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Abstract Fingerprint classification represents an impor-

tant preprocessing step in fingerprint identification, which

can be very helpful in reducing the cost of searching large

fingerprint databases. Over the past years, several different

approaches have been proposed for extracting distin-

guishable features and improving classification perfor-

mance. In this paper, we present a comparative study

involving four different feature extraction methods for

fingerprint classification and propose a rank-based fusion

scheme for improving classification performance. Specifi-

cally, we have compared two well-known feature extrac-

tion methods based on orientation maps (OMs) and Gabor

filters with two new methods based on ‘‘minutiae maps’’

and ‘‘orientation collinearity’’. Each feature extraction

method was compared with each other using the NIST-4

database in terms of accuracy and time. Moreover, we have

investigated the issue of improving classification perfor-

mance using rank-level fusion. When evaluating each

feature extraction method individually, OMs performed the

best. Gabor features fell behind OMs mainly because their

computation is sensitive to errors in localizing the regis-

tration point. When fusing the rankings of different clas-

sifiers, we found that combinations involving OMs

improve performance, demonstrating the importance of

orientation information for classification purposes. Overall,

the best classification results were obtained by fusing ori-

entation map with orientation collinearity classifiers.

Keywords Fingerprint classification � Orientation field �
Minutiae map � Orientation collinearity � Gabor features �
Rank-level fusion

1 Originality and contribution

This paper presents a comparative study involving four

different feature extraction methods for fingerprint classi-

fication. In addition, it presents a rank-based fusion scheme

for improving classification performance. Our work is

original and contributes to improving research on finger-

print classification.

2 Introduction

Fingerprint matching is among the most important and

reliable methods for the identification of a person. There

are two main applications involving fingerprint matching:

fingerprint verification and fingerprint identification. While

the goal of fingerprint verification is to confirm the identity

of a person, the goal of fingerprint identification is to

establish the identity of a person. In general, fingerprint

identification involves comparing a query fingerprint with a

large number of fingerprints stored in a database, which is

time consuming. To reduce search time and lower com-

putational complexity, fingerprint classification is often

employed to partition the database into smaller subsets [1].

The key idea is assigning a given fingerprint to a broad

category using high-level features such as ridge density and

ridge direction. During identification, a query fingerprint
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needs to be matched only against fingerprints belonging to

the same category with the query.

A recent review on fingerprint classification methods

can be found in [2]. Commonly, fingerprints are classified

into five major classes, known as Henry classes, namely

Whorl, Left Loop, Right Loop, Arch and Tented Arch (see

Fig. 1). Non-linear distortions resulting from skin elastic-

ity, sensor noise and the presence of intrinsically low-

quality fingerprint images make fingerprint classification a

challenging problem. These distortions result in small

inter-class and large intra-class variability among the five

different Henry classes. Therefore, several systems have

been proposed to deal with this challenging problem [3].

Extracting a set of distinguishable features is critical for

fingerprint classification. The main feature that defines the

Henry classes is the ridge flow pattern, which in principle

can be characterized by the number and types of singu-

larities in the direction field (i.e., ridge flow field). Core and

delta points are the main features used in rule-based

approaches such as the one proposed by Kawagoe and Tojo

[4]. However, these systems suffer from failures when the

singularities are missing or cannot be extracted. For

example, core and delta points may be missing due to

incorrect placement of the finger or might not be extracted

reliably due to low image quality.

Many studies rely on more robust features representing

the global or local ridge patterns in fingerprints. Wang [5]

has introduced one such approach making use of orienta-

tion field information. In [6], ridges represented by B-

spline curves were employed for the same purpose. A

structural approach using partitioning of the orientation

field into homogeneous regions has been proposed in [7, 8].

Prabhakar et al. [9] proposed a set of Gabor features

showing promising results. In general, ridge flow or

structure-based features have proven to be the most reliable

and accurate means for automated fingerprint classification,

because they are inherently more tolerant to noise.

Nevertheless, there have also been efforts to employ

other features. In [10], Fitz et al. introduced frequency-

based features to perform classification. However, their

method was tested on a very small data set of 40 finger-

prints, which does not give a good indication of the gen-

eralization ability and robustness of the algorithm. Several

systems making use of minutiae information in fingerprints

have also been proposed. One such study presented a fea-

ture extraction method based on the position, location and

orientation associated with minutiae points [11]. In a dif-

ferent study [12], genetic programming was used to learn a

set of features for classification.

This study presents a comparative analysis of several

different feature extraction methods for fingerprint classi-

fication. Specifically, we compared two well-known meth-

ods, based on orientation maps (OMs) and Gabor filters,

with two other methods, introduced in this study, based on

minutiae maps (MMs) and orientation collinearity. To

compare each approach, we used a k-nearest neighbor (k-

NN) classifier as in [9]. Besides evaluating each feature

extraction method individually, we also investigated the

issue of improving the accuracy of fingerprint classification

using rank-level fusion. We report improved classification

results by fusing OMs with orientation collinearity. Our

experiments were conducted using the NIST-4 database,

which has now become a benchmark database in literature

for testing fingerprint classification techniques.

The rest of the paper is organized as follows: Sect. 2

reviews the feature extraction methods used in our

Fig. 1 Major Henry classes: a
Whorl (W), b Left loop (L), c
Right loop (R), d Arch (A), e
Tented Arch (T)
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comparison study. Section 3 presents our classification

approach using k-NN classifiers. The data set used in our

experiments is described in Sect. 4. Our experimental

results using each feature extraction method individually as

well as using rank-level fusion are presented in Sect. 5.

Finally, our conclusions and plans for future research are

presented in Sect. 6.

3 Feature extraction methods

Based on previous work on fingerprint classification, we

chose to compare two well-known feature extraction

methods based on OMs [13] and Gabor filters [9]. In

addition, we considered two more methods, introduced in

this study, based on MMs and orientation collinearity. MMs

have been motivated by the ideas presented in [2], while the

main idea behind orientation collinearity is a coarse repre-

sentation of OMs. Each of the feature extraction methods

considered here requires a registration step to provide

translation invariance. In this study, translation invariance

was achieved using core detection. Ideally, one should also

account for rotation changes; however, all fingerprints in

the NIST-4 database have already been normalized with

respect to rotation. Next, we describe the core detection and

feature extraction algorithms used in this study.

3.1 Core point detection

Accurate and reliable core point detection in fingerprint

images is a critical issue that affects the performance of

many fingerprint classification and recognition systems.

Several different algorithms have been proposed in litera-

ture for detecting and extracting the core points reliably. In

this study, we experimented with two known core point

extraction algorithms and a hybrid approach.

The first algorithm extracts the core points using a

method similar to the one reported by Novikon and Kot

[14]. According to this method, a core point is defined as

the crossing point of lines normal to the ridges as shown in

Fig. 2. Detecting the crossing point is very robust; how-

ever, it does not always lie close to the true core point. The

second algorithm extracts the core points using the Poin-

caré index [5]. The Poincaré index is a tool for detecting

and classifying singularities in vector fields. It can be

applied on fingerprint OMs with minor modifications and

has shown to have high accuracy, but low robustness.

To improve core point extraction, we also experimented

with a hybrid method, which reduces false positives by

combining the outputs of the above two algorithms. In

particular, although the Poincaré index method is very

accurate, it can produce many false core and delta points

when the orientation map is noisy. We used several

heuristics to filter out false core points based on their

location relative to the crossing point and the boundary of

the image. In particular, we discarded the core points that

had the distance from the image boundary or the crossing

point less than a fixed number of pixels (e.g., 20 pixels).

Among the remaining Poincaré index-based singularities,

we took the one closest to the crossing point as the regis-

tration point.

3.2 Minutiae maps

Minutiae refer to the bifurcation or termination points of

ridges on the finger surface. They are mainly utilized in

fingerprint matching since their distribution on the finger-

print provides a unique signature for an individual [15].

Ross et al. [11] have investigated the problem of recon-

structing fingerprint images from the minutiae locations

and directions. Our motivation to use MMs in this study

was to examine whether minutiae contain enough infor-

mation for fingerprint classification. Our experimental

results indicate that there is some correlation between the

distribution of minutiae and corresponding fingerprint

classes; however, this information alone is not sufficient for

highly accurate fingerprint classification.

In our experiments, we extract the minutiae using the

Verifinger library tool kit [16]. Then, we represent them

using their X, Y image coordinates as well as their orien-

tation (i.e., average direction of surrounding ridges). To

represent minutiae distribution information, we detect the

core point and define a region of interest around it. In this

study, we assume a circular region centered at the core

point. Then, we tessellate the circular region using a

methodology similar to [9]. To determine the radius of the

circular region, we do not consider the whole image, since

there is high noise around the image boundary. Moreover,

most useful information is contained around the core point.

Fig. 2 Core point by intersection of ridge normals
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Figure 3 shows a tessellation example along with the

minutiae overlaid on the fingerprint image. Two types of

features are extracted from each sector: (1) the number of

minutiae inside the sector, normalized by the total number

of minutiae inside the largest circle, and (2) the average

minutiae orientation within each sector.

3.3 Orientation maps

Orientation maps describe the ridge flow in a fingerprint

image. Usually, the image is partitioned into non-overlap-

ping square blocks and each block is processed to determine

the dominant orientation inside it as shown in Fig. 4. This

forms an important representation that serves many pur-

poses. In the classification domain, the singularities of the

field are helpful in registering translation-variant features.

After registration, the map itself contains important infor-

mation for determining the class of a fingerprint. Here, a

square-shaped sub-region, centered at the core point, is used

to form the feature vector.

In our experimentation and analysis, we employed two

different orientation estimation methods. The first one is

based on the PCASYS algorithm [17], which operates in

the frequency domain. In this case, the frequency spectrum

of each block is analyzed to determine the strongest ori-

entation inside the block. The PCASYS algorithm uses

16 9 16 blocks, therefore, it computes low-resolution OMs

(i.e., 32 9 32 in our case). The second method estimates

the orientation map using a gradient-based approach, which

is the most common and well-known methodology [13]. In

this case, the gradient vectors inside each block are ana-

lyzed to determine the dominant orientation in each block.

The unit vector that is most orthogonal to the gradient

vectors inside each block gives the dominant orientation.

The gradient-based method can produce higher resolution

maps (i.e., 64 9 64 in our case) since it uses 8 9 8 blocks.

It should be mentioned that orientation information can-

not be estimated in background regions of the fingerprint

images. These regions can be detected using the variance of

the intensity in each block; when the variance falls below a

threshold, the block is flagged as background. We utilize this

information in our distance calculations. Specifically, we

have adopted two different schemes for computing the dis-

tance between two OMs. In the first scheme, we consider all

available information, including that of the background

blocks. In this case, the distance is calculated as follows:

Dðx; yÞ ¼
XN

i¼1

1� j cosðx½i� � y½i�Þj ð1Þ

where x and y denote the feature vectors.

In the second scheme, the background blocks were

regarded as ‘‘don’t care‘‘ components and were not con-

sidered in our distance calculations. That is, only the

average distance between corresponding non-background

components was taken into consideration as follows:

Dðx; yÞ ¼
X

i2N

1� j cosðx½i� � y½i�Þj
 !

=jNj ð2Þ

Fig. 3 Spatial tessellation and

detected minutiae overlaid on a

fingerprint image. In polar

coordinates, the angle and

radius axes are quantized in

steps of 30 and 40 pixels,

respectively

Fig. 4 Orientation map
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where N denotes the set of feature vector components

without a ‘‘don’t care‘‘ value in x and y.

3.4 Orientation collinearity maps (OCMs)

Several studies, including [9], have reported that OMs are

quite sensitive to noise. The main motivation for introducing

OCMs was to obtain a coarser representation of orientation

information, which would be less sensitive to noise. In this

context, OCMs take into consideration the inherent conti-

nuity that exists between adjacent cells in OMs. Specifically,

by examining the average orientation information of adja-

cent cells, we assign a label to each cell based on the degree

of collinearity of the corresponding orientation directions.

This process allows us to build a set of templates for each

fingerprint class, which are then used for classification pur-

poses. This is illustrated in Fig. 5 where each cell corre-

sponds to a block used in orientation map estimation.

Specifically, let us consider a 3 9 3 neighborhood of

blocks fC1; . . .;C9g and denote the unit orientation vectors

at the center of each block Ci as C
0
i; i ¼ 1; . . .; 9: The main

idea is examining whether the orientation vector corre-

sponding to cell C5 is collinear with the orientation vectors

corresponding to the cells Ci in the neighborhood of C5 as

illustrated in Fig. 5. Once we have determined that the

orientation of the center block is consistent with that of a

surrounding block, we label both of them using one of four

labels corresponding to the direction of the line connecting

them (i.e., 0, 45, 90, 135).

The resulting labels can be visualized for different Henry

classes in Fig. 6. As it can be observed, orientation collin-

earity creates easy-to-distinguish patterns for different

classes. We construct four different feature vectors from the

collinearity labels using a circular tessellation around the

core point similar to the case of MMs (see Fig. 3). The first

feature vector corresponds to all the labels inside the largest

circle. The other feature vectors are constructed using local

features of sectors in the tessellation (i.e., the mean, the

median, and the mode of the labels inside each sector).

3.5 Gabor feature maps (GFMs)

In [9], Prabhakar et al. proposed using a Gabor filter bank

for feature extraction. Their system uses a circular tessel-

lation (see Fig. 3) centered at a point 40 pixels below the

core point. The amount of shift from the true core point

was determined experimentally and the resulting tessella-

tion was argued to contain more class information. In each

sector, the features extracted were the outputs of the Gabor

filters. It should be mentioned that extracting GaborFig. 5 Illustration of orientation collinearity

Fig. 6 Visualization of

orientation collinearity labels

for different Herny classes: a
Whorl (W), b Left loop (L), c
Right loop (R), d Arch (A), e
Tented Arch (T)
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features is more time consuming than any of the other three

methods as discussed in Sect. 5.

During preprocessing, the fingerprint image was first nor-

malized by normalizing the contrast in each sector of the

tessellation. Then, a bank of Gabor filters tuned to equally

spaced orientations were applied. The variance of the Gabor

filter outputs in each sector was used to construct a feature

vector. More details can be found in [9]. In our implementa-

tion, we used the same parameters (e.g., Gabor filter variance,

angular and radial quantization steps, etc.) provided in [9] to

extract the Gabor features. However, the core point detection

algorithm used was different from the one used in [9].

4 Classification approach

We employed a k-NN classifier as a common platform not

only to compare the different feature extraction methods,

but also to produce comparable results with those reported

in [9]. This is a simple classifier, which has its roots in non-

parametric estimation [18]. The k-NN rule first finds the k

nearest neighbors to an input pattern in the feature space.

Then, it assigns the input pattern to the class which is more

frequently represented among the k nearest neighbors.

Alternatively, the top two classes can be retrieved by

finding the classes that have the highest and second highest

counts among the nearest neighbors.

It should be mentioned that the methodology presented in

[9] employs a two-stage classification scheme. The idea is to

decompose the five-class problem into a set of 10 two-class

problems. According to this scheme, the first stage employs a

k-NN classifier, while the second stage employs 10 neural

network (NN) classifiers. Given an input, the purpose of the

first stage is to choose the two, most likely, classes using a k-

NN classifier. In the second stage, the appropriate NN is

chosen to distinguish between the two most likely classes.

In this study, all feature extraction methods have been

compared using a one stage k-NN classifier. In each

experiment, we evaluated the ability of the k-NN classifier

to predict the correct class to a given input by considering

both the top and top two classes. Although we did not

experiment with a two-stage classification scheme, it would

be reasonable to assume that adding a second stage would

improve accordingly the classification performance of all

the methods compared in this study.

5 Data set

In our experiments, we used the NIST-4 database, which

consists of 4,000 512 9 512 images of rolled fingerprint

impressions scanned at 500 dpi. Each finger in the database

has two impressions. The images in the NIST-4 database are

numbered f0001 through f2000 and s0001 through s2000.

Each number represents a different finger and the prefixes f

and s denotes the first and second impressions of the same

finger. Each image is manually labeled with one or more of

the five classes shown in Fig. 1. Almost 17% of the images in

the database have more than one class labels. We form our

training set using the first impressions and the test set consists

of the second impressions In the training set, we make use of

only the first label. During testing, however, we use all the

labels and consider the output of the classifier to be correct if

it matches with any one of the labels of the test fingerprint.

This testing scheme is consistent with common practices

followed by other researchers, including [9], in comparing

classification results on the NIST-4 database.

It is worth noting that the NIST-4 database does not have a

natural class distribution. Since the frequency of the hardest

to distinguish classes (i.e., arch and tented-arch) are much

lower than the others, the accuracy figures reported here

should be expected to be higher on more realistic data sets.

6 Experimental results

Next, we present our experimental results and comparisons

by considering each feature extraction method individually

as well as by fusing them using rank-level fusion.

6.1 Results using MMs

Figure 7a, b illustrates classification accuracy using MMs.

The vertical axis in each graph corresponds to classification

accuracy, while the horizontal axis represents the number of

nearest neighbors. In our experiments, some of the samples

were rejected due to invalid spatial tessellations. An invalid

tessellation occurs when it falls outside the image; that is, the

detected core point is close to the boundary. In MMs, we used

a maximum radius of tessellation equal to 120 pixels. In this

case, the total rejection rate was 1.77% with 36 training

samples and 35 testing samples rejected.

The curves shown in Fig. 7a, b are for different tessel-

lation parameters dR and dA, which denote the angular and

radial quantization steps, respectively. The parameters that

gave the best results were dR = 40 pixels and dA = 30.

When k = 10, the top-two classes of accuracy is close to

86%. Although these results are not satisfactory, they do

indicate that there is a correlation between minutiae dis-

tribution and fingerprint classes.

6.2 Results using OMs

Using OMs, we tested the two different distance measures

discussed in Sect. 2.3. Our results indicated that discarding

the background blocks improves accuracy as shown in
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Fig. 7c, d. The total rejection rate was 1.75% with 37

training images and 33 testing images rejected. The max-

imum radius of spatial tessellation was set to 120 pixels.

The feature vectors consisted of 14 9 14 sub-regions

centered at the core point. The results obtained illustrate

the significance of orientation information for fingerprint

classification. It is worth mentioning that OMs have been

found to be sensitive to noisy images in the NIST-4 data-

base [9]. However, our results indicate that OMs perform

quite well using rejection rates similar to those in [9].

6.3 Results using OC

Figure 7e, f reports classification accuracy using orienta-

tion collinearity with different attributes of spatial tessel-

lation (i.e., mean, mode, median and raw features). The

parameters used for the spatial tessellation were dA = 18

and dR = 40 pixels. These results indicate that the mean

orientation in each sector gives the best performance.

Using the above quantization parameters, the size of the

resulting feature vectors was 60, which is much smaller

than the 192-dimensional feature vectors used in [9]. When

k = 10, the top-class accuracy was close to 77%, while the

top-two classes accuracy was 93.7%. These results alone

are not as good as the ones reported in literature (i.e.,

[6, 9, 19]); however, one has to keep in mind the lower

dimensionality of the feature vectors.

6.4 Results using Gabor features

In these experiments, we used the tessellation parameters

reported in [9]. Specifically, the maximum radius of tes-

sellation was 140 pixels, dA = 45 and dR = 20 pixels. The

innermost sectors in the tessellation were ignored as in [9].

Using these parameters, we ended up with 48 features for

each Gabor filter orientation. Given four different filter

orientations, we had a total of 192 features.

Results for the top class and top two classes are provided

in Fig. 8. The overall rejection rate was 3.62% (i.e., 72

training images and 73 testing images were rejected due to

Fig. 7 Results using a minutiae

maps: top-class accuracy, b
minutiae maps: top-two-classes

accuracy, c orientation maps:

top-class accuracy, d orientation

maps: top-two-classes accuracy,

e orientation collinearity: top-

class accuracy, and f orientation

collinearity: top-two-class

accuracy. DC Don’t care
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invalid tessellations). The reported rejection rate in [9] was

1.8% which indicates that their core point extraction

algorithm was probably more robust than ours. As we can

see from Fig. 8, when k = 10, the top-class accuracy was

83.86% while the top-two-classes accuracy was 96.1%.

When comparing these results with those based on OMs,

the top-class accuracy was 85.43% and the top-two-classes

accuracy was 95.77%. However, the best performance in

the case of OMs was obtained when k = 6; in this case, the

top-class accuracy was 86.2%, while the top-two-classes

accuracy was similar for both methods.

6.5 Processing time

Besides considering classification accuracy, it is also

important to take into account the time complexity of each

feature extraction method. Feature extraction using Gabor

filters and orientation collinearity was carried out in Matlab

v6.5.0, while minutiae extraction and orientation map

extraction were implemented in C. Table 1 provides a

comparison among the different methods. As it can be

observed, the average processing time taken for Gabor

filters is much higher than any other feature extraction

method.

6.6 Rank-level fusion

To improve classification accuracy, we investigated a rank-

level fusion approach, which can be implemented

efficiently when fusing the outputs of several k-NN clas-

sifiers. The key idea is fusing the nearest neighbors of

different k-NN classifiers, each employing a different type

of features. Specifically, given an input image, a k-NN

classifier outputs its k nearest neighbors. To fuse the results

of two of more k-NN classifiers, we combine the nearest

neighbors of each classifier into a single vector. Then, we

assign the input to the class, which is most frequently

represented among the combined nearest neighbors. The

top two classes can be also retrieved by finding the classes

that have the highest and second highest counts among the

combined nearest neighbors. Figure 9 depicts this idea in

the case of two k-NN classifiers.

Although we experimented with fusing together the

rankings of different classifiers, the best results were always

obtained when including in the fusion the rankings of the

OM or OC classifier. When fusing the rankings of MM and

OM classifiers in the case of top-class accuracy (see

Fig. 10a), fusion was slightly worse than using the OM

classifier alone. In the case of top-two-classes accuracy (see

Fig. 10b), however, fusion outperformed the OM classifier

from k = 1 to k = 10. Similar observations were made

when fusing MM with OC classifiers. When fusing the

rankings of OM and OC classifiers, we obtained significant

improvements in the case of top-two-classes accuracy. In

the case of top-class accuracy, fusion slightly outperformed

the OM classifier from k = 1 to k = 10. To keep compu-

tational requirements low, we did not consider Gabor fea-

tures for fusion purposes. Also, fusing together more than

two classifiers did not yield significant improvements to

justify the higher computational requirements.

Table 2 summarizes the results of the four different

feature extraction methods compared here for k = 9. Both

top-class and top-two-classes accuracies are reported. As it

can be observed, both top-class and top-two-classes accu-

racy of the MM and OC classifiers do not compare well

with the accuracy of the OM and Gabor features classifiers.

Fusing MM with OM rankings yields an accuracy, which

approaches that of OM but not exceeding it, both for top-

class and top-two-classes accuracy. Fusing OM and OC

rankings improves accuracy by 2% in the case of top-two-

classes but no significant improvements were observed in

the case of top-class accuracy. It should be mentioned that

Fig. 8 Top-class and top-two-classes accuracy using Gabor features

Table 1 Time processing

comparisons
Method Average

processing

time (s)

Gabor features 5.6

OM 0.03

MM 0.30

OC 2.29

k nearest
neighbors

neighbors
k nearest

Fingerprint
  Input 

C2

C1

combine
neighbors

choose top 
or top−two
  classes

compute votes
for each class

Fig. 9 Rank-level fusion scheme
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the combination of OM with OC outperforms the classifier

using Gabor features while having much lower computa-

tional requirements too.

7 Conclusions

We performed a comparative study of four different feature

extraction methods for fingerprint classification and

reported the results on their accuracy and time require-

ments. Our results indicate that OMs have the best per-

formance, both in terms of accuracy and time. Gabor

features fell behind OMs in terms of classification accuracy

due to their sensitivity to localization errors of the core

point. We also experimented with a simple rank-level

fusion scheme to improve the classification accuracy. Our

experimental results indicate that fusing the rankings of

OM and OC classifiers improves accuracy in the case of

top-two-classes classification. Further improvements in

classification accuracy will be the focus of our future work.

In this context, we plan to investigate a multi-stage

approach with the k-NN classifier in the first stage and a

support vector machine (SVM) in the second stage as in

[3]. Moreover, we believe that improving the robustness

of core point extraction would lead to higher classifica-

tion rates. Finally, there are dependencies among the fea-

tures used in our experiments; for example, they contain

orientation information. We plan to investigate these

dependencies using feature selection techniques [20] to

identify which features are most important for

classification.
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