Ec þ
X
h;�

E0ðh; �Þ:

Both the weight factor 
 and the threshold s are chosen
heuristically. During optimization, flow vectors from reli-
able, high-contrast regions propagate to low-contrast
regions, producing a smooth interpolation. Smoothing is
performed at each level of resolution after the gradient-
based estimation of correspondence.

APPENDIX B

STOCHASTIC NEWTON ALGORITHM

For the optimization of the cost function (21), we developed
a stochastic version of Newton’s algorithm [5] similar to
stochastic gradient descent [32], [37], [22]. In each iteration,
the algorithm computes EI only at 40 random surface
points (Section 4.2). The first derivatives of EI are computed
analytically on these random points.

Newton’s method optimizes a cost function E with
respect to parameters �j based on the gradient rE and the
Hessian H, Hi;j ¼ @2E

@�i@�j
. The optimum is

��� ¼ ���H�1rE: ð27Þ
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For simplification, we consider �i as a general set of model

parameters here and suppress ��, ��. Equation (21) is then

Eð��Þ ¼ 1

�2
I

EIð��Þ þ
1

�2
F

EF ð��Þ þ
X
i

�i � �ið Þ2

�2
S;i

ð28Þ

and

rE ¼ 1

�2
I

@EI

@�i
þ 1

�2
F

@EF

@�i
þ diag

2

�2
S;i

 !
ð��� ��Þ: ð29Þ

The diagonal elements of H are

Hi;i ¼
1

�2I

@2EI

@�2
i

þ 1

�2F

@2EF

@�2
i

þ 2

�2
S;i

: ð30Þ

These second derivatives are computed by numerical

differentiation from the analytically calculated first deriva-

tives, based on 300 random vertices, at the beginning of the

optimization and once every 1,000 iterations. The Hessian

captures information about an appropriate order of magni-

tude of updates in each coefficient. In the stochastic Newton

algorithm, gradients are estimated from 40 points and the

updates in each iteration do not need to be precise. We

therefore ignore off-diagonal elements (see [5]) of H and set

H�1 
 diagð1=Hi;iÞ. With (27), the estimated optimum is

��
i ¼

1
�2
I

@2EI

@�2
i

�i þ 1
�2
F

@2EF

@�2
i

�i � 1
�2
I

@EI

@�i

���
��
� 1

�2
F

@EF

@�i

���
��
þ 2

�2
S;i

�i

1
�2
I

@2EI

@�2
i

þ 1
�2
F

@2EF

@�2
i

þ 2
�2
S;i

: ð31Þ

In each iteration, we perform small steps �� 7! ��þ 	ð��� � ��Þ
with a factor 	 � 1.
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Tübingen. Portions of the research in this paper use the

FERET database of facial images collected under the FERET

program, and the CMU-PIE database. The authors wish to

thank everyone involved in collecting these data. The

authors thank T. Poggio and S. Romdhani for many

discussions and the reviewers for useful suggestions,

including the title of the paper. This work was partially

funded by the DARPA HumanID project.

REFERENCES

[1] J.J. Atick, P.A. Griffin, and A.N. Redlich, “Statistical Approach to
Shape from Shading: Reconstruction of 3D Face Surfaces from
Single 2D Images,” Computation in Neurological Systems, vol. 7,
no. 1, 1996.

[2] J.R. Bergen and R. Hingorani, “Hierarchical Motion-Based Frame
Rate Conversion,” technical report, David Sarnoff Research
Center, Princeton N.J., 1990.

[3] D. Beymer and T. Poggio, “Face Recognition from One Model
View,” Proc. Fifth Int’l Conf. Computer Vision, 1995.

[4] D. Beymer and T. Poggio, “Image Representations for Visual
Learning,” Science, vol. 272, pp. 1905-1909, 1996.

[5] C.M. Bishop, Neural Networks for Pattern Recognition. Oxford Univ.
Press, 1995.

[6] V. Blanz, “Automatische Rekonstruktion der dreidimensionalen
Form von Gesichtern aus einem Einzelbild,” PhD thesis, Tübin-
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