Neural
Networks

PERGAMON Neural Networks 12 (1999) 837-850
www.elsevier.com/locate/neunet

Properties of learning of a Fuzzy ART Variant
M. Georgiopoulo&”, I. Daghef, G.L. Heilemafi, G. Bebi$

“Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA
PDepartment of Electrical and Computer Engineering, University of New Mexico, Albuquerque, NM 87131, USA
“Department of Computer Science, University of Nevada Reno, Reno, NV 89557, USA

Received 18 November 1996; received in revised form 26 March 1999; accepted 26 March 1999

Abstract

This paper discusses a variation of the Fuzzy ART algorithm referred to Betlag ART VarianfThe Fuzzy ART Variant is a Fuzzy ART
algorithm that uses a very large choice parameter value. Based on the geometrical interpretation of the weights in Fuzzy ART, useful
properties of learning associated with the Fuzzy ART Variant are presented and proven. One of these properties establishes an upper bounc
on the number of list presentations required by the Fuzzy ART Variant to learn an arbitrary list of input patterns. This bound is small and
demonstrates the short-training time property of the Fuzzy ART Variant. Through simulation, it is shown that the Fuzzy ART Variant is as
good a clustering algorithm as a Fuzzy ART algorithm that uses typical (i.e. small) values for the choice pa@i@36rElsevier Science
Ltd. All rights reserved.
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1. Introduction Properties of learning for Fuzzy ART have already been
reported in the literature (Carpenter et al., 1991b; Huang
Adaptive resonance theory was developed by Grossberget al., 1995). Most of these properties pertain to a Fuzzy
(1976), and a large number of the ART architectures have ART network whose choice parameter is small. In particu-
been introduced in the last 10 years (e.g. Carpenter & Gross-ar, one of our favorite properties of learning in Fuzzy ART
berg, 1987a; Carpenter & Grossberg, 1987b; Carpenter & (i.e. its short training time) has been reported only for small
Grossberg, 1990; Carpenter, Grossberg & Reynolds, 1991ayalues of the choice parameter. The Fuzzy ART algorithm
Carpenter, Grossberg & Reynolds, 1991b; Carpenter, was initially introduced for values of the choice parameter
Grossberg, Markuzon, Reynolds & Rosen, 1992; Carpenterranging over the interval (@) (Carpenter et al., 1991b). It
& Gjaja, 1994; Carpenter & Ross, 1995; Carpenter & is therefore an issue of intellectual curiosity and theoretical
Markuzon, 1998; Healy, Caudell & Smith, 1993; Marriott importance as to how these learning properties change as we
& Harrison, 1995; Tan, 1995; Williamson, 1996) A major move from the domain of small choice parameter values to
separation among all of these architectures is based onthat of large choice parameter values. Some work towards
whether the learning applied is unsupervised or supervised.this goal has appeared in the literature. For example, Geor-
Unsupervised learning is implemented when a collection of giopoulos, Fernlund, Bebis and Heileman (1996) demon-
input patterns needs to be appropriately clustered into cate-strated the “Order of Search” property of learning in
gories, while supervised learning is utilized when a mapping Fuzzy ART. The “Order of Search” property identifies the
needs to be learned between inputs and correspondingorder according to which nodes in the category representa-
output patterns. A prominent member of the class of unsu- tion field of Fuzzy ART are chosen. In particular, three
pervised ART architectures is Fuzzy ART (Carpenter et al., distinct orders of search were identified for three different
1991b), which is capable of clustering arbitrary collections ranges of the choice parameter value: (i) choice parameter
of arbitrarily complex analog input patterns. Our focus in small (@ — 0), (ii) choice parameter large:(— o), and (iii)
this paper is Fuzzy ART and its associated properties of choice parameter of intermediate value{Qx < ). This
learning. paper extends the work of Georgiopoulos et al. (1996) to
other properties of learning. Specifically, we investigate the
ﬁsponding author. Tel.=+ 1-407-823-5338; fax:+ 1-407-823- short-training time'property of Fuzzy ART} .assur'ning the
5835, choice parameter is very large. For simplicity, this Fuzzy
E-mail addressmng@ece.engr.ucf.edu (M. Georgiopoulos) ART network is referred to as thBuzzy ART Variant
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Fig. 1. A block diagram of the Fuzzy ART architecture.

despite the fact that it is simply Fuzzy ART with large represent the clusters to which the input patterns belong.
values of the choice parameter. In the process of verifying The orienting subsystem consists of a single node (called
the short-training time property of Fuzzy ART Variant, thereset nodg which accepts inputs from the, field, the
other useful properties of learning of the Fuzzy ART F, field (not shown in Fig. 1), and the input pattern applied
Variant were discovered. It should also be mentioned that across thd-; field. The output of the reset node affects the
the aforementioned Fuzzy ART Variant algorithm was nodes of thd,; field.
described by Carpenter and Gjaja (1994). Some preprocessing of the input patterns of the pattern-

The organization of the paper is as follows. In Section 2, clustering task takes place before they are presented to
the specifics of the Fuzzy ART network that are pertinentto Fuzzy ART. The first preprocessing stage takes as input
this paper are briefly discussed. In Section 3 the Fuzzy ART an M-dimensional input pattern from the pattern clustering
Variant is introduced, and some of the differences betweentask and transforms it into an output vector (ay, ..., ay),
Fuzzy ART with small choice parameter values and the whose every component lies in the interval [0,1] (i.es0
Fuzzy ART Variant are emphasized. In Section 4 three gy =1 for 1=i = M). The second preprocessing stage
properties of learning in the Fuzzy ART Variant are proven accepts as an input the outpaiof the first preprocessing
and discussed, including the short-training time property. In stage and produces an output vedtosuch that
Section 5 it is demonstrated through simulations that theI — (@)= 2 ¢ N
Fuzzy ART Variant is as good a clustering algorithm as a 1o+ B2 81 - B
Fuzzy ART network with small values for the choice para- where
meter. Finally, in _Sect|on 6 a short review and concluding £=1-a: 1<i=M. @
remarks are provided.

The above transformation is calledmplement coding
The complement coding operation is performed in Fuzzy

2. Fuzzy ART ART at a preprocessor field designated fyy(see Fig. 1).
From now on, the vectok will be referred to as thénput
2.1. Fuzzy ART architecture pattern Each category (1 = j = N) in the category repre-

sentation layer corresponds to a veatgr= (Wq, ..., W av)
The Fuzzy ART neural network architecture is shown in of adaptive weights. The initial values for these weights are

Fig. 1. It consists of two subsystentbe attentional sub-  chosen to be equal t; = ... = W,y = 1, and a category
system and theorienting subsysteniThe attentional sub-  with these weights is said to hencommittedlnitial values
system consists of two fields of nodes denofedand F». for these weights may be taken greater than one. Larger

TheF, field is called theinput fieldbecause input patterns weights bias the system against the selection of uncom-
are applied to it. Thé&, field is called thecategory or class ~ mitted nodes, leading to deeper searches of previously
representation fieldecause it is the field where category coded categories. After a category is chosen to represent
representations are formed. These category representationan input pattern it is referred to asceammitted category
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or committed nodePrior to this point, it is amncommitted
categoryor uncommitted noddt is worth noting that the
Fuzzy ART weight vectow; subsumes both the bottom—up
and top—down weight vectors of Fuzzy ART.

The training phase of Fuzzy ART works as follows: given
a list of input patterns, designatedlasl?, ..., 17, we want to
train Fuzzy ART to cluster these input patterns into different

categories. Obviously, patterns that are similar to each other
are expected to be clustered in the same category by Fuzzy

ART. In order to achieve the aforementioned goal, the train-
ing list is repeatedly presented to the Fuzzy ART architec-
ture. That is) ! is presented first, theif, and eventually”;

this corresponds to orist presentationThen, if it is neces-
sary, 11,1217 are presented again. The training list is

presented as many times as is necessary for Fuzzy ART to
cluster the input patterns. The clustering task is considered

accomplished (i.e. learning is complete) if the weights in the

Fuzzy ART architecture do not change during a list presenta-

tion. The above training scenario is callefftline training
Before discussing in more detail the training phase of
Fuzzy ART, let us elaborate on the Fuzzy ART parameters
involved in its training phase. The parametercalled the
choice parametertakes values in the interval (). It
affects the bottom—up inputs that are produced atRhe
nodes due to the presentation of an input pattermat
The parametep is called thevigilance parameteand it
takes values in the interval [0,1]. Small valuespofesult

in coarse clustering of the input patterns, while large values

of p result in fine clustering of the input patterns. The para-
meter N corresponds to the number of committed nodes
during the training phase of Fuzzy ART. During the training

phase Fuzzy ART operates over all of the committed nodes

along with a single uncommitted node. A committed node
(category) inF, is a node that has coded at least one input
pattern. An uncommitted node (category) is a node that is
not committed.

The step-by-step implementation of the off-line training
phase of Fuzzy ART is presented below. The Fuzzy ART
network parameters, p, andN are chosen at the beginning
of the training phasey is chosen from (@¢) but typically
small, p is chosen from [0,1] based on the fineness of
the clusters we want to create, and obviolsk 0. Further,
the initial components of the weight vector correspond-
ing to the first uncommitted node (i.ewy(0)s
1=i=2M) are chosen to be equal to one. The value
of the pattern index is initialized to 1. For compact-
ness of the presentation the definitions of the various
functions that appear in the step-by-step implementation
of the training phase will be provided after the step-by-
step description is completed.

2.1.1. Off-line training phase of Fuzzy ART
1. Choose theth input pattern from the training list.

2. Calculate the bottom—up inputs to all tNet 1 nodes in
F, due to the presentation of tinth input pattern. When

839

calculating bottom—up inputs consider all the committed
nodes and the uncommitted node. These bottom-up
inputs are calculated according to the following equation.

M
if jisth itt
r Py if j is the uncommitted node
-I—J(I)— ||r/\Wj| o .
if j is a committed node
o+ |WJ|
3
3. Choose the node irfr, that receives the maximum

bottom—up input fromF;. Assume that this node has
index jmax Check to see whether this node satisfies the
vigilance criterion. Three cases are now distinguished:

(a) If nodejma is the uncommitted node it satisfies the
vigilance criterion. Increase the paramebéby one.
This way a new uncommitted node k3 is introduced,
and its initial weight vector is chosen to be the “all-
ones” vector. Go to Step 4.

(b) If nodejmaxis a committed node, and it satisfies the
vigilance criterion, go to Step 4. A committed nagdg,
satisfies the vigilance criterion if

4

(c) If nodejmax does not satisfy the vigilance criterion,
disqualify this node by setting;__ (I 'Y= —1,andgoto
the beginning of Step 3.

4. The weights associated with nodg,, are modified
according to the following equation:

ijax = ijax A |r. (5)

If this is the last input pattern in the training list go to
Step 5. Otherwise, go to Step 1 to present the next in
sequence input pattern by increasing the indey one.
After all the patterns have been presented consider two
cases:

5.

(a) In the previous list presentation at least one compo-

nent of the weight vectors has been changed. In this

case, go to Step 1, and present the first input pattern,
by resetting the indek to the value 1.

(b) In the previous list presentation no weight changes

occurred. In this case, the learning process is considered
complete.

In Step 5(b) mentioned above it is implied that there
exists a finite-valued list presentation at which no weight
changes occur. Unfortunately, no theoretical result exists to
justify this claim for all values of the choice parameter
For very smalla parameter values this claim is valid
because learning will be over in one list presentation
(Carpenter et al., 1991b). For values of the paramater
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Fig. 2. The hyper-rectangle (rectangle) which has coded the input patteragal, (@')°%), 12 = @2, (@)°), I® = (@, @%°), 1* = @*,@"°%), and I° =
@, @)°).

that are not small some specialized results are discussed irbe in the 2-D space hyper-rectangles are referred to as
Huang et al. (1995). rectangles.
In the definition of the bottom—up inputs producedn
due to the presentation of the input pattétifsee Eq. (3))
the “fuzzy-min” (A) operation of two vectord,” andw;, is 3. The Fuzzy ART Variant algorithm
introduced. The fuzzy-min operation of two vectdfsand
w; is a vector whose components are equal to the minimum  As it was emphasized in the Introduction, the primary
of the corresponding components I6fand w;. This same focus in this paper is the Fuzzy ART algorithm with a
operation was used in the calculation of the vigilance ratio very large choice parameter value (i.e. « — ). One
(see Eq. (4)) and in the updates of the weights (see Eq. (5)).might question this choice, as whenis large Fuzzy ART
Also, in the definition of the bottom—up inputs produced in has the tendency to choose uncommitted nodes over existing
F, due to the presentation of the input patter(see Eq. (3)) committed nodes (see Eq. (3)). This way we may end up
the operatior}| (e.g.,|wj[) is introduced, that stands for the ~with a Fuzzy ART algorithm that does not perform useful
size of a vector. The size of a vector is defined to be the sumclustering as every input pattern from the training list forms
of its components. This operation was also used in the defi-its own cluster. As it was mentioned in the Fuzzy ART paper
nition of the vigilance ratio in Eq. (4). though (see Carpenter et al., 1991b) initial values of the
It has been shown in Carpenter et al. (1991b) that the weight components corresponding to uncommitted nodes
weight vectors (i.e. they;'s), corresponding to committed may be taken larger than one. Taking it to the extreme
nodes in Fuzzy ART, have a geometrical interpretation. these initial values of the weight components of the uncom-
That is,w; can be expressed as;,((v;)), wherey; is the mitted nodes can be chosen to be very large so that the
lower endpoint, andv; the upper endpoint of a hyper- bottom—up inputs to the uncommitted nodes are approxi-
rectangle. This hyper-rectangle lies in tMedimensional mately equal to zero. By choosing, at the same time, a very
space and includes all the input patterns that have choserlarge value for the choice parameter, the bottom—up inputs
and were coded by node Using this representation the to uncommitted nodes will still be approximately zero, and
input patternl = (a, a°) can also be thought of as a hyper- the bottom—up inputs to a committed node will be propor-
rectangle with lower endpoiret and upper endpoird (that tional to the size of the “fuzzy-min” of the input pattern
is a hyper-rectangle of size 0). To visualize this hyper- vector and the weight vector corresponding to this node.
rectangle notion the hyper-rectandg®is shown (see Fig.  The Fuzzy ART algorithm with very large values of the
2), with endpointsy; andv;, corresponding to the weight initial components for the uncommitted weights, and very

vector w;, which has coded the input patterr$ = large value of the choice parameter is callegzzy ART
@, @)%, 17 = @, @", 1° = @, @), 1 = @, @)%,  Variant
andl® = (@, (@)°. In Fig. 2, thel’s are 4-D and the'’s, y; The step-by-step implementation of the off-line training

andv; are 2-D. As most of our illustrations from now on will  phase of Fuzzy ART Variant algorithm is presented below.
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The Fuzzy ART Variant network parametets, p, andN, ResultB. Ifaninput pattern is presented to a Fuzzy ART
are chosen at the beginning of the training phaseis architecture with large: parameter values (i.e. approach-
chosen from (@) but typically very largep is chosen from ing o0), and:

[0, 1] based on the fineness of the clusters we want to create
and obviousIyN = 0. Further, the initial weights of the first
uncommitted node (i.e. tve;(0)’s) are chosento be very large
too. The value of the pattern indexs initialized to 1.

1. | isinside rectangle@olId andez'd, thenl will choose first
the rectangle of the smallest size.

2. | is outside rectanglB®® and inside rectanglg2, thenl
will choose first rectangl&, iff

3.1. Off-line training phase of Fuzzy ART Variant |R‘neW| < Rold‘ (8)
1 2

The training algorithm of the Fuzzy ART Variant is the ) ) d d )
same as the Fuzzy ART algorithm (see Section 2.1), excepts: | IS outside feC}gm,gleE‘i andRj;", thenl will choose
Step 2, which is replaced by Step 2 (Fuzzy ART Variant) as 1St rectangleRy", iff
follows: |R‘neW| < |RjneW|.

Step 2 (Fuzzy ART VariantCalculate the bottom—up ! :
inputs to all theN + 1 nodes inF, due to the presentation
of therth input pattern. When calculating bottom—up inputs ~ Note thatR,—‘J'd is the rectangle corresponding to ngaw
consider all the committed nodes and the uncommitted field F, prior to the presentation of input pattdrat the field
node. These bottom—up inputs are calculated according toF;. Also, Rj”ew is the new rectangle corresponding to ngde

the following equation: that would have been created if pattémvere to choose and
0 if j is the uncommitted node
T = 1" A w; 1 o : (6)
! iMoo | 1 =T A w| if j is a committed node
a+ |W]-| «a

Note thatjw;| stands for the size of weight vectaf, where be coded by nodg Note that if the input patterhis inside

the size of a vector is defined to be equal to the sum of its rectangleR", thenRP' = R™": otherwiseR?™ > R'®" and,

components. in particular,R'®" includesR™. Further,|R| stands for the
One way of understanding the differences between Fuzzysize of rectanglé€} corresponding to nodgin the fieldF;

ART (small values of the choice parameter) and Fuzzy ART the size of a rectangl® is defined to be the city block

Variant (large values of the choice parameter) is by report- distance between the endpoinisandv; of this rectangle.

ing the order according to which nodeskpare chosen for  Finally, the distance of an input pattern= (a, a from a

these two algorithms. This topic has been extensively inves- rectangleR;, which does not contaih, is defined to be the

tigated by Carpenter and Grossberg (1987b) for ART1, and minimum of the city block distances @f from points that

by Georgiopoulos et al. (1996) for Fuzzy ART. Two of the belong to the boundary d¥,

results discussed in Georgiopoulos et al. (1996) (denoted To visualize the similarities and differences between the

Results A and B) are reproduced here to illustrate some of Fuzzy ART choices made whenis small, and whem is

the differences of Fuzzy ART and Fuzzy ART Variant. large (Fuzzy ART Variant) the consequences of Results A

and B are depicted in Fig. 3 for three example cases.

ResultA. Ifaninput pattern is presented to a Fuzzy ART 4. Properties of learning of the Fuzzy ART variant
architecture with smalk parameter values (i.ex close to

zero) and: In this section three properties of learning of the Fuzzy

1. lisinside rectanglea-ol'd andeozld’thenl will choose first ART anant are reported. Furtr_\er, their |_mportance is
the rectangle of the smallest size. emphaS|z§d, thelr proofs are provided, gnd finally an exam-

2 1is outside rectanglajolld and inside rectanglaazld’thenl ple case is discussed. These properties of learning are
will choose first rectangl&’”. referred to as Results 1-3.

3. 1 is outside rectangleB’® and R, then! will choose

first rectangleR’, iff 4.1. Results

" Result 1 tells us that, during the Fuzzy ART Variant
dis(l R'Old) < M- |RY |dis(| RJpld) %) training, the identity of the node with the largest rectangle
o M — |R°1'd| T does not change after the first list presentation, the identity
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Fuzzy ART with alpha=0.01
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Fig. 3. lllustration of the Order-of-Search properties (Results A and B) for Fuzzy ART (small values of the choice parameter) and Fuzzy ARTagriant. (

Patternl is inside rectangle@fl'd, andez'd, where\Rﬁ'd| < |R‘92'd\; the “+” signs indicate patternsthat choose first rectangR{’l'd and the “-" signs indicate

patternd that choose first rectangR®"". (c,d): Patternl is outside rectanglB{"®, and inside rectanglB"®; the “+" signs indicate patternisthat choose first
rectangleR’ and the *-  signs indicate patternisthat choose first rectangR. (e,f): Patternl is outside rectangleB’ andR’'%; the “+” signs indicate
patterns that choose first rectang®f® and the “-" signs indicate patternsthat choose first rectangR.

of the node with the second largest rectangle does notResult 1. Consider the off-line training of a list d? input
change after the second list presentation, and so on. Resulpatterns using the Fuzzy ART Variant algorithm. Assume
1 also tells us that, during the Fuzzy ART Variant training, that after the first list presentation the Fuzzy ART Variant
the size of the largest rectangle does not change after thehas created\ categories inF,. Designate byj,(t)(1 =
first list presentation, the size of the second largest rectanglen = N;t = 1) the index of the node with thath largest
does not change after the second list presentation, and so orrectangle immediately after the end of théh list
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Fuzzy ART with alpha=0.01
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Fig. 3. (continued

in the second list presentation do not need to be
presented to the Fuzzy ART architecture again, patterns
that are coded by the second largest rectangle in the third
list presentation do not need to be presented to the Fuzzy
ART Variant again, and so on. Result 2 is useful because
it allows us to eliminate patterns from the training list

that do not affect the Fuzzy ART Variant learning

(10

Result 2 tells us that, during the Fuzzy ART Variant process. This way the learning process can be made to
training, patterns that are coded by the largest rectanglebe less computationally intensive.
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Fuzzy ART with alpha=0.01
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Fig. 3. (continued

S will always be coded by nodg(n) in list presentations

Result 2. Consider the off-line training of a list of input

patterns using the Fuzzy ART Variant algorithm. Assume =n + 2.
that after the first list presentation the Fuzzy ART Variant

algorithm has created categories inF,.

Designate by

Result 3 is important because it predicts an upper bound for

in®@=n=N;t=1) the index of the node witn-th

the number of list presentations required by the Fuzzy ART
Variant to learn a list of input patterns. In order to identify

thh list

largest rectangle immediately after the end of
= n) denote the set of training

presentation. LetS,(1

this upper bound, it suffices to present once the training list

patterns that choose and are coded by np@® in the

(n + 1)th list presentation. Then, the patterns of collection through the Fuzzy ART network using the Fuzzy ART
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10
°1
P(Case) 1 (Case 2) (new)
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ﬁl(l) o Il(Case 3)
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: Ix
<3? Il(Case 4
Rjy —J/‘
R_(new)
Jy |
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Fig. 4. lllustration that the presentation of pattétin the second list presentation does not change the identity or size of recipgle€ase 11 lis inside

R, and is coded bR, ;). Case 21 *is insideR, ) and is coded bR, (IR1*Y| < |R
insideR;, and is coded bR (IR™ < R, | <R,

Variant training algorithm, to find the value for the para-
meterN.

Result 3. Consider the off-line training of a list of input
patterns using the Fuzzy ART Variant algorithm. Assume
that after the first list presentation the Fuzzy ART Variant
algorithm has createl categories ir,. Then, training will

be over in at mosN list presentations.

4.2. Proof of the results

The proofs of the results are based on parts 1 and 2 of
Result B. Result B is proven in Georgiopoulos et al. (1996).
Parts 1 and 2 of Result B were pictorially illustrated in Fig. 3
(a) and (b).

Proof of Result 1. Result 1 will be proven, by induction,
in two steps.

e Stepl: Prove that Result 1 is valid far = 1. That is,
prove that

j1) = j2(D)

for t=2. (11)

R,0l = Ry

e Step2: Assume that Result 1 is valid for all indices n
(wheren = 1), and demonstrate its validity for indax- 1.

). Case 31isinsideR and is coded bR (R, | < |R,]). Case 41tis

Hence, by assuming that

i = @ t=2
IRyl Rl t=2
. . (12)

n® = Jun) t=n+1

Rl = [Rnl t=n+1

it will be proven that is true for inder + 1, that is
jns1® =Jjnra(n + 1)

e e fort=n+2 13

IR,...0l = IRy,

To demonstrate the validity of Step 1 two steps are
needed.

e Step laVerify Eq. (11) for list presentatioh= 2.

e Step 1bAssume the validity of Eq. (11) for list presenta-
tions 2,...,t (wheret = 2) and then show the validity of
Eq. (11) for list presentatioh+ 1.

Step laTo illustrate Step 1la it will be shown that the
identity of the node with the largest rectangle (j;€1)) and
the size of the largest rectangle (iLIéj.l(l)D stay intact after
the presentation of the first input pattern in list presentation
2 (i.e. patterr!). Then, by assuming that the identity of the
node with the largest rectangle and the size of the largest
rectangle stay intact after the presentation of thefilsput
patterns in list presentation 2 (i.e. pattetiisl?, ..., IP), it
will be proven that the identity of the node with the largest
rectangle and the size of the largest rectangle stay intact



846 M. Georgiopoulos et al. / Neural Networks 12 (1999) 837-850

after the presentation of th@ (+ 1)th input pattern in list |le(1)|, it is easy to duplicate the above arguments (Cases
presentation 2 (i.e. pattetfi™®). Hence, by induction, itcan  1—4) to illustrate that after patternt§™* presentation, node
be stated that the identity of the node with the largest rectan-j1(1) is the node with the largest rectangle and the size of the
gle (i.e.j1(1)) and the size of the largest rectangle (i.e. largest rectangle stays intact and equeﬁglﬂ. Hence, by

IR, )|) stay intact after the presentation of tRetraining induction, Eq. (11) has been proven foe 2.
input patterns in list presentation 2, which is equivalent to  Step 1blf it is now assumed that Eq. (11) is valid for all
saying that Eq. (11) is true fdr= 2. list presentations 2,.t.(wheret = 2), that is

As a result, consider the presentation of the first input

pattern|?®, from the training list, during the second list @ = @
presentation of the training list. We distinguish the |R | = |R,q)
following cases:
Case 1 RectangleR, q,(= R’q)) is the rectangle of the oo 17
smallest size that containd, and patterri* chooses and is ) )
coded by rectangl®, ., (see Fig. 4, case 1). In this case, 1® = L@
afterl ’s presentation, nodg(1) is the node with the largest |le(t)| = |le(1)|
rectangle and the size of the largest rectangle stays intact o ) ) _
and equal tdR ;|- then by duplicating the procedure, discussed in Step 1a, it

Case 2 RectangleR ;,(= R%)) is the rectangle of the ~ €&n be demonstrated that
smallest size that contain$, and patterri* chooses and is i+ 1) =y (D)
coded by rectang|, (= R, wherej, # j1(1) (see Fig. 4, (18)
case 2). Owing to Result B, in order for the above case to |le(t+1)| = |Ri1(1>|

occur the following inequality must be valid:
The details are omitted due to their similarity with Step 1a.

IR < IRyl (14 Hence, by induction, the validity of Eq. (11) has been
proven.

One important byproduct of the proof of Eqg. (11) is that
the input patterns from the training list that chose and were
coded by nodg,(1) in the second list presentation will
always choose and be coded by ngg@) in subsequent
list presentations (i.e. list presentatiorss 3). This is true
because if patterh, from the training list, chose nogg1)
in the second list presentation it implies that

The above inequality guarantees that affés presentation,
nodej(1) is the node with the largest rectangle and the size
of the largest rectangle stays intact and equakR{ey|.
Case 3 RectangleR (= R, wherej, # ji(1), is the
rectangle of the smallest size that contaifsand pattern
I* chooses and is coded by rectanBje(see Fig. 4, case 3).
In this case, aftet’s presentation, nodg(1) is the node
with the largest rectangle and the size of the largest rectan-
gle stays intact and equal tﬁj&}lﬂ. IR, < [R" (19
Case 4 RectangleR (= R’™), wherej, # j;(1), is the o _ o
rectangle of the smallest size that contaihsand pattern  for anyjx# ji(1). As the size oR;, ;) remains intact after the
I chooses and is coded by rectan@le(= RJ-OId), where flrstl|st prf-zs_entat!on, while the sizes .of other rectangles.cgn
jy # ix(see Fig. 4, case 4). Obviously, "due to Resul,B, increase, itis obV|ou§ that the above inequality stays valid in
cannot be nod(1). Also, due to Result B, in order for the presentations of the input pattdrat subsequent lists. Thus,

above case to occur the following inequality must be valid: NPut pattern! will always choose and be coded by node
j1(1) inlist presentations= 3, and rectang|& () will be the

|F§nyew| <IR,I- (19 rectangle of the smallest size that contadins
Step 2 Assuming now the validity of Eq. (12), the truth of

However Eqg. (13) can be demonstrated. As was the case with the

R| <Rl (16) proof of Eq. (11) an important byproduct of the assumption
* of the validity of Eq. (12) is that input patterns that chose
The above two inequalities guarantee that aftés and were coded by nodgK) in list presentatiork + 1,

presentation, nodg(1) is the node with the largest rectan- will choose and be coded by nog€k) in list presentations
gle, and the size of the largest rectangle stays intact and=k + 2, where 1= k = n. To demonstrate the validity of
equal to|R; (|- Step 2 two steps are needed:

Cases 1-4 cover all the possible scenarios, and they illus- . - .
trate that during the presentation of the first pattérim list ¢ tSu;enpt Zza;/‘i”g/ the validity of Eq. (13) for list presenta-

presentation 2, the_|dent|ty.of the node W'th. the Iarges_t e Step 2b Assume the validity of Eq. (13) for all list
rectangle and the size of this rectangle remain intact. If it :

. 2 P . presentations = t (wheret = n + 2) and show the
is now assumed that aftéf’s, 1?%s,...,|”s presentations, validity of Eq. (13) for list presentation+ 1

nodej,(1) is the node with the largest rectangle, and the y q P '
size of the largest rectangle stays intact and equal to Step 2aToillustrate Step 2a first it will be shown that the
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identity of the node with then(+ 1)th largest rectangle (i.e.
jnr1(n + 1)) and the size of the largest rectangle (i.e.
IR,.,n+pl) Stay intact after the presentation of the first
input pattern in the list presentation+ 2 (i.e. pattern %).
Then, by assuming that the identity of the node with the
(n + 1)th largest rectangle and the size of tme+ 1)th
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nodej,.1(n + 1) is the node with then( + 1)th largest
rectangle and the size of the - 1)th largest rectangle
stays intact and equal tR‘-anﬂ)L

Case 3 RectangleR (= R, wherej, # ji(k); 1 = k =

n + 1, is the rectangle of the smallest size that contains
and pattern* chooses and is coded by rectangle In this

largest rectangle stay intact after the presentation of the firstcase, aftet's presentation, nodg. (n + 1) is the node with

pinput patterns (i.e. patternd, 1% ...,1P) in list presentation
n + 2, it will be proven that the identity of the node with the
(n + 1)th largest rectangle and the size of tme+ 1)th

the (0 + 1)th largest rectangle and the size of theH 1)th
largest rectangle stays intact and equaRQ n+1)|-
Case 4 RectangleR (= R, wherej, # ji(K); 1 = k =

largest rectangle stay intact after the presentation of then + 1, is the rectangle of the smallest size that contains

(p + 1)th input pattern (i.e. patted®™?) in list presentation

and patternl® is chosen and coded by the rectangle

n + 2. Hence, by induction, it can then be stated that the R, (= Rfy'd), wherej, # jx. Obviously, due to Result B,

identity of the node with then(+ 1)th largest rectangle (i.e.
jn+1(n + 1)) and the size of then(+ 1)th largest rectangle
(i.e. |R,.,m+1)) stay intact after the presentation of tRe
training input patterns in list presentation+ 2, which is

equivalent to saying that Eq. (13) is true for list presentation

t=n+ 2.

As a result, consider the presentation of the first input

pattern1?, from the training list, during then(+ 2) list
presentation of the training list. The following cases are
distinguished.

Case ORectangleR_(= R, wherei, € {j1(1),j2(2), ...,
jn(M}, is the smallest rectangle that contains. For
example, ifjy = j,(2), this means thaR,, was still the
smallest rectangle that containétlin list presentation 3,

asR, ) did not change its size, while other rectangles have
either increased their sizes or kept their sizes intact as the

beginning of list presentation 3; it also means thatvas
chosen and coded by rectandlg,, in list presentation 3,
otherwiseR,, ;) would not have been the smallest rectangle
that containd ! in list presentatiom + 2. Based on our

previous statements (see comments immediately after SteQniact and e

2), 1t will always choose and be coded By, in list presen-
tations= 3. Similar reasoning holds jf is equal toj;(1) or
ja(3), or...,jn(n). Hence, in this case, patterhchooses and
is coded by rectangl®; . Consequently, afterr's presenta-
tion, nodej,1(n + 1) is the node with then(+ 1)th largest
rectangle and the size of the ¢ 1)th largest rectangle stays
intact and equal t¢R; _ n+1)l-

Case 1RectangleR  n+1(= R 111 is the rectangle
of the smallest size that contaih§ and pattern! chooses
and is coded by rectangR .1 In this case, aftets
presentation, nodg;(n + 1) is the node with then(+ 1)th
largest rectangle and the size of tine{ 1)th largest rectan-
gle stays intact and equal {8+ 1)-

Case 2 RectangleR; 1) (= Rjon'fl(nﬂ)) is the rectangle
of the smallest size that contait’s and pattern® is chosen
and coded by the rectange (= R*'Y), wherejy # jns1(n + 1).
Owing to Result B, for the above case to occur the following
inequality must be valid:

R < IRyl

The above inequality guarantees that aftsrpresentation,

(20)

cannot be nod@(k), where 1= k = n + 1. Also, due to
Result B, for the above case to occur the following inequal-
ity must be valid:

new|
IR <R (21)
However,
|ij| < |Rjn+1(n+1)|' (22)

The above two inequalities guarantee that dfteipresenta-
tion, nodej,1(n + 1) is the node with then(+ 1)th largest
rectangle and the size of the ¢ 1)th largest rectangle stays
intact and equal t¢R; _ n+1)l-

Cases 0—4 cover all the possible scenarios, and they illus-
trate that during the presentation of the first patiérim list
presentatiom + 2, the identity of the node with then (+
1)th largest rectangle and the size of this rectangle remain
intact.

If it is now assumed that aftét's, | %s,..., I”'s, presenta-
tions, nodg,;1(n + 1) is the node with then(+ 1)th largest
rectangle and the size of tme+ 1th largest rectangle stays
qual tdR,  n+1) it is easy to duplicate the
above arguments to illustrate that after pattetf’s presen-
tation nodg,.1(n + 1) is the node with then(+ 1)th largest
rectangle and the size of the ¢ 1)th largest rectangle stays
intact and equal t{R; . +1)- Hence, by induction, Eq. (13)
has been proven for list presentatios n + 2.

Step 2blf it is now assumed that

jn+1(n + 2) = jn+1(n + 1)

R,..n+2) IR,y
(23

Jn+1(® = jpa(n+ 1)

IR0 IR,

then by duplicating the procedure discussed in Step 2a, it
can be demonstrated that

jnt1t+ D =jpe1(n+ 1)
(29
IR,..crvl = IR, ol

The details are omitted due to their similarity with Step 2a.
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Fig. 5. lllustration of the tightness of Results 1 and 3. Rectangles created in the first three list presentations oftha®ttat&uzzy ART Variant. Data were
presented fron' to | % in the first list presentation and frotfito | 1 in the second and third list presentation. The identity and the size of the second and the third
in size rectangles change in the second list presentation (tightness of Result 1). Also, the size of the third in size rectangle changes it phestanition
(tightness of Result 1). Finally, it takes three list presentations to learn the data (tightness of Result 5).

Hence, by induction, the validity of Eq. (13) has been that are presented to the Fuzzy ART Variant in the otder

proven. 12,...17, 18, in the first list presentation, and in the ordér
I7,...1% Itin list presentations 2 and 3. The vigilance para-
meterp is chosen to equal 0.55.

Proof of Result 2. The above result was actually proved

during the proof of Result 1 (see comments in the proof of "= @D,a 1) = (11,00 (25

Result 1 immediately prior, and immediately after the

beginning of the proof of Step 2). = (a(2),a%(2)) = (0.55,0.55,0.45,0.45)

= (a(3),a%3)) = (0.7,0.7,0.3,0.3)

Proof of Result 3. The proof of this result is an immediate
consequence of Result 1. This is true because the applicatiod” = (@(#),a°(4)) = (0.3,0.3,0.7,0.7)
of Result 1, at the end of list presentation®2,B,...,N
implies that the sizes of thdl largest rectangles do not I° = (a(5),a%(5)) = (0.5,0.5,0.5,0.5)
change after list presentatidh If none of theN rectangles
change after list presentatidfy then none of thé weight 1° = (a6),a%®)) = (0,0,1,1)
vectors changes after list presentatidyrwhich is equivalent
to saying thatearning in the Fuzzy ART Variaig over in at "= (a(7),a%(7)) = (0.35,0.35,0.65,0.65)
mostN list presentations.
= (a(8),a%(8)) = (0.24,0.24,0.76,0.76)
It is not difficult to show that

4.3. Example o ) .
1. After the first list presentation we create three categories

One of the interesting questions that arises, pertinent to  (i.e. N = 3), wherej,;(1) = 1, jx(1) = 3, j3(1) = 2, and
Results 1 and 3, is the tightness of the results. This is espe- |R )| = =048 |R,1| = 04
cially important for Result 3, which gives us an upper bound 2. After the second list presentatigi(2) = 1, j»(2) = 2,
on the number of list presentations required by the Fuzzy j3(2) =3, and|le(2) = = 0.48.
ART Variant to cluster a list of input patterns. Below, we Hence, in the second list presentation the identity and the
present a simple example that illustrates the tightness of size of the second and third in size rectangles change (as
Results 1 and 3. predicted by Result 1).

In this example we have eight input patterns, listed below, 3. Afterthe third list presentatign(3)=1,j(3)=2,j3(3)=3,
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Table 1
Comparisons of the clustering performances of Fuzzy ART (small choice parameter aglaled Fuzzy ART Variantd — )
Network parameters Iris database Glass database
« P Avgq Std, AVcat Sty Avgg Stdy AVQcat Sty
0.01 0.4 74.40 7.27 5 0 44.11 4.20 6 0
0.1 0.4 76.33 8.92 5 0 43.73 3.51 6 0
1.0 0.4 77.06 5.16 4 1 43.41 3.81 6 0
00 0.4 74.00 4.30 6 1 43.69 3.77 7 1
0.01 0.6 87.00 3.14 7 0 54.90 431 14 1
0.1 0.6 86.93 4.04 7 0 55.41 4.43 14 1
1.0 0.6 87.19 4.88 8 0 54.15 2.52 14 0
00 0.6 86.13 3.57 8 1 51.35 1.98 16 1
0.01 0.8 93.40 2.03 22 1 63.22 2.26 31 1
0.1 0.8 93.46 2.06 22 1 63.17 2.36 31 1
1.0 0.8 94.13 2.10 22 1 61.49 3.31 31 2
00 0.8 93.66 1.20 24 1 64.43 3.17 34 2
and|R, 3| = 0.9, |R,| = 0.8, |R,3| = 0.7. Hence, in the P = 214 input patterns are used, where each input

the third list presentation the size of the third in size pattern hasv = 9 components.
rectangle changes (as predicted by Result 1). To evaluate the clustering performance of Fuzzy ART
4. In subsequent list presentations (i.e. list presentations(Fuzzy ART Variant) we trained it with the training list of
=4) the identity and size of all the rectangles remain input patterns until it learned the list completely. After train-
intact, which implies that learning in the Fuzzy ART ing was over we assigned a label to each category formed in
Variant is over in three list presentations (as predicted theF, field. A category formed in thE, field takes the label
by Result 3). of the output pattern to which most of the input patterns that
chose this category belong. For example, consider the case
where we have ten input patterns, nanh&d?,...,1%% in the
training list. Assume that the label of pattedrighrough! *
is O, and the label of patterds throughl *°is O2 Assume
also that three nodes I, were committed during the train-
5. Simulations ing process of Fuzzy ART; these nodes are named nodes 1,
2, and 3. After training is over, we present the input patterns
In order to assess the practicality of the Fuzzy ART in the training collection one more time through Fuzzy
Variant (Fuzzy ART with large values of the choice para- ART. Suppose that pattern$, 12, 12 andI® choose node 1
meter) compared to typical Fuzzy ART (Fuzzy ART with in F,, patternd®, 1° andl’ choose node 2 iff,, and finally
small values of the choice parameter) we evaluated thepatternd®, 1°andl'°choose node 3 if,. As three out of the
performance of these algorithms on two databases. Thesdour input patterns that choose node 1 need to be mapped to
databases were chosen from the collection of database®utput patterrO*, the label for node 1 is output patte®.
found at the UCI repository (Murphy & Aha, 1994). The Also, as two of the three nodes that choose node 2 need to be
databases chosen were: Iris and Glass. The Iris database isapped to patter®?, the label for node 2 is output pattern
perhaps the best known database to be found in the patterrD?. Finally, as three out of the three input patterns that
recognition literature. The data set consists of three classeschoose node 3 need to be mapped to output r@gethe
of 50 instances each, where each class refers to an iris plantabel of node 3 is also output patte®f. We see from above
(Iris setosalris versicolourandlris virginica). The number that two patterns from the input training collection go to a
of features for each instance are the sepal length, the sepahode whose label is different than the output pattern to
width, the petal length, and the petal width, all in centi- which the input pattern needs to be mapped to. For example,
meters. For the training of Fuzzy ART (Fuzzy ART Variant) pattern|® needs to be mapped to output pattédA but
the P = 150 input patterns are used, where each input chooses node 1 with lab@*, and patterri* needs to be
pattern hasvl = 4 components. The glass database is used mapped to output patter®@’ but chooses node 2 with label
for classification of some type of glass. This database wasOZ% We say that patterrid and|® are incorrectly clustered,
motivated by criminological investigation, where the glass while the rest of the input patterns (i.e. pattethshrough
left at the crime scene, can be used as evidence. EacH? and!° through!'%) are correctly classified. As a result,
instance has nine features and it can be classified as ondghe clustering performance of Fuzzy ART in the above
of six classes. There are 214 instances of input—outputexample is 80%. Similarly, we can evaluate the clustering
pairs. For the training of Fuzzy ART (Fuzzy ART Variant) performance of Fuzzy ART Variant. The aforementioned

The rectangles created in this example after list presenta-
tions 1, 2, and 3 are shown in Fig. 5. In Fig. 5, we see in a
pictorial fashion the tightness of Results 1 and 3.
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