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Abstract

Under the assumption of weak perspective, two views of the same planar object are related through an affine
transformation. In this paper, we consider the problem of training a simple neural network to learn to predict the
parameters of the affine transformation. Although the proposed scheme has similarities with other neural network
schemes, its practical advantages are more profound. First of all, the views used to train the neural network are not
obtained by taking pictures of the object from different viewpoints. Instead, the training views are obtained by sampling
the space of affine transformed views of the object. This space is constructed using a single view of the object.
Fundamental to this procedure is a methodology, based on singular-value decomposition (SVD) and interval arithmetic
(IA), for estimating the ranges of values that the parameters of affine transformation can assume. Second, the accuracy of
the proposed scheme is very close to that of a traditional least squares approach with slightly better space and time
requirements. A front-end stage to the neural network, based on principal components analysis (PCA), shows to increase
its noise tolerance dramatically and also to guides us in deciding how many training views are necessary in order for the
network to learn a good, noise tolerant, mapping. The proposed approach has been tested using both artificial and real
data. © 1999 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction of the object followed by orthographic projection and
scaling (weak perspective). Here, we consider the case of
real planar objects, assuming that the viewpoint is arbit-

rary. Given a known and an unknown view of the same

Affine transformations have been widely used in com-
puter vision and particularly, in the area of model-based

object recognition [1-5]. Specifically, they have been
used to represent the mapping from a 2-D object to a 2-D
image or to approximate the 2-D image of a planar
object in 3-D space and it has been shown that a 2-D
affine transformation is equivalent to a 3-D rigid motion
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planar object, it is well known that under the assumption
of weak perspective projection [1,2], the two views are
related through an affine transformation. Given the point
correspondences between the two views, the affine trans-
formation which relates the two views can be computed
by solving a system of linear equations using a least-
squares approach (see Section 3).

In this paper, we propose an alternative approach for
computing the affine transformation based on neural
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networks. The idea is to train a neural network to predict
the parameters of the affine transformation using the
image coordinates of the points in the unknown view.
A shorter version of this work can be found in [6]. There
were two main reasons which motivated us in using
neural networks to solve this problem. First of all, it is
interesting to think of this problem as a learning prob-
lem. Several other approaches have also been proposed
[7,8] which treat similar problems as learning problems.
Some of the issues that must be addressed within the
context of this formulation are: (i) how to obtain the
training views, (ii) how many training views are neces-
sary, (iii) how long it takes for the network to learn the
desired mapping, and (iv) how accurate are the predic-
tions. Second, we are interested in comparing the neural
network approach with traditional least squares used in
the computation of the affine transformation. Given that
neural networks are inherently parallelizable, the neural
network approach might be a good alternative if it turns
out that it is as accurate as traditional least-squares ap-
proaches. In fact, our experimental results demonstrate
that the accuracy of the neural network scheme is as good
as that of traditional least squares with the proposed
approach having slightly less space and time requirements.

There are three main steps in the proposed approach.
First, the ranges of values that the parameters of affine
transformation can assume are estimated. We have de-
veloped a methodology based on singular-value de-
composition (SVD) [9] and interval arithmetic (IA) [10]
for this. Second, the space of parameters is sampled. For
each set of sampled parameters, an affine transformation
is defined which is applied on the known view to generate
a new view. We will be referring to these views as trans-
formed views. The transformed views are then used to
train a single-layer neural network (SL-NN) [11]. Given
the image coordinates of the points of the object in the
transformed view, the SL-NN learns to predict the para-
meters of the affine transformation that align the known
and unknown views. After training, the network is ex-
pected to generalize, that is, to be able to predict the
correct parameters for transformed views that were never
exposed to it during training.

The proposed approach has certain similarities with
two other approaches [7,8]. In [7], the problem of ap-
proximating a function that maps any perspective 2-D
view of a 3-D object to a standard 2-D view of the same
object was considered. This function is approximated by
training a generalized radial basis functions neural net-
work (GRBF-NN) to learn the mapping between a num-
ber of perspective views (training views) and a standard
view of the model. The training views are obtained by
sampling the viewing sphere, assuming that the 3-D
structure of the object is available. In [8], a linear oper-
ator is built which distinguishes between views of a speci-
fic object and views of other objects (orthographic
projection is assumed). This is done by mapping every

view of the object to a vector which uniquely identifies
the object. Obviously, our approach is conceptually sim-
ilar to the above two approaches, however, there are
some important differences. First of all, our approach is
different in that it does not map different views of the
object to a standard view or vector but it computes the
parameters of the transformation that align known and
unknown views of the same object. Second, in our ap-
proach, the training views are not obtained by taking
different pictures of the object from different viewpoints.
Instead, they are affine transformed views of the known
view. On the other hand, the other approaches can com-
pute the training views easily only if the structure of the
3-D object is available. Since this is not always available,
the training views can be obtained by taking different
pictures of the object from various viewpoints. However,
this requires more effort and time (edges must be extrac-
ted, interest point must be identified, and point corre-
spondences across the images must be established).
Finally, our approach does not consider both the x- and
y-coordinates of the object points during training. In-
stead, we simplify the scheme by decoupling the coordi-
nates and by training the network using only one of the
two (the x-coordinates here). The only overhead from
this simplification is that the parameters of the affine
transformation must be computed in two steps.

There are two comments that should be made at this
point. First of all, the reason that a SL-NN is used is
because the mapping to be learned is linear. This should
not be considered, however, as a trivial task since both
the input (image) and output (parameter) spaces are con-
tinuous. In other words, special emphasis should be given
on the training of the neural network to ensure that the
accuracy in the predictions is acceptable. Second, it
should be clear that the proposed approach assumes that
the point correspondences between the unknown and
known views of the object are given. That was also the
case with [7,8]. Of course, establishing the point corre-
spondences between the two views is the most difficult
part in solving the recognition problem. Unless the prob-
lem to be solved is very simple, using the neural network
approach without any a priori knowledge about possible
point correspondences is not efficient in general (see
[12,13] for some example). On the other hand, combin-
ing the neural network scheme with an approach which
returns possible point correspondences will be ideal. For
example, we have incorporated the proposed neural net-
work scheme in an indexing-based-object recognition
system [14]. In this system, groups of points are chosen
from the unknown view and are used to retrieve hypothe-
ses from a hash table. Each hypothesis contains informa-
tion about a group of object points as well as information
about the order of the points in the group. This informa-
tion can be used to place the points from the unknown
view into a correct order before they are fed to the
network.
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There are various issues to be considered in evaluating
the proposed approach such as, how good is the mapping
computed by the SL-NN, what is the discrimination
power of the SL-NNs, and how accurate are the predic-
tions of the SL-NN assuming noisy and occluded data.
These issues have been considered in Section 5. The
quality of the approximated mapping depends rather on
the number of training views used to train the neural
network. The term “discrimination power” means the
capability of a network to predict wrong transformation
parameters, assuming that it is exposed to views which
belong to different objects than the one whose views
were used to train the network (model-specific networks).
Our experimental results show that the discrimination
power of the networks is very good. Testing the noise
tolerance of the networks, we found that it was rather
poor. However, we were able to account for it by attach-
ing a front-end stage to the inputs of the SL-NN. This
stage is based on principal components analysis (PCA)
[15] and its benefits are very important. OQur experi-
mental results show a dramatic increase in the noise
tolerance of the SL-NN. We have also noticed some
improvements in the case of occluded data, but the
performance degrades rather rapidly even with 2-3
points missing. In addition, it seems that PCA can guide
us in deciding how many training views are necessary in
order for the SL-NN to learn a “good”, noise tolerant,
mapping.

The organization of the paper is as follows: Section
2 presents a brief review of the affine transformation.
Section 3 presents the procedure for estimating the
ranges of values that the parameters of the affine trans-
formation can assume. In Section 3, we describe the
procedure for the generation of the training views and
the training the SL-NNs. Our experimental results are
given in Section 4 while our conclusions are given in
Section 5.

2. Affine transformations

Let us assume that each object is characterized by a list
of “interest” points (p’, p5, .. ,P.), Which may corres-
pond, for example, to curvature extrema or curvature
zero-crossings [16]. Let us now consider two images of
the same planar object, each one taken from a different
viewpoint, and two points p = (x,y), p’' =(x',)’), one
from each image, which are in correspondence; then
the coordinates of p can be expressed in terms of the
coordinates of p’, through an affine transformation, as
follows:

p=Ap +b, oy

where A4 is a non-singular 2 x 2 matrix and b is a two-
dimensional vector. A planar affine transformation can

be described by six parameters which account for transla-
tion, rotation, scale, and shear. Writing Eq. (1) in terms of
the image coordinates of the points we have

X =a;;X' +day,) + by, ()]
Yy =ayX +ayy +b,. (3)

The above equations imply that given two different
views of an object, one known and one unknown, the
coordinates of the points in the unknown view can be
expressed as a linear combination of the coordinates of
the corresponding points in the known view. Thus, given
a known view of an object, we can generate new, affine
transformed views of the same object by choosing vari-
ous values for the parameters of the affine transforma-
tion. For example, Fig. 1b and d shows affine trans-
formed views of the planar object shown in Fig. 1a. These
views were generated by transforming the known view
using the affine transformations shown in Table 1. Thus,
for any affine transformed view of a planar object, there is
a point in the 6-dimensional space of 2-D affine trans-
formations which corresponds to the transformation that
can bring the known and unknown views into alignment
(in a least-squares sense).

3. Estimating the ranges of the parameters

Given a known view I’ and an unknown affine trans-
formed view I of the same planar object, as well as the
point correspondences between the two views, there is an
affine transformation that can bring I’ into alignment
with I. In terms of equations, this can be written as
follows:

| =1 4
HE @

or
Xy 1 X1 W
X, 1 dyp Aoy « y
: ’ iy Ay : ? > (5)
, ’ bl b2
Xy V1 X Vm

where (xq, ¥y), (X5, V2)s --- »(X,5 V) are the coordinates
of the points corresponding to I, while (x},)),
(x5, ¥5), - s (x),, ¥y are the coordinates of the points
corresponding to I'. We assume that both views consist
of the same number of points. To achieve this, we con-
sider only the points that are common in both views. Eq.
(5) can be split into two different systems of equations,
one for the x-coordinates and one for the y-coordinates
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Fig. 1. (a) A known view of a planar object; (b)-(d) some new, affine transformed, views of the same object generated by considering the

affine transformations shown in Table 1.

Table 1
The affine transformations used to generate Fig 1b and d

Parameters of the affine transformations

Parameters Fig. 1b Fig. 1c Fig. 1d
ars, aia, by 0992  0.130 —0.073 — 1.010 —0.079 1.048 0.860  0.501 — 0.255
a1, daa, by 0379 —0878 1186 0.835 — 0.367 0.253 0.502 — 0945 0671
of I, as follows: matrix formed by the x- and y-coordinates of the points
— , = ~ - of the known view I', ¢, and ¢, represent the parameters
X1 N a, X1 of the transformation, and p,, p,, are the x- and y-
Xy oy, 1 X, coordinates of the unknown view I. Both Egs. (6) and (7)
o2 (= | |> (6) are overdetermined (the number of points is usually lar-
, , b, ger than the number of parameters, that is, m > 3), and
L X0 Y 1 L X can be solved using a least-squares approach such as
SVD [9]. Using SVD, we can factor the matrix P as
Xy, 1] [y, ] follows:
x5 1 21 y T
2 2 2 =
Ay | = (7 pP=Uwv:, @)
Xy 1 b, y where both U and V are orthogonal matrices (m x 3 and

Using matrix notation, we can rewrite Egs. (6) and (7)
as Pc; = p,and Pc, = p, correspondingly, where P is the

3 x 3 size correspondingly), while W is a diagonal matrix
(3 x 3 size) whose elements w;; are always non-negative
and are called the singular values of P. The solutions of
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Egs. (6) and (7) are then given by ¢, = P*p, and ¢, =
P7p,, where P™ is the pseudo-inverse of P which is equal
to P" = VW*UT, where W is also a diagonal matrix
with elements 1/w;;, if w;; greater than zero (or a very
small threshold in practice), and zero otherwise. Taking
this into consideration, the solutions of Egs. (6) and (7)
are given by [14]

(=S <M>u o)

¢ = Z <ui py) v, (10)

where u; denotes the ith column of matrix U and
v; denotes the ith column of matrix V. Of course, the sum
should be restricted for those values of i for which w;; # 0.

To determine the range of values for the parameters of
affine transformation, we first assume that the image of
the unknown view has been scaled so that the x- and
y-coordinates of the object points belong within a specific
interval. This can be done, for example, by mapping the
image of the unknown view to the unit square. In this
way, its x- and y-coordinates are mapped to the interval
[0,1]. To determine the range of values for the para-
meters of affine transformation, we need to consider all
the possible solutions of Egs. (6) and (7), assuming that
the components of the vectors on the right-hand side of
the equations are always restricted to belong to the
interval [0,1]. Trying to calculate the range of values
using mathematical inequalities did not yield “good”
results in the sense that the novel views corresponding to
the ranges computed were not spanning the whole unit
square but only a much smaller sub-square within it.
Therefore, we consider interval arithmetic [10]. In IA,
each variable is actually represented as an interval of
possible values. Given two interval variables t = [t,,t,]
and r = [r,r,], then the sum and the product of these
two interval variables is defined as follows:

t+r=1[t; +ry,t, +1,], (11)

t*r = [min (t 1y, t175, tF g, tory), max (t,ry, trs, L, tr)].

(12)

Obviously, variables which assume only fixed values can
still be represented as intervals, trivially though, by con-
sidering the same fixed value for both left and right limits.
Applying interval arithmetic operators to Egs. (9) and
(10) instead of the standard arithmetic operators, we can
compute interval solutions for ¢; and c, by setting p, and
p, equal to [0,1]. In interval notation, we want to solve
the systems Pc] = pland Pc} = p;, where the superscript
I denotes an interval vector. The solutions ¢! and ¢}
should be understood to mean ¢} = [c;: Pc, = p,, p, €
pa] and ¢} = [¢y: Pey = p,, p, € py]. It should be noted

that since both interval systems involve the same matrix
P and p,, p, assume values in the same interval, the
interval solutions ¢} and ¢} will be the same. For this
reason, we consider only the first of the interval systems
in our analysis.

A lot of research has been done in the area of interval
linear systems [17]. In more complicated cases, the
matrix of the system of equations is also an interval
matrix, that is, a matrix whose components are interval
variables. Our case here is simpler, since the elements of
P, are the x- and y-coordinates of the known object view
which are fixed. However, if we merely try to evaluate (9)
using the interval arithmetic operators described above,
most likely we will obtain a non-sharp interval solution.
The concept of non-sharp interval solutions is very com-
mon in IA. When we solve interval systems of equations,
not all of the solutions obtained satisfy the problem at
hand [17,18]. We will be referring to these solutions as
invalid solutions. An interval solution is considered to be
sharp if it includes as few invalid solutions as possible.
The reason that sharp interval solutions are very desir-
able in our approach is because the generation of the
training views can be performed faster (see the next
section). The sharpness of the solutions obtained using
IA depends on various factors. One well-known factor
that affects sharpness is when a given interval quantity
enters into a computation more than once [18]. This is
actually the case with Eq. (9). To make it clear, let us
consider the solution for the ith component of ¢,
1<i<3,

U.
il
Cip = (uyxg + Uy Xy + 0 Uy X,)
Wiy
Uiz
+ (Uy2X) + UppXy + o+ Uy X,,)
Wiz
Jis 13
+ w (uy3Xy +up3Xy + 0+ Uy3X,). (13)
33

Clearly, each x; (1 < j < m) enters in the computations of
¢;; more than once. To avoid this, we factor out the x;’s.
Then, Eq. (13) takes the form

Uy U

Cy = i xj<i —> (14)

=1 Wik

The interval solution of ¢;; can now be obtained by
applying interval arithmetic operators in Eq. (14) instead
of Eq. (13). Similarly, we can obtain interval solutions for
the remaining elements of ¢! as well as for ¢%. It should be
mentioned that given the solutions ¢! and c5, then

= Pc} and P! = Pc}. In other words, not every solu-
tion in ¢f and ¢} corresponds to p, and p, that belong in
p% and pj, respectively. This issue is further discussed in
the next section.
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4. Learning the mapping

In order to train the SL-NN, we first need to gene-
rate the training views. This is performed by sampling
the space of affine transformed views of the object. This
space can be constructed by transforming a known view
of the object, assuming all the possible sets of values for
the parameters of affine transformation. Since it is impos-
sible to consider all the possible sets, we just sample the
range of values of each parameter and we consider only
a finite number of sets. However, it is important to keep
in mind that not all of the invalid solutions contained in
the interval solutions of Eq. (9) might have been elimi-
nated completely. As a result, when we generate affine
transformed views by choosing the parameters of affine
transformation from the interval solutions obtained, then

for (@ =min, ; ay Smax, ; ay +=S,,)
for (a12=minuu; Ay SMaX,,,; dp += Sg,,)
for (by=miny,; by Smax,,; by +=s,)
for (ay =miD,, ; ay; < MaX,, ; dy; += S, )
for (ap=min,,,; ax < MaX,,; axn +=5,,)
for (by=miny,; by Smax,,; by +=sp,) {
X; = anx; +any; + b
Vi = anx;+apy; + by
if x; ory; & [0,1], do not consider
the current affine transformed view as a training view.

(a)

for(a,1=mix}all,- ay Smax,,; ay +=8,,)
for (ap=miny,; aj, SMaX,,; a1y += S4,,)
for (by=miny,; by < maxy,; by +=sp,) {
x; = ay X; + apy; + b
if x; & [0,1], do not consider
the current affine transformed view as a training view.

}

()

Fig. 2. A pseudo-code description of the sampling procedure for
the generation of the training views.

— > ap

— > ap

> a4y

NN

— dp

— b
Xm

Ym

(@

X1 >

X2 >

not all of the generated views will lie in the unit square
completely (invalid views). These views correspond to
invalid solutions and must be disregarded. Fig. 2a illus-
trates the procedure. It might be clear now why it is
desirable to compute sharp interval solutions. Sharp in-
terval solutions imply narrower ranges for the para-
meters of affine transformation and consequently, the
sampling procedure of Fig. 2a can be implemented faster.

It is important to observe at this point that both
equations for computing x; and y; (Egs. (2) and (3) which
appear in Fig. 2a) involve the same basis vector (x,)’).
Also, given that the ranges of (a,,, a,,, b,) will be the
same with the ranges of (a,,, a,,, b,), as we discussed in
Section 3, the information to be generated for the
x; coordinates will be exactly the same as the information
to be generated for the y; coordinates. Hence, we de-
couple the x- and y-coordinates of the views and we
generate information only for one of the two (the x-
coordinates here). This is illustrated in Fig. 2b. This
observation offers great simplifications since the samp-
ling procedure shown in Fig. 2a can now take a much
more simplified form as shown in Fig. 2b. Consequently,
the time and space requirements of the procedure for
generating and storing the training views are significantly
reduced. Furthermore, the size of the SL-NN is reduced
in half. Assuming m interest points per view on the
average, the sampling scheme of Fig. 2a requires a net-
work with 2 input nodes and 6 output nodes (Fig. 3a)
while the sampling scheme of Fig. 2b requires only 7 in-
put nodes and 3 output nodes (Fig. 3b). It should be
noted that although we consider only one of the two
image point coordinates of the training views, we are still
referring to them as training views and this should not
cause any confusion.

The decoupling of the point coordinates of the views
and the consideration of only one of the two, imposes an
additional cost during the recovery of the transformation
parameters: they must now be predicted in two steps:
First, we need to feed to the network the x-coordinates of

— > dn

™ 4

NN

(]

Fig. 3. (a) The original neural network scheme, (b) the simplified neural network scheme.
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TRAINING PHASE (APPROXIMATION OF MAPPING)

Choose a model

Compute ranges for the parameters
of the affine transform

Sample the space of parameters
and for each valid set of parameters
generate a (new) transformed view

Apply the coordinates of the
view to the inputs of the NN

—| PCA

NEURAL parameters of the

™| NETWORK

affine transform

Fig. 4. The steps involved in training the SL-NN to approximate the mapping from the space of object’s image coordinates to the space

of affine transformations.

the unknown view in order to predict (a,,, a,,, b;) and
then we need to feed to the network the y-coordinates to
predict (a,,, a,,, b,). However, given the fast response
time of the SL-NN after training has been completed, this
additional cost is not very important. Fig. 4 presents an
overview of the procedure for training a SL-NN to ap-
proximate the mapping between the image coordinates of
an object’s points and the space of parameters of the
affine transformation. The meaning of the box labeled
“PCA” will be discussed later.

5. Experiments

In this section, we report a number of experiments in
order to demonstrate the strengths and weakness of the
proposed approach. We have considered various issues
such as accuracy in the predictions, discrimination
power, and tolerance to noisy and occluded data.

5.1. Evaluation of the SL-NNs’ performance

First, we evaluated how “good” the mapping com-
puted by the SL-NN is. The following procedure was
applied: first, we generated random affine transformed
views of the object by choosing random values for the
parameters of affine transformation. Then, we nor-

malized the generated affine transformed views so that
their x- and y-coordinates belong to the unit square. This
was performed by choosing a random sub-square within
the unit square and by mapping the square enclosing the
view of the object (define by its minimum and maximum
x- and y-coordinates) to the randomly chosen sub-
square. After normalization, we applied the x-coordi-
nates of the normalized unknown view first, and then its
y-coordinates, to the SL-NN in order to predict the affine
transformation that can align the known view with the
normalized unknown view.

To judge how good the predictions yielded by the
SL-NN were, we performed two tests: First, we compared
the predicted values for the parameters of the affine
transformation with the actual values which were com-
puted using SVD. Second, we computed the mean square
error between the normalized unknown view of the
object and the back-projected known view, which was
obtained by simply applying the predicted affine trans-
formation on the known view. This is the most com-
monly used test in hypothesis generation-verification
methods [1,2]. Fig. 5 summarizes the evaluation proced-
ure. Fig. 6 shows the four different objects used in our
experiments. For each object, we have identified a num-
ber of boundary “interest” points, which correspond to
curvature extrema and zero-crossings [16]. These points
are also shown in Fig. 6. The training of the SL-NN is
based only on the coordinates of these “interest” points;
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TEST PHASE ( POSE PREDICTION)

Choose a set of parameters
randomly

Use the affine transform
to generate a transformed

object view

TEST 1

Check how close are the
actual and predicted
parameters

TEST 2

Use the predicted parameters to
predict the unknown view and

compare it with the chosen view

Normalize the view and apply its
x-y coordinates to the inputs
of the NN

Predicted
parameters

. NEURAL
PCA | NETWORK |~
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int_points o
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Fig. 6. The test objects used in our experiments along with the corresponding interest points.

however, the computation of the mean square error be-
tween the back-projected view and the unknown view
utilizes all the boundary points for better accuracy. First,
we estimated for each object the ranges of values that the
parameters of affine transformation can assume. Only the

interest points of each object were used for this estima-
tion. Table 2 shows the ranges computed.

For each object, we generated a number of training
views by sampling the space of affine transformed views
of the object and we trained a SL-NN to learn the desired
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Table 2
Ranges of values for the parameters of affine transformation

1791

Model Ranges of values

Range of all Range of al2 Range of bl
1 [ —2.953,2.953] [ —2.89,2.89] [ — 1.662, 2.662]
2 [ —12.14, 12.14] [ —11.45,11.45] [ —11.25, 12.25]
3 [ —8.22,8.22] [ —8.45,845] [—08, 1.8]
4 [ —4.56, 4.45] [ —4.23,423] [ —4.08, 5.08]
Table 3

Actual and predicted affine transformations

Actual parameters

0.6905 — 1.4162 0.8265

iy, gz, by

Az, Azz, by —0.1771 —0.8077 1.2053

Predicted parameters (4 training views)
ayy, A1, by 0.6900 — 1.4156 0.8265
az1, Az, by —0.1768 — 0.8080 1.2045

Predicted parameters (73 training views)
ay1, Ay2, by 0.6906 — 1.4167 0.8269
Az1, Az, by —0.1768 — 0.8076 1.2055

0.4939 — 0.8132 0.7868 —0.3084 — 1.1053 1.3546
0.8935 0.8684 — 0.4050 0.2782 —1.2115 1.0551
0.4935 —0.8127 0.7867 —0.3079 —1.1058 1.3537
0.8921 0.8698 — 0.4042 0.2781 —1.2114 1.0547
0.4942 —0.8134 0.7871 —0.3082 — 1.1053 1.3550
0.8938 0.8682 — 0.4052 0.2783 — 1.2118 1.0554

mapping. One layer architectures were used because the
mapping to be approximated is linear. The number of
nodes in the input layer was determined by the number of
interest points associated with each object while the
number of nodes in the output layer was set to three
(equal to the three parameters a,,, a;,, and b,). Linear
activation functions were used for the nodes in the output
layer. Training was performed using the back-propaga-
tion algorithm [4]. Back propagation is an iterative
algorithm which in each step adjusts the connection
weights in the network, minimizing an error function.
This is achieved using a gradient search which corres-
ponds to a steepest descent on an error surface represent-
ing the weight space. The weight adjustment is deter-
mined by the current error and a parameter called learn-
ing rate which determines what amount of the error
sensitivity to weight change will be used for the weight
adjustment. In this study, a variation of the back-propa-
gation algorithm (back-propagation with momentum)
was used [11]. This is a simple variation for speeding up
the back-propagation algorithm. The idea is to give each
weight change some momentum so that it accelerates in
the average down-hill direction. This may prevent oscil-
lations in the system and help the system escape local
error function minima. It is also a way of increasing the
effective learning rate in almost-flat regions of the error
surface. In all of our experiments, we used the same
learning rate (0.2) and the same momentum term (0.4).

We assumed that the network had converged when the
sum of squared errors between the desired and actual
outputs was less than 0.0001. Larger values (~0.01) can
still lead to a well trained network, however, we found
that the network becomes more sensitive to noise if we
choose a more relaxed stopping criterion.

Table 3 shows some affine transformations predicted
by a network trained with only four training views for the
case of Model 1. These views were generated by sampling
each parameter’s range at six points. Views with image
coordinates outside the interval [0,1] were not con-
sidered as training views, according to our discussion in
Section 4. This is why although we sampled each para-
meter at six points, we finally ended up with only four
training views. The actual parameters are also shown for
comparison purposes. In addition, Table 3 shows the
parameters predicted, for the same set of test affine trans-
formed views, by a network trained with 73 views which
were generated by sampling each parameter’s range at 15
points. It can be observed that the predictions made by
the network trained with the 73 views are not signifi-
cantly better than the predictions made by the network
trained with the four views.

Table 4 presents results for all of the planar objects,
using various numbers of training views. For each case,
we report the number of samples per parameter’s range
and the generated number of training views. Since it is
not very easy to evaluate the quality of the predictions by
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Table 4
Number of training views and average back-projection mse

Samples Views Avg-mse SD Epochs CPU time (s)
Model 1

6-6-6 4 0.122 0.003 78383 4.47
8-8-8 14 0.01 0.003 20547 29.10
15-15-15 73 0.003 0.001 18736 116.48
Model 2

20-20-20 10 49.48 8.1 8876 9.33
26-26-26 18 0.001 0.0 8798 13.83
30-30-30 32 0.002 0.001 8566 24.97
Model 3

6-6-6 6 35.065 6.825 19462 10.38
10-10-10 14 0.006 0.002 26914 29.37
15-15-15 49 0.005 0.001 23237 7543
Model 4

6-6-6 2 69.392 18.252 6024 1.88
10-10-10 8 0.005 0.001 5774 5.07
14-14-14 20 0.002 0.001 20262 33.20

simply examining the predicted parameter values, we
also report the average mean square back-projection
error and standard deviation. These were computed us-
ing 100 randomly transformed views for each object.
Also, to get an idea of the training time, we report the
number of training epochs required for convergence.
These results indicate that the SL-NN is capable of
approximating the desired mapping very accurately, it
does not require many training views, and training time
is fast. Increasing the number of training views did not
yield a significant improvement in the case of noise-free
data.

We also examined the computational requirements of
the neural network approach. In our comparison, we
assume that the training of the network is done off-line. If
m is the average number of interest points per model, the
neural network approach requires 3m multiplications
and 3m additions to predict a,,, a,, and b,. The same
number of operations are required for predicting the
other three parameters, so it requires 6/m multiplications
and 6m additions totally. For comparison, we also exam-
ined the computational requirements of a traditional
least-squares approach. Specifically, we chose the SVD
approach. Assuming that the factorization of P, is also
done off-line, SVD requires 12/m multiplications, 6 div-
isions, and 6(ri + 6) additions. Given that these computa-
tions are repeated hundred of times during verification in
object recognition, the neural network approach turns
out to have less computational requirements. Also, the
neural network approach has lower memory require-
ments than the traditional approach. Specifically, the
neural network approach requires to store only 6m

values per network (i.e., weights) while the traditional
approach requires to store 6m + 6 + 6 values (for the
elements of U, W, and V matrices). To avoid confusion,
we need to emphasize again that the above comparison
assumes that training and decomposition have been per-
formed off-line. When this assumption is not true, then
the SVD approach is faster than the neural network
approach.

5.2. Discrimination power

Next, we investigated the discrimination power of each
of the networks. For each object, we used the SL-NN
trained with the numbers of training views shown high-
lighted in Table 4. These networks are noise tolerant and
require a minimum number of training views to learn the
mapping. Since each neural network has a different num-
ber of input nodes, depending on the number of interest
points associated with the objects, it is practically im-
possible to present views of different objects, with differ-
ent number of interest points, to the same network. To
overcome this problem, we have attached a front-end
stage to the SL-NN which actually reduces the dimen-
sionality of the input vector, formed by the coordinates of
the interest points of the views. In this way, we could use
the same network architecture for each object. The front-
end stage is based on principal components analysis
(PCA) [15]. PCA is a multivariate technique which trans-
forms a number of correlated variables, to a smaller set of
uncorrelated variables. PCA might have important bene-
fits for the performance of the neural network since less
inputs, which are also uncorrelated, imply faster training
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and probably better generalization. PCA works as fol-
lows: first, we compute the covariance matrix associated
with our correlated variables and then we find the eigen-
values of this matrix. Then, we sort them and we form
a new matrix whose columns consist of the eigenvectors
to the largest eigenvalues. Deciding how many eigen-
values are significant depends on the problem at hand.
The matrix formed by the eigenvectors corresponds to
the transformation which is applied on the correlated
variables to yield the new uncorrelated variables.

In our problem, the correlated variables are the train-
ing views associated with each SL-NN. For each training
set, we applied the PCA and we kept the most significant
principal components, three principal components were
kept since only three eigenvalues were non-zero. The new
training examples are now linear combinations of the old
training views with dimensionality three. A separate net-
work per object was used, having 3 nodes in the input
layer and 3 nodes in the output layer. After training, we
tested each network’s discrimination ability. The results
(average back-projection error and standard deviation
over 100 randomly chosen affine transformed views for
each model) are presented in Table 5. Clearly, each net-
work predicts the correct affine transformation only for
the affine transformed views of the object whose views
were used to train the network. The discrimination
power of the networks can be very useful during recogni-
tion. For example, suppose that we are given an un-
known view. In order to recognize the object which has
produced this view, it suffices to present the view to all of
the networks. Each network will predict a set of trans-
formation parameters, however, only one network (corre-
sponding to the object which has produced the unknown
view) will predict correct parameters.

5.3. Noise tolerance

In this subsection, we investigate how tolerant
the networks’ predictions are, assuming uncertainty in
the locations of the object points. In particular, we as-
sume that the location of each object point can be any-
where within a disc centered at the real location of the

Table 5

Some results illustrating the discrimination power of the networks

point and having a radius equal to ¢ (bounded uncertain-
ty) [19]. Various ¢ values were chosen in order to evalu-
ate the networks’ ability to predict the correct trans-
formation parameters. To test the networks, we used a set
of 100 random affine transformed views and we com-
puted the average mean square back-projection error.
The results obtained, assuming that the front-end stage is
inactive, show that the performance of the networks
is rather poor. Fig. 7 (solid lined) shows a plot of the
average mean square back-projection error versus é.
Also, we show the minimum and maximum errors ob-
served. Trying to improve performance by using more
training views did not help significantly. For instance,
assuming ¢ = 0.2 and 4 training views for Model 1 (first
row in Table 4) resulted in a mean square back-projec-
tion error equal to 1.622 with a standard deviation equal
to 1.692. Assuming the same value for ¢ and 14 views,
resulted in a mean square back-projection error equal to
1.62 with a standard deviation equal to 1.69. Using more
views did not yield much better results.

Then, we tested the performance of the networks, as-
suming that the front-end stage is active. What we ob-
served is quite interesting. For a small number of training
views, the performance was not significantly better than
the performance obtained using the SL-NNs trained with
the original views (i.e., having the front-end stage in-
active). However, a dramatic increase in the noise toler-
ance was observed by training the SL-NNs using more
views. For instance, assuming Model 1, ¢ =0.2 and
4 training views, resulted in a mean square back-projec-
tion error equal to 1.659 with a standard deviation equal
to 1.39. These results are slightly better than those
obtained using the original training views. However,
assuming the same ¢ value and 14 views, resulted in
a mean square back-projection error equal to 0.338
with a standard deviation equal to 0.244, a dramatic
decrease, Fig. 7 (dashed line) shows a plot of the average
mean square back-projection error vs. ¢, as well as the
minimum-maximum errors observed in this case. Some
specific examples are shown in Fig. 8, where the figures
in the left column show the matches achieved without
using the PCA front-end stage, while the figures in

Model 1 Model 2 Model 3 Model 4

Avg-mse SD Avg-mse SD Avg-mse SD Avg-mse SD
nnl 0.01 0.003 61.78 21.1 25.6 5.08 51.67 4.42
nn2 292.24 125.31 0.001 0.0 210.21 79.75 187.78 28.06
nn3 114.08 44.96 313.59 79.86 0.006 0.002 48.79 4.88
nn4 110.29 13.35 66.68 20.05 95.77 13.52 0.002 0.001
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Fig. 7. The average mean square back-projection error vs. ¢ and the ranges of values observed. The solid line corresponds to the original
data while the dashed line corresponds to the PCA transformed data.

the right column show the matches achieved using the
PCA front-end stage. The solid line represents the un-
known view and the dashed line represents the back-
projected view which was computed using the predicted
parameters. The actual and predicted parameters are
shown in Table 6.

In particular, we observed that in the cases where the
number of training views was not enough for the network
to be noise tolerant, the number of non-zero eigenvalues
associated with the covariance matrix of the training
views was consistently less than three. Assuming more
training views did not improve noise tolerance as long as
the number of non-zero eigenvalues was less than three.
However, utilizing enough training views so that the
number of non-zero eigenvalues was three, resulted in
a dramatic error decrease. Including more training views
after this point did not improve noise tolerance signifi-
cantly, and the number of non-zero eigenvalues remained
three. The same observations were made for all of the
four objects used in our experiments. The reason we
finally end up with three non-zero eigenvalues is related
to the fact that only three points are necessary to com-
pute the parameters of the affine transformation. On the
other hand, the training views obtained by sampling the
space of transformed views might not span the space
satisfactorily because of degenerate views. However,
PCA can guide us in choosing a sufficient number of

training views so that the networks can compute good,
noise tolerant, mappings.

5.4. Occlusion tolerance

We have also performed a number of experiments
assuming that some points are occluded. The perfor-
mance of the SL-NNs trained with the original views was
extremely bad, even with one point missing. Incorporat-
ing the PCA front-end stage improved the performance
in cases where 2-3 points were missing. However, the
performance was still poor when more points were re-
moved. This suggests that in order for someone to apply
the proposed method in cases where data occlusion is
present, training of different networks for each object,
using subsets of points rather than on all the object
points, is more appropriate. The simplest way to select
subsets of points is randomly. This, however, is not very
efficient since the number of subsets increases exponenti-
ally with the number of points. A more efficient approach
would be to apply a grouping approach [20,21] to detect
groups of points which belongs to a particular object.

5.5. Performance using real scenes

In this section, we demonstrate the performance of the
method using real scenes. Fig. 9a and b shows two of the
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Fig. 8. The predictions obtained without using the PCA front-end stage (left) and using the PCA front-end stage (right).

scenes used in our experiments. The first scene contains
Model 1, Model 2, and Model 3 while the second scene
contains Model 1 and Model 4 as well as another object
that we have not considered in our experiments. In Scene
1, we have intentionally left out the inner contour to
make recognition more difficult. Point correspondences

were established by hand. In cases that a model point did
not have an exact corresponding scene point, we chose
the closest possible scene point. Also, in cases that
a model point did not have a corresponding scene point
because of occlusion (for example, 1 point is occluded in
Model 1 in Scene 1 and 2 points are occluded in Model
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Table 6
Actual and predicted parameters (planar)

Actual parameters (Figs. 8a,b and c,d)

—0.063063 — 0.120558 0.438347
0.112543 — 0.059775 0.574292

ay, da, d3
by, by, b3

Predicted parameters (without using PCA)
ay, ay, az —0.066537 — 0.112491 0.434431
by, by, bs 0.107072 — 0.058731 0.573535

Predicted parameters (using PCA)
ay, da, a3 —0.063082 — 0.120546 0.438362
by, by, bs 0.112580 — 0.059761 0.574307

Actual parameters (Fig. 8¢, f and g, h)
—0.227311 0.017821 0.363087
0.132470 — 0.133993 0.428320

ay, dj, d3

by, by, by

Predicted parameters (without using PCA)
ay, aa, as —0.226994 0.017980 0.376362
by, by, bs 0.126998 — 0.132556 0.424176

Predicted parameters (using PCA)
ay, dy, Az —0.227329 0.017830 0.363073
by, by, by 0.132497 — 0.133942 0.428366

0.003732 — 0.206111 0.530190
—0.080763 0.152122 0.528324

0.001166 — 0.211314 0.530985
—0.076414 0.145209 0.535657

0.003774 — 0.206166 0.530237
— 0.080823 0.152155 0.528266

—0.073239 —0.143645 0.570144
0.116026 — 0.063228 0.492276

—0.067705 — 0.151540 0.520810
0.121118 —0.063729 0.507291

—0.073270 — 0.143638 0.570132
0.115976 — 0.063170 0.492217

2 in Scene 1), we just picked the point (0.5, 0.5) (the center
of the unit square) to be the corresponding scene point.
The models were back-projected onto the scenes using
the parameters predicted by the networks. The results are
shown in Fig. 9¢ and f. As it can be seen, the models
present in the scene have been recognized and aligned
fairly well with the scene. It should be noted that in
addition to the noise we have introduced by substituting
missing “interest” points by neighboring points or even
artificial points, there is also noise in the location of the
rest scene points due to lack of robustness in the edge
detection or/and “interest” point extraction. The best
alignment was achieved in the case of Models 1 and
3 where most of their interest points were visible. The
alignment of Model 2 has some problems at the non-
sharp end of the object because there were missing “inter-
est” points in this area as well as noise in the location of
the rest points. Finally, Model 4 has been aligned with
the scene quite satisfactorily. In the area of the boundary
where the alignment is not very good, there was an
“interest” point which was not detected and thus was
replaced by the point (0.5, 0.5) in the prediction of the
affine transformation.

6. Conclusions

In this paper, we considered the problem of learning
to predict the parameters of the transformation that

can align a known view of an object with unknown
views of the same object. Initially, we compute the
possible range of values that the parameters of the align-
ment (affine) transformation can assume. This is per-
formed wusing singular-value decomposition (SVD)
and interval analysis (IA). Then, we generate a number
of novel views of the object by sampling the space
of its affine transformed views. Finally, we train a single-
layer neural network (SL-NN) to learn the mapping
between the affine transformed views and the para-
meters of the alignment transformation. A number
of issues related to the performance of the neural net-
works were considered such as accuracy in the predic-
tions, discrimination power, noise tolerance, and oc-
clusion tolerance.

Although our emphasis in this paper is to study the
case of planar objects and affine transformations, it is
important to mention that the same methodology can
be extended and applied to the problem of learning to
recognize 3-D objects from 2-D views, assuming ortho-
graphic or perspective projection. The linear model
combinations scheme proposed by Basri and Ullman
[8] and the algebraic functions of views proposed by
Shashua [22] serve as a basis for this extension. In this
case, novel orthographic or perspective views can be
obtained by combining the image coordinates of a small
number of reference views instead of a single reference
view. The training views can be obtained by sampling the
space of orthographically or perspectively transformed
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Fig. 9. The real scenes used to test the performance of the proposed method ((a), (b)) and the interest points extracted ((c), (d)). The
back-projection results by using the affine transformation predicted by the SL-NN are also shown ((e), (f)).

views which can be constructed using a similar methodo- projection (assuming that the known views are orthogra-
logy. Interestingly, the decoupling of image point coordi- phic [23]). Some results for the orthographic case can be
nates is still possible, even for the case of perspective found in [23].
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