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Abstract— Target detection and tracking represent two fun-
damental steps in automatic video-based surveillance systems
where the goal is to provide intelligent recognition capabilities
by analyzing target behavior. This paper presents a framework
for video-based surveillance where detection and tracking are
addressed simultaneously in a unified framework (i.e., detection
results trigger tracking, and tracking re-enforces detections)to
improve detection results. In contrast to methods that apply
target detection and tracking sequentially and independently
from each other (i.e., ”detect-then-track”), we feed the results
of tracking back to the detection stage to adaptively optimize
the threshold used in the detection stage and improve sys-
tem robustness (i.e.,”detect-and-track”). Specifically, the initial
locations and representations of the targets are extracted by
background subtraction. To model the background, we employ
Support Vector Regression (SVR) along with an on-line learning
scheme to update it efficiently over time. Target detection is
performed by thresholding the outputs of the SVR model.
Tracking uses shape projection histograms to iteratively localize
the targets and achieve a high shape matching confidence level.
Feeding back the results of tracking to the detection stage
restricts the range of threshold values, suppress false alarms
due to noise, and allows to continuously detect small targets
as well as targets undergoing projection distortions. We have
validated the proposed framework by detecting vehicles and
pedestrians in traffic scenes using both visible and thermal video
sequences. Experimental results and comparisons with frame-
based detection and kernel-based tracking methods illustrate the
robustness of our approach.

I. I NTRODUCTION

Target behavior analysis depends heavily on the reliability
of target detection and tracking which can provide important
information about the location of targets and their temporal
correspondences over time. Both target detection and tracking
have been investigated widely over the last two decades with
the majority of approaches employing detection alone or
frame-based detection, tracking alone, or hybrid schemes such
”detect-then-track” schemes where detection and tracking
work sequentially and independent from each other (i.e., detect
the target in the first frame and turn it over to the tracker in
the subsequent frames) [1].

In detection alone schemes, various detection algorithms
have been proposed based on background subtraction, frame
differencing, and optical flow. Methods based on background
subtraction are common in video-based surveillance systems
when cameras are fixed. In these systems, accurate and robust
background modeling is a prerequisite step; however, due
to significant intensity variations in images, it is difficult

to parameterize the scene analytically. Recently, statistical
learning approaches have been exploited to provide more
accurate background models.

Table I presents an overview of background subtraction
methods for target detection. For each method, we report the
model used, the level of information extracted (i.e., pixel-
based vs region-based), the type of information extracted
(e.g., spatial vs temporal), decision rule, and updating scheme
(i.e., for dealing with light changes). It should be noted
that, many of the existing approaches utilize both spatial and
temporal information to represent complex background scenes
containing stationary and non-stationary information.

Tracking methods can be divided into two main categories.
In the first category, the state sequence of a target is iter-
atively predicted and updated using prior information from
past measurements and likelihood information from current
measurements, respectively. Various filters have been used to
predict the state sequence of a target including Kalman filters
[3] and extended Kalman filters for linear predictions, and
unscented Kalman filters [3] for non-linear predictions. The
most general class of filters, however, is represented by particle
filters [4][5], also called bootstrap filters [6], which are based
on Monte Carlo integration methods. Methods belonging in
the second category use various target characteristics, such as
color or gray-level information, shape, and motion information
and perform tracking by predicting changes in the appearance
of the target from frame to frame [7].

In tracking alone methods, the initial locations of the targets
is usually specified manually. On the other hand, the majority
of methods employing detection along with tracking use a
detect-then-trackapproach where the target is detected in the
first frame and then turned over to the tracker in subsequent
frames. The main problem with these methods is that they
aim to resolve detection and tracking sequentially and inde-
pendently from each other.

An important issue considered in this work is enhancing
the results of target detection by feeding back to the detection
stage temporal information from tracking. In this context,
we propose adetect-and-trackscheme where detection and
tracking are addressed simultaneously in a unified framework
(i.e., detection results trigger tracking, and tracking re-enforces
detections). One approach to deal with this problem is by
using a Bayesian decision framework which combines prior
probability information provided by tracking with likelihood



TABLE I

OVERVIEW OF TARGET DETECTION APPROACHES

Statistical parametric
Method Model Spectral Spatial Temporal Decision Updating scheme
W4[10] Minima and max-

ima
Pixel-gray —— Motion support map Threshold Parameters

Pfind[11] Single Gaussian Pixel-color —— —— MAP Parameters of Gaus-
sian

MoG[12] Mixture of Gaus-
sian

Pixel-gray —— —— Threshold Parameters of Gaus-
sian

Non-statistical parametric
Non-
parametric[13]

Probability
density of pixel
density

Pixel Neighboring pixels —— Threshold Probability density
function

Olvier[14] Eigen background Region-
color

—— —— Threshold Threshold

Monnet[15] PCA of region Region-
color

—— Auto-regressive
model

Threshold Basis vectors of
eigenspace

Wallflower [16] Self-regression
model

P-R-F 4-connected regions —— Threshold Prediction
coefficients

Liyuan [18] Principal feature
of pixels

Pixel-color Gradient Color co-occurrence Bayesian decision Linear model

information provided by frame-based detection [8]. However,
the performance of target detection depends heavily on the
threshold used to distinguish between foreground and back-
ground. Another approach is propagating the probabilities of
detection parameters (e.g. at several scales and poses) over
time using a condensation filter and factored sampling [9].

In this paper, we propose a framework for integrating target
detection with tracking to improve detection results. In this
framework, we employ SVR [20] to model the background and
an on-line learning scheme [21] to update it efficiently over
time. The initial locations and representations of the targets
are extracted by thresholding the outputs of the SVR model
where the threshold is adaptively optimized using feedback
from tracking. Tracking uses shape projection histograms to it-
eratively localize the targets and achieve a high shape matching
confidence level between successive frames. Using feedback
from tracking restricts the range of threshold values during
detection, suppresses false alarms due to noise, and allows
to continuously detect small targets and targets undergoing
projection distortions. Besides improving detection, integrating
detection with tracking can help to initialize tracking automati-
cally. We have validated the proposed framework by detecting
vehicles and pedestrians in traffic scenes using both visible
and thermal video sequences.

II. TARGET LOCATION INITIALIZATION

In order to effectively detect the precise location of targets
in a scene but also not to miss small targets, an accurate
background model is required. Moreover, many practical ap-
plications require an effective way to incorporate background
changes by updating the background model fast and effec-
tively. In this study, we propose using SVR to build a model
of the background. SVR is a statistical learning technique for
estimating a function from a set of training data [20]. To
update the background model, we use an on-line SVR learning
algorithm [21].

A. Background modeling using SVR

Given a set of training data, SVR fits a function by spec-
ifying an upper bound on a fraction of training data allowed
to lie outside of a distanceε from the regression estimate.
This type of SVR is usually referred to asε-insensitive SVR
[20]. For each pixel belonging to the background, we employ a
separate SVR model to model it as a function of the intensity.
To classify a given pixel as background or not, we feed its
intensity value to the SVR model associated with that pixel
and we threshold the output of the SVR.

Specifically, let us assume a set of training data
for some pixel p obtained from a number of frames,
{(x1, y1), ..., (xl, yl)}, wherexi corresponds to the intensity
value of pixel p at frame i, and yi corresponds to the
confidence of pixelp belonging to the background. Once the
SVR has been trained, the confidence of pixelp in a new
framek, f(xk), is computed as follows:

f(xk) =
l∑

j=1

(aj − a∗j )k(xk, xj) + b (1)

wherek(xi, xj) is a kernel function anda, a∗ are Lagrange
multipliers. In this work, we used a Gaussian kernel. The
solution of theε-insensitive SVR corresponds to finding values
for the Lagrange multipliersa, a∗ minimizing the following
quadratic objective function:

W =
1
2

∑

ij

(ai − a∗i )k(xi, xj)(aj − a∗j )−
∑

i

yi(ai − a∗i )

+ε
∑

i

(ai + a∗i ) (2)

where0 ≤ ai, a
∗
i ≤ C and

∑
i

(ai − a∗i ) = 0

To illustrate the SVR-based background modeling approach,
we use a video sequence captured at a traffic intersection
assuming a fixed camera (see Fig. 1(a)). To collect the training
data for the SVR, first we builtB ”clean” background images



(i.e., without containing moving vehicles or pedestrians). This
was done by takingF successive frames and finding the
median intensity value at each pixel location (see Fig. 1(b)).
Here, we used a total of 90 frames to buildB=30 clean
background images usingF=30 frames each time. It should be
noted that, although all the images were captured using a fixed
camera, there were still fluctuations in the intensity values in
the ”clean” background images due to light changes caused
by outdoor environmental conditions. To train the SVR model
assigned to a particular pixel location, we used the intensity
values at this location from all clean images (i.e.,xi) and
assigned a high confidence value to this pixel (i.e.,yi=1).

Fig. 1. Captured traffic scenes and the computed ”clean” background scene
using median filtering.

Fig. 2 shows the results of background modeling at a fixed
pixel location using Mixtures of Gaussians (MoG) and SVR.
In each graph, thex-axis corresponds to the intensity of the
pixel over the 30 ”clean” background images (i.e., shown as
red circles), while they-axis corresponds to confidence of
that pixel belonging to the background (i.e., set to 1). Fig.
2 (a) shows the SVR-based model while Figs. 2 (b) and (c)
show the MoG-based models using four and two Gaussians
correspondingly. As it can be observed, SVR can find a better
solution than MoG. Fig. 2 (d) shows an SVR-based solution
corresponding to a different pixel location.

B. Extracting initial target locations

Given the SVR-based background model, the intensity of
each pixel in a new frame forms an input to the SVR. The
output of the SVR is represents the confidence that the given
pixel belongs to the background. Eventually, a pixel is labelled
as background if its confidence is higher than a thresholdS.
Specifically, a binary foreground detection mapM t

xi
is formed

at framet as follows:

M t
xi

=
{

1, foreground, f(xi) > S
0, background, otherwise.

(3)

wheref(xi) is the SVR output andS is an initial threshold.
For each region in the binary map, we fit an ellipse. The initial
location of each target is represented by the center, long axis,
and short axis of the ellipse as shown in Fig. 3.

C. On-line SVR learning

To update the background model over time, we need an
efficient method that avoids expensive re-training. Here, we
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Fig. 2. Different solutions for background modeling. (a) SVR solution,(b)
MoG solution using 4 Gaussians. (c) MoG solution using 2 Gaussians (d)
SVR solution at a different pixel location.

Fig. 3. Initial locations of targets represented by the best-ellipse fitting.

use an efficient on-line SVR learning algorithm which updates
the SVR function whenever new training data becomes avail-
able [21]. The main idea is changing the Lagrange multipliers
a, a∗ in a finite number of steps until the Karush-Kuhn-Tucker
(KKT) conditions are satisfied [21].
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Fig. 4. Illustration of on-line SVR learning.

Figs. 4 (a) and (b) illustrate the on-line SVR learning
procedure where the training data is shown by red circles.
After training, the regression function in Fig. 4 (a) is estimated
by a single peak (i.e., red dashed line). When new data
comes along, shown as black circles, the regression function is



updated using on-line learning. In this example, the regression
function becomes bimodal (i.e., black line). Figure 4 (b) shows
another case where the regression function contains multi-
peaks. In this case, the number of peaks before (i.e., red dashed
line) and after (i.e., black line) the addition of new examples
do not change, however, they do shift to the right.

III. I NTEGRATING TARGET DETECTION WITH TRACKING

In this section, we describe the framework for integrating
target detection with tracking in order to improve detection
results. First, we discuss our target representation scheme
which is based on normalized shape projection histograms.
Then, we describe the algorithm used to predict the location of
targets in subsequent frames. Finally, we present the feedback
mechanism for optimizing the threshold used during detection.

A. Target representation

Our target representation scheme is based on shape infor-
mation rather than on color or texture. The main reason is that
shape is more robust to light changes in outdoor environments.
In order to make our target representation scheme robust to
perspective projection, scale, and rotation transformations, we
employ normalized shape projection histograms.
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Fig. 5. Left: vertical shape projection histograms; Right: horizontal shape
projection histograms.

1) Normalized shape projection histograms:We denote the
location of a target by(xi, yi) which corresponds to the
location of the best-fitting ellipse. To compute the projection
histograms, we project the target horizontally and vertically
by counting the number of pixels in each row and in each
column correspondingly. To make the projection histograms
invariant to target orientation, first we transform the target to
a default coordinate system. This is done in two steps. First,
we find the best-fitting ellipse of the the target. Second, we
align its major and minor axes with thex- andy-axis of the
default coordinate system. The main assumption here is that
the targets are approximately 2-D; this is a valid assumption in
our application since the depth of the targets is much smaller
compared to their distance from the camera.

Since projection histograms are sensitive to the location and
size of the targets, we normalize them by shifting the middle
bins of the histogram to the geometric center of the target and
resizing the number of bins to a fixed size. Specifically, the
normalized horizontal (i.e.,̄Hx) and vertical (i.e.,H̄y) shape
projection histograms are defined as follows:

H̄x(m) = {(xi, y)|(xi, y) ∈ R},
H̄y(n) = {(x, yj)|(x, yj) ∈ R},

m = xi − x + M/2,

n = yj − y + N/2. (4)

where (x, y) is the geometric center of the target (i.e., the
center of the best-fitting ellipse),m andn are indices, andM
and N are the number of bins in the horizontal and vertical
projection histograms.

2) Weighted shape projection histograms:In order to re-
duce the effects of background noise and image outliers, we
introduce weights to improve the robustness of the normalized
shape projection histograms. This is done by employing an
isotropic kernel functionk(·) in a similar way as in [7]. The
role of the kernel function is to assign smaller weights to pixels
farther away from the center bin of the project histogram.
Then, the weighted target model histograms, denoted asHT

x

andHT
y , are defined as follows:

HT
x (m) =

H̄x(m) + k(·)
M∑

m=1
H̄x(m) + k(·)

HT
y (n) =

H̄y(n) + k(·)
N∑

n=1
H̄y(n) + k(·)

(5)
where k(xi, yj) = c − [(xi − x)2 + (yj − y)2], and c =

(w/2 + 1)2 + (h/2 + 1)2 (i.e., computed from the sizew× h
of the target).

To find the targets in subsequent frames, we search a
window of sizeW ×H. Then, candidate targets are identified
in this window by thresholding the outputs of the SVR models.
The weighted target candidate projection histograms, denoted
asHC

x andHC
y , are defined as follows:

HC
x (m) =

H̄x(m) + g(·)
M∑

m=1
H̄x(m) + g(·)

HC
y (n) =

H̄y(n) + g(·)
N∑

n=1
H̄y(n) + g(·)

(6)
whereg(xi, yj) = c−{[(xi−x)/h]2+[(yj−y)/h]2}, andc

is calculated from the sizeh = W ×H of the search window.
Fig. 5 shows an example of shape projection histograms.

B. Predicting target location

To find the location of a target in subsequent frames, we
need to define a similarity measure between the target model,
computed in previous frames, and the target candidates, de-
tected in the current frame. Here, we use a similarity measure
based on the Manhattan distance between the weighted shape
projection histograms of the target model and the candidates:



Dx =
M∑

m=1

[HC
x (m)−HT

x (m)]

Dy =
N∑

n=1

[HC
y (n)−HT

y (n)] (7)

To accurately localize a target in a search window, we need
to minimize the objective function defined in Eq. (9). Below,
we show the derivation of the objective function for the case
of horizontal shape projection histograms; similar derivations
apply for the case of vertical shape projection histograms:

Φ = min
k

M∑
m=1

[HCS
k

xk (m)−HT
x (m)]

=
∑

k

wk

M∑
m=1

[HCS
k

xk (m)−HT
x (m)]

=
∑

k

wk

∑

xi∈R

[HCS
k

xk (xi − x + M/2)

−HT
x (xi − x + M/2)] (8)

−→ min over S andxk

whereS is the threshold used to find the target candidates
andwk restricts the spatial positionxk of the target candidate

around the geometric centerx of target model.HCS
k

xk (m) is
the weighted shape projection histogram of thek-th target
candidate detected using thresholdS.

To perform the above minimization, we employ a multi-
scale iterative scheme by gradually decreasing the value of
the thresholdS used for target detection and changing the
spatial center position of the search window:

Φ(l) =
∑

k

wk

M∑
m=1

[HC
S(l)
k

xk(l)
(m)−HT

x (m)]

=
∑

k

wk

∑

xi∈R(l)

[HC
S(l)
k

xk(l)
(xi − xk(l) + M/2)

−HT
x (xi − x + M/2)] (9)

C. Confidence coefficient

A key issue in implementing the above idea is how to
choose appropriate functions for decreasingS and changing
the geometric center(x, y) of the candidate targets at each
iteration l. For this, we use the ratio between the weighted
shape projection histogram of the target model and the can-
didates. We refer to this ratio as theconfidence coefficientof
shape matching and it is defined below:

ξx(l) =
∑

xi∈R(l)

√√√√H
S(l)

xk(l)
[xi − xk(l) + M/2]

HC
x [xk(l)− x + M/2]

(10)

ξy(l) =
∑

yi∈R(l)

√√√√H
S(l)

yk(l)
[yi − yk(l) + N/2]

HC
y [yi − y + N/2]

(11)

The confidence coefficient provides the weights in the
iterative procedure used to change the spatial location of the
targets and select the threshold range. Using the confidence
coefficient, the new center of the search window is updated as
follows:

xk(l) = xk(l − 1)× ξx(l − 1)
yk(l) = yk(l − 1)× ξy(l − 1); (12)

D. Adaptive threshold optimization

The confidence coefficient is also used to update the thresh-
old S used in the target detection stage. Specifically, let us
denote the threshold at thel−1 iteration asS(l−1), then the
threshold at thel iterationS(l) is defined as follows:

S(l) = S(l − 1)−
[
1−

√
ξ2
x(l − 1) + ξ2

y(l − 1)
]
. (13)

The above iterative procedure decreasesDx andDy while
moving the spatial center of the search window iteratively
closer to the geometric center of the target. The iterative
procedure terminates when the distance between the weighted
shape projection histogram of target model and the target
candidates is small than a given value. However, when the
confidence coefficient is too low, we increase the threshold
of target detection to avoid under-segmentation which could
cause differences in the shape of the targets in successive
frames.

IV. EXPERIMENTAL RESULTS

The proposed framework has been evaluated by detecting
vehicles and pedestrians using both visible and thermal video
sequences. The visible video sequence was captured at a traffic
intersection and contains a total of two hours video with a
sampling rate4 frames/second. The thermal video data was
captured at a university campus walkway intersection over
several days (morning and afternoon) using a Raytheon 300D
thermal sensor core with 75mm lens mounted on an 8-story
building [23].

A. Results using detection alone

First, we demonstrate the performance of a system em-
ploying frame-based detection and SVR-based background
modeling, without feedback from tracking for threshold opti-
mization. Fig. 6 shows the locations of the targets found using
this approach.

Fig. 7 presents comparison results between SVR-based
background modeling and AdaBoost [23]. Our first obser-
vation is that SVR-based detection produces more accurate
detections (i.e., the window enclosing the targets is much
narrower). Moreover, on the left part of Fig. 7, we can observe
a pedestrian who was detected as two separate entities by



Fig. 6. Detection results using SVR-based background modeling, without
feedback from tracking.

Adaboost. On the right part of Fig. 7, however, the same pedes-
trian was detected as a single entity using SVR. Nevertheless,
the performance of detection without employing some kind of
feedback from tracking depends heavily on the choice of the
threshold. If the threshold is not chosen properly, we might
end up with many false alarms as shown in Fig. 3.

Fig. 7. Comparison results between AdaBoost [23] (left) and SVR (right).

B. Results using integration

Figs. 8 and 9 present comparison results between frame-
based detection without feedback from tracking and the pro-
posed method which integrates detection with tracking. Each
target is tracked and labelled with rectangles having different
colors. The 1st and 2nd rows of Fig. 8, show tracking
results and detection maps using the proposed method. The
last row presents detection results using frame-difference and
no threshold optimization. Among the results shown, it is
interesting to note that the small target, labelled by a green

Fig. 8. Comparison results between the proposed method and frame-
based detection using visible video.1st and 2nd rows: Tracking results
and corresponding detections using the proposed method.3rd row: Detection
results using frame-based detection.

rectangle in the1st row of Fig. 8, is very difficult detect using
frame-based detection and non-optimized thresholds as shown
in the 3rd row of Fig. 8. On the other hand, the proposed
method shows more accurate detection results by optimizing
the threshold. Moreover, the proposed method shows has sup-
pressed the false alarms that appear in frame-based detection
as shown in the2nd row of Fig. 9. Table II shows quantitative
comparisons in terms of true positives and false alarms for
frame-based detection and the proposed approach. Obviously,
the proposed approach has lower false alarm and higher true
positive rates than frame-based detection.

TABLE II

QUANTITATIVE COMPARISONS IN TERMS OFTRUE POSITIVES (TP),

FALSE ALARMS (FA), AND GROUND TRUTH (GT)

Data sets Methods Ground
truth

True
Posi-
tive

False
Alarm

Visible video Frame-based
detection

346 296 30

Integrating detec-
tion with tracking

346 340 5

Thermal video
Frame-based
detection

371 371 35

Integrating detec-
tion with tracking

371 371 0

Figs. 10 (a) and (b) present another quantitative comparison
by counting the number of pixels in two different segmented
regions between frame-based detection and the proposed



Fig. 9. Comparison results between the proposed method (1st row) and
frame-based detection (2nd-row) using thermal video. Frame-based detection
yields many false positives.

method. The red curve indicates ground truth information
(i.e., the true number of pixels in the segmented region).
The reason that the number of pixels decrease over time is
because the target becomes smaller and smaller over time due
to moving away from the camera. The green and blue curves
show the performance of the proposed method and frame-
based detection respectively. In Figs. 10 (a) and (b), the green
curves are closer to the red curves, indicating that the proposed
method makes less errors compared to frame-based detection.

Fig. 10 (c) shows the adaptive threshold values over time
for two targets with different motion characteristics (i.e., a
car and a pedestrian). As it can be observed, the thresholds
were iteratively decreased based on the confidence coefficient
computed from the shape projection histogram matching pro-
cess. To avoid under-segmentation, the threshold was re-set
to a higher value when the confidence coefficient fell below
a certain value. Fig. 10 (d) demonstrates the average number
of iterations at each frame. As it can be observed, the time
complexity of this step is not high.

C. Comparison with kernel-based tracking

In this section, we present comparison results between
kernel-based tracking [7] and the proposed approach.

Fig. 11 shows tracking results for frames 4, 12, 22, 26,
39 of a test sequence using the proposed method (1st-row)
and kernel-based tracking (2nd-row). The 3rd row of Fig.
11 shows the detected targets using the proposed method.
In order to make the comparison fair, kernel-based tracking
was initialized using the initial target locations found by our
approach, shown in the first column of Fig 11. As it can be
observed, kernel-based tracking has difficulties with tracking
small targets (e.g., a small human walking along the road) and
targets with perspective projection distortions. On the other
hand, the proposed approach can handle these cases due to
integrating tracking with the detection and the use of adaptive
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Fig. 10. (a),(b): Comparison results between frame-based detection and
the proposed approach by counting the number of pixels in two different
segmented regions. The red curve indicates ground truth information while
the green and blue curves indicate the performance of the proposed method
and frame-based detection, respectively; (c): Adaptive threshold values over
time for two different targets; (d): Average number of iterations.

thresholding in the detection stage.

V. CONCLUSIONS

We have proposed a framework for improving video-based
surveillance by integrating target detection with tracking. The
proposed framework was evaluated by detecting and tracking
pedestrians and vehicles in both visible and thermal video
sequences. On-line SVR was used to model the background
and to accurately detect the initial locations of the targets.
Moreover, weighted shape projection histograms were ex-
ploited to predict the location of targets in successive frames.
At the same time, a confidence coefficient for shape matching
was computed to suppress false alarms. Using weights derived
from the confidence coefficient of shape matching, we were
able to optimize the threshold used in the target detection
stage. Our experimental results show good performance, espe-
cially when dealing with small targets and targets undergoing
perspective projection distortions. Moreover, they show good
suppression of false alarms due to noise. For future work, we
plan to improve the speed of the method. Although we were
able to achieve good speed in our experiments by sub-sampling
the captured images, further improvements are necessary for
true real-time performance. One way to improve speed is
by using region-based instead of pixel-based SVR models to
represent the background.
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Fig. 11. Comparison results between kernel-based tracking and the proposed approach when tracking small targets and targets with projection distortion.
Tracking results are shown in frames 4, 12, 22, 26, 39 of the test sequence using rectangles of different colors.1st row: Tracking results using the proposed
method.2nd row: Tracking results using kernel-based tracking where, the initial target locations were chosen to be the same to those found by our approach
(i.e., first row); kernel-based tracking has difficulties with tracking small targets (e.g., small human walking along the road) and targets with perspective
projection distortions.3rd row: Detection results using the proposed method.
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