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ABSTRACT

Membrane-bound protein, expressed in the basal-lateral
region, is heterogeneous and an important endpoint for un-
derstanding biological processes. At the optical resolution,
membrane-bound protein can be visualized as being diffused
(e.g., E-cadherin), punctate (e.g., connexin), or simultane-
ously diffused and punctate as a result of sample preparation
or conditioning. Furthermore, there is a significant amount
of heterogeneity as a result of technical and biological vari-
ations. This paper aims at enhancing membrane-bound pro-
teins that are expressed between epithelial cells so that quan-
titative analysis can be enabled on a cell-by-cell basis. We
propose a method to detect and enhance membrane-bound
protein signal from noisy images. More precisely, we build
upon the tensor voting framework in order to produce an
efficient method to detect and refine perceptually interest-
ing linear structures in images. The novelty of the proposed
method is in its iterative tuning of the tensor voting fields,
which allows the concentration of the votes only over areas
of interest. The method is shown to produce high qual-
ity enhancements of membrane-bound protein signals with
combined punctate and diffused characteristics. Experimen-
tal results demonstrate the benefits of using tunable tensor
voting for enhancing and differentiating cell-cell adhesion
mediated by integral cell membrane protein.

Index Terms— Perceptual grouping, membrane-bound
protein, segmentation

1. INTRODUCTION

Epithelial cells compose monolayers in culture by forming
cell-cell adhesion mediated by integral cell membrane pro-
teins. One such protein, E-cadherin, is pathoneumonic for
normal epithelia and its down regulation is associated with
motility, epithelial-mesenchymal transition (EMT) and can-
cer initiation. Research in the area of quantitative analysis
of cell-based assay has spanned learning techniques using
texture-based features for characterizing patterns of protein
expression [1], geometric techniques using nonlinear filter-
ing and curve evolution [2], and shape regularization for
segmentation of subcellular compartments [3]. While seg-
mentation of nuclear regions provides context for localization

studies, probe features also need to be delineated for certain
antibodies. In this paper, a new method for quantifying E-
cadherin that is bound to the basal-lateral region of the cell
is presented. At optical resolution, E-cadherin is visualized
as locally linear features that delineate cell boundaries as
shown in Fig. 1. However, the membrane signal may have
nonuniform intensity around the cell boundary, be punctate
(e.g., connexin) or diffused (e.g., E-cadherin), and may even
be perceptual at certain locations along the boundary.

Fig. 1. Membrane-bound protein has a complex pattern of lo-
calization along the cell membrane. Signal has an additional
punctate pattern on top of an existing diffused signal.

It is well known that symmetry, closure, and continuity
are preattentive processes in the human vision system that can
aid in object-level delineation and recognition [4]. The pro-
posed method allows inference of linear structures from noisy,
often incomplete boundary information. It involves percep-
tual grouping of pixels through voting. Grouping through
voting has been studied for at least five decades. As exam-
ples, Hough introduced the notion of parametric clustering
in terms of well-defined geometry, which was later extended
to the generalized Hough transform. [5] developed an itera-
tive tangential voting system that employs tunable kernels to
refine paths of low curvature in images. [6] proposed a gen-
eral purpose voting framework that uses deformable tensors
to reveal perceptual structures. In general, voting operates on
continuity and proximity, which can occur at multiple scales,
e.g., points, lines, or lines of symmetry. We build upon the
tensor voting framework [6] and the iterative scalar frame-
work [5] in order to produce an efficient method to detect
and refine perceptually interesting linear structures in images.
The novelty of our method is the extension of the tensor vot-
ing framework to precisely detect and refine linear structures
at different scales, by iteratively tuning the tensor fields as
pixel orientations are better defined. Although similar itera-



tive tuning is proposed in [5], to the best of our knowledge,
no analogy has been made within tensor voting.

In a nutshell, our method starts by encoding each pixel in
an image as an unoriented tensor, whose size is proportional
to pixel intensities. A first tensor voting pass is executed us-
ing a ball field, i.e. votes are propagated radially, as no initial
orientation is known. This allows tensors to start their char-
acteristic structural deformation that consequently reveals, al-
though still inaccurately, the presence or not of perceptual
lines in the image. Although the classical tensor voting would
stop at this stage, we proceed with consecutive tensor voting
passes aiming at refining previous results. These consequent
iterations are performed with stick fields, i.e. votes are con-
centrated along pixel’s tangent, most probable continuation
for a line passing through this pixel. The concentration of
the votes through stick fields is possible because the first vot-
ing pass naturally produces an estimation of the orientation at
each pixel. Note that our method independs on initial mea-
sures of gradient or curvature as initial guesses to the loca-
tion of lines, differing significantly from [5]. One interest-
ing observation is that the stick fields are gradually tuned, i.e.
the field aperture is reduced as the voting iterations proceed
and the orientation estimations become more and more accu-
rate. The method is applicable to detection of linear features,
has excellent noise immunity, is tolerant to changes in target
scale, and applicable to a large class of application domains.

The rest of this paper is organized as follows: Section
2 describes the tensor voting framework and its application
to perceptual grouping of linear structures. Section 3 intro-
duces our method, extending the concepts of the tensor voting
framework. Experimental results are shown in Section 4 and
some conclusion are presented in Section 5.

2. THE TENSOR VOTING FRAMEWORK

In the framework proposed by [6], perceptual grouping is
achieved by vote casting between elements of an image.
Such elements are represented as tensors, mathematical enti-
ties whose capability of encoding magnitude and orientation
make tensor voting particularly efficient for detection of
perceptually organized structures, such as edges, lines and
regions. In 2D, tensors can be represented geometrically
as ellipses or analytically as 2 by 2 matrices. Initialized
with an arbitrary size and shape (given respectively by the
eigenvalues, λ1, λ2, and eigenvectors, e1, e2, of its analytical
representation), input tensors are gradually deformed due to
the accumulation of votes cast by other neighboring tensors.
Votes are also tensors composed of certain magnitude and
orientation, which encode the Gestalt principles of proximity,
smoothness and good continuation. Depending on the nature
of the input elements, a priori information about their orien-
tation can be available or not. Therefore, tensor voting offers
two possible vote casting configurations: one that concen-
trates the votes according to the input orientation (stick field -

Fig. 2(a)) and another one that casts votes radially (ball field
- Fig. 2(b)). The voting fields are the composition of all votes
that can be cast from a tensor located in the center of the
field to its neighboring tensors. Given two tensors positioned
in the image, the angle θ, arc length s and curvature κ be-
tween them is used to produce the vote V from one another,
as shown by Equation 2, where N is the vector normal to
the smoothest path between the two tensors and is given by
[−sin(θ) cos(θ)]T . Note that the stick field exists only at
θ ≤ 45◦.

V = e
−

s2 + cκ2

σ2 NNT (1)

(a) (b)
Fig. 2. Tensor voting fields. (a) Stick field - when an estimate
of the initial orientation is known, and (b) Ball field - when
no orientation information is known.

(a) (b) (c)
Fig. 3. Example of perceptual grouping through tensor vot-
ing. A set of (a) input elements are (b) encoded as tensors,
whose (c) resulting deformations reveal a curve.

The tensor deformation imposed by accumulating the
strength and orientation of the votes eventually reveals be-
havioral coherence among image elements. In other words,
elements that lie on the same salient feature (e.g. a curve or
a region) strongly support each other and deform the tensor
at those sites according to the underlying structure orienta-
tion. Therefore, each kind of structure is expected to produce
tensors of a particular shape: very elongated tensors (high
λ1 − λ2) for lines, and more rounded ones (low λ1 − λ2) for
regions. Fig. 3 exemplifies how a set of (a) input elements
are (b) encoded as tensors, whose (c) deformations resulting
from accumulated votes reveal an underlying salient linear
structure. The method is robust to considerable amounts
of outlier noise and does not depend on critical thresholds.
The only free parameter is the scale factor σ, which denes
the range of the voting neighborhood. Some more detailed
information can be found in [6].



3. TUNABLE TENSOR VOTING

We build upon the tensor voting and iterative scalar frame-
work in order to produce an efficient method to detect and re-
fine perceptually interesting linear structures in images. Our
method starts by encoding each pixel in an image as an un-
oriented tensor, whose size is proportional to pixel intensi-
ties (λ1 = λ2 = Iij). A first tensor voting pass is executed
using the ball field (Fig. 2(b)), as no initial pixel orienta-
tion is known. This allows tensors to start their characteris-
tic structural deformation that consequently reveals, although
still inaccurately, the presence or not of perceptual lines in
the image. Although the classical tensor voting would stop at
this stage, we proceed with consecutive tensor voting passes
aiming at refining previous results. These consequent itera-
tions are performed with stick fields (Fig. 2(a)), as the first
voting naturally produces an estimation of the orientation at
each pixel. One interesting observation is that the stick fields
are gradually tuned (i.e. the field aperture is reduced) as the
voting iterations proceed and the orientation estimations be-
come more and more accurate (Fig. 4). At each iteration, ten-
sors that do not deform as lines (low λ1 − λ2) are eliminated
so their influence is not accounted into the following itera-
tions. This tuning process eventually concentrates the votes
only over real lines, producing better, enhanced results. The
iterations stop when the aperture of the voting field is small
enough to produce the same field as in a previous iteration or
at θ = 1◦. Fig. 5 depicts the process.

(a) (b)

(c) (d)
Fig. 4. The signal along the curvelinear path is gradually re-
fined by using tunable filters: (a) Original image. (b) Af-
ter first iteration (ball voting). (c) After four iterations (at
θ = 30◦). (d) Final result (at θ = 5◦).

4. EXPERIMENTAL RESULTS

In order to demonstrate the benefits of our tunable tensor vot-
ing, we apply it to membrane-bound protein signals (e.g. E-
cadherin). The tunable tensor voting is employed in quanti-

Fig. 5. Regularization of membrane signal by tunable tensor
voting. The primary theme is the feedback loop for iterative
change of the voting aperture for continuous refinements.

fying E-cadherin that is bound to the basal-lateral region of
the cell. At optical resolution, E-cadherin is visualized as lo-
cally linear features that delineate cell boundaries as shown
in Fig. 1. However, the membrane signal may have nonuni-
form intensity around the cell boundary, be punctate and dif-
fused, and may even be perceptual at certain locations along
the boundary. Our dataset consists of 270+ 1344x1024 im-
ages with membrane signals presenting these characteristics.

Fig. 6 shows a membrane image (a), the results of initial,
ball voting (b), intermediate and final results (c-e) of the tun-
ing process, evidencing the (f) membrane signal enhancement
achieved. The enhancement 6(f) is clear if compared with the
original membrane signal 6(a).

Fig. 7 shows into more details (a) the punctate and dif-
fused membrane-bound protein signal, and a comparison be-
tween the results of detecting lines with (b) classical tensor
voting, and (c) our tunable tensor voting. Note that by iter-
ating over the result obtained first by a regular application of
tensor voting, pixels are determined with more precision to
belong to the membrane.

Fig. 8 shows some enhancements produced by our
method. Images on the left side are cuts of the original
images, while those on the right are their respective enhanced
versions. In general, membrane signals are highly dispersed
along the cell membrane. This is mainly due to the wide field
microscopy and the influence of out-of-focus light. Note that
even in the presence of noisy and dim signals, our method is
able to infer lines interpolating punctate, diffused patterns.



(a) (b)

(c) (d)

(e) (f)
Fig. 6. Enhancement through tunable tensor voting. (a) Orig-
inal membrane signal. (b) Ball tensor voting result (Also clas-
sical tensor voting result). (c) and (d) Results of intermediate
tuning iterations. (e) Resulting detected linear structures. (f)
Enhanced promoted by tunable tensor voting - (e)+(a).

(a) (b) (c)
Fig. 7. Comparison between tensor voting and tunable ten-
sor voting. (a) Original membrane-bound protein signal. (b)
Processed by classical tensor voting. (c) Processed by tunable
tensor voting.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we introduced a tunable tensor voting method,
able to detect and refine punctate, diffused membrane-bound
protein signals. The method coupled tensor and iterative
voting frameworks to leverage advantages of both methods.
As a result, complex patterns along a curvelinear path can
be regularized and enhanced. Such an enhancement enables
membrane-bound protein to be quantified on a cell-by-cell
basis. As future work, we plan to extend our method to detect
membrane signals in 3D cell cultures. One important remark
is that membrane lines in 2D become surfaces in 3D. As well
as the tensor voting framework, our method can be naturally
scaled to deal with 3D signals.

Fig. 8. Results of tunable tensor voting membrane enhance-
ment. Top row - original membrane signals. Bottom row -
enhanced images. Even in the presence of noisy and dim sig-
nals, our method is able to infer lines interpolating punctate,
diffused patterns.
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