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Abstract: On-road vehicle detection is an important problem with application to driver assistance systems and autonomous,
self-guided vehicles. The focus of this paper is on the problem of feature extraction and classi£cation for rear-view vehicle
detection. Speci£cally, we propose using Gabor £lters for vehicle feature extraction and Support Vector Machines (SVMs)
for vehicle detection. Gabor £lters provide a mechanism for obtaining some degree of invariance to intensity due to global
illumination, selectivity in scale, and selectivity in orientation. Basically, they are orientation and scale tunable edge and
line detectors. Vehicles do contain strong edges and lines at different orientation and scales, thus, the statistics of these
features (e.g., mean, standard deviation, and skewness) could be very powerful for vehicle detection. To provide robustness,
these statistics are not extracted from the whole image but rather are collected from several subimages obtained by subdiving
the original image into subwindows. These features are then used to train a SVM classi£er. Extensive experimentation and
comparisons using real data, different features (e.g., based on Principal Components Analysis (PCA)), and different classi£ers
(e.g., Neural Networks (NNs)) demonstrate the superiority of the proposed approach which has achieved an average accuracy
of 94.81% on completely novel test images.

1. INTRODUCTION
Recognizing that vehicle safety is a primary concern for many
motorists, several national and international projects have been
launched over the past years to investigate new technologies
for improving safety and accident prevention [1]. Robust and
reliable vehicle detection in images acquired by a moving ve-
hicle (on-road vehicle detection) is an important problem in
many related applications such as driver assistance systems
or autonomous, self-guided vehicles.

The most common approach to vehicle detection is using
active sensors such as lasers or millimiter-wave radars. Proto-
type vehicles employing active sensors have shown promis-
ing results, however, active sensors have several drawbacks
such as low resolution, may interfere with each other, and are
rather expensive. Passive sensors on the other hand, such as
cameras, offer a more affordable solution and can be used to
track more effectively cars entering a curve or moving from
one side of the road to another. Moreover, visual informa-
tion can be very important in a number or related applica-
tions such as lane detection, traf£c sign recognition, or object
identi£cation (e.g., pedestrians, obstacles).

Several factors make on-road vehicle detection very chal-
lenging. The landscape along the road changes continuously
while the lighting conditions depend on the time of the day
and the weather. Vehicles come into view with different speeds
and may vary in shape, size, and color. The appearance of a
vehicle depends on its pose and is affected by nearby objects
which may cast shadows or re¤ect light on it. Last but not
least, real-time processing is required. On-road vehicle de-
tection consists of two main steps: (i) hypothesis generation
and (ii) hypothesis veri£cation. During the hypothesis gener-
ation step, the location of one or more vehicles in an image
are hypothesized (e.g., using motion information or vertical
and horizontal edges [2] [3]). In the hypothesis veri£cation
step, the true existence of vehicles at the hypothesized loca-
tions is tested. In this paper, our emphasis is on improving
the performance of the hypothesis veri£cation step assuming
rear vehicle views.

Various vehicle detection approaches have been reported
in the computer vision literature. Bertozzi et al. [4], and
Zhao et al. [5] used stereo-vision-based methods (e.g., in-
verse perspective mapping) to detect vehicles and obstacles.
In Matthews et al. [3], PCA was used for feature extraction
and neural networks for detection. Goerick et al. [6] used a
method called Local Orientation Coding to extract edge in-
formation and neural networks for vehicle detection. Betke
et al. [2] used motion and edge information to hypothesize
the vehicle locations and template-matching for detection. In
Schneiderman et al. [7], the statistics of both object appear-
ance and ”non-object” appearance were represented using the
product of two histograms with each histogram representing
the joint statistics of a subset of wavelet coef£cients and their
position on the object. Papageorgiou et al. [8] proposed a
general object detection scheme using wavelets and SVMs.

In this paper, we propose using Gabor £lters for feature
extraction and SVMs for detection. In the past, Gabor fea-
tures have been used for face recognition [9] and image re-
trieval [10] demonstrating good success. We believe that Ga-
bor features are more appropriate in the context of our ap-
plication. Gabor £lters provide a mechanism for obtaining
some degree of invariance to intensity due to global illumina-
tion, selectivity in scale, as well as selectivity in orientation.
Basically, they are orientation and scale tunable edge and line
detectors. Vehicles do contain strong edges and lines at dif-
ferent orientation and scales, thus, the statistics of these fea-
tures could be very powerful for vehicle veri£cation. Instead
of extracting these statistics from the whole image, we col-
lect them from several subimages obtained by subdiving the
original image into subwindows. This provides robustness to
errors in the hypothesis generation step. These features are
then used to train a SVM classi£er. SVMs are primarily two
class classi£ers which perform structural risk minimization
in order to maximize generalization on novel data [11] [12].
They have shown superior performance in various applica-
tions including object detection [8] and gender classi£cation
[13, 14]. We have performed extensive experiments and com-



parisons using real data. The proposed approach has outper-
formed other schemes (e.g., using PCA features or NN clas-
si£ers), achieving an average accuracy of 94.81% on com-
pletely novel test images.

The rest of the paper is organized as follows: In Section
2, we provide brief overview of Gabor £lters and SVMs. The
proposed feature extraction method is presented in Section
3. A description of the real dataset used in our experiments is
given in Section 4. Our experimental results and comparisons
are presented in Section 5. Section 6 contains our conclusions
and plans for future work.

2. GABOR FILTERS AND SVMS REVIEW
2.1. Gabor Filters
The general functional g(x, y) of the two-dimensional Gabor
£lter family can be represented as a Gaussian function mod-
ulated by an oriented complex sinusoidal signal:
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x̃ = x cos θ + ysinθ and ỹ = −x sin θ + ycosθ (2)

where σx and σy are the scaling parameters of the £lter, W is
the center frequency, and θ determines the orientation of the
£lter. Gabor £lters act as local bandpass £lters. Figures (1a)
and (1b) show the power spectra of two Gabor £lter banks
(the light areas indicate spatial frequencies and wave orienta-
tion).

In this paper, we use the design strategy described in [10].
Given an input image I(x, y), Gabor feature extraction is per-
formed by convolving I(x, y) with a Gabor £lter bank. Al-
though the raw responses of the Gabor £lters could be used
directly as features, some kind of post-processing is usually
applied (e.g., Gabor-energy features, thresholded Gabor fea-
tures, and moments based on Gabor features [15]). In this
paper, we use Gabor features based on moments, extracted
from several subwindows of the input image (see Section 3).

(a) (b) (c)

Fig. 1. (a) Gabor £lter bank with 3 scales and 5 orientations;
(b) Gabor £lter bank with 4 scales and 6 orientations; (c) Fea-
ture extraction subwindows.
2.2. SVMs
SVMs are primarily two-class classi£ers that have been shown
to be an attractive and more systematic approach to learning
linear or non-linear decision boundaries [11] [12]. Given a
set of points, which belong to either of two classes, SVM £nds
the hyperplane leaving the largest possible fraction of points
of the same class on the same side, while maximizing the
distance of either class from the hyperplane. This is equiv-
alent to performing structural risk minimization to achieve
good generalization [11] [12]. Assuming l examples from
two classes

(x1, y1)(x2, y2)...(xl, yl), xi ∈ RN , yi ∈ {−1,+1} (3)

£nding the optimal hyper-plane implies solving a constrained
optimization problem using quadratic programming. The op-
timization criterion is the width of the margin between the
classes. The discriminate hyperplane is de£ned as:

f(x) =
l∑

i=1

yiaik(x, xi) + b (4)

where k(x, xi) is a kernel function and the sign of f(x) in-
dicates the membership of x. Constructing the optimal hy-
perplane is equivalent to £nding all the nonzero ai. Any data
point xi corresponding to a nonzero ai is a support vector
of the optimal hyperplane. The Gaussian kernel is used in
this study (i.e., our experiments have shown that the Gaus-
sian kernel outperforms other kernels in the context of our
application).

3. GABOR FEATURE EXTRACTION

In this section we describe our Gabor feature extraction pro-
cedure. The input to the feature extraction subsystem are the
hypothesized vehicle subimages (extracted manually here; see
Section 4). First, each subimage is scaled to a £xed size
which is 64 × 64. Then, it is subdivided into 9 overlapping
32× 32 subwindows. Assuming that each subimage consists
of 16 16 × 16 patches (see Figure 1(c)), patches 1,2,5,and 6
comprise the £rst 32 × 32 subwindow, 2,3,6 and 7 the sec-
ond, 5, 6, 9, and 10 the fourth, and so forth. The Gabor £lters
are then applied on each subwindow separately. The motiva-
tion for extracting -possibly redundant- Gabor features from
several overlapping subwindows is to compensate for errors
in the hypothesis generation step (e.g., subimages contain-
ing partially extracted vehicles or background information),
making feature extraction more robust.

The magnitudes of the Gabor £lter responses are collected
from each subwindow and represented by three moments: the
mean µij , the standard deviation σij , and the skewness κij

(i.e., i corresponds to the i-th £lter and j to the j-th subwin-
dow). Using moments implies that only the statistical proper-
ties of a group pixels is taken into consideration, while posi-
tion information is essentially discarded. This is particularly
useful to compensate for errors in the hypothesis generation
step (i.e., errors in the extraction of the subimages). Suppose
we are using S = 2 scales and K = 3 orientations (i.e.,
S × K £lters). Applying the £lter bank on each of the 9
subwindows, yields a feature vector of size 162, having the
following form:

[µ11σ11κ11, µ12σ12κ12, · · ·µ69σ69κ69] (5)

We have experimented with using the £rst two moments only,
however, much worst results were obtained which implies
that the skewness information is very important for our prob-
lem.

4. DATASET

The images used in our experiments were collected in Dear-
born, Michigan during two different sessions, one in the Sum-
mer of 2001 and one in the Fall of 2001, using Ford’s propri-
etary low-light camera. To ensure a good variety of data in
each session, the images were caught during different times,



different days, and on £ve different highways. The train-
ing set contains subimages of rear vehicle views and non-
vehicles which were extracted manually from the Fall 2001
data set. A total of 1051 vehicle subimages and 1051 non-
vehicle subimages were extracted by several students in our
lab. Although speci£c instructions were given to the students,
there is some variability in the way the subimages were ex-
tracted. For example, certain subimages cover the whole ve-
hicle, others cover the vehicle partially, and others contain
the vehicle and some background. In [8], the subimages were
aligned by wrapping the bumpers to approximately the same
position. We have not attempted to align the data in our case
since alignment requires detecting certain features on the ve-
hicle accurately. Moreover, we believe that some variability
in the extraction of the subimages can actually improve per-
formance. Each subimage was scaled to 64× 64 and prepro-
cessed to account for different lighting conditions and con-
trast [16].

To evaluate the performance of the proposed approach,
the average accuracy (AR), false positives (FPs), and false
negatives (FNs), were recorded using a three-fold cross val-
idation procedure. Speci£cally, we split the training dataset
randomly three times (Set1, Set2 and Set3) by keeping 80% of
the vehicle subimages and 80% of the non-vehicle subimages
(i.e., 841 vehicle subimages and 841 non-vehicle subimages)
for training. The rest 20% of the data was used for validation
during the training of the neural network classi£er which was
used for comparison purposes. For testing, we used a £xed
set of 231 vehicle and non-vehicle subimages which were ex-
tracted from the Summer 2001 data set.

5. EXPERIMENTAL RESULTS AND COMPARISONS

First, we compared two different Gabor £lter banks using
SVMs, one using 4 scales and 6 orientations (G24S) and one
using 3 scales and 5 orientations (G15S). Figure 2 shows the
average AR, FPs, and FNs for each case. Although the AR
is almost the same in both cases, it is interesting to note that
the G24S £lter bank yielded higher FNs while the G15S £l-
ter bank yielded higher FPs. Obviously, the number of scales
and orientations need to be chosen carefully for optimum per-
formance. Figures 3-4 show some examples of correct detec-
tions as well as some FP and FN examples.

Next, we compared Gabor features with PCA features,
and SVM vs NN classi£ers. Two sets of PCA features were
used with the NN classi£er, one preserving 90% information
(P90N) and one preserving 95% of the information (P95N).
The NN classi£er used was a fully connected, two-layer, feed-
forward neural network trained by the back-propagation algo-
rithm. We varied the number of hidden nodes to obtain opti-
mum performance and used cross-validation to stop training.
Then, we tried the same PCA features using SVMs (P90S and
P95S) for comparison purposes. Figure 2 shows clearly that
Gabor features are superior to PCA features both in terms
of accuracy and number of FPs or FNs. Finally, we used
Gabor features with NNs (G24N, G15N). Comparing the per-
formance of NNs with SVMs, SVMs outperformed NNs using
either PCA or Gabor features. In particular, the SVM classi-
£er achieved approximately 9% higher accuracy than the NN
classi£er using PCA features, and 11% higher accuracy us-
ing Gabor features. In terms of SVM compactness, the aver-

age number of support vectors using Gabor features was 200,
1441 less than using PCA features. This means that SVM-
based vehicle detection using Gabor features is fast.

(a)

(b)

Fig. 2. Performance of various methods. (a). Detection accu-
racy rate. (b). FPs and FNs

(a)

(b)

(c)

(d)

Fig. 3. Some examples of successful detection.
Figure 3 shows some successful detection examples us-

ing Gabor features and SVMs. The results illustrate several
strong points of the proposed method. Figure 3(a) shows a
case where only the general shape of the vehicle is available
(i.e., no details) due to its far distance from the camera. The
proposed method seems to discard irrelevant details, leading
to improved robustness. In Figure 3(b), the vehicle is detected
successfully from its front view, although we have not used
any front views in the training set. This demonstrates good
generalization properties. Also, the proposed method can tol-
erate some illumination changes as can be seen from Figures



3(c-d). Some FP and FN examples are shown in Figure 4.
The majority of the FNs were due to the lack of represen-
tative examples in the training set and due to some extreme
rotations. We believe that some of the FPs are also due to the
relatively small number of ”non-vehicle” examples we used
for training. Given that the ”non-vehicle” class is much larger
than the ”vehicle” class, it would make more sense to include
more ”non-vehicle” examples in the training sets. Bootstrap-
ping [17] would de£nitely be very useful in choosing good
”non-vehicle” examples to improve generalization.

(a)

(b)

(c)

(d)

Fig. 4. Some examples of FNs (a and b) and FPs (c and d)

6. CONCLUSIONS AND FUTURE WORK

We have considered the problem of on-road vehicle detec-
tion from rear views of gray-scale images. Central to our ap-
proach is the idea of using Gabor £lter banks to extract edge
and line features at different scales and orientations. These
features encode the coarse structure of a vehicle, can handle
within-class variations, and are not very sensitive to global
illumination. In our approach, Gabor features were extracted
from subwindows of the input image and were represented
using statistical measures (i.e., mean, standard deviation, and
skewness). Classi£cation (i.e., vehicle veri£cation) was car-
ried out using SVMs. Comparisons using PCA features and
NN classi£ers have demonstrated the superiority of the pro-
posed approach. For future work, we plan to perform com-
parisons using other types of features (e.g., wavelet features),
optimize the parameters of Gabor £lters, and apply feature
selection and/or fusion (e.g., using Genetic Algorithms like
in [18]).
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