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On-Line Fingerprint Verification
Anil Jain, Fellow, IEEE, Lin Hong, and Ruud Bolle, Fellow, IEEE

Abstract —Fingerprint verification is one of the most reliable personal identification methods. However, manual fingerprint
verification is so tedious, time-consuming, and expensive that it is incapable of meeting today’s increasing performance
requirements. An automatic fingerprint identification system (AFIS) is widely needed. It plays a very important role in forensic and
civilian applications such as criminal identification, access control, and ATM card verification. This paper describes the design and
implementation of an on-line fingerprint verification system which operates in two stages: minutia extraction and minutia matching.
An improved version of the minutia extraction algorithm proposed by Ratha et al., which is much faster and more reliable, is
implemented for extracting features from an input fingerprint image captured with an on-line inkless scanner. For minutia matching,
an alignment-based elastic matching algorithm has been developed. This algorithm is capable of finding the correspondences
between minutiae in the input image and the stored template without resorting to exhaustive search and has the ability of adaptively
compensating for the nonlinear deformations and inexact pose transformations between fingerprints. The system has been tested
on two sets of fingerprint images captured with inkless scanners. The verification accuracy is found to be acceptable. Typically, a
complete fingerprint verification procedure takes, on an average, about eight seconds on a SPARC 20 workstation. These
experimental results show that our system meets the response time requirements of on-line verification with high accuracy.

Index Terms —Biometrics, fingerprints, matching, verification, minutia, orientation field, ridge extraction.

——————————   ✦   ——————————

1 INTRODUCTION

INGERPRINTS are graphical flow-like ridges present on
human fingers. They have been widely used in personal

identification for several centuries [11]. The validity of their
use has been well established. Inherently, using current
technology fingerprint identification is much more reliable
than other kinds of popular personal identification methods
based on signature, face, and speech [11], [3], [15]. Al-
though fingerprint verification is usually associated with
criminal identification and police work, it has now become
more popular in civilian applications such as access control,
financial security, and verification of firearm purchasers
and driver license applicants [11], [3]. Usually, fingerprint
verification is performed manually by professional finger-
print experts. However, manual fingerprint verification is
so tedious, time-consuming, and expensive that it does not
meet the performance requirements of the new applica-
tions. As a result, automatic fingerprint identification sys-
tems (AFIS) are in great demand [11]. Although significant
progress has been made in designing automatic fingerprint
identification systems over the past 30 years, a number of
design factors (lack of reliable minutia extraction algorithms,
difficulty in quantitatively defining a reliable match between
fingerprint images, fingerprint classification, etc.) create bot-
tlenecks in achieving the desired performance [11].

An automatic fingerprint identification system is con-
cerned with some or all of the following issues:

• Fingerprint Acquisition: How to acquire fingerprint im-
ages and how to represent them in a proper format.

• Fingerprint Verification: To determine whether two
fingerprints are from the same finger.

• Fingerprint Identification: To search for a query finger-
print in a database.

• Fingerprint Classification: To assign a given fingerprint
to one of the prespecified categories according to its
geometric appearance.

A number of methods are used to acquire fingerprints.
Among them, the inked impression method remains the
most popular. It has been essentially a standard technique
for fingerprint acquisition for more than 100 years [3]. The
first step in capturing an inked impression of a fingerprint
is to place a few dabs of ink on a slab then rolling it out
smoothly with a roller until the slab is covered with a thin,
even layer of ink. Then the finger is rolled from one side of
the nail to the other side over the inked slab which inks the
ridge patterns on top of the finger completely. After that,
the finger is rolled on a piece of paper so that the inked im-
pression of the ridge pattern of the finger appears on the
paper. Obviously, this method is time-consuming and un-
suitable for an on-line fingerprint verification system. In-
kless fingerprint scanners are now available which are ca-
pable of directly acquiring fingerprints in digital form. This
method eliminates the intermediate digitization process of
inked fingerprint impressions and makes it possible to
build an on-line system. Fig. 1 shows the two inkless fin-
gerprint scanners used in our verification system. Finger-
print images captured with the inked impression method
and the inkless impression method are shown in Fig. 2.
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(a) (b)

Fig. 1. Inkless fingerprint scanners: (a) Manufactured by Identix.
(b) Manufactured by Digital Biometrics.

     

(a) (b)

Fig. 2. Comparison of fingerprint images captured by different meth-
ods. (a) Inked impression method (from NIST database). (b) Inkless
impression method (with a scanner manufactured by Digital Biometrics).

          
              (a)       (b)             (c)

          
              (d)       (e)             (f)

Fig. 3. A coarse-level fingerprint classification into six categories:
(a) Arch. (b) Tented arch. (c) Right loop. (d) Left loop. (e) Whorl. (f) Twin
loop.

The goal of fingerprint classification is to assign a given
fingerprint to a specific category according to its geometric
properties (Fig. 3 shows a coarse-level fingerprint classifi-
cation). The main purpose of fingerprint classification is to
facilitate the management of large fingerprint databases
and to speedup the process of fingerprint matching. Gener-
ally, manual fingerprint classification is performed within a
specific framework such as the well-known Henry system
[3]. Different frameworks use different sets of properties.

However, no matter what type of framework is used, the
classification is based on ridge patterns, local ridge orienta-
tions and minutiae. Therefore, if these properties can be
described quantitatively and extracted automatically from a
fingerprint image then fingerprint classification will be-
come an easier task. During the past several years, a num-
ber of researchers have attempted to solve the fingerprint
classification problem [11], [3], [9], [10], [26]. Unfortunately,
their efforts have not resulted in the desired accuracy. Algo-
rithms reported in the literature classify fingerprints into five
or six categories with about 90 percent classification accuracy
on a medium size test set (several thousand images) [9], [10],
[26]. However, to achieve a higher recognition accuracy with
a large number of categories still remains a difficult problem.

Fingerprint verification determines whether two finger-
prints are from the same finger or not. It is widely believed
that if two fingerprints are from the same source, then their
local ridge structures (minutia details) match each other
topologically [11], [3]. Eighteen different types of local ridge
descriptions have been identified [11]. The two most
prominent structures are ridge endings and ridge bifurca-
tions which are usually called minutiae. Fig. 4 shows ex-
amples of ridge endings and ridge bifurcations. Based on
this observation and by representing the minutiae as a
point pattern, an automatic fingerprint verification problem
may be reduced to a point pattern matching (minutia
matching) problem. In the ideal case, if

1) the correspondences between the template and input
fingerprint are known,

2) there are no deformations such as translation, rotation
and nonlinear deformations, etc. between them, and

3) each minutia present in a fingerprint image is exactly
localized, then fingerprint verification consists of the
trivial task of counting the number of spatially
matching pairs between the two images.

Fig. 4. Ridge ending and ridge bifurcation.

However, in practice

1) no correspondence is known beforehand,
2) there are relative translation, rotation and nonlinear

deformations between template minutiae and input
minutiae,

3) spurious minutiae are present in both templates and
inputs, and

4) some minutiae are missed.

Therefore, in order for a fingerprint verification algorithm
to operate under such circumstances, it is necessary to
automatically obtain minutia correspondences, to recover
deformations, and to detect spurious minutiae from finger-
print images. Unfortunately, this goal is quite difficult to
achieve. Fig. 5 illustrates the difficulty with an example of
two fingerprint images of the same finger.
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Fig. 5. Two different fingerprint images from the same finger. In order
to know the correspondence between the minutiae of these two finger-
print images, all the minutiae must be precisely localized and the de-
formations must be recovered.

Fingerprint identification refers to the process of
matching a query fingerprint against a given fingerprint
database to establish the identity of an individual. Its goal
is to quickly determine whether a query fingerprint is
present in the database and to retrieve those which are
most similar to the query from the database. The critical
issues here are both retrieval speed and accuracy. In fact,
this problem relates to a number of techniques studied
under the auspices of computer vision, pattern recogni-
tion, database, and parallel processing. Operational fin-
gerprint retrieval systems are being used by various law
enforcement agencies [11].

In this paper, we will introduce an on-line fingerprint
verification system whose purpose is to capture finger-
print images using an inkless scanner and to compare
them with those stored in the database in “real time.”
Such a system has great utility in a variety of personal
identification and access control applications. The overall
block diagram of our system is shown in Fig. 6. It operates
as follows:

1) Off-line phase: Several impressions (depending on the
specification of the system) of the fingerprint of a per-
son to be verified are first captured and processed by
a feature extraction module; the extracted features are
stored as templates in a database for later use;

2) On-line phase: The individual to be verified gives
his/her identity and places his/her finger on the in-
kless fingerprint scanner, minutia points are extracted
from the captured fingerprint image; these minutiae
are then fed to a matching module, which matches
them against his/her own templates in the database.

Fig. 6. Overview of our on-line fingerprint verification system.

The following two modules are the main components of
our on-line fingerprint verification system:

• Minutiae extraction. Minutiae are ridge endings or
ridge bifurcations. Generally, if a perfect segmenta-
tion can be obtained, then minutia extraction is just a
trivial task of extracting singular points in a thinned
ridge map. However, in practice, it is not always pos-
sible to obtain a perfect ridge map. Some global heu-
ristics need to be used to overcome this limitation.

• Minutia matching. Minutia matching, because of de-
formations in sensed fingerprints, is an elastic
matching of point patterns without knowing their
correspondences beforehand. Generally, finding the
best match between two point patterns is intractable
even if minutiae are exactly located and no deforma-
tions exist between these two point patterns. The ex-
istence of deformations makes the minutia matching
much more difficult.

For segmentation and minutia extraction, a modified
version of the minutia extraction algorithm proposed in [18]
is implemented which is much faster and more reliable for
minutia extraction. We propose a hierarchical approach to
obtain a smooth orientation field estimate of the input fin-
gerprint image, which greatly improves the performance of
minutia extraction. For minutia matching, we propose an
alignment-based elastic matching algorithm. This algorithm
is capable of finding the correspondences between minutiae
without resorting to an exhaustive search and has the abil-
ity to adaptively compensate for the nonlinear deforma-
tions and inexact pose transformations between different
fingerprints. Experimental results show that our system
achieves excellent performance in a real environment.

In the following sections we will describe in detail our
on-line fingerprint verification system. Section 2 mainly
discusses the fingerprint feature extraction module. Sec-
tion 3 presents our minutia matching algorithm. Experi-
mental results on two fingerprint databases captured with
two different inkless scanners are described in Section 4.
Section 5 contains the summary and discussion.

2 MINUTIA EXTRACTION

It is widely known that a professional fingerprint examiner
relies on minute details of ridge structures to make finger-
print identifications [11], [3]. The topological structure of
the minutiae of a fingerprint is unique, and invariant with
aging and impression deformations [11], [3]. This implies
that fingerprint identification can be based on the topologi-
cal structural matching of these minutiae. This reduces the
complex fingerprint verification to minutia matching proc-
ess which, in fact, is a sort of point pattern matching with
the capability of tolerating, to some restricted extent, de-
formations of the input point patterns. Therefore, the first
stage in an automatic fingerprint verification procedure is
to extract minutiae from fingerprints. In our on-line finger-
print verification system, we have implemented a minutia
extraction algorithm which is an improved version of the
method proposed by Ratha et al. [18]. Its overall flowchart
is depicted in Fig. 7. We assume that the resolution of input
fingerprint images is 500 dpi.
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Fig. 7. Flowchart of the minutia extraction algorithm.

2.1 Estimation of Orientation Field
A number of methods have been proposed to estimate the
orientation field of flow-like patterns [17]. In our system, a
new hierarchical implementation of Rao’s algorithm [17] is
used. Rao’s algorithm consists of the following main steps:

1) Divide the input fingerprint image into blocks of size
W ¥ W.

2) Compute the gradients Gx and Gy at each pixel in each
block.

3) Estimate the local orientation of each block using the
following formula:
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where W is the size of the block, and Gx and Gy are
the gradient magnitudes in x and y directions, re-
spectively.

The orientation field of a good quality fingerprint image
can be reasonably estimated with this algorithm. However,
the presence of high-curvature ridges, noise, smudges, and
breaks in ridges leads to a poor estimate of the local orien-
tation field. A postprocessing procedure needs to be ap-
plied to overcome this limitation. In our system, the fol-
lowing iterative steps are added to improve an inconsistent
orientation field:

• Compute the consistency level of the orientation field
in the local neighborhood of a block (i, j) with the
following formula:
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where D represents the local neighborhood around
the block (i, j) (in our system, the size of D is 5 ¥ 5); N
is the number of blocks within D; q ¢ ¢i j,b g  and q i j,b g
are local ridge orientations at blocks ¢ ¢i j,b g and (i, j),
respectively.

• If the consistency level (2) is above a certain threshold
Tc, then the local orientations around this region are
reestimated at a lower resolution level until it is below
a certain level. With this post-smoothing scheme, a
fairly smooth orientation field estimate can be ob-
tained. Fig. 8 shows the orientation field of a finger-
print image estimated with our new algorithm.

     

(a) Rao’s method. (b) Hierarchical method.

Fig. 8. Comparison of orientation fields by Rao’s method and the
proposed hierarchical method; the block size (W ¥ W) is 16 ¥ 16 and
the size of D is 5 ¥ 5.

After the orientation field of an input fingerprint image
is estimated, a segmentation algorithm which is based on
the local variance of gray level is used to locate the region
of interest from the fingerprint image. In our segmentation
algorithm, we assume that there is only one fingerprint pre-
sent in the image.

2.2 Ridge Detection
After the orientation field of the input image is estimated
and the fingerprint region is located, the next step of our
minutia exaction algorithm is ridge detection. The most
salient property corresponding to ridges in a fingerprint
image is the fact that gray level values on ridges attain their
local maxima along the normal directions of local ridges.
Therefore, pixels can be identified to be ridge pixels based
on this property. In our minutia detection algorithm, a fin-
gerprint image is first convolved with the following two
masks, ht(x, y; u, v) and hb(x, y; u, v), of size L ¥ H (on an
average 11 ¥ 7 in our system), respectively. These two
masks are capable of adaptively accentuating the local
maximum gray level values along the normal direction of
the local ridge direction:
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where q(x, y) represents the local ridge direction at pixel
(x, y). If both the gray level values at pixel (x, y) of the con-
volved images are larger than a certain threshold Tridge, then
pixel (x, y) is labeled as a ridge. By adapting the mask
width to the width of the local ridge, this algorithm can
efficiently locate the ridges in a fingerprint image.

However, due to the presence of noise, breaks, and
smudges, etc. in the input image, the resulting binary ridge
map often contains holes and speckles. When ridge skele-
tons are used for the detection of minutiae, the presence of
such holes and speckles will severely handicap the per-
formance of our minutia extraction algorithm because these
holes and speckles may drastically change the skeleton of
the ridges. Therefore, a hole and speckle removal procedure
needs to be applied before ridge thinning.

After the above steps are performed on an input finger-
print image, a relatively smooth ridge map of the finger-
print is obtained. The next step of our minutia detection
algorithm is to thin the ridge map and locate the minutiae.

2.3 Minutia Detection
Minutia detection is a trivial task when an ideal thinned
ridge map is obtained. Without a loss of generality, we as-
sume that if a pixel is on a thinned ridge (eight-connected),
then it has a value 1, and 0 otherwise. Let (x, y) denote a
pixel on a thinned ridge, and N0, N1, ..., N7 denote its eight

neighbors. A pixel (x, y) is a ridge ending if Nii=ÂFH IK =
0

8
1

and a ridge bifurcation if Nii=ÂFH IK >
0

8
2 . However, the

presence of undesired spikes and breaks present in a
thinned ridge map may lead to many spurious minutiae
being detected. Therefore, before the minutia detection, a
smoothing procedure is applied to remove spikes and to
join broken ridges. Our ridge smoothing algorithm uses the
following heuristics:

• If a branch in a ridge map is roughly orthogonal to
the local ridge directions and its length is less than a
specified threshold Tb, then it will be removed.

• If a break in a ridge is short enough and no other
ridges pass through it, then it will be connected.

Although the above heuristics do delete a large percentage
of spurious minutiae, many spurious minutiae still survive.
The reason is that the above processing relies on local ridge
information. If this information itself is unreliable, then the
above heuristics have no way of differentiating false minu-
tiae from true minutiae. Therefore, a refinement which is
based on structural information is necessary. Our refine-
ment algorithm eliminates the spurious minutiae based on
the following rules:

• If several minutiae form a cluster in a small region,
then remove all of them except for the one nearest to
the cluster center.

• If two minutiae are located close enough, facing each
other, but no ridges lie between them, then remove
both of them.

     

               (a) Input image.      (b) Orientation field.

     

        (c) Fingerprint region.         (d) Ridge map.

     

        (e) Thinned ridge map.    (f) extracted minutiae.

Fig. 9. Results of our minutia extraction algorithm on a fingerprint im-
age (512 ¥ 512) captured with an inkless scanner. (a) Input image.
(b) Orientation field superimposed on the input image. (c) Fingerprint
region. (d) Extracted ridges. (e) Thinned ridge map. (f) Extracted minu-
tiae and their orientations superimposed on the input image.
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After the above refinement procedure is performed, the
surviving minutiae are treated as true minutiae. Although
the above heuristics can not ensure a perfect location of
each minutia, they are able to delete several spurious mi-
nutiae. For each surviving minutia, the following parame-
ters are recorded:

1) x-coordinate,
2) y-coordinate,
3) orientation which is defined as the local ridge orien-

tation of the associated ridge, and
4) the associated ridge.

The recorded ridges are represented as one-dimensional
discrete signals which are normalized by the average inter-
ridge distance. These recorded ridges are used for align-
ment in the minutia matching phase. Fig. 9 shows the re-
sults of our minutia extraction algorithm on a fingerprint
image captured with an inkless scanner.

3 MINUTIA MATCHING

Generally, an automatic fingerprint verification/identifica-
tion is achieved with point pattern matching (minutiae
matching) instead of a pixel-wise matching or a ridge pat-
tern matching of fingerprint images. A number of point
pattern matching algorithms have been proposed in the
literature [23], [1], [21], [16]. Because a general point
matching problem is essentially intractable, features associ-
ated with each point and their spatial properties such as the
relative distances between points are often used in these al-
gorithms to reduce the exponential number of search paths.

The relaxation approach [16] iteratively adjusts the con-
fidence level of each corresponding pair based on its con-
sistency with other pairs until a certain criterion is satisfied.
Although a number of modified versions of this algorithm
have been proposed to reduce the matching complexity
[23], these algorithms are inherently slow because of their
iterative nature.

The Hough transform-based approach proposed by
Stockman et al. [22] converts point pattern matching to a
problem of detecting the highest peak in the Hough space
of transformation parameters. It discretizes the transforma-
tion parameter space and accumulates evidence in the dis-
cretized space by deriving transformation parameters that
relate two point patterns using a substructure or feature
matching technique. Karu and Jain [8] proposed a hierar-
chical Hough transform-based registration algorithm which
greatly reduced the size of accumulator array by a mul-
tiresolution approach. However, if the number of minutia
point is less than 30, then it is very difficult to accumulate
enough evidence in the Hough transform space for a reli-
able match.

Another approach to point matching is based on energy
minimization. This approach defines a cost function based
on an initial set of possible correspondences and uses an
appropriate optimization algorithm such as genetic algo-
rithm [1] and simulated annealing [21] to find a possible
suboptimal match. These methods tend to be very slow and
are unsuitable for an on-line fingerprint verification system.

In our system, an alignment-based matching algorithm is

implemented. Recognition by alignment has received a
great deal of attention during the past few years [12], be-
cause it is simple in theory, efficient in discrimination, and
fast in speed. Our alignment-based matching algorithm
decomposes the minutia matching into two stages:

1) Alignment stage, where transformations such as
translation, rotation and scaling between an input and
a template in the database are estimated and the input
minutiae are aligned with the template minutiae ac-
cording to the estimated parameters; and

2) Matching stage, where both the input minutiae and the
template minutiae are converted to polygons in the
polar coordinate system and an elastic string match-
ing algorithm is used to match the resulting polygons.

3.1 Alignment of Point Patterns
Ideally, two sets of planar point patterns can be aligned
completely by two corresponding point pairs. A true
alignment between two point patterns can be obtained by
testing all possible corresponding point pairs and selecting
the optimal one. However, due to the presence of noise and
deformations, the input minutiae cannot always be aligned
exactly with respect to those of the templates. In order to
accurately recover pose transformations between two point
patterns, a relatively large number of corresponding point
pairs need to be used. This leads to a prohibitively large
number of possible correspondences to be tested. Therefore,
an alignment by corresponding point pairs is not practical
even though it is feasible.

Fig. 10. Alignment of the input ridge and the template ridge.

It is well known that corresponding curve segments are
capable of aligning two point patterns with a high accuracy
in the presence of noise and deformations. Each minutia in
a fingerprint is associated with a ridge. It is clear that a true
alignment can be achieved by aligning corresponding
ridges (see Fig. 10). During the minutiae detection stage,
when a minutia is extracted and recorded, the ridge on
which it resides is also recorded. This ridge is represented
as a planar curve with its origin coincident with the minutia
and its x-coordinate being in the same direction as the di-
rection of the minutia. Also, this planar curve is normalized
with the average inter-ridge distance. By matching these
ridges, the relative pose transformation between the input
fingerprint and the template can be accurately estimated.
To be specific, let Rd and RD denote the sets of ridges asso-
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ciated with the minutiae in input image and template, re-
spectively. Our alignment algorithm can be described in
terms of the following steps:

1) For each ridge d Œ Rd, represent it as an one-
dimensional discrete signal and match it against each
ridge, D Œ RD according to the following formula:

S
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i ii
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where L is the minimal length of the two ridges and di

and Di represent the distances from point i on the
ridges d and D to the x-axis, respectively. The sam-
pling interval on a ridge is set to the average inter-
ridge distance. If the matching score S (0 £ S £ 1) is
larger than a certain threshold Tr, then go to step 2,
otherwise continue to match the next pair of ridges.

2) Estimate the pose transformation between the two
ridges (Fig. 10). Generally, a least-square method can
be used to estimate the pose transformation. How-
ever, in our system, we observe that the following
method is capable of achieving the same accuracy with
less computation. The translation vector (Dx, Dy)T be-
tween the two corresponding ridges is computed by
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where (xd, yd)T and (xD, yD)T are the x and y coordi-
nates of the two minutiae, which are called reference
minutiae, associated with the ridges d and D, respec-
tively. The rotation angle Dq between the two ridges
is computed by
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where L is the minimal length of the two ridges d and
D; gi and Gi are radial angles of the ith point on the
ridge with respect to the reference minutia associated
with the two ridges d and D, respectively. The scaling
factor between the input and template images is as-
sumed to be one. This is reasonable, because finger-
print images are captured with the same device in
both the off-line processing phase and the on-line
verification phase.

3) Denote the minutia (xd, yd, q d )T, based on which the
pose transformation parameters are estimated, as the
reference minutia. Translate and rotate all the N input
minutiae with respect to this reference minutia, ac-
cording to the following formula:
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where (xi, yi, qi)
T, (i = 1, 2, ..., N), represents an input

minutia and x yi
A

i
A

i
A T

, ,qe j  represents the corre-

sponding aligned minutia.

3.2 Aligned Point Pattern Matching
If two identical point patterns are exactly aligned with each
other, each pair of corresponding points is completely coin-
cident. In such a case, a point pattern matching can be sim-
ply achieved by counting the number of overlapping pairs.
However, in practice, such a situation is not encountered.
On the one hand, the error in determining and localizing
minutia hinders the alignment algorithm to recover the
relative pose transformation exactly, while on the other
hand, our alignment scheme described above does not
model the nonlinear deformation of fingerprints which is
an inherent property of fingerprint impressions. With the
existence of such a nonlinear deformation, it is impossible
to exactly recover the position of each input minutia with
respect to its corresponding minutia in the template. There-
fore, the aligned point pattern matching algorithm needs to
be elastic which means that it should be capable of tolerat-
ing, to some extent, the deformations due to inexact extrac-
tion of minutia positions and nonlinear deformations. Usu-
ally, such an elastic matching can be achieved by placing a
bounding box around each template minutia, which speci-
fies all the possible positions of the corresponding input
minutia with respect to the template minutia, and restrict-
ing the corresponding minutia in the input image to be
within this box [18]. This method does not provide a satis-
factory performance in practice, because local deformations
may be small while the accumulated global deformations
can be quite large. We have implemented an adaptive elas-
tic matching algorithm with the ability to compensate the
minutia localization errors and nonlinear deformations.

Let

P x y x yP P P T
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M
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M
P T

= F
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I
K1 1 1, , , . . . , , ,q qe j e j

denote the set of M minutiae in the template and

 Q x y x yQ Q Q T

N
Q

N
Q

N
Q T

= F
H

I
K1 1 1, , , . . . , , ,q qe j e j

denote the set of N minutiae in the input image which is
aligned with the above template with respect to a given
reference minutia point. The steps in our elastic point pat-
tern matching algorithm are given below:

1) Convert each minutia point to the polar coordinate
system with respect to the corresponding reference
minutia on which the alignment is performed:
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where x yi i i
* * *, , qe j  are the coordinates of a minutia,
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(xr, yr, q r )T are the coordinates of the reference minu-

tia, and (ri, ei, qi)
T is the representation of the minutia

in polar coordinate system (ri represents the radial

distance, ei represents the radial angle, and qi repre-
sents the orientation of the minutia with respect to the
reference minutia).

2) Represent the template and the input minutiae in the
polar coordinate system as symbolic strings by con-
catenating each minutia in the increasing order of ra-
dial angles:

P r e r ep
P P P T

M
P

M
P

M
P T

= F
H

I
K1 1 1, , , . . . , , ,q qe j e j (12)

Q r e r ep
Q Q Q T

N
Q

N
Q

N
Q T

= F
H

I
K1 1 1, , , . . . , , ,q qe j e j (13)

where r eP P P
* * *, ,qe j  and r eQ Q Q

* * *, ,qe j  represent the cor-

responding radius, radial angle, and normalized mi-
nutia orientation with respect to the reference minu-
tia, respectively.

3) Match the resulting strings Pp and Qp with a dynamic-
programming algorithm [4] to find the edit distance
between Pp and Qp which is described below.

4) Use the edit distance between Pp and Qp to establish
the correspondence of the minutiae between Pp and
Qp. The matching score, Mpq, is then computed ac-
cording to the following formula:

M
N

M Npq
pair=

100

max ,k p (14)

where Npair is the number of the minutiae which fall in
the bounding boxes of template minutiae. The maxi-
mum and minimum values of the matching score are
100 and 1, respectively. The former value indicates a
perfect match, while the later value indicates no
match at all.

Minutia matching in the polar coordinate has several ad-
vantages. We have observed that the nonlinear deformation
of fingerprints has a radial property. In other words, the
nonlinear deformation in a fingerprint impression usually
starts from a certain point (region) and nonlinearly radiates
outward. Therefore, it is beneficial to model it in the polar
space. At the same time, it is much easier to formulate rota-
tion, which constitutes the main part of the alignment error
between an input image and a template, in the polar space
than in the Cartesian space. The symbolic string generated
by concatenating points in an increasing order of radial
angle in polar coordinate uniquely represents a point pat-
tern. This reveals that the point pattern matching can be
achieved with a string matching algorithm.

A number of string matching algorithms have been re-
ported in the literature [4]. Here, we are interested in incor-
porating an elastic criteria into a string matching algorithm.
Generally, string matching can be thought of as the maxi-
mization/minimization of a certain cost function such as
the edit distance. Intuitively, including an elastic term in

the cost function of a string matching algorithm can achieve
a certain amount of error tolerance. Given two strings Pp
and Qp of lengths M and N, respectively, the edit distance,
C(M, N), in our algorithm is recursively defined with the
following equations:
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where a, b, and g are the weights associated with each
component, respectively; d, e, and e specify the bounding
box; and W is a pre-specified penalty for a mismatch. Such
an edit distance, to some extent, captures the elastic prop-
erty of string matching. It represents a cost of changing one
polygon to the other. However, this scheme can only toler-
ate, but not compensate for, the adverse effect on matching
produced by the inexact localization of minutia and nonlin-
ear deformations. Therefore, an adaptive mechanism is
needed. This adaptive mechanism should be able to track
the local nonlinear deformation and inexact alignment and
try to alleviate them during the minimization process.
However, we do not expect that this adaptive mechanism
can handle the “order flip” of minutiae, which, to some
extent, can be solved by an exhaustive reordering and
matching within a local angular window.

In our matching algorithm, the adaptation is achieved
by adjusting the bounding box (Fig. 11) when an inexact
match is found during the matching process. It can be
represented as follows:
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d d hl l am n m n r+ + = +1 1, ,a f a f D (21)

d d hh h am n m n r+ + = +1 1, ,a f a f D (22)

e el l am n m n e+ + = +1 1, ,a f a f hD (23)

e eh h am n m n e+ + = +1 1, ,a f a f hD (24)

where w’(m, n) represents the penalty for matching a pair of

minutiae r em
P

m
P

m
P T

, ,qe j  and r en
Q

n
Q

n
Q T

, ,qe j , dl(m, n), dh(m, n),

el(m, n), and eh(m, n) specify the adaptive bounding box in

the polar coordinate system (radius and radial angle); and h
is the learning rate. This elastic string matching algorithm
has a number of parameters which are critical to its per-
formance. We have empirically determined the values of
these parameters as follows: dl(0, 0) = −8; dh(0, 0) = +8;

el(0, 0) = −7.5; eh(0, 0) = +7.5; e = 30; a = 1.0; b = 2.0; g = 0.1;

W = 200(a + b + g); h = 0.5. The values of dl(0, 0), dh(0, 0),

el(0, 0), and eh(0, 0) depend on the resolution of fingerprint

images. Fig. 12 shows the results of applying the matching
algorithm to an input minutia set and a template.

Fig. 11. Bounding box and its adjustment.

     

        (a)     (b)

     

        (c)    (d)

Fig. 12. Results of applying the matching algorithm to an input minutia
set and a template. (a) Input minutia set. (b) Template minutia set.
(c) Alignment result based on the minutiae marked with green circles.
(d) Matching result where template minutiae and their correspon-
dences are connected by green lines.

4 EXPERIMENTAL RESULTS

We have tested our on-line fingerprint verification system
on two sets of fingerprint images captured with two differ-
ent inkless fingerprint scanners. Set 1 contains 10 images
per finger from 18 individuals for a total of 180 fingerprint
images, which were captured with a scanner manufactured
by Identix. The size of these images is 380 ¥ 380. Set 2 con-
tains 10 images per finger from 61 individuals for a total of
610 fingerprint images, which were captured with a scanner
manufactured by Digital Biometrics. The size of these im-
ages is 640 ¥ 480. When these fingerprint images were cap-
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tured, no restrictions on the position and orientation of fin-
gers were imposed. The captured fingerprint images vary
in quality. Figs. 13 and 14 show some of the fingerprint im-
ages in our database. Approximately 90 percent of the fin-
gerprint images in our database are of reasonable quality
similar to those shown in Figs. 13 and 14, while about
10 percent of the fingerprint images in our database are not
of good quality (Fig. 15), which are mainly due to large
creases and smudges in ridges and dryness of the im-
pressed finger. First, we report some initial results on fin-
gerprint matching, followed by fingerprint verification. The
reasons why we did not use NIST-9 fingerprint database
[25] to test the performance of our system are as follows:

1) we concentrate on live-scan verification, and
2) NIST-9 fingerprint database is a very difficult finger-

print database which contains a large number of fin-
gerprint images of poor quality and no result has
been reported from other on-line verification systems
for comparison.

      

Fig. 13. Fingerprint images captured with a scanner manufactured by
Identix; the size of these images is 380 ¥ 380; all the three images are
from the same individual’s finger.

      

Fig. 14. Fingerprint images captured with a scanner manufactured by
Digital Biometrics; the size of these images is 640 ¥ 480; all the three
images are from the same individual’s finger.

    

Fig. 15. Fingerprint images of poor quality.

4.1 Matching
Each fingerprint in the test set was matched with the other
fingerprints in the set. A matching was labeled correct if the

matched fingerprint was among the nine other fingerprints
of the same individual, and incorrect otherwise. A total of
32,220 (180 ¥ 179) matchings have been performed on test
Set 1 and 371,490 (610 ¥ 609) matchings on test Set 2. The
distributions of correct and incorrect matching scores are
shown in Fig. 16. It can be seen from this figure that there
exist two peaks in the distribution of matching scores. One
pronounced peak corresponds to the incorrect matching
scores which is located at a value around 10, and the other
peak which resides at a value of 40 is associated with the
correct matching scores. This indicates that our algorithm is
capable of differentiating fingerprints at a high correct rate
by setting an appropriate value of the threshold. Table 1
shows the verification rates and reject rates with different
threshold values. The reject rate is defined as the percent-
age of correct fingerprints with their matching scores below
the threshold value. As we have observed, both the incor-
rect matches and the high reject rates are due to fingerprint
images with poor quality such as those shown in Fig. 15. We
can improve these matching results by ensuring that the da-
tabase does not contain such poor quality fingerprint images.

(a) Identix

(b) Digital Biometrics

Fig. 16. Distributions of correct and incorrect matching scores; vertical
axis represents distribution of matching scores in percentage. (a) Dis-
tribution of matching scores on test set 1 (180 images). (b) Distribution
of matching scores on test set 2 (610 images).
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4.2 Verification
In on-line verification, a user indicates his/her identity.
Therefore, the system matches the input fingerprint image
only to his/her stored templates. To determine the verifica-
tion accuracy of our system, we used each one of our data-
base images as an input fingerprint which needs to be veri-
fied. An input fingerprint image was matched against all
the nine other images of the same finger. If more than one
half of the nine matching scores exceeded the threshold
value of 25, then the input fingerprint image is said to be
from the same finger as the templates and a valid verifica-
tion is established. With this scheme, a 100 percent verifica-
tion rate can be achieved with a reject rate around
16 percent on both test sets. Again, this reject rate can be
reduced by preprocessing the database to remove the
stored templates of poor quality. This demonstrates that, in
practice, using a k-nearest neighbor type of matching is ade-
quate for a successful verification. Table 2 shows the match-
ing rate which is defined as the percentage of the correct fin-
gerprints (of the same finger) present among the best n (n = 1,
..., 9) matches.

For an on-line fingerprint verification system to be ac-
ceptable in practice, its response time needs to be within a
few seconds. Table 3 shows the CPU requirements of our
system. The CPU time for one verification, including fin-
gerprint image acquisition, minutia extraction and minutia
matching, is, on an average, approximately eight seconds

on a SPARC 20 workstation. It indicates that our on-line
fingerprint verification system does meet the response time
requirement of on-line verification.

The number of tests done on an automatic fingerprint
identification system is never enough. Performance meas-
ures are as much a function of the algorithm as they are a
function of the database used for testing. The biometrics
community is slow at establishing benchmarks and the ul-
timate performance numbers of a fingerprint verification
system are those which you find in a deployed system.
Therefore, one can carry out only a limited amount of test-
ing in a laboratory environment to show the anticipated
system performance. Even in field testing, real performance
numbers are not important—it’s often the perceived per-
formance which is crucial.

5 CONCLUSIONS

We have designed and implemented an on-line fingerprint
verification system which operates in two stages: minutia
extraction and minutia matching. A modified version of the
minutia extraction algorithm proposed in [18] is used in our
system which is much faster and more reliable. A new hier-
archical orientation field estimation algorithm results in a
smoother orientation field which greatly improves the per-
formance of the minutia extraction. An alignment-based
elastic matching algorithm is proposed for minutia match-
ing. This algorithm is quite fast, because it is capable of

TABLE  1
THE VERIFICATION RATES AND REJECT RATES

ON TEST SETS WITH DIFFERENT THRESHOLD VALUES

Threshold
Value

Verification
Rate

Reject
Rate

Threshold
Value

Verification
Rate

Reject
Rate

20 99.839 % 11.23 % 20 99.426 % 11.23 %
22 99.947 % 13.33 % 22 99.863 % 14.55 %
24 99.984 % 16.48 % 24 99.899 % 16.78 %
26 99.994 % 20.49 % 26 99.969 % 20.20 %
28 99.996 % 25.19 % 28 99.989 % 23.15 %
30 100 % 27.72 % 30 99.999 % 27.45 %

(a) Using Identix system (180 images).        (b) Using Digital Biometrics system (610 images).

TABLE  2
MATCHING RATES ON TEST SETS USING

THE LEAVE-ONE-OUT METHOD

Number of
Best Matches

Matching Rate Number of
Best Matches

Matching Rate

1 91.17 % 1 92.13 %
2 94.72 % 2 94.40 %
3 96.89 % 3 97.06 %
4 98.17 % 4 97.67 %
5 98.89 % 5 98.44 %
6 99.39 % 6 99.11 %
7 99.72 % 7 99.70 %
8 99.83 % 8 99.79 %
9 99.94 % 9 99.91%

(a) Using Identix system (180 images).                  (b) Using Digital Biometrics System (610 images).

TABLE  3
AVERAGE CPU TIME FOR MINUTIA EXTRACTION
AND MATCHING ON A SPARC 20 WORKSTATION

Minutia Extraction
(seconds)

Minutia Matching
(seconds)

Total
(seconds)

5.35 2.55 7.90
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finding the correspondences between minutia points with-
out resorting to an exhaustive search. At the same time, this
matching algorithm has a good performance, because it has
the ability to adaptively compensate for the nonlinear de-
formations and inexact pose transformations between dif-
ferent fingerprints. Experimental results show that our
system achieves excellent performance in a realistic oper-
ating environment. It also meets the response time re-
quirement of on-line verification.

Based on the experimental results, we observe that the
matching errors in our system mainly result from incorrect
minutiae extraction and inaccurate alignment. We observe
that a number of factors are detrimental to the correct loca-
tion of minutia. Among them, poor image quality is the
most serious one. Therefore, in the future, our efforts will
be focused on global image enhancement schemes. Another
issue related to minutia detection is to incorporate a struc-
tural-based model in minutia detection which extracts mi-
nutiae based on their local ridge formations. For elastic
matching, an important aspect is to utilize additional in-
formation (e.g., neighboring ridges) about a minutia to in-
crease the accuracy of alignment.
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