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Abstract

This paper discusses a variation of the Fuzzy ART algorithm referred to as theFuzzy ART Variant. The Fuzzy ART Variant is a Fuzzy ART
algorithm that uses a very large choice parameter value. Based on the geometrical interpretation of the weights in Fuzzy ART, useful
properties of learning associated with the Fuzzy ART Variant are presented and proven. One of these properties establishes an upper bound
on the number of list presentations required by the Fuzzy ART Variant to learn an arbitrary list of input patterns. This bound is small and
demonstrates the short-training time property of the Fuzzy ART Variant. Through simulation, it is shown that the Fuzzy ART Variant is as
good a clustering algorithm as a Fuzzy ART algorithm that uses typical (i.e. small) values for the choice parameter.q 1999 Elsevier Science
Ltd. All rights reserved.
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1. Introduction

Adaptive resonance theory was developed by Grossberg
(1976), and a large number of the ART architectures have
been introduced in the last 10 years (e.g. Carpenter & Gross-
berg, 1987a; Carpenter & Grossberg, 1987b; Carpenter &
Grossberg, 1990; Carpenter, Grossberg & Reynolds, 1991a;
Carpenter, Grossberg & Reynolds, 1991b; Carpenter,
Grossberg, Markuzon, Reynolds & Rosen, 1992; Carpenter
& Gjaja, 1994; Carpenter & Ross, 1995; Carpenter &
Markuzon, 1998; Healy, Caudell & Smith, 1993; Marriott
& Harrison, 1995; Tan, 1995; Williamson, 1996) A major
separation among all of these architectures is based on
whether the learning applied is unsupervised or supervised.
Unsupervised learning is implemented when a collection of
input patterns needs to be appropriately clustered into cate-
gories, while supervised learning is utilized when a mapping
needs to be learned between inputs and corresponding
output patterns. A prominent member of the class of unsu-
pervised ART architectures is Fuzzy ART (Carpenter et al.,
1991b), which is capable of clustering arbitrary collections
of arbitrarily complex analog input patterns. Our focus in
this paper is Fuzzy ART and its associated properties of
learning.

Properties of learning for Fuzzy ART have already been
reported in the literature (Carpenter et al., 1991b; Huang
et al., 1995). Most of these properties pertain to a Fuzzy
ART network whose choice parameter is small. In particu-
lar, one of our favorite properties of learning in Fuzzy ART
(i.e. its short training time) has been reported only for small
values of the choice parameter. The Fuzzy ART algorithm
was initially introduced for values of the choice parameter
ranging over the interval (0,∞) (Carpenter et al., 1991b). It
is therefore an issue of intellectual curiosity and theoretical
importance as to how these learning properties change as we
move from the domain of small choice parameter values to
that of large choice parameter values. Some work towards
this goal has appeared in the literature. For example, Geor-
giopoulos, Fernlund, Bebis and Heileman (1996) demon-
strated the “Order of Search” property of learning in
Fuzzy ART. The “Order of Search” property identifies the
order according to which nodes in the category representa-
tion field of Fuzzy ART are chosen. In particular, three
distinct orders of search were identified for three different
ranges of the choice parameter value: (i) choice parameter
small (a ! 0), (ii) choice parameter large (a !∞), and (iii)
choice parameter of intermediate value (0, a , ∞). This
paper extends the work of Georgiopoulos et al. (1996) to
other properties of learning. Specifically, we investigate the
short-training time property of Fuzzy ART, assuming the
choice parameter is very large. For simplicity, this Fuzzy
ART network is referred to as theFuzzy ART Variant,
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despite the fact that it is simply Fuzzy ART with large
values of the choice parameter. In the process of verifying
the short-training time property of Fuzzy ART Variant,
other useful properties of learning of the Fuzzy ART
Variant were discovered. It should also be mentioned that
the aforementioned Fuzzy ART Variant algorithm was
described by Carpenter and Gjaja (1994).

The organization of the paper is as follows. In Section 2,
the specifics of the Fuzzy ART network that are pertinent to
this paper are briefly discussed. In Section 3 the Fuzzy ART
Variant is introduced, and some of the differences between
Fuzzy ART with small choice parameter values and the
Fuzzy ART Variant are emphasized. In Section 4 three
properties of learning in the Fuzzy ART Variant are proven
and discussed, including the short-training time property. In
Section 5 it is demonstrated through simulations that the
Fuzzy ART Variant is as good a clustering algorithm as a
Fuzzy ART network with small values for the choice para-
meter. Finally, in Section 6 a short review and concluding
remarks are provided.

2. Fuzzy ART

2.1. Fuzzy ART architecture

The Fuzzy ART neural network architecture is shown in
Fig. 1. It consists of two subsystems,the attentional sub-
system, and theorienting subsystem. The attentional sub-
system consists of two fields of nodes denotedF1 and F2.
The F1 field is called theinput fieldbecause input patterns
are applied to it. TheF2 field is called thecategory or class
representation fieldbecause it is the field where category
representations are formed. These category representations

represent the clusters to which the input patterns belong.
The orienting subsystem consists of a single node (called
the reset node), which accepts inputs from theF1 field, the
F2 field (not shown in Fig. 1), and the input pattern applied
across theF1 field. The output of the reset node affects the
nodes of theF2 field.

Some preprocessing of the input patterns of the pattern-
clustering task takes place before they are presented to
Fuzzy ART. The first preprocessing stage takes as input
an M-dimensional input pattern from the pattern clustering
task and transforms it into an output vectora� �a1;…;aM�;
whose every component lies in the interval [0,1] (i.e. 0#
ai # 1 for 1 # i # M). The second preprocessing stage
accepts as an input the outputa of the first preprocessing
stage and produces an output vectorI , such that

I � �a; ac� � �a1;…;aM ;a
c
1;…;ac

M�; �1�
where

ac
i � 1 2 ai ; 1 # i # M: �2�
The above transformation is calledcomplement coding.

The complement coding operation is performed in Fuzzy
ART at a preprocessor field designated byF0 (see Fig. 1).
From now on, the vectorI will be referred to as theinput
pattern. Each categoryj (1 # j # N) in the category repre-
sentation layer corresponds to a vectorwj � �wj1;…;wj;2M�
of adaptive weights. The initial values for these weights are
chosen to be equal towj1 �…� wj;2M � 1; and a category
with these weights is said to beuncommitted. Initial values
for these weights may be taken greater than one. Larger
weights bias the system against the selection of uncom-
mitted nodes, leading to deeper searches of previously
coded categories. After a category is chosen to represent
an input pattern it is referred to as acommitted category
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or committed node. Prior to this point, it is anuncommitted
categoryor uncommitted node. It is worth noting that the
Fuzzy ART weight vectorwj subsumes both the bottom–up
and top–down weight vectors of Fuzzy ART.

The training phase of Fuzzy ART works as follows: given
a list of input patterns, designated asI1

; I2
;…; IP

; we want to
train Fuzzy ART to cluster these input patterns into different
categories. Obviously, patterns that are similar to each other
are expected to be clustered in the same category by Fuzzy
ART. In order to achieve the aforementioned goal, the train-
ing list is repeatedly presented to the Fuzzy ART architec-
ture. That is,I 1 is presented first, thenI 2, and eventuallyI P;
this corresponds to onelist presentation. Then, if it is neces-
sary, I1

; I2
;…; IP are presented again. The training list is

presented as many times as is necessary for Fuzzy ART to
cluster the input patterns. The clustering task is considered
accomplished (i.e. learning is complete) if the weights in the
Fuzzy ART architecture do not change during a list presenta-
tion. The above training scenario is calledoff-line training.

Before discussing in more detail the training phase of
Fuzzy ART, let us elaborate on the Fuzzy ART parameters
involved in its training phase. The parametera , called the
choice parameter, takes values in the interval (0,∞). It
affects the bottom–up inputs that are produced at theF2

nodes due to the presentation of an input pattern atF1.
The parameterr is called thevigilance parameterand it
takes values in the interval [0,1]. Small values ofr result
in coarse clustering of the input patterns, while large values
of r result in fine clustering of the input patterns. The para-
meter N corresponds to the number of committed nodes
during the training phase of Fuzzy ART. During the training
phase Fuzzy ART operates over all of the committed nodes
along with a single uncommitted node. A committed node
(category) inF2 is a node that has coded at least one input
pattern. An uncommitted node (category) is a node that is
not committed.

The step-by-step implementation of the off-line training
phase of Fuzzy ART is presented below. The Fuzzy ART
network parametersa , r , andN are chosen at the beginning
of the training phase;a is chosen from (0,∞) but typically
small, r is chosen from [0,1] based on the fineness of
the clusters we want to create, and obviouslyN� 0. Further,
the initial components of the weight vector correspond-
ing to the first uncommitted node (i.e.w1i(0)s
1 # i # 2M) are chosen to be equal to one. The value
of the pattern indexr is initialized to 1. For compact-
ness of the presentation the definitions of the various
functions that appear in the step-by-step implementation
of the training phase will be provided after the step-by-
step description is completed.

2.1.1. Off-line training phase of Fuzzy ART

1. Choose therth input pattern from the training list.
2. Calculate the bottom–up inputs to all theN 1 1 nodes in

F2 due to the presentation of therth input pattern. When

calculating bottom–up inputs consider all the committed
nodes and the uncommitted node. These bottom–up
inputs are calculated according to the following equation.

Tj�I r � �

M
a 1 2M

if j is the uncommitted node

uI r ∧ wj u
a 1 uwj u

if j is a committed node
:

8>>><>>>:
�3�

3. Choose the node inF2 that receives the maximum
bottom–up input fromF1. Assume that this node has
index jmax. Check to see whether this node satisfies the
vigilance criterion. Three cases are now distinguished:

(a) If nodejmax is the uncommitted node it satisfies the
vigilance criterion. Increase the parameterN by one.
This way a new uncommitted node inF2 is introduced,
and its initial weight vector is chosen to be the “all-
ones” vector. Go to Step 4.
(b) If nodejmax is a committed node, and it satisfies the
vigilance criterion, go to Step 4. A committed nodejmax

satisfies the vigilance criterion if

uI r ∧ wjmax
u

uI r u
$ r �4�

(c) If node jmax does not satisfy the vigilance criterion,
disqualify this node by settingTjmax

�I r � � 21; and go to
the beginning of Step 3.

4. The weights associated with nodejmax are modified
according to the following equation:

wjmax
� wjmax

∧ I r
: �5�

If this is the last input pattern in the training list go to
Step 5. Otherwise, go to Step 1 to present the next in
sequence input pattern by increasing the indexr by one.

5. After all the patterns have been presented consider two
cases:

(a) In the previous list presentation at least one compo-
nent of the weight vectors has been changed. In this
case, go to Step 1, and present the first input pattern,
by resetting the indexr to the value 1.
(b) In the previous list presentation no weight changes
occurred. In this case, the learning process is considered
complete.

In Step 5(b) mentioned above it is implied that there
exists a finite-valued list presentation at which no weight
changes occur. Unfortunately, no theoretical result exists to
justify this claim for all values of the choice parametera .
For very smalla parameter values this claim is valid
because learning will be over in one list presentation
(Carpenter et al., 1991b). For values of the parametera
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that are not small some specialized results are discussed in
Huang et al. (1995).

In the definition of the bottom–up inputs produced inF2

due to the presentation of the input patternI r (see Eq. (3))
the “fuzzy-min” �∧� operation of two vectors,I r andwj, is
introduced. The fuzzy-min operation of two vectorsI r and
wj is a vector whose components are equal to the minimum
of the corresponding components ofI r and wj. This same
operation was used in the calculation of the vigilance ratio
(see Eq. (4)) and in the updates of the weights (see Eq. (5)).
Also, in the definition of the bottom–up inputs produced in
F2 due to the presentation of the input patternI r (see Eq. (3))
the operationu·u (e.g.,uwju) is introduced, that stands for the
size of a vector. The size of a vector is defined to be the sum
of its components. This operation was also used in the defi-
nition of the vigilance ratio in Eq. (4).

It has been shown in Carpenter et al. (1991b) that the
weight vectors (i.e. thewj’s), corresponding to committed
nodes in Fuzzy ART, have a geometrical interpretation.
That is,wj can be expressed as (uj, (vj)

c), whereuj is the
lower endpoint, andvj the upper endpoint of a hyper-
rectangle. This hyper-rectangle lies in theM-dimensional
space and includes all the input patterns that have chosen
and were coded by nodej. Using this representation the
input patternI � (a, ac) can also be thought of as a hyper-
rectangle with lower endpointa and upper endpointa (that
is a hyper-rectangle of size 0). To visualize this hyper-
rectangle notion the hyper-rectangleRj is shown (see Fig.
2), with endpointsuj and vj, corresponding to the weight
vector wj, which has coded the input patternsI1 �
�a1

; �a1�c�; I2 � �a2
; �a2�c�; I3 � �a3

; �a3�c�; I4 � �a4
; �a4�c�;

andI5 � �a5
; �a5�c�: In Fig. 2, theI ’s are 4-D and thea’s, uj

andvj are 2-D. As most of our illustrations from now on will

be in the 2-D space hyper-rectangles are referred to as
rectangles.

3. The Fuzzy ART Variant algorithm

As it was emphasized in the Introduction, the primary
focus in this paper is the Fuzzy ART algorithm with a
very large choice parameter valuea (i.e. a ! ∞). One
might question this choice, as whena is large Fuzzy ART
has the tendency to choose uncommitted nodes over existing
committed nodes (see Eq. (3)). This way we may end up
with a Fuzzy ART algorithm that does not perform useful
clustering as every input pattern from the training list forms
its own cluster. As it was mentioned in the Fuzzy ART paper
though (see Carpenter et al., 1991b) initial values of the
weight components corresponding to uncommitted nodes
may be taken larger than one. Taking it to the extreme
these initial values of the weight components of the uncom-
mitted nodes can be chosen to be very large so that the
bottom–up inputs to the uncommitted nodes are approxi-
mately equal to zero. By choosing, at the same time, a very
large value for the choice parameter, the bottom–up inputs
to uncommitted nodes will still be approximately zero, and
the bottom–up inputs to a committed node will be propor-
tional to the size of the “fuzzy-min” of the input pattern
vector and the weight vector corresponding to this node.
The Fuzzy ART algorithm with very large values of the
initial components for the uncommitted weights, and very
large value of the choice parameter is calledFuzzy ART
Variant.

The step-by-step implementation of the off-line training
phase of Fuzzy ART Variant algorithm is presented below.
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The Fuzzy ART Variant network parameters,a , r , andN,
are chosen at the beginning of the training phase;a is
chosen from (0,∞) but typically very large,r is chosen from
[0, 1] based on the fineness of the clusters we want to create,
and obviouslyN � 0. Further, the initial weights of the first
uncommittednode (i.e. thew1i(0)’s)are chosen tobevery large
too. The value of the pattern indexr is initialized to 1.

3.1. Off-line training phase of Fuzzy ART Variant

The training algorithm of the Fuzzy ART Variant is the
same as the Fuzzy ART algorithm (see Section 2.1), except
Step 2, which is replaced by Step 2 (Fuzzy ART Variant) as
follows:

Step 2 (Fuzzy ART Variant): Calculate the bottom–up
inputs to all theN 1 1 nodes inF2 due to the presentation
of therth input pattern. When calculating bottom–up inputs
consider all the committed nodes and the uncommitted
node. These bottom–up inputs are calculated according to
the following equation:

Note thatuwju stands for the size of weight vectorwj, where
the size of a vector is defined to be equal to the sum of its
components.

One way of understanding the differences between Fuzzy
ART (small values of the choice parameter) and Fuzzy ART
Variant (large values of the choice parameter) is by report-
ing the order according to which nodes inF2 are chosen for
these two algorithms. This topic has been extensively inves-
tigated by Carpenter and Grossberg (1987b) for ART1, and
by Georgiopoulos et al. (1996) for Fuzzy ART. Two of the
results discussed in Georgiopoulos et al. (1996) (denoted
Results A and B) are reproduced here to illustrate some of
the differences of Fuzzy ART and Fuzzy ART Variant.

Result A. If an input patternI is presented to a Fuzzy ART
architecture with smalla parameter values (i.e.a close to
zero) and:

1. I is inside rectanglesRold
j1 andRold

j2 ; thenI will choose first
the rectangle of the smallest size.

2. I is outside rectangleRold
j1 and inside rectangleRold

j2 ; thenI
will choose first rectangleRold

j2 :

3. I is outside rectanglesRold
j1 andRold

j2 ; then I will choose
first rectangleRold

j1 , iff

dis�I ;Rold
j1 � ,

M 2 uRold
j1 u

M 2 uRold
j1

u
dis�I ;Rold

j2 � �7�

Result B. If an input patternI is presented to a Fuzzy ART
architecture with largea parameter values (i.e.a approach-
ing ∞), and:

1. I is inside rectanglesRold
j1 andRold

j2 ; thenI will choose first
the rectangle of the smallest size.

2. I is outside rectangleRold
j1 and inside rectangleRold

j2 ; thenI
will choose first rectangleRold

j1 , iff

uRnew
j1 u , uRold

j2 u �8�

3. I is outside rectanglesRold
j1 andRold

j2 ; then I will choose
first rectangleRold

j1 , iff

uRnew
j1 u , uRnew

j2 u:

Note thatRold
j is the rectangle corresponding to nodej of

field F2 prior to the presentation of input patternI at the field
F1. Also, Rnew

j is the new rectangle corresponding to nodej
that would have been created if patternI were to choose and

be coded by nodej. Note that if the input patternI is inside
rectangleRold

j ; thenRold
j � Rnew

j ; otherwiseRold
j ± Rnew

j and,
in particular,Rnew

j includesRold
j : Further,uRju stands for the

size of rectangleRj corresponding to nodej in the fieldF2;
the size of a rectangleRj is defined to be the city block
distance between the endpointsuj andvj of this rectangle.
Finally, the distance of an input patternI � (a, ac) from a
rectangleRj, which does not containI , is defined to be the
minimum of the city block distances ofa from points that
belong to the boundary ofRj.

To visualize the similarities and differences between the
Fuzzy ART choices made whena is small, and whena is
large (Fuzzy ART Variant) the consequences of Results A
and B are depicted in Fig. 3 for three example cases.

4. Properties of learning of the Fuzzy ART variant

In this section three properties of learning of the Fuzzy
ART Variant are reported. Further, their importance is
emphasized, their proofs are provided, and finally an exam-
ple case is discussed. These properties of learning are
referred to as Results 1–3.

4.1. Results

Result 1 tells us that, during the Fuzzy ART Variant
training, the identity of the node with the largest rectangle
does not change after the first list presentation, the identity
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Tj�I r � �
0 if j is the uncommitted node

lima!∞
uI r ∧ wj u
a 1 uwj u

<
1
a

uI r ∧ wj u if j is a committed node
:

8><>: �6�



of the node with the second largest rectangle does not
change after the second list presentation, and so on. Result
1 also tells us that, during the Fuzzy ART Variant training,
the size of the largest rectangle does not change after the
first list presentation, the size of the second largest rectangle
does not change after the second list presentation, and so on.

Result 1. Consider the off-line training of a list ofP input
patterns using the Fuzzy ART Variant algorithm. Assume
that after the first list presentation the Fuzzy ART Variant
has createdN categories inF2. Designate byjn�t��1 #
n # N; t $ 1� the index of the node with thenth largest
rectangle immediately after the end of thetth list

M. Georgiopoulos et al. / Neural Networks 12 (1999) 837–850842
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presentation. Then,

jn�t� � jn�n�
for 1 # n # N; t $ n 1 1 �10�

uRjn�t�u � uRjn�n�u

Result 2 tells us that, during the Fuzzy ART Variant
training, patterns that are coded by the largest rectangle

in the second list presentation do not need to be
presented to the Fuzzy ART architecture again, patterns
that are coded by the second largest rectangle in the third
list presentation do not need to be presented to the Fuzzy
ART Variant again, and so on. Result 2 is useful because
it allows us to eliminate patterns from the training list
that do not affect the Fuzzy ART Variant learning
process. This way the learning process can be made to
be less computationally intensive.
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Fig. 3. (continued)



Result 2. Consider the off-line training of a list of input
patterns using the Fuzzy ART Variant algorithm. Assume
that after the first list presentation the Fuzzy ART Variant
algorithm has createdN categories inF2. Designate by
jn�t��1 # n # N; t $ 1� the index of the node withn-th
largest rectangle immediately after the end of thet-th list
presentation. LetSn�1 # n� denote the set of training
patterns that choose and are coded by nodejn(n) in the
(n 1 1)th list presentation. Then, the patterns of collection

Sn will always be coded by nodejn(n) in list presentations
$ n 1 2.

Result 3 is important because it predicts an upper bound for
the number of list presentations required by the Fuzzy ART
Variant to learn a list of input patterns. In order to identify
this upper bound, it suffices to present once the training list
through the Fuzzy ART network using the Fuzzy ART
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Fig. 3. (continued)



Variant training algorithm, to find the value for the para-
meterN.

Result 3. Consider the off-line training of a list of input
patterns using the Fuzzy ART Variant algorithm. Assume
that after the first list presentation the Fuzzy ART Variant
algorithm has createdN categories inF2. Then, training will
be over in at mostN list presentations.

4.2. Proof of the results

The proofs of the results are based on parts 1 and 2 of
Result B. Result B is proven in Georgiopoulos et al. (1996).
Parts 1 and 2 of Result B were pictorially illustrated in Fig. 3
(a) and (b).

Proof of Result 1. Result 1 will be proven, by induction,
in two steps.

• Step1: Prove that Result 1 is valid forn � 1. That is,
prove that

j1�t� � j1�1�
for t $ 2: �11�

uRj1�t�u � uRj1�1�u

• Step2: Assume that Result 1 is valid for all indices# n
(wheren$ 1), and demonstrate its validity for indexn1 1.

Hence, by assuming that

j1�t� � j1�1� t $ 2

uRj1�t�u � uRj1�1�u t $ 2

..

. ..
. ..

. ..
.

jn�t� � jn�n� t $ n 1 1

uRjn�t�u � uRjn�n�u t $ n 1 1

�12�

it will be proven that is true for indexn 1 1, that is

jn11�t� � jn11�n 1 1�
for t $ n 1 2 �13�

uRjn11�t�u � uRjn11�n11�u

To demonstrate the validity of Step 1 two steps are
needed.

• Step 1a: Verify Eq. (11) for list presentationt � 2.
• Step 1b: Assume the validity of Eq. (11) for list presenta-

tions 2,…,t (wheret $ 2) and then show the validity of
Eq. (11) for list presentationt 1 1.

Step 1a: To illustrate Step 1a it will be shown that the
identity of the node with the largest rectangle (i.e.j1(1)) and
the size of the largest rectangle (i.e.uRj1�1�u) stay intact after
the presentation of the first input pattern in list presentation
2 (i.e. patternI 1). Then, by assuming that the identity of the
node with the largest rectangle and the size of the largest
rectangle stay intact after the presentation of the firstp input
patterns in list presentation 2 (i.e. patternsI 1, I 2, …, I p), it
will be proven that the identity of the node with the largest
rectangle and the size of the largest rectangle stay intact

M. Georgiopoulos et al. / Neural Networks 12 (1999) 837–850 845
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after the presentation of the (p 1 1)th input pattern in list
presentation 2 (i.e. patternI p11). Hence, by induction, it can
be stated that the identity of the node with the largest rectan-
gle (i.e. j1(1)) and the size of the largest rectangle (i.e.
uRj1�1�u) stay intact after the presentation of theP training
input patterns in list presentation 2, which is equivalent to
saying that Eq. (11) is true fort � 2.

As a result, consider the presentation of the first input
pattern I 1, from the training list, during the second list
presentation of the training list. We distinguish the
following cases:

Case 1: RectangleRj1�1��� Rold
j1�1�� is the rectangle of the

smallest size that containsI 1, and patternI 1 chooses and is
coded by rectangleRj1�1� (see Fig. 4, case 1). In this case,
afterI 1’s presentation, nodej1�1� is the node with the largest
rectangle and the size of the largest rectangle stays intact
and equal touRj1�1�u.

Case 2: RectangleRj1�1��� Rold
j1�1�� is the rectangle of the

smallest size that containsI 1, and patternI 1 chooses and is
coded by rectangleRjx�� Rold

jx �, wherejx ± j1�1� (see Fig. 4,
case 2). Owing to Result B, in order for the above case to
occur the following inequality must be valid:

uRnew
jx u , uRj1�1�u �14�

The above inequality guarantees that afterI 1’s presentation,
nodej1(1) is the node with the largest rectangle and the size
of the largest rectangle stays intact and equal touRj1�1�u.

Case 3: RectangleRjx�� Rold
jx �, where jx ± j1(1), is the

rectangle of the smallest size that containsI 1, and pattern
I 1 chooses and is coded by rectangleRjx (see Fig. 4, case 3).
In this case, afterI 1s presentation, nodej1�1� is the node
with the largest rectangle and the size of the largest rectan-
gle stays intact and equal touRj1�1�u.

Case 4: RectangleRjx�� Rold
jx �, where jx ± j1�1�, is the

rectangle of the smallest size that containsI 1, and pattern
I 1 chooses and is coded by rectangleRjy�� Rold

jy �, where
jy ± jx(see Fig. 4, case 4). Obviously, due to Result B,jy
cannot be nodej1(1). Also, due to Result B, in order for the
above case to occur the following inequality must be valid:

uRnew
jy u , uRjx u: �15�

However

uRjx u , uRj1�1�u: �16�
The above two inequalities guarantee that afterI 1s

presentation, nodej1(1) is the node with the largest rectan-
gle, and the size of the largest rectangle stays intact and
equal touRj1�1�u.

Cases 1–4 cover all the possible scenarios, and they illus-
trate that during the presentation of the first patternI 1 in list
presentation 2, the identity of the node with the largest
rectangle and the size of this rectangle remain intact. If it
is now assumed that afterI 1’s, I 2’s,…,I p’s presentations,
node j1(1) is the node with the largest rectangle, and the
size of the largest rectangle stays intact and equal to

uRj1�1�u, it is easy to duplicate the above arguments (Cases
1–4) to illustrate that after pattern’sI P11 presentation, node
j1(1) is the node with the largest rectangle and the size of the
largest rectangle stays intact and equal touRj1�1�u. Hence, by
induction, Eq. (11) has been proven fort � 2.

Step 1b: If it is now assumed that Eq. (11) is valid for all
list presentations 2,…,t (wheret $ 2), that is

j1�2� � j1�1�
uRj1�2�u � uRj1�1�u

..

. ..
. ..

.

j1�t� � j1�1�
uRj1�t�u � uRj1�1�u

�17�

then by duplicating the procedure, discussed in Step 1a, it
can be demonstrated that

j1�t 1 1� � j1�1�
uRj1�t11�u � uRj1�1�u

�18�

The details are omitted due to their similarity with Step 1a.
Hence, by induction, the validity of Eq. (11) has been
proven.

One important byproduct of the proof of Eq. (11) is that
the input patterns from the training list that chose and were
coded by nodej1(1) in the second list presentation will
always choose and be coded by nodej1(1) in subsequent
list presentations (i.e. list presentations$ 3). This is true
because if patternI , from the training list, chose nodej1(1)
in the second list presentation it implies that

uRj1�1�u , uRnew
jx u �19�

for anyjx ± j1(1). As the size ofRj1�1� remains intact after the
first list presentation, while the sizes of other rectangles can
increase, it is obvious that the above inequality stays valid in
presentations of the input patternI at subsequent lists. Thus,
input patternI will always choose and be coded by node
j1(1) in list presentations$ 3, and rectangleRj1�1� will be the
rectangle of the smallest size that containsI .

Step 2: Assuming now the validity of Eq. (12), the truth of
Eq. (13) can be demonstrated. As was the case with the
proof of Eq. (11) an important byproduct of the assumption
of the validity of Eq. (12) is that input patterns that chose
and were coded by nodejk(k) in list presentationk 1 1,
will choose and be coded by nodejk(k) in list presentations
$ k 1 2, where 1# k # n. To demonstrate the validity of
Step 2 two steps are needed:

• Step 2a: Verify the validity of Eq. (13) for list presenta-
tion t � n 1 2.

• Step 2b: Assume the validity of Eq. (13) for all list
presentations # t (where t $ n 1 2) and show the
validity of Eq. (13) for list presentationt 1 1.

Step 2a: To illustrate Step 2a first it will be shown that the

M. Georgiopoulos et al. / Neural Networks 12 (1999) 837–850846



identity of the node with the (n 1 1)th largest rectangle (i.e.
jn11(n 1 1)) and the size of the largest rectangle (i.e.
uRjn11�n11�u) stay intact after the presentation of the first
input pattern in the list presentationn 1 2 (i.e. patternI 1).
Then, by assuming that the identity of the node with the
(n 1 1)th largest rectangle and the size of the (n 1 1)th
largest rectangle stay intact after the presentation of the first
p input patterns (i.e. patternsI 1, I 2, …,I p) in list presentation
n 1 2, it will be proven that the identity of the node with the
(n 1 1)th largest rectangle and the size of the (n 1 1)th
largest rectangle stay intact after the presentation of the
(p 1 1)th input pattern (i.e. patternI p11) in list presentation
n 1 2. Hence, by induction, it can then be stated that the
identity of the node with the (n 1 1)th largest rectangle (i.e.
jn11(n 1 1)) and the size of the (n 1 1)th largest rectangle
(i.e. uRjn11�n11�u) stay intact after the presentation of theP
training input patterns in list presentationn 1 2, which is
equivalent to saying that Eq. (13) is true for list presentation
t � n 1 2.

As a result, consider the presentation of the first input
pattern I 1, from the training list, during the (n 1 2) list
presentation of the training list. The following cases are
distinguished.

Case 0: RectangleRjx�� Rold
jx �, wherejx [ { j1�1�; j2�2�;…;

jn�n�}, is the smallest rectangle that containsI 1. For
example, if jx � j2�2�, this means thatRj2�2� was still the
smallest rectangle that containedI 1 in list presentation 3,
asRj2�2� did not change its size, while other rectangles have
either increased their sizes or kept their sizes intact as the
beginning of list presentation 3; it also means thatI 1 was
chosen and coded by rectangleRj2�2� in list presentation 3,
otherwiseRj2�2� would not have been the smallest rectangle
that containsI 1 in list presentationn 1 2. Based on our
previous statements (see comments immediately after Step
2), I 1 will always choose and be coded byRj�2� in list presen-
tations$ 3. Similar reasoning holds ifjx is equal toj1(1) or
j3(3), or…, jn(n). Hence, in this case, patternI 1 chooses and
is coded by rectangleRjx: Consequently, afterI 1s presenta-
tion, nodejn11(n 1 1) is the node with the (n 1 1)th largest
rectangle and the size of the (n 1 1)th largest rectangle stays
intact and equal touRjn11�n11�u:

Case 1: RectangleRjn11�n11��� Rold
jn11�n11�� is the rectangle

of the smallest size that containsI 1, and patternI 1 chooses
and is coded by rectangleRjn11�n11�: In this case, afterI 1’s
presentation, nodejn11(n 1 1) is the node with the (n 1 1)th
largest rectangle and the size of the (n 1 1)th largest rectan-
gle stays intact and equal touRjn11�n11�u:

Case 2: RectangleRjn11�n11��� Rold
jn11�n11�� is the rectangle

of the smallest size that containsI 1, and patternI 1 is chosen
and coded by the rectangleRjx�� Rold

jx �;wherejx ± jn11(n1 1).
Owing to Result B, for the above case to occur the following
inequality must be valid:

uRnew
jx u , uRjn11�n11�u: �20�

The above inequality guarantees that afterI 1s presentation,

node jn11(n 1 1) is the node with the (n 1 1)th largest
rectangle and the size of the (n 1 1)th largest rectangle
stays intact and equal touRjn11�n11�u:

Case 3: RectangleRjx�� Rold
jx �; wherejx ± jk(k); 1 # k #

n 1 1, is the rectangle of the smallest size that containsI 1,
and patternI 1 chooses and is coded by rectangleRjx: In this
case, afterI 1s presentation, nodejn11(n 1 1) is the node with
the (n 1 1)th largest rectangle and the size of the (n 1 1)th
largest rectangle stays intact and equal touRjn11�n11�u:

Case 4: RectangleRjx�� Rold
jx �; wherejx ± jk(k); 1 # k #

n 1 1, is the rectangle of the smallest size that containsI 1,
and patternI 1 is chosen and coded by the rectangle
Rjy�� Rold

jy �; where jy ± jx. Obviously, due to Result B,jy
cannot be nodejk(k), where 1# k # n 1 1. Also, due to
Result B, for the above case to occur the following inequal-
ity must be valid:

uRnew
jy u , uRjx u �21�

However,

uRjx u , uRjn11�n11�u: �22�
The above two inequalities guarantee that afterI 1s presenta-
tion, nodejn11(n 1 1) is the node with the (n 1 1)th largest
rectangle and the size of the (n 1 1)th largest rectangle stays
intact and equal touRjn11�n11�u:

Cases 0–4 cover all the possible scenarios, and they illus-
trate that during the presentation of the first patternI 1 in list
presentationn 1 2, the identity of the node with the (n 1
1)th largest rectangle and the size of this rectangle remain
intact.

If it is now assumed that afterI 1’s, I 2’s,…, I p’s, presenta-
tions, nodejn11(n 1 1) is the node with the (n 1 1)th largest
rectangle and the size of then 1 1th largest rectangle stays
intact and equal touRjn11�n11�u; it is easy to duplicate the
above arguments to illustrate that after pattern’sI p11 presen-
tation nodejn11(n 1 1) is the node with the (n 1 1)th largest
rectangle and the size of the (n 1 1)th largest rectangle stays
intact and equal touRjn11�n11�u: Hence, by induction, Eq. (13)
has been proven for list presentationt � n 1 2.

Step 2b: If it is now assumed that

jn11�n 1 2� � jn11�n 1 1�
uRjn11�n12�u � uRjn11�n11�u

..

. ..
. ..

.

jn11�t� � jn11�n 1 1�
uRjn11�t�u � uRjn11�n11�u

�23�

then by duplicating the procedure discussed in Step 2a, it
can be demonstrated that

jn11�t 1 1� � jn11�n 1 1�
uRjn11�t11�u � uRjn11�n11�u:

�24�

The details are omitted due to their similarity with Step 2a.
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Hence, by induction, the validity of Eq. (13) has been
proven.

Proof of Result 2. The above result was actually proved
during the proof of Result 1 (see comments in the proof of
Result 1 immediately prior, and immediately after the
beginning of the proof of Step 2).

Proof of Result 3. The proof of this result is an immediate
consequence of Result 1. This is true because the application
of Result 1, at the end of list presentations 1; 2;3;…;N
implies that the sizes of theN largest rectangles do not
change after list presentationN. If none of theN rectangles
change after list presentationN, then none of theN weight
vectors changes after list presentationN, which is equivalent
to saying thatlearning in the Fuzzy ART Variantis over in at
mostN list presentations.

4.3. Example

One of the interesting questions that arises, pertinent to
Results 1 and 3, is the tightness of the results. This is espe-
cially important for Result 3, which gives us an upper bound
on the number of list presentations required by the Fuzzy
ART Variant to cluster a list of input patterns. Below, we
present a simple example that illustrates the tightness of
Results 1 and 3.

In this example we have eight input patterns, listed below,

that are presented to the Fuzzy ART Variant in the orderI 1,
I 2,…,I 7, I 8, in the first list presentation, and in the orderI 8,
I 7,…,I 2, I 1 in list presentations 2 and 3. The vigilance para-
meterr is chosen to equal 0.55.

I1 � �a�1�; ac�1�� � �1;1;0; 0� �25�

I2 � �a�2�; ac�2�� � �0:55;0:55;0:45;0:45�

I3 � �a�3�; ac�3�� � �0:7;0:7;0:3; 0:3�

I4 � �a�4�; ac�4�� � �0:3;0:3;0:7; 0:7�

I5 � �a�5�; ac�5�� � �0:5;0:5;0:5; 0:5�

I6 � �a�6�; ac�6�� � �0;0;1; 1�

I7 � �a�7�; ac�7�� � �0:35;0:35;0:65;0:65�

I8 � �a�8�; ac�8�� � �0:24;0:24;0:76;0:76�
It is not difficult to show that

1. After the first list presentation we create three categories
(i.e. N � 3), wherej1(1) � 1, j2(1) � 3, j3(1) � 2, and
uRj1�1�u � 0:9; uRj2�1�u � 0:48; uRj3�1�u � 0:4:

2. After the second list presentationj1(2) � 1, j2(2) � 2,
j3(2) � 3, anduRj1�2�u � 0:9; uRj2�2�u � 0:8; uRj3�2�u � 0:48:
Hence, in the second list presentation the identity and the
size of the second and third in size rectangles change (as
predicted by Result 1).

3. After the third list presentationj1(3)�1,j2(3)�2,j3(3)�3,

M. Georgiopoulos et al. / Neural Networks 12 (1999) 837–850848
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and uRj1�3�u � 0:9; uRj2�3�u � 0:8; uRj3�3�u � 0:7: Hence, in
the third list presentation the size of the third in size
rectangle changes (as predicted by Result 1).

4. In subsequent list presentations (i.e. list presentations
$4) the identity and size of all the rectangles remain
intact, which implies that learning in the Fuzzy ART
Variant is over in three list presentations (as predicted
by Result 3).

The rectangles created in this example after list presenta-
tions 1, 2, and 3 are shown in Fig. 5. In Fig. 5, we see in a
pictorial fashion the tightness of Results 1 and 3.

5. Simulations

In order to assess the practicality of the Fuzzy ART
Variant (Fuzzy ART with large values of the choice para-
meter) compared to typical Fuzzy ART (Fuzzy ART with
small values of the choice parameter) we evaluated the
performance of these algorithms on two databases. These
databases were chosen from the collection of databases
found at the UCI repository (Murphy & Aha, 1994). The
databases chosen were: Iris and Glass. The Iris database is
perhaps the best known database to be found in the pattern
recognition literature. The data set consists of three classes
of 50 instances each, where each class refers to an iris plant
(Iris setosa, Iris versicolourandIris virginica). The number
of features for each instance are the sepal length, the sepal
width, the petal length, and the petal width, all in centi-
meters. For the training of Fuzzy ART (Fuzzy ART Variant)
the P � 150 input patterns are used, where each input
pattern hasM � 4 components. The glass database is used
for classification of some type of glass. This database was
motivated by criminological investigation, where the glass
left at the crime scene, can be used as evidence. Each
instance has nine features and it can be classified as one
of six classes. There are 214 instances of input–output
pairs. For the training of Fuzzy ART (Fuzzy ART Variant)

the P � 214 input patterns are used, where each input
pattern hasM � 9 components.

To evaluate the clustering performance of Fuzzy ART
(Fuzzy ART Variant) we trained it with the training list of
input patterns until it learned the list completely. After train-
ing was over we assigned a label to each category formed in
theF2 field. A category formed in theF2 field takes the label
of the output pattern to which most of the input patterns that
chose this category belong. For example, consider the case
where we have ten input patterns, namedI 1, I 2,…,I 10, in the
training list. Assume that the label of patternsI 1 throughI 4

is O1, and the label of patternsI 5 throughI 10 is O2. Assume
also that three nodes inF2 were committed during the train-
ing process of Fuzzy ART; these nodes are named nodes 1,
2, and 3. After training is over, we present the input patterns
in the training collection one more time through Fuzzy
ART. Suppose that patternsI 1, I 2, I 3 and I 5 choose node 1
in F2, patternsI 4, I 6 andI 7 choose node 2 inF2, and finally
patternsI 8, I 9 andI 10 choose node 3 inF2. As three out of the
four input patterns that choose node 1 need to be mapped to
output patternO1, the label for node 1 is output patternO1.
Also, as two of the three nodes that choose node 2 need to be
mapped to patternO2, the label for node 2 is output pattern
O2. Finally, as three out of the three input patterns that
choose node 3 need to be mapped to output nodeO2, the
label of node 3 is also output patternO2. We see from above
that two patterns from the input training collection go to a
node whose label is different than the output pattern to
which the input pattern needs to be mapped to. For example,
pattern I 5 needs to be mapped to output patternO2 but
chooses node 1 with labelO1, and patternI 4 needs to be
mapped to output patternO1 but chooses node 2 with label
O2. We say that patternsI 4 andI 5 are incorrectly clustered,
while the rest of the input patterns (i.e. patternsI 1 through
I 3, and I 6 throughI 10) are correctly classified. As a result,
the clustering performance of Fuzzy ART in the above
example is 80%. Similarly, we can evaluate the clustering
performance of Fuzzy ART Variant. The aforementioned
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Table 1
Comparisons of the clustering performances of Fuzzy ART (small choice parameter valuesa) and Fuzzy ART Variant (a ! ∞)

Network parameters Iris database Glass database

a r Avgcl Stdcl Avgcat Stdcat Avgcl Stdcl Avgcat Stdcat

0.01 0.4 74.40 7.27 5 0 44.11 4.20 6 0
0.1 0.4 76.33 8.92 5 0 43.73 3.51 6 0
1.0 0.4 77.06 5.16 4 1 43.41 3.81 6 0
∞ 0.4 74.00 4.30 6 1 43.69 3.77 7 1
0.01 0.6 87.00 3.14 7 0 54.90 4.31 14 1
0.1 0.6 86.93 4.04 7 0 55.41 4.43 14 1
1.0 0.6 87.19 4.88 8 0 54.15 2.52 14 0
∞ 0.6 86.13 3.57 8 1 51.35 1.98 16 1
0.01 0.8 93.40 2.03 22 1 63.22 2.26 31 1
0.1 0.8 93.46 2.06 22 1 63.17 2.36 31 1
1.0 0.8 94.13 2.10 22 1 61.49 3.31 31 2
∞ 0.8 93.66 1.20 24 1 64.43 3.17 34 2



procedure to evaluate the clustering performance of cluster-
ing algorithms was initially introduced by Dubes and Jain
(1976).

The average clustering performance (Avgcl) of Fuzzy
ART (Fuzzy ART Variant) is depicted in Table 1. The
average clustering performance of Fuzzy ART (Fuzzy
ART Variant) is calculated by evaluating the average of
the clustering performances of ten networks trained by
Fuzzy ART (Fuzzy ART Variant) for different orders of
training pattern presentations. In Table 1, other measures
of performance are depicted such as standard deviation of
the clustering performances (Stdcl), as well as average
number of categories formed inF2 (Avgcat), and standard
deviation of the number of categories formed inF2 (Stdcat).
Our conclusion by comparing the results in Table 1 (i.e.
Fuzzy ART performance for smalla values, and Fuzzy
ART performance for largea values (Fuzzy ART Variant))
is that Fuzzy ART Variant performance is close to that of
Fuzzy ART that uses smalla values. Similar conclusions
were drawn in (Georgiopoulos et al., 1996) where the Fuzzy
ART and the Fuzzy ART Variant clustering performances
were compared on additional databases (e.g. Heart,
Diabetes, Wine, Ionosphere, and Sonar) from the UCI repo-
sitory (Murphy & Aha, 1994).

6. Summary and discussion

In this paper attention was focused on a Fuzzy ART
Variant that is obtained if in Fuzzy ART we use very
large values for the choice parametera , and the initial
components of the weights. Useful properties of learning
were developed and proved for this Fuzzy ART Variant.
One of these properties of learning provided an upper
bound on the number of list presentations required by this
Fuzzy ART Variant to learn an arbitrary list of analog input
patterns. This upper bound verified one of the important
properties of this Fuzzy ART Variant, the short-training
time property. Knowing that properties of learning for
Fuzzy ART with small values for the choice parameters
(including the short-training time property) have already
been demonstrated in the literature, this paper fills an impor-
tant theoretical gap. What remains to be seen is whether the
short training time property is valid in Fuzzy ART for inter-
mediate values of the choice parameter (i.e. not too small
and not too large values). We have also illustrated through
simulations that this Fuzzy ART Variant exhibits a cluster-
ing performance that is comparable to the Fuzzy ART (with
small choice parameter values) clustering performance.
Hence, it can be used in practice instead of, or in conjunc-
tion with Fuzzy ART.
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