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Abstract

The focus of this work is on the problem of feature
selection and classification for on-road vehicle detec-
tion. In particular, we propose using quantized Haar
wavelet features and Support Vector Machines (SVMs)
for rear-view vehicle detection. Wavelet features are
particularly attractive for vehicle detection because
they form a compact representation, encode edge in-
formation, capture information from multiple scales,
and can be computed efficiently. Traditionally, meth-
ods using wavelet features for classification truncate
the coefficients by keeping only the ones with largest
magnitude. We believe that the actual values of the
wavelet coefficients are not very important for vehicle
detection. In fact, the coefficient magnitudes indicate
local oriented intensity differences, information that
could be very different even for the same vehicle un-
der different lighting conditions. Therefore, we argue
and demonstrate experimentally that the actual coef-
ficient values are less important compared to the sim-
ple presence or absence of those coefficients. Specifi-
cally, we propose quantizing large negative coefficients
to -1, large positive coefficients to 1, and setting the
rest coefficients to 0. The quantized coefficients seem
to encode important information about the general
shape and structure of vehicles, while ignoring fine de-
tails and allowing for sufficient inter-class variability.
Experimental results and comparisons using real data
demonstrate the superiority of the proposed approach
which has achieved an average accuracy of 93.94% on
completely novel test images.

1 Introduction

Robust and reliable vehicle detection in images ac-
quired by a moving vehicle (on-road vehicle detection)
is an important problem with application to driver as-
sistance systems or autonomous, self-guided vehicles.
Several factors make on-road vehicle detection very
challenging including variability in scale, location, ori-
entation, and pose. Vehicles, for example, come into
view with different speeds and may vary in shape, size,
and color. Vehicle appearance depends on its pose and
is affected by nearby objects. In-class variability, oc-
clussion, and lighting conditions also change the over-
all appearance of vehicles. Landscape along the road

changes continuously while the lighting conditions de-
pend on the time of the day and the weather. Last
but not least, real-time processing is required.

Appearance-based methods represent a promising
direction to vehicle detection. These methods learn
the characteristics of the vehicle class from a set of
training images which should capture the variability
in vehicle appearance. To improve performance, many
many methods also model the variability in the non-
vehicle class. First, each training image is represented
by a set of features which could be either local or
global. Then, the decision boundary between the vehi-
cle and non-vehicle classes is computed. In principle,
this can be done using learning (e.g., Neural Network
(NN)) or by modelling the probability distribution of
the features in each class [1]. In Matthews et al. [2],
feature extraction is based on PCA. Subwindows con-
taining vehicle candidates were first scaled to a 20x20
subwindow. Each 20x20 subwindow was then divided
into 25 4x4 subwindows and each 4x4 subwindow was
subjected to PCA. The PCA features were then fed
to a NN for classification. Goerick et al. [3] used a
method called Local Orientation Coding (LOC) to ex-
tract edge information. The histogram of LOC within
the area of interest was then fed to a NN for classifi-
cation.

A statistical model for vehicle detection was inves-
tigated by Schneiderman et al. [4, 5]. First, a view-
based approach with multiple detectors was used to
cope with variation from different viewpoint. Second,
a statistical model within each of these detectors was
used to account for other variations. The statistics of
both object appearance and ”non-object” appearance
were represented using the product of two histograms
with each histogram representing the joint statistics
of a subset of PCA features in [4] and Haar wavelet
features in [5] and their position on the object. A dif-
ferent statistical model was investigated by Weber et
al [6]. They represented each vehicle image as a con-
stellation of local features and used the EM algorithm
to learn the parameters of the probability distribution
of the constellations. An interest operator, followed
by clustering, is used to identify important local fea-
tures in vehicle images. Papageorgiou et al. [7] have
proposed using the Haar wavelet transform for feature
extraction and SVMs for classification. A quadruple
density dictionary was generated using redundant ba-
sis functions.
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The focus of this work is on the problem of fea-
ture selection and classification for vehicle detection
from rear views. In particular, we investigate the per-
formance of several different feature selection schemes
using Haar wavelets. Features based on Haar wavelets
(e.g., coefficients) have yielded promising results in
various applications including vehicle detection [5] [7].
Several reasons make these features attractive for vehi-
cle detection. First, they form a compact representa-
tion. Second, they encode edge information, an impor-
tant feature for vehicle detection. Third, they capture
information from multiple resolution levels. Finally,
there exist fast algorithms, especially in the case of
Haar wavelets, for computing these features.
We have implemented and compared three differ-

ent feature selection schemes using Haar wavelet co-
efficients in this work. Given an input image, first
we compute its Haar wavelet decomposition. In the
first feature selection scheme, the features consist of
all the coefficients except the ones in HH sub-band of
the first level [5]. In the second and most traditional
scheme, we keep only the coefficients with largest mag-
nitude. In the last scheme, we keep the largest magni-
tude coefficients as before, however, we quantize their
values to -1, 0, 1. This last scheme has been moti-
vated by the work of Jacobs et al. [8] on image re-
trieval. In all cases, classification is performed using
SVMs. Our experimental results demonstrate that us-
ing quantized wavelet coefficients leads to improved
performance both in terms of error rate as well as false
positive/false negative rate.
The rest of the paper is organized as follows: In

Section 2, we provide brief review of Haar wavelet and
SVMs. The different feature extraction schemes used
in this study are described in detail in Section 3. Our
real dataset is described in Section 4. Our experimen-
tal results and comparisons are presented in Section 5.
Finally, Section 6 contains our conclusions and direc-
tions for future research.

2 Haar Wavelet Transform and

SVMs Reviews

2.1 Haar Wavelet Transform

Wavelets are essentially a type of multiresolution func-
tion approximation that allow for the hierarchical de-
composition of a signal or image. They have been ap-
plied successfully to various problems including object
detection [7, 5], face recognition [9] and image retrieval
[8]. Any given decomposition of a signal into wavelets
involves just a pair of waveforms (mother wavelets).
The two shapes are translated and scaled to produce
wavelets (wavelet basis) at different locations (posi-
tions) and on different scales (durations). We formu-
late the basic requirement of multiresolution analysis
by requiring a nesting of the spanned spaces as:

· · ·V−1 ⊂ V0 ⊂ V1 · · · ⊂ L2 (1)

In space Vj+1, we can describe finer details than
in space Vj . In order to construct a multi-resolution
analysis, a scaling function φ is necessary, together
with the dilated and translated version of it:

φ
j
i (x) = 2

j
2φ(2jx− i). i = 0, · · · , 2j − 1. (2)

The important features of a signal can be better de-
scribed or parameterized, not by using φj

i (x) and in-
creasing j to increase the size of the subspace spanned
by the scaling functions, but by defining a slightly
different set of function ψ

j
i (x) that span the differ-

ence between the spaces spanned by various scales of
the scale function. These functions are the wavelets,
which spanned the wavelet spaceWj such that Vj+1 =
Vj

⊕

Wj ,and can be described as:

ψ
j
i (x) = 2

j
2ψ(2jx− i). i = 0, · · · , 2j − 1. (3)

Different scaling function φj
i (x) and wavelets ψ

j
i (x)

determines different wavelet transform. In this paper,
we use Haar wavelet. Haar wavelet is the simplest to
implement and computationally the least demanding.
Furthermore, since Haar basis forms an orthogonal ba-
sis, the transform provides a non-redundant represen-
tation of the input images. The Haar scaling function
is defined as:

φ(x) =

{

1 for 0 ≤ x < 1
0 otherwise

(4)

and the Haar wavelet is defined as:

ψ(x) =







1 for 0 ≤ x < 1

2

−1 for 1

2
≤ x < 1

0 otherwise

(5)

Wavelet features capture visually plausible features
of the shape and interior structure of objects. Fea-
tures at different scales capture different levels of de-
tail. Coarse scale features encode large regions while
fine scale features describe smaller, local regions. All
these features together disclose the structure of an ob-
ject in different resolutions.

2.2 SVMs

SVMs are primarily two-class classifiers that have been
shown to be an attractive and more systematic ap-
proach to learning linear or non-linear decision bound-
aries [10] [11]. Given a set of points, which belong to
either of two classes, SVM finds the hyper-plane leav-
ing the largest possible fraction of points of the same
class on the same side, while maximizing the distance
of either class from the hyper-plane. This is equivalent
to performing structural risk minimization to achieve
good generalization [10] [11]. Assuming l examples
from two classes

(x1, y1)(x2, y2)...(xl, yl), xi ∈ R
N , yi ∈ {−1,+1}

(6)

2



finding the optimal hyper-plane implies solving a con-
strained optimization problem using quadratic pro-
gramming. The optimization criterion is the width
of the margin between the classes. The discriminate
hyper-plane is defined as:

f(x) =

l
∑

i=1

yiaik(x, xi) + b (7)

where k(x, xi) is a kernel function and the sign of f(x)
indicates the membership of x. Constructing the op-
timal hyper-plane is equivalent to find all the nonzero
ai. Any data point xi corresponding to a nonzero ai

is a support vector of the optimal hyper-plane.
Suitable kernel functions can be expressed as a dot

product in some space and satisfy the Mercer’s condi-
tion [10]. By using different kernels, SVMs implement
a variety of learning machines (e.g., a sigmoidal kernel
corresponding to a two-layer sigmoidal neural network
while a Gaussian kernel corresponding to a radial basis
function (RBF) neural network). The Gaussian radial
basis kernel is given by

k(x, xi) = exp(−
‖ x− xi ‖

2

2δ2
) (8)

The Gaussian kernel is used in this study (i.e., our
experiments have shown that the Gaussian kernel out-
performs other kernels in the context of our applica-
tion).

3 Feature Selection Schemes

The input to the vehicle detection system is a 32× 32
image which is decomposed into 5 levels. In the
first feature selection scheme, we keep all the coeffi-
cients except the ones in the HH sub-band of the first
level[5]. Our motivation here is keeping as much in-
formation as possible while rejecting coefficients that
are likely to encode noise. In the second feature se-
lection scheme, we reject all small magnitude coef-
ficients. Small magnitude coefficients encode mostly
noise or fine details that are not essential for vehicle
detection. Figure 1 (2nd row) shows examples of re-
constructed vehicle/non-vehicle images using only the
50 largest coefficients. It should be clear from Figure
1 that these coefficients convey important shape infor-
mation, a very important feature for vehicle detection,
while unimportant details have been removed.
The third feature selection scheme is based on the

observation that the actual values of the wavelet co-
efficients might not be very important since we are
interested in the general shape of vehicles only. In
fact, the magnitudes indicate local oriented intensity
differences, information that could be very different
even for the same vehicle under different lighting con-
ditions. Therefore, the actual coefficient values might
be less important or less reliable compared to the sim-
ple presence or absence of those coefficients. Similar

observations have been made in [8] assuming an image
retrieval application. The third feature selection thus,
contains the quantized truncated coefficients selected
in the second scheme. We use three quantization lev-
els: -1, 0, and +1 (i.e., -1 representing large negative
coefficients, +1 representing large positive coefficients,
and 0 representing everything else). The images in the
third row of Figure 1 illustrate the quantized wavelet
coefficients of the vehicle images shown in the first
row. For comparison purposes, the last row of Fig-
ure 1 shows the quantized wavelet coefficients of the
non-vehicle images shown in the fourth row.

Figure 1: 1st row: vehicle sub-images used for train-
ing; 2nd row: reconstructed sub-images using the top
50 coefficients; 3rd row: illustration of the top 50 quan-
tized coefficients; 4th and 5th rows: similar results for
some non-vehicle sub-images.

4 Dataset

The images used in our experiments were collected
in Dearborn, Michigan during two different sessions,
one in the Summer of 2001 and one in the Fall of
2001, using Ford’s proprietary low-light camera. To
ensure a good variety of data in each session, the im-
ages were caught during different times, different days,
and on five different highways. The training set con-
tains sub-images of rear vehicle views and non-vehicles
which were extracted manually from the Fall 2001 data
set. A total of 1051 vehicle sub-images and 1051 non-
vehicle sub-images were extracted by several students
in our lab. Although specific instructions were given
to the students, there is some variability in the way the
sub-images were extracted. For example, certain sub-
images cover the whole vehicle, others cover the vehi-
cle partially, and others contain the vehicle and some
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background (see Figure 1). In [7], the sub-images were
aligned by wrapping the bumpers to approximately
the same position. We have not attempted to align the
data in our case since alignment requires detecting cer-
tain features on the vehicle accurately. Moreover, we
believe that some variability in the extraction of the
sub-images can actually improve performance. Each
sub-image in the training and test sets was scaled to
32×32 and preprocessed to account for different light-
ing conditions and contrast [12]. First, a linear func-
tion was fit to the intensity of the image. The result
was subtracted out from the original image to correct
for lighting differences. Then, histogram equalization
was performed to improve contrast.
To evaluate the performance of the proposed ap-

proach, the average accuracy (AR), false positives
(FPs), and false negatives (FNs), were recorded us-
ing a three-fold cross-validation procedure. Specif-
ically, we split the training dataset randomly three
times (Set1, Set2 and Set3) by keeping 80% of the vehi-
cle sub-images and 80% of the non-vehicle sub-images
(i.e., 841 vehicle sub-images and 841 non-vehicle sub-
images) for training. The rest 20% of the data was
used for validation during the training of the neural
network classifier which was used for comparison pur-
poses. For testing, we used a fixed set of 231 vehicle
and non-vehicle sub-images which were extracted from
the Summer 2001 data set.

5 Experimental Results and

Comparisons

We have performed a number of experiments and com-
parisons to evaluate the performance of the three fea-
ture selection schemes. In all cases, classification was
performed using a SVM classifier with Gaussian ker-
nel. First, we considered the original Haar Wavelet co-
efficients, without using the coefficients from the HH

sub-band of the first level as discussed in Section 3. We
will be referring to this approach as (OSVM). Table 1
shows the results we obtained in this case. Using 768
coefficients, the AR rate was 91.49%, the average FP

rate was 6.50%, and the average FN rate was 2.02%.
Besides the relatively high FP rate, these results could
be considered reasonable given that we used a very
simple feature selection scheme. The last column of
Table 1 shows the number of support vectors created
in each case. On the average, this method creates 496
support vectors.
Next, we considered the second selection scheme,

that is, using coefficients with large magnitude. We
will be referring to this approach as TSVM. We run
several experiments keeping the top 25, 50, 100, 125,
150, and 200 coefficients. Figures 2.(a-c) shows the
AR, FP, and FN rates obtained for each case. The best
results were obtained using 125 coefficients T125SVM.
In this case, the AR rate was 92.06%, the average FP

rate was 4.33%, and the average FN rate was 3.61%.

In terms of accuracy, the T125SVM approach

Table 1: Performance of OSVM

Set1 Set2 Set3 Aver
AR 92.21% 90.48% 91.78% 91.49%
FP 5.63% 7.36% 6.50% 6.50%
FN 2.16% 2.16% 1.73% 2.02%
SV 349 459 680 496

Table 2: Performance of T125SVM

Set1 Set2 Set3 Aver
AR 92.21% 92.64% 91.34% 92.06%
FP 3.90% 3.90% 5.20% 4.33%
FN 3.90% 3.46% 3.46% 3.61%
SV 313 309 302 308

Table 3: Performance of Q125SVM

Set1 Set2 Set3 Aver
AR 93.94% 94.37% 93.51% 93.94%
FP 2.60% 1.73% 2.60% 2.31%
FN 3.46% 3.90% 3.90% 3.75%
SV 409 379 421 403

Table 4: Performance of Q125NN, with 80 hidden
nodes

Set1 Set2 Set3 Aver
AR 84.41% 83.55% 83.98% 83.98%
FP 9.68% 13.85% 12.12% 11.88%
FN 5.91% 2.60% 3.90% 4.14%

yielded higher AR than the OSVM approach, how-
ever, the difference is not that significant. However,
the T125SVM approach yielded lower FPs but higher
FNs. In terms of support vectors, the T125SVM ap-
proach created quite less support vectors. The third
selection scheme was considered last, that is, using
quantized truncated coefficients. We will be referring
to this approach as QSVM. We run several experi-
ments again by quantizing the top 25, 50, 100, 125,
150, and 200 coefficients as described in Section 3.
Figures 2.(a-c) show the AR, FP, and FN rates ob-
tained for each case. As can be observed from Fig-
ure 2.(a), the QSVM approach demonstrated higher
AR than the TSVM approach in all cases. In terms
of FPs, the performance of the QSVM approach was
consistently better or equal to the performance of the
TSVM approach when keeping 100 coefficients or more
(see Figure 2.(b)). In terms of FNs, the performance of
the QSVM approach was consistently better or equal
to that of the TSVM approach when keeping 25 coeffi-
cients or more (see Figure 2.(c)). Our best results were
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Figure 2: Performances v.s. number of coefficients
kept. (a). Detection accuracy. (b). False positive.
(c). False negative

obtained using 125 coefficients (see Table 3). The AR

rate obtained in this case was 93.94%, the average FP

rate was 2.31%, and the average FN rate was 3.75%.
In terms of support vectors, the Q125SVM approach
created more support vectors than the T125SVM ap-
proach, in general however, the QSVM created less
number of support vectors than the TSVM approach.
Overall, the Q125SVM approach demonstrated better
performance compared both to the TSVM and OSVM

approaches. For comparison purposes, we tested the
three best feature sets (Q100 Q125, Q150) using a NN

classifier. The NN classifier used was a fully connected,
two-layer, feed-forward neural network trained by the
back-propagation algorithm. We varied the number
of hidden nodes to obtain optimum performance. We
obtained our best results using 125 coefficients and 80
hidden nodes (see Table 4). Specifically, the average
AR rate was 83.98%, the average FP rate was 11.88%,
and the average FN rate was 4.14%. Obviously, the
performance of the SVM classifier outperforms that of
the NN classifier in every respect.

Figure 3 shows some successful detection examples
using the Q125SVM approach. The results illustrate
some interesting points. Figure 3(a-b) shows a case

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

Figure 3: Some successful vehicle detection examples.

where only the general shape of the vehicle is avail-
able (i.e., no details) due to its far distance from the
camera. The Q125SVM method seems to discard ir-
relevant details, leading to improved robustness. The
vehicles in Figures 3(c-d), were detected successfully
from their side view, although we have not included
side views in the training set. This demonstrates good
generalization properties. Also, the proposed method
can tolerate some illumination changes as can be seen
from Figures 3(e-h). Some FP and FN examples are
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(a)

(b)

(c)

(d)

(e)

Figure 4: Examples of FPs (a-c) and FNs (c,d)

shown in Figure 4. The majority of the FNs were due
to the lack of representative examples in the training
set and due to some extreme rotations. We believe
that some of the FPs were due to the relatively small
number of ”non-vehicle” examples we used for train-
ing. Given that the ”non-vehicle” class is much larger
than the ”vehicle” class, it would be necessary to in-
clude more ”non-vehicle” examples in the training set.
Bootstrapping [13] would definitely be very useful for
choosing good ”non-vehicle” examples to improve gen-
eralization.

6 Conclusion and Future Work

We have proposed the use of quantized Haar wavelet
features and SVMs for rear-view vehicle detection.
Our experimental results and comparisons have shown
that quantizing the largest Haar wavelet features offers
improved performance compared to using the original
values of the same coefficients or of a larger set. These
results confirm the fact that feature selection is an im-
portant issue for vehicle detection. For future work,
we will consider the problem for feature selection for
vehicle detection in more detail. In particular, we plan
to investigate the potential of Genetic Algorithms for
feature selection, an approach that has yielded very

promising results in a gender classification application
[14].
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