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Abstract— Vehicle detection from aerial images is becoming
an increasingly important research topic in surveillance, traffic
monitoring and military applications. The system described in
this paper focuses on vehicle detection in rural environments
and its applications to oil and gas pipeline threat detection.
Automatic vehicle detection by unmanned aerial vehicles (UAV)
will replace current pipeline patrol services that rely on pilot
visual inspection of the pipeline from low altitude high risk
flights that are often restricted by weather conditions. Our
research compares a set of feature extraction methods applied
for this specific task and four classification techniques. The
best system achieves an average 85% vehicle detection rate and
1800 false alarms per flight hour over a large variety of areas
including vegetation, rural roads and buildings, lakes and rivers
collected during several day time illuminations and seasonal
changes over one year.

I. INTRODUCTION

Vehicles and heavy digging equipment in particular pose

a potentially catastrophic threat to the vast network of oil

and gas pipelines in rural areas. Current aerial patrol pilots

determine these threats while maintaining the airplanes at a

safe altitude above the ground. This task becomes particu-

larly difficult in heavy weather conditions and often reduces

the frequency of the surveillance flights.

The system described in this paper (Figure 1) is an

attempt to allow unmanned airborne vehicles (UAV) flying

at higher altitude to automatically detect ground vehicles in

rural areas. Our approach uses optical images captured by

a nadir looking commercial camera installed on the airplane

wing and determines the vehicles location within each of the

captured images. The main challenges of the system consist

in dealing with 3D image orientation, image blur due to

airplane vibration, variations in illumination conditions and

seasonal changes.

There is a vast literature on vehicle detection from aerial

imagery. Zhao and Nevatia [12] explore a car recognition

method from low resolution aerial images. Hinz [6] discusses

a vehicle detection system which attempts to match vehicles

against a 3D-wireframe model in an adaptive “top-down”

manner. Kim and Malik [7] introduce a faster 3D-model

based detection using a probabilistic line feature grouping

to increase performance and detection speed.

The vehicle detection system described in this paper uses

nadir aerial images and compares the experimental results for
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several feature extraction techniques with strong discriminant

power over vehicles and background, and a set of statistical

classifiers including nearest neighbor, random forests and

support vector machines. The method described in this paper

analyzes each location in an image to determine the target

presence. Due to the large number of analyzed location

and real time requirements the method presented here starts

with a fast detection stage that looks for man-made objects

and rejects most of the background. The second stage of

the algorithm refines the detection results using a binary

classifier for vehicle and background.
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Fig. 1. The overall system.

The paper is organized as follows. Section II describes

the fast detection stage, Section III describes the feature

extraction and classification techniques, Section IV makes

a quantitative comparison of the techniques, and finally

Section V presents the conclusion of this work and gives

directions for future research.

II. FAST DETECTION

The first stage of the algorithm inspects every image

location at several scales and efficiently eliminates the large

majority of the background areas. The algorithm begins by

quickly detecting features using the Harris corner detector.

Next, areas containing a high density of features are detected.

The third step clusters heavily overlapping responses. In the

final step, color-based properties are used to further refine

the restuls.



A. Feature Detection

This stage relies on the observation that man-made objects

and vehicles in particular have a large number of edges

and corners compared with other natural objects (trees,

hills, roads, forest, water flows). Image features based on

edges detected using a Sobel operator represent a viable

solution to detect a large number of man made objects and

discriminate from background as shown in Figure 2. An

improved alternative to Sobel edge detection is the use of

Harris corner detection. Corners represent a better descriptor

for vehicles and are able to reject background areas with

large areas of random edge distribution.

(a)

(b)

Fig. 2. (a) The original aerial image of a pipeline threat. (b) The results
of the Sobel edge detection method. Detected edges are shown in black.

B. Feature Density Estimation

The next stage of our system involves the efficient detec-

tion of areas with high concentration of features. The algo-

rithm searches through all rectangular windows of all aspect

ratios and scales to determine those rectangles with feature

density higher than a fixed threshold. The feature density

score Scorefeat(x, y, w, h) for a particular rectangle with

top left corner at position x, y in the image and of width w
and height h is defined as Scorefeat(x, y, w, h) =

Sx,y,w,h

w×h ,

where Sx,y,w,h is the number of features found within the

rectangle. An important aspect in the computation of the

Scorefeat is maintaining a low computational complexity.

This is accomplished by discarding all redundant compu-

tations in summing over features extracted in overlapping

windows.

In this approach the efficient computation of the number

of features is obtained using integral images [10]. An integral

image T (i, j) for a given interest point image E(i, j) is

an image where each pixel is computed as T (i, j) =∑
u<i,v<j E(u, v). Using an integral image the number of

interest points Sx,y,w,h = T (x + w, y + h) − T (x, y +
h) − T (x + w, y) + T (x, y). This significantly reduces the

computational complexity of the system and allows for real-

time implementation. Figure 3 illustrates a typical aerial

image with two targets and the contours of the feature density

score. Red contours represent areas that are more likely to

be targets while blue contours are areas less likely to contain

targets.

(a)
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Fig. 3. (a) The original aerial image of a pipeline threat. (b) The contours
of the detection surface showing in red indicates likely target positions
and blue indicates unlikely target positions. The yellow contours represent
intermediate values between red and blue values.

C. Target Clustering

All windows for which the feature density score is above a

fixed threshold are assigned to potential targets. As expected

the system returns a large number of responses around actual

targets. At this stage, the overlapping responses are grouped

together and the overlapping detection are rejected using the

following iterative method.



• Step 1 Determine a set of overlapping windows.

• Step 2 Determine the centroid rectangle using the aver-

age width, height and center position of all overlapping

rectangles.

• Step 3 Assign all rectangles that have an area of overlap

with the centroid rectangle to the same class. The

remaining rectangles are processed in step 1.

• Step 4 If the norm of the center, width and height of the

centroid rectangle at consecutive iterations falls below

a fixed threshold the algorithm converges, otherwise go

to step 1.

D. Color-based Detection Refinement

The target locations determined in the previous stages

are refined to further reduce the false alarms using color

information. A rectangular window is not a perfect fit for

a vehicle and often a “correct” detection window contains

background areas. On the other hand an “incorrect” detection

window contains only background which often has a locally

monochromatic distribution. The detection score used in

this stage of the algorithm eliminates the background areas

characterized by a monochromatic color distribution. The

color score is given by Scolor = maxF ((μ
F
r − μB

r )
2, (μF

g −
μB
g )

2, (μF
b − μB

b )
2) where F is a detection window, B is

a background window that includes F and μF
r , μ

F
g , μ

F
b and

μB
r , μ

B
g , μ

B
b are the mean of the R,G,B colors inside windows

F and B respectively. In our experiments the background

window was chosen to have twice the number of pixels of

the detection window.

III. TARGET CLASSIFICATION
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Fig. 4. Model vehicle (a), corresponding HoG features (b) and Gabor
histograms (c). Water region in aerial image (d), corresponding HoG features
(e) and Gabor histograms (f).

The final stage of our cascade detection system is target

classification (Figure 1). A binary classifier assigns each of

the detection results of the previous stages into vehicle or

background categories and further reduces the false alarm

rate. This process begins by obtaining eight additional win-

dows surrounding the initial detection location obtained from

(a) (b) (c)

(d) (e) (f)

Fig. 5. Vehicle in aerial image(a), corresponding HoG features (b) and
Gabor histograms (c). Vegetation region in aerial image (d), corresponding
HoG features (e) and Gabor histograms (f).

the previous stages. These neighboring windows are selected

using a window displaced 25 pixels in the vertical and/or

horizontal directions. All nine of the rectangular areas are

then analyzed. If any one window around a detection result

is classified as a target, then the entire area is detected as a

target, otherwise it is classified as background.

From a computational stand point, this stage is signifi-

cantly more complex for each window but analyzes a much

smaller number of windows compared to the first stage of

the algorithm. This section compares two feature extraction

methods (Histogram of Oriented Gradients and Histogram

of Gabor coefficients) and several classification techniques

(nearest neighbor, decision trees, random trees and support

vector machines) for the task of vehicle detection.

A. Histogram of Oriented Gradients

Fig. 6. Edge orientations above a particular threshold; it can be seen that
the edge orientations have a perpendicular nature.

The feature extraction method used here is based on the

Histogram of Oriented Gradients (HoG) approach proposed

by Dalal and Triggs [4]. The classical implementation of

HoG involves building histograms of orientation in small

subsections of an image, then using these histograms as a

feature vector. The method modifies these features by shifting

the histogram in such a way that the largest bin is always

located in the first position. When using a sufficient number



of bins, this modification gave HoG a significant increase in

performance and produced a more rotation tolerant feature

set. Through preliminary testing the ideal number of bins

was determined as 21.

It is important to note that the HoG features have a strong

discriminatory power for vehicle versus rural background

images. From an overhead image, a vehicle has two primary

edge orientations; the first is with respect to the front and

back of the vehicle, while the other is oriented with the sides.

These two orientations are, for the most part, perpendicular,

which gives a strong common feature among vehicles. After

implementing this it can be seen in Figure 4-5 that there is a

“W”-like shape to the vehicles, while the vegetation is flat,

and the reflections of water have only one major direction

giving a “U”-like shape to the histogram.

During experimentation it was determined that dividing the

regions into four cells (2x2 cells) yielded the most accurate

classification results. We believe that the reason this worked

so well is because no matter the orientation of a vehicle, one

of the four main corners will be located in each of the four

cells. Because this method relies on the strong perpendicular

edge orientations, having cells without parts of the vehicle

in them can hinder the feature extraction. On the other hand,

reducing the number of cells to one simply does not extract

enough information for accurate classification. However, it

is important to point out that using only one cell worked far

better than using more than four. This is most likely because,

although the histogram is general to the image, it still retains

the information about the strong edge orientations, while

having more than four sacrifices the rotation tolerance of

the feature extraction.

B. Histogram of Gabor Coefficients

Fig. 7. Four of the sixteen Gabor kernels, all with different orientation
and phase offset.

The other feature extraction algorithm was a bank of

Gabor kernels (some examples in Figure 7) defined by

Equation 1. The bank contained a total of sixteen filters

constructed using combinations of four orientations and four

phase offsets [11]. Although it was unclear as to how well

these features would perform, because of the size of the

filter bank this would perform with some tolerance for

rotation. After filtering, a histogram of the filtered image

was constructed which was used as the final feature vector

for the region. The feature histograms shown in Figures 4-

5 show how Gabor features differ between vehicles and

vegetation. For the most part, the histograms of vehicles

are concentrated in the center, while the histograms for

the background are more spread out. Through preliminary

testing, the ideal number of bins in the Gabor histogram

was found to be 14.

g(x, y;λ, θ, ψ, σ, γ) = exp
(
−x′2+γ2y′2

2σ2

)
cos

(
2π x′

λ + ψ
)

x′ = x cos θ + y sin θ
y′ = −x sin θ + y cos θ

(1)

C. Classifiers

The above features were tested using k-Nearest Neighbors

(k-NN) [3], Random Forests (RF) [2], and Support Vector

Machines (SVM) [5] classification techniques.

The kNN uses the training samples directly making for

a very fast training time. Using these training vectors, the

classification of an input vector is predicted by observing its

k nearest neighbors, and returning the label which holds the

majority among them [9]. In our experiments the best results

were obtained for k=3.

The RF classifier builds a model based on a labeled

training set. A random forest is composed of an assembly of

unpruned Decision Trees [2] grown using random vectors.

These vectors are generally sampled independently, with the

same distribution for all trees. Random forests have also

been shown to significantly outperform single Decision Trees

and are considered among the most accurate general-purpose

classifiers [1].

The SVM classifier determines a hyper plane which opti-

mally separates samples [5]. The use of different kernels in

the construction of the hyper plane can drastically affect the

accuracy of an SVM. The best results were obtained when

using a polynomial kernel [5].

IV. RESULTS

The data set was captured using a nadir looking Canon

G9 camera with a resolution of 3000×4000 pixels flown at

an average altitude of 500 feet.

A. Fast Detection Results

Our experimental results for fast detection were obtained

using a data set consisting of 2000 images obtained from

several flight hours over various terrain, and changing il-

lumination conditions. Figure 8 illustrates the number of

false alarms and the detection rate of the first stage of the

threat detection algorithm (Section II). A correct detection

was validated when we found at least 50% overlap between

a manually selected rectangle and the detection rectangle

computed automatically by our algorithm.

Figure 9 illustrates an example of the fast detection

algorithm on a typical pipeline patrol image.

B. Classification Results

Our objective during these tests was to differentiate ve-

hicles from the numerous background regions while also

attempting to maintain all the correct detections of the first

stage.

For training, two different data sets of vehicles were used.

The first set was constructed using the true positives detected

in the fast detection stage through approximately one hour

of flight. The second set was created from indoor images of



Fig. 8. ROC curve of the first detection stage.

model vehicles taken inside a sandbox. The training set based

on the airborne images generated a high recognition rate if

the testing and training images were captured under similar

vibration and illumination conditions. However this is often

not the case in real systems. The sandbox images captured

under neutral conditions on the other hand, form a training

set that is invariant to vibrations, blurring and illumination

conditions. The trained models using these images will

generate recognition rates that are more consistent over a

large number of flight hours. The background data set was

built from the false positives detected in the fast detection

stage.

After the fast detection stage, a set of images taken

over approximately one hour returned 4,963 possible threats.

These regions of interest were hand separated into two

classes; vehicles, and background. In this data set, there are

120 vehicles, and 4,843 background areas. The threshold

of the fast detection algorithm was such that it resulted

in an average detection rate of 85%. We believe that the

performance on this test set gives a reasonably accurate

estimate of the overall accuracy of the program.

Table I shows a summary of our results. As it can be

seen, the top performing classifier is the Random Forest

using Gabor features. This combination correctly classified

98.9% of vehicles and 61.9% of background, removing well

over half of the false positives and keeping nearly all the

true positives. It is also interesting to note that the Ga-

bor histograms features had difficulties correctly classifying

background containing vegetation; this is illustrated by the

feature similarities in Figure 4-5. However, these features

performed remarkably well against the reflective water. The

rotation invariant HoG, on the other hand, performed in

exactly the opposite manner, while it was easily able to

discard the vegetation the reflective water gave it some

trouble. Because HoG and Gabor histogram look at entirely

different features they have unique strengths and weaknesses.

Another interesting result, is the performance of Gabor

(a)

(b)

Fig. 9. (a) Original image. (b) Detected targets. Red rectangles are the
results of the initial threat detection algorithm. Green rectangles are the final
results.

features when training with sandbox vehicles and the Ran-

dom Forest classifier. Using an artificial model of a vehicle

under different lighting conditions, Gabor was able to retain

nearly all of the vehicles in the set while successfully reduc-

ing the false positives by half. This result was remarkable

because it shows that the features work well across data

sets. This is very important in real world application as

seasons and weather can drastically affect the contents of

these images. Showing that Gabor can successfully perform

from plastic models, to an actual flight, enforces just how

powerful it is.

TABLE I

PERCENTAGE OF VEHICLE AND BACKGROUND IMAGES CORRECTLY

CLASSIFIED USING SEVERAL FEATURE EXTRACTION AND

CLASSIFICATION TECHNIQUES.

Vehicles from indoor images Vehicles from aerial images
KNN RTrees SVM KNN RTrees SVM

Gabor
Vehicles 98.3 98.3 87.5 100 98.9 100
Backgnd 38.1 47.3 51.8 24.2 61.9 32.4

HoG
Vehicles 81.7 87.5 75.0 83.3 85.7 93.3
Backgnd 71.6 58.4 75.4 76.7 66.6 61.4



(a)

(b)

Fig. 10. Example of classification on an image, (a) shows the areas
discovered to be potential threats by the fast detection stage. Image (b)
shows which how the classifier further reduced these results.

V. CONCLUSIONS AND FUTURE WORK

A. Conclusions

This paper introduced a real-time system for vehicle detec-

tion in rural environments from aerial images. Our approach

consists of a cascade detection algorithm with the first stage

serving as a fast detection solution that rejects most of the

background and selects patterns corresponding to man made

objects. The patterns selected by this stage are further refined

in the second stage using image classification techniques.

Our experiments for this stage compared four classification

methods (KNN, SVM, decision trees and random trees) and

two feature extraction techniques (histogram of gradients

and Gabor coefficients). Our system achieves best overall

results using Gabor derived histograms and random trees

classifiers. The system presented in this paper is able to

quickly process real data captured by the pipeline patrol

airplanes which will enable pipeline threat detection to be

performed automatically by UAVs.

B. Future Work

Our future research will be conducted primarily towards

improving the accuracy of the classification stage while

preserving the real time requirements of the system. We

expect that multi-class classifiers that include background

categories such as vegetation, lakes, buildings and roads will

improve the accuracy of the current system. Various feature

extraction techniques will be investigated to further improve

the image descriptors of the above classes.

To improve the fast detection stage, we will be experi-

menting with a Harris-Laplace detector [8] due to its scale

invariant nature; we believe this may be an improvement over

the Harris detector currently being used.
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