

2006 IEEE Symposium on
Computational Intelligence and

Games

CIG’06

May 22-24 2006

Reno/Lake Tahoe, USA

Sushil Louis and Graham Kendall (editors)

IEEE Catalog Number: 06EX1415
ISBN: 1-4244-0464-9
Library of Congress: 2006926422

Copyright and Reprint Permission: Abstracting is permitted with credit to the source.
Libraries are permitted to photocopy beyond the limit of U.S. copyright law for
private use of patrons those articles in this volume that carry a code at the bottom of
the first page, provided the per-copy fee indicated in the code is paid through
Copyright Clearance Center, 222 Rosewood Drive, Danvers, MA 01923. For other
copying, reprint or republication permission, write to IEEE Copyrights Manager,
IEEE Operations Center, 445 Hoes Lane, P.O. Box 1331, Piscataway, NJ 08855-
1331. All rights reserved. Copyright ©2006 by the Institute of Electrical and
Electronics Engineers

1-4244-0464-9/06/$20.00 2006 IEEE. 2 CIG'06 (May 22-24 2006)

Contents
Preface … 5

Acknowledgements … 6

Program Committee …. 7

Plenary Presentations
Looking Back at Deep Blue
Murray Campbell, Member of the Deep Blue Team, IBM TJ Watson Research Center. … …… 9
Challenges for Game AI
Ian Lane Davis, CEO of MAD DOC software ………….…………………………………………… 9
Beyond Entertainment: AI Challenges for Serious Games
Michael Van Lent, Institute for Creative Technologies ……………………….…………………. 9

Oral Presentations
ChessBrain II – A Hierarchical Infrastructure for Distributed Inhomogeneous Speed-
Critical Computation
Colin M. Frayn, Carlos Justiniano and Kevin Lew ………………………………………………..13
Grid-Robot Drivers: an Evolutionary Multi-agent Virtual Robotics Task
Daniel Ashlock …………………………………………………………………………………………… 19
Optimizations of data structures, heuristics and algorithms for path-finding on maps
Tristan Cazenave …………………………………………………………………………………………. 27
Decentralized Decision Making in the Game of Tic-tac-toe
Edwin Soedarmadji ………………………………………………………………………………………. 34
Integration and Evaluation of Exploration-Based Learning in Games
Igor V. Karpov, Thomas D’Silva, Craig Varrichio, Kenneth O. Stanley, Risto Miikkulainen ….. 39
A Coevolutionary Model for The Virus Game
P.I.Cowling, M.H.Naveed and M.A. Hossain ………………………………………………………… 45
Temporal Difference Learning Versus Co-Evolution for Acquiring Othello Position
Evaluation
Simon M. Lucas and Thomas P. Runarsson …………………………………………………………… 52
The Effect of Using Match History on the Evolution of RoboCup Soccer Team Strategies
Tomoharu Nakashima, Masahiro Takatani, Hisao Ishibuchi and Manabu Nii ………………….. 60
Training Bao Game-Playing Agents using Coevolutionary Particle
Johan Conradie and Andries P. Engelbrecht …………………………………………………………. 67
Towards the Co-Evolution of Influence Map Tree Based Strategy Game Players
Chris Miles and Sushil J. Louis ………………………………………………………………………… 75
A Player for Tactical Air Strike Games Using Evolutionary Computation
Aaron J. Rice, John R. McDonnell, Andy Spydell and Stewart Stremler …………………………. 83
Exploiting Sensor Symmetries in Example-based Training for Intelligent Agents
Bobby D. Bryant and Risto Miikkulainen ……………………………………………………………… 90
Using Wearable Sensors for Real-Time Recognition Tasks in Games of Martial Arts – An
Initial Experiment
Ernst A. Heinz, Kai S. Kunze, Matthias Gruber, David Bannach and Paul Lukowicz …………… 98
Self-Adapting Payoff Matrices in Repeated Interactions
Siang Y. Chong and Xin Yao …………………………………………………………………………….. 103
Training Function Stacks to play the Iterated Prisoner’s Dilemma
Daniel Ashlock …………………………………………………………………………………………….. 111
Optimization Problem Solving using Predator/Prey Games and Cultural Algorithms
Robert G. Reynolds, Mostafa Ali and Raja’ S. Alomari ……………………………………………… 119

1-4244-0464-9/06/$20.00 2006 IEEE. 3 CIG'06 (May 22-24 2006)

Capturing The Information Conveyed By Opponents’ Betting Behavior in Poker
Eric Saund …………………………………………………………………………………………………. 126
Modeling Children’s Entertainment in the Playware Playground
Georgios N. Yannakakis, Henrik Hautop Lund and John Hallam ………………………………….. 134
NPCs and Chatterbots with Personality and Emotional Response
Dana Vrajitoru …………………………………………………………………………………………….. 142
A Behavior-Based Architecture for Realistic Autonomous Ship Control
Adam Olenderski, Monica Nicolescu and Sushil J. Louis …………………………………………….148
Modelling and Simulation of Combat ID - the INCIDER Model
Vincent A., Dean D., Hynd K., Mistry B. and Syms P. ……………………………………………….. 156
Evolving Adaptive Play for the Game of Spoof Using Genetic Programming
Mark Wittkamp and Luigi Barone ………………………………………………………………………. 164
A Comparison of Different Adaptive Learning Techniques for Opponent Modelling in the
Game of Guess It
Anthony Di Pietro, Luigi Barone, and Lyndon While ……………………………………………….. 173
Improving Artificial Intelligence In a Motocross Game
Benoit Chaper and Colin Fyfe …………………………………………………………………………… 181
Monte-Carlo Go Reinforcement Learning Experiments
Bruno Bouzy and Guillaume Chaslot …………………………………………………………………… 187

Poster Presentations
Optimal Strategies of the Iterated Prisoner’s Dilemma Problem for Multiple Conflicting
Objectives
Shashi Mittal and Kalyanmoy Deb ……………………………………………………………………… 197
Trappy Minimax - using Iterative Deepening to Identify and Set Traps in Two-Player
Games
V. Scott Gordon and Ahmed Reda ………………………………………………………………………. 205
Evaluating Individual Player Strategies in a Collaborative Incomplete-Information Agent-
Based Game Playing Environment
Andrés Gómez de Silva Garza …………………………………………………………………………… 211
Highly Volatile Game Tree Search in Chain Reaction
Dafyd Jenkins and Colin Frayn …………………………………………………………………………. 217
Towards Generation of Complex Game Worlds
Telmo L. T. Menezes, Tiago R. Baptista, and Ernesto J. F. Costa ………………………………….. 224
The Blondie25 Chess Program Competes Against Fritz 8.0 and a Human Chess Master
David B. Fogel, Timothy J. Hays, Sarah L. Hahn and James Quon ……………………………….. 230
Anomaly Detection in Magnetic Motion Capture using a 2-Layer SOM network
Iain Miller, Stephen McGlinchey and Benoit Chaperot ……………………………………………… 236
Intelligent Battle Gaming Pragmatics with Belief Network Trees
Carl G. Looney …………………………………………………………………………………………….. 243
Fun in Slots
Kevin Burns ………………………………………………………………………………………………… 249
Style in Poker
Kevin Burns ………………………………………………………………………………………………… 257
Voronoi game on graphs and its complexity
Sachio Teramoto, Erik D. Demaine and Ryuhei Uehara …………………………………………….. 265
Evolving Warriors for the Nano Core
Ernesto Sanchez, Massimiliano Schillaci and Giovanni Squillero …………………………………. 272

Author Index … 280

1-4244-0464-9/06/$20.00 2006 IEEE. 4 CIG'06 (May 22-24 2006)

Preface

The 2006 IEEE Symposium on Computational Intelligence and Games is the second
in a series of annual meetings. This volume contains 34 papers scheduled to be
presented at the conference as well as 12 posters.

There are several papers focusing on computational intelligence in board games. In
addition, there seems to be increased interest signified by a growing number of papers
relating to evolutionary computing applications in 3D computer games. Papers are
organized approximately in the order in which they will be presented.

This year, we have contributions from Africa, Asia, Europe, and the Americas. We
would like to welcome you all to Reno/Lake Tahoe and we hope you have a
productive and enjoyable symposium. Next year’s symposium is in Hawaii – see you
there in April 2007.

Sushil Louis and Graham Kendall
The University of Nevada, Reno, USA and The University of Nottingham, UK

1-4244-0464-9/06/$20.00 2006 IEEE. 5 CIG'06 (May 22-24 2006)

Acknowledgements

This symposium could not have taken place without the help of a great many people
and organisations.

We would like to thank the IEEE Computational Intelligence Society for supporting
this second symposium. Their knowledge and experience was tremendous in helping
us manage the symposium.

We again used the on-line review system developed by Tomasz Cholewo. The system
worked perfectly and Tom was always on hand to answer any queries we had.

We would like to thank our plenary speakers (Murray Campbell, Ian Lane Davis
and Michael Van Lent). Their participation at this event was an important element of
the symposium and we are grateful for their time and expertise.

The program committee (see next page) reviewed all the papers in a timely and
professional manner. We realise that we have been fortunate to have internationally
recognised figures in computational intelligence and games represented at this
symposium.

Sushil Louis and Graham Kendall
The University of Nevada, Reno, USA and The University of Nottingham, UK

1-4244-0464-9/06/$20.00 2006 IEEE. 6 CIG'06 (May 22-24 2006)

Program Committee

• David Aha, Naval Research Laboratory, USA
• Peter Angeline, Quantam Leap Innovations, Inc, USA
• Daniel Ashlock, University of Guelph, Canada
• Ian Badcoe, NavisWorks Ltd, UK
• Luigi Barone, The University of Western Australia, Australia
• Bir Bhanu, University of California at Riverside, USA
• Darse Billings, University of Alberta, Canada
• Alan Blair, University of New South Wales, Australia
• Misty Blowers, Air Force Research Laboratory, USA
• Bruno Bouzy, Universite Paris 5, France
• Kevin Burns, MITRE, USA
• Murray Campbell, IBM T.J. Watson Research Center, USA
• Darryl Charles, University of Ulster, UK
• Ke Chen, The University of Manchester, UK
• Sung-Bae Cho, Yonsei University, Korea
• Abdenour Elrhalibi, Liverpool John Moores University, UK
• Andries Engelbrecht, University of Pretoria, South Africa
• Thomas English, The Tom English Project, USA
• Maria Fasli, University of Essex, UK
• David Fogel, Natural Selection, Inc., USA
• Colin Frayn, CERCIA, University of Birmingham, UK
• Colin Fyfe, University of Paisley, UK
• Andres Gomez de Silva Garza, Instituto Tecnologico Autonomo de Mexico

(ITAM), Mexico
• Scott Gordon, California State University Sacramento, USA
• Tim Hays, Natural Selection, Inc., USA
• Ernst A. Heinz, UMIT, Austria
• Phil Hingston, Edith Cowan University, Australia
• Evan Hughes, Cranfield University, UK
• Hisao Ishibuchi, Osaka Prefecture University, Japan
• Graham Kendall, The University of Nottingham, UK
• Andruid Kerne, Texas A and M Interface Ecology Lab, USA
• Howard Landman, Ageia Technologies, USA
• Sushil Louis, University of Nevada, Reno, USA
• Simon Lucas, University of Essex, UK
• Stephen McGlinchey, University of Paisley, UK
• Risto Miikkulainen, The University of Texas at Austin, USA
• Chris Miles, University of Nevada, Reno, USA
• Martin Müller, University of Alberta, Canada
• Monica Nicolescu, University of Nevada, Reno, USA
• Jeffrey Ridder, Innovating Systems, Inc., USA
• Thomas Runarsson, University of Iceland, Iceland
• Kristian Spoerer, The University of Nottingham, UK
• Giovanni Squillero, Politecnico di Torino, Italy
• Du Zhang, California State University, USA

1-4244-0464-9/06/$20.00 2006 IEEE. 7 CIG'06 (May 22-24 2006)

1-4244-0464-9/06/$20.00 2006 IEEE. 8 CIG'06 (May 22-24 2006)

Plenary Speakers

Murray Campbell
Member of the Deep Blue Team, IBM TJ Watson Research Center
Looking Back at Deep Blue
It has been nine years since IBM Research's Deep Blue defeated Garry Kasparov, the
then-reigning world chess champion, in an epic six-game match that was closely
watched by millions. In this talk I will present the background that led up to the
decisive match, review the match itself, and discuss some of the broader implications
of Deep Blue's victory. Issues I will cover include Deep Blue's connections to high-
performance computing, what "intelligence" really means, and the roles that games
play in the fields of artificial intelligence, education, and entertainment.

Ian Lane Davis
CEO of MAD DOC software
Challenges for Game AI.
The Video Game industry has grown rapidly in the last few years, and the demand for
more compelling and convincing characters, opponents, and comrades in games has
made AI one of the hottest areas for research in games. Additionally, the AI and
simulation techniques found in games have broad application in "serious" simulations
of all sorts, and game developers find a lot of common areas of interest with academic
and industry researchers. In this talk, I will give an overview of the AI problems
found in both First Person and Strategy games, and tie this into areas of AI outside of
the video game industry. Video Games turn out to be the ultimate laboratory for
developing the most advanced and successful AI techniques, and we'll look at the
current state of the art as well as the open problems now and in the near future

Michael Van Lent
Institute for Creative Technologies
Beyond Entertainment: AI Challenges for Serious Games
In the commercial video game industry artificial intelligence (AI) is starting to rival
graphics as the key technology component that sells games. Most game reviews
comment on the quality of the title's artificial intelligence for better or worse. Games
with innovative AI, such as The Sims and F.E.A.R., are often top sellers. As a result
game studios are actively exploring new AI techniques that fit within the many
constraints of the commercial development process. Serious games, which focus on
non-entertainment goals such as education, training, and communication, pose
different AI challenges and have different constraints. The University of Southern
California's Institute for Creative Technologies has developed ten different serious
games, largely focused on military training, and has a number of research efforts
focused on artificial intelligence for serious games. While these research efforts focus
on the AI requirements of serious games, they often suggest innovations that have
potential applications in the entertainment game industry as well.

1-4244-0464-9/06/$20.00 2006 IEEE. 9 CIG'06 (May 22-24 2006)

1-4244-0464-9/06/$20.00 2006 IEEE. 10 CIG'06 (May 22-24 2006)

Oral Presentations

1-4244-0464-9/06/$20.00 2006 IEEE. 11 CIG'06 (May 22-24 2006)

1-4244-0464-9/06/$20.00 2006 IEEE. 12 CIG'06 (May 22-24 2006)

ChessBrain II – A Hierarchical Infrastructure for Distributed
Inhomogeneous Speed-Critical Computation

Colin M. Frayn, Carlos Justiniano, Kevin Lew

Abstract—The ChessBrain project currently holds an official
Guinness World Record for the largest number of computers
used to play one single game of chess. In this paper, we cover
the latest developments in the ChessBrain project, which now
includes the use of a highly scalable, hierarchically distributed
communications model.

I. INTRODUCTION & BACKGROUND
HE ChessBrain project was initially created to
investigate the feasibility of massively distributed,

inhomogeneous, speed-critical computation via the Internet.
The game of chess lends itself extremely well to such an
experiment by virtue of the innately parallel nature of game
tree analysis, allowing many autonomous contributors to
concurrently and independently evaluate segments of the
game tree. With diminishing returns coming from increased
search speed, we believe that distributed computation is a
valuable avenue to pursue for all manner of substantial tree-
search problems.

 ChessBrain is among the class of applications which
leverage volunteered distributed computing resources to
address the need for considerable computing power. Earlier
projects include the distributed.net (Prime number search)
and the SETI@home project which is focused on the
distributed analysis of radio signals.

Unlike similar projects which are content to receive
processed results within days and weeks, ChessBrain
requires feedback in real-time due to the presence of an
actual time bound game. We believe that ChessBrain is the
first project of its kind to address many of the challenges
posed by stringent time limits in distributed calculations – a
nearly ubiquitous feature of game-playing situations.

In the two years since ChessBrain played its first match,

we have been working on a second generation framework
into which we can host the same chess-playing AI structure,
but which will enable us to make far better use of that same

AI and will permit efficient access to a far wider range of
contributors, including locally networked machines and
dedicated compute clusters.

Manuscript received December 17, 2005.
C. M. Frayn is with the Centre of Excellence for Computational

Intelligence and Applications (CERCIA), School of Computer Science,
University of Birmingham, UK. (e-mail: C.M.Frayn@cs.bham.ac.uk.)

C. Justiniano is a senior member of the Artificial Intelligence group at
Countrywide Financial Corporation (CFC) by day and an independent
researcher and open source contributor by night (e-mail:
cjus@chessbrain.net)

Kevin Lew is a software architect at CCH. In his spare time he builds
Beowulf Clusters. (e-mail: rawr@inorbit.com)

During the first demonstration match, the ChessBrain

central server received work units from 2,070 machines in
56 different countries. Far more machines attempted to
connect, but were unable to do so due to our reliance on a
single central server. Our primary goal for ChessBrain II
was to address this critical issue in a way that allowed for far
greater scalability and removed much of the communication
related processing overhead that was present in earlier
versions.

As a result, we chose a hierarchical model, which we

explain in detail in the following section. This model
recursively distributes the workload thus freeing the central
server from much of its prior time-consuming maintenance
and communications management tasks.

II. PARALLEL GAME TREE SEARCH

We included the basic algorithms for parallel game tree
search in our earlier papers[1,2,3], and they have been
covered in detail in the literature. The ChessBrain project’s
core distributed search uses the APHID algorithm[4]. It
implements an incremental, iterative deepening search,
firstly locally on the server and then, after a certain fixed
time, within the distribution loop. During this latter phase,
the top few ply of the search tree are analysed repeatedly
with new leaf nodes being distributed for analysis as soon as
they arise. Information received from the distributed
network is then incorporated into the search tree, with
branches immediately being extended or pruned as
necessary.

Leaf nodes are distributed to PeerNodes as work units.
These encode the current position to be analysed and the
depth to which it should be searched. Work units are
distributed to the connected PeerNodes on a request basis,
though they are also ranked in order of estimated complexity
using intelligent extrapolation from their recorded
complexity at previous, shallower depths. In this way, the
most complex work units can be distributed to the most
powerful PeerNodes. Work units that are estimated to be far
too complex to be searched within a reasonable time are
further subdivided by one ply, and the resulting, shallower
child nodes are distributed instead. This is illustrated in
figure 1.

T

1-4244-0464-9/06/$20.00 2006 IEEE. 13 CIG'06 (May 22-24 2006)

Fig. 1: Distributed chess tree search

If a node in the parent tree returns a fail-high (beta-cut)
value from a PeerNode search, we then prune the remainder
of the work units from that branch. This indicates that the
position searched by the PeerNode proved very strong for
the opponent, and therefore that the parent position should
never have been allowed to arise. In this situation, we can
cease analysis of the parent position and return an
approximate upper limit for the score. PeerNodes working
on these work units receive an abort signal, and they return
immediately to retrieve a new, useful work unit.

III. CHESSBRAIN II

A. Motivation

The motivation behind ChessBrain II is to enable far greater
scalability, whilst also improving the overall efficiency
compared with the earlier version. Whilst ChessBrain I was
able to support well over 2,000 remote machines, the lessons
learned from the original design have enabled us to develop
an improved infrastructure, which is suitable for a diverse
range of applications.

B. Technical Configuration

ChessBrain II utilizes a custom server application, called
msgCourier, which enables the construction of a hierarchical
network topology that is designed to reduce network latency
through the use of clustering as outlined in figure 2. The
resulting topology introduces network hubs, the importance
of which to graph theory has also been well covered in
research superseding the random graph research of Erdos
and Renyi and in the social network research of Milgram. In
brief, well placed communications hubs help create small

world effects which radically improve the effectiveness of
networked communication. [5, 6].
The ChessBrain II system consists of three server
applications, a SuperNode, ClusterNode and PeerNode.

Component Purpose
SuperNode

Central server. Interfaces with the actual
game being played. Manages work unit
partitioning and distribution.

ClusterNode

Manages communities of local and
distributed PeerNode servers.

PeerNode

Compute node servers. Performs work
unit processing.

Table 1. Server Types

The central server no longer distributes work units

directly to the PeerNodes, as was the case with ChessBrain
I, instead work units are sent to an array of first-level
ClusterNodes, operated by trusted community members.
These ClusterNodes contain no chess-playing code and
behave as network hubs (relay points) through which the
complete set of work units can be passed.

Fig. 2: ChessBrain II configuration

Each ClusterNode contains a complete listing of all

PeerNodes connected to it, together with a profiling score to
determine the approximate CPU speed of the PeerNode,
exactly as in ChessBrain I. Each PeerNode connects to one
and only one ClusterNode

The ClusterNodes, having been allocated a selection of

individual work units by the SuperNode, then divide up
these work units as they see fit based on the profiling data

1-4244-0464-9/06/$20.00 2006 IEEE. 14 CIG'06 (May 22-24 2006)

that they obtain from their own network of PeerNodes. The
primary considerations are that the work units are distributed
to sufficient machines to ensure a reliable reply within the
time required, plus to ensure that the work units perceived to
require a greater computation effort are allocated to those
PeerNodes deemed most fit to analyse them.

In subsequent versions, we intend to move some of the

chess logic from the SuperNode onto the ClusterNodes,
further reducing the communications overhead. Our
anticipation is that the SuperNode will divide up the initial
position into large tree chunks, and then distribute just these
positions to the ClusterNodes. The ClusterNodes will then
further subdivide the given positions, allocating the leaf
nodes to the attached PeerNodes as it sees fit, and
accumulating the returned results as and when they arrive.
The ClusterNodes will then return a single result to the
central SuperNode, instead of many.

C. ChessBrain II Communication Protocols

Early versions of ChessBrain relied on industry standard

XML data encoding first using XMLRPC, and later using
SOAP. The decision to use SOAP was driven by a desire
for interoperability with emerging web services. However,
the need to streamline communication has steered us toward
minimizing our use of XML in favour of economical string
based S-Expressions[7].

To further streamline communication we've implemented

a compact communication protocol similar to the Session
Initiation Protocol (SIP)[8] for use in LAN and cluster
environments where we favour the use of connectionless
UDP rather than stream-based TCP communication.

The ChessBrain I communication protocol consisted of

XML content which was first compressed using ZLib
compression and then encrypted using the AES Rijndael
cipher. Although each PeerNode was quickly able to
decrypt and decompress the payload content, the burden was
clearly on the SuperNode server where each message to and
from a PeerNode required encryption and compression
operations. The situation was compounded by the fact that
each PeerNode communication occurred directly with a
single central SuperNode server.

With ChessBrain II we’ve eliminated direct PeerNode

communication with the central SuperNode and introduced
the concept of batch jobs, which combine multiple jobs into
a single communication package. The reduction in
messaging reduces the impact to the TCP stack while the
grouping of jobs greatly improves the compression ratio.

D. Architecture Advantages
The most significant architectural change to ChessBrain
involves the introduction of network hubs called
ClusterNodes, as outlined in section IIIB.

ChessBrain I used a single SuperNode server to handle

the remote coordination of hundreds of machines. Each
dispatched job required a direct session involving the
exchange of multiple messages between the SuperNode and
its PeerNode clients. With ChessBrain II, jobs are
distributed from a central server at distributedchess.net to
remote ClusterNodes, which in turn manage local
communities of PeerNodes. Each ClusterNode receives a
batch of jobs, which it can directly dispatch to local
PeerNodes thereby eliminating the need for individual
PeerNode to communicate directly with the central server.
This is necessary to harness a compute cluster effectively.
Each ClusterNode collects completed jobs and batches them
for return shipment to the central SuperNode server. The
efficient use of ClusterNode hubs and job batching results in
a reduced load on the central server, efficient use of clusters,
reduced network lag, and improved fault tolerance.

We envision that ClusterNodes will largely be used by
individuals desiring to cluster local machines. Indeed
during the use of ChessBrain I we detected locally
networked machines containing five to eighty machines.
Most local networks in existence today support connection
speeds between 10 to 1000 MBit per second, with the lower
end of the spectrum devoted to wireless networks, and the
higher end devoted to corporate networks, research
networks and compute clusters. ChessBrain II is designed to
utilise cluster machines by taking full advantage of local
intranet network speeds and only using slower Internet
connections to communicate with the SuperNode when
necessary.

If we assume that there are roughly as many PeerNodes
connected to each ClusterNode as there are ClusterNodes,
then effectively the communications costs for each Cluster
node, and indeed the SuperNode itself, is reduced to its
square root. So, with total node count N, instead of one
single bottleneck of size N, we now have approximately
(sqrt(N)+1) bottlenecks, each of size sqrt(N). When
addressing scalability issues, this is a definite advantage,
allowing us to move from an effective node limit of
approximately 2,000 to around one million machines.

E. Architecture Drawbacks

It is only fair to consider the drawbacks of the above
architecture and to explain why it may not be suitable for
every gaming application.

Firstly, as with any distributed computation environment,

there is a substantial overhead introduced by remote
communication. Indeed, communication costs increase as
the number of available remote machines increases.
ChessBrain I involved a single server solution that was
overburdened as an unexpectedly large number of remote
machines became available. Communication overhead on

1-4244-0464-9/06/$20.00 2006 IEEE. 15 CIG'06 (May 22-24 2006)

ChessBrain I reached approximately one minute per move
under peak conditions. However, with the experience gained
since that first exhibition match, and with the subsequent
redesign of ChessBrain I, we have reduced the overhead to
less than ten seconds per move.

The presence of communication overhead means that

shorter time scale games are not currently suitable for
distributed computation. However, games that favour a
higher quality of play over speed of play are likely to make
good use of distributed computation.

Anyone who has ever attempted to write a fully-
functioning alpha-beta pruning chess search algorithm
featuring a multitude of unsafe pruning algorithms such as
null-move, will immediately appreciate the complexity of
debugging a search anomaly produced from a network of
several thousand computers, each of which is running a
number of local tree searches and returning their results
asynchronously. Some of the complexities of such an
approach are covered in [9].

 Adding hierarchical distribution increases complexity,

and highlights the importance of considering how a
distributed application will be tested early in the design
phase. With ChessBrain II we’ve had to build specialized
testing applications in order to identify and correct serious
flaws which might have otherwise proceeded undetected.
Such a suite of testing tools is invaluable for a distributed
application of this size.

F. Comparison with alternative parallel implementations

Other approaches towards parallelising search problems
focus primarily on tightly-coupled compute clusters with
shared memory. The aim of this paper is not to offer a
thorough analysis of the advantages and drawbacks of
remotely distributed search versus supercomputer or
cluster-based search. The main advantages of this method
over that used by, for example, the Deep Blue project [10]
and the more recent Hydra project are as follows:

• Processing power – With many entirely separable
applications, parallelising the search is a simple way to
get extra processing power for very little extra
overhead. For chess, the parallelisation procedure is
highly inefficient when compared to serial search, but
we chose this application because of its inherent
difficulty, our own interest and its public image.

• Distributed memory – With many machines
contributing to the search, the total memory of the
system is increased massively. Though there is much
repetition and redundancy, this still partly overcomes
the extra practical barrier imposed by the finite size of
a transposition table in conventional search.

• Availability – the framework described in this paper is
applicable to a wide range of projects requiring

substantial computing power. Not everyone has access
to a supercomputer or a substantial Beowulf cluster.

• Costs – It’s easier to appeal to 10,000 people to freely
contribute resources than it is to convince one person
to fund a 10,000 node cluster.

Drawbacks include:

• Communication overheads – time is lost in
sending/receiving the results from PeerNodes.

• Loss of shared memory – In games such as chess, the
use of shared memory for a transposition table is
highly beneficial. Losing this (amongst other cases)
introduces many overheads into the search time [11]

• Lack of control – the project manager has only a very
limited control over whether or not the contributors
choose to participate on any one occasion.

• Debugging – This becomes horrendously complicated,
as explained above.

• Software support – The project managers must offer
support on installing and configuring the software on
remote machines.

• Vulnerability – The distributed network is vulnerable
to attacks from hackers, and must also ensure that
malicious PeerNode operators are unable to sabotage
the search results.

At the present time, we are not aware of any other effort
to evaluate game trees in a distributed style over the
internet.

G. Comparison with other Chess projects

We are often asked to compare ChessBrain with more
famous Chess machines such as Deep Blue and the more
recent Hydra project. A direct comparison is particularly
difficult as ChessBrain relies on considerably slower
communication and commodity hardware. In contrast, both
Deep Blue and Hydra are based on a hardware-assisted brute
force approach. A more reasonable comparison would be
between distributed chess applications running on GRIDs
and distributed clusters.

H. The need for MsgCourier

While considering architectural requirements for
ChessBrain II, we investigated a number of potential
frameworks including the Berkeley Open Infrastructure for
Network Computing (BOINC) project. BOINC is a
software application platform designed to simplify the
construction of public computing projects and is presently in
use by the SETI@home project, CERN’s Large Hadron
Collider project and other high-profile distributed computing
projects[12].

After extensive consideration we concluded that

ChessBrain's unique requirements necessitated the

1-4244-0464-9/06/$20.00 2006 IEEE. 16 CIG'06 (May 22-24 2006)

construction of a new underlying server application
technology[13]. One of our requirements for ChessBrain II's
software is that it must be a completely self-contained
application that is free of external application dependencies.
In addition, our solution must be available for use on both
Microsoft Windows and Linux based servers, while
requiring near zero configuration. The rationale behind
these requirements is that ChessBrain II allows some of our
contributors to host ClusterNode servers. It is critically
important that our contributors feel comfortable with
installing and operating the project software. We found that
BOINC requires a greater level of system knowledge than
we're realistically able to impose on our contributors. Lastly,
BOINC was designed with a client and server methodology
in mind, while our emerging requirements for ChessBrain II
include Peer-to-Peer functionality.

Well over a year ago we began work on the Message
Courier (msgCourier) application server in support of
ChessBrain II. MsgCourier is designed to support speed
critical computation using efficient network communication
and enables clustering, which significantly improves overall
efficiency. Unlike other technologies, msgCourier is
designed to enable ad-hoc machine clusters and to leverage
existing Beowulf clusters.

MsgCourier is a hybrid server application that combines

message queuing, HTTP server and P2P features. When we
embarked on this approach there were few such commercial
server applications. Today, Microsoft has release SQL
Server 2005 which combines a SQL Engine, HTTP server
and messaging server features. The industry demands for
performance necessitates the consideration of hybrid
servers.

We chose to build msgCourier independently of

ChessBrain (and free of chess related functionality) in the
hopes that it would prove useful to other researchers.

The following were a few of our primary design
considerations:

• A hybrid application server, combining message
queuing and dispatching with support for store and
forward functionality.

• Multithreaded concurrent connection server design
able to support thousands of concurrent connections.

• High-speed message based communication using
TCP and UDP transport.

• Built-in P2P functionality for self-organization and
clustering, service adverting and subscribing.

• Ease of deployment with minimal configuration
requirements.

• Built-in security features which are comparable to the
use of SSL and or SSH.

The msgCourier project is under continued development.

We are keen to emphasize here that the relevance of the

ChessBrain project is not just to the specific field of
computer chess, but to any distributed computation project.
Hence, we believe that the msgCourier software is a
valuable contribution to all areas of computationally
intensive research. The direct application here demonstrates
that the framework is also flexible enough to operate within
gaming scenarios, where results are required on demand at
high speed and with high fidelity, often in highly
unpredictable search situations.

More information on the msgCourier project is available

at http://www.msgcourier.com

CONCLUSIONS : THE FUTURE OF DISTRIBUTED GAMING

Distributed computation offers the potential for deeper
game tree analysis for a variety of potential gaming
applications. In particular, it overcomes the restrictions
imposed by Moore’s law, producing substantial gains for
any game-playing code that is primarily computationally
limited. For games such as Go, the effective contribution is
reduced as the branching factor is so high that such games
are algorithmically limited rather than computationally
limited in most cases.

Speed-critical distributed computation also has many clear

applications within the financial sector where rapid
decisions must be made, often based on approximate or
inadequate data.

During the past decade we’ve seen high profile Man vs.

Machine exhibitions. We feel that the general public will
eventually lose interest in exhibitions where a single human
player competes against a machine which is virtually
indistinguishable from the common personal desktop
computer. Not since Deep Blue has any Man vs. Machine
event really captured the public’s imagination.

We feel strongly that the future of Man vs. Machine

competitions will migrate toward a format where a human
team competes against a distributed network. Such events
will take place over the Internet with distributed human
members collaborating remotely from their native countries.
This exhibition format will likely capture the public’s
imagination as it more closely resembles themes played out
in popular science fiction.

On the ChessBrain project we’ve learned the importance

of capturing the public’s imagination for without their
support massively distributed computation would not be
economically feasible[14]. Generally, a project is only as
good as the contributors that it is able to attract. This entire
field of research – that of attracting distributed computation
teams to a project – seems remarkably underdeveloped in
the literature, despite the fact that it has an arguably greater
effect on the success of any distributed project than any

1-4244-0464-9/06/$20.00 2006 IEEE. 17 CIG'06 (May 22-24 2006)

degree of algorithmic sophistication. More work in this area
seems extremely important, though it lies firmly within the
realms of psychology and sociology rather than pure
computer science.

We’ve completed preliminary testing on small clusters
with the support of ChessBrain community members [15].
During the first quarter of 2006 we intend to release a major
update of our project software when we will begin large-
scale public testing of ChessBrain II. We expect ChessBrain
II to be fully operational by the second quarter of 2006.

We are actively preparing for a second demonstration
match between ChessBrain II and a leading international
chess grandmaster within the next 12 months. Anyone
wishing to contribute to this event is welcome to contact the
authors at the addresses supplied.

ACKNOWLEDGMENT
We would like to acknowledge the hundreds of

international contributors who have supported the
ChessBrain project over the past four years. In addition, and
by name, we would like to thank Cedric Griss and the
Distributed Computing Foundation; Kenneth Geisshirt and
the Danish Unix users Group; Peter Wilson; Gavin M. Roy
with EHPG Networks; and Y3K Secure Enterprise Software
Inc., whose outstanding support enabled us to establish a
world record and to further contribute to this emerging field.
Colin Frayn is currently supported by a grant from
Advantage West Midlands (UK).

REFERENCES
[1] Frayn, C.M. & Justiniano, C., “The ChessBrain Project – Massively

Distributed Inhomogeneous Speed-Critical Computation”,
Proceedings IC-SEC, Singapore, 2004

[2] Justiniano, C. & Frayn, C.M. “The ChessBrain Project: A Global
Effort To Build The World's Largest Chess SuperComputer”, 2003
ICGA Journal, Vol. 26, No. 2, 132-138

[3] Justiniano, C. “ChessBrain: A Linux-Based Distributed Computing
Experiment”, 2003 Linux Journal, September 2003

[4] Brockington, M. “Asynchronous Parallel Game-Tree Search”, 1997
PhD Thesis, University of Alberta, Dept. of Computer Science

[5] Barabasi, A-L. “Linked: The new Science of Networks”, 2002.
Cambridge, MA: Perseus

[6] Gladwell, M. “The Tipping Point”, 2000. Boston: Little and Company
[7] Rivest, R. L., “S-Expressions”., MIT Theory group,

http://theory.lcs.mit.edu/~rivest/sexp.txt
[8] Session Initiation Protocol (SIP) http://www.cs.columbia.edu/sip/
[9] Feldmann, R., Mysliwietz, P., Monien, B., “A Fully Distributed Chess

Program”, Advances in Computer Chess 6, 1991
[10] Campbell, M., Joseph Hoane Jr., A., Hsu, F., “Deep Blue”, Artificial

Intelligence 134 (1-2), 2002.
[11] Feldmann, R., Mysliwietz, P., Monien, B., “Studying overheads in

massively parallel MIN/MAX-tree evaluation”, Proc. 6th annual ACM
symposium on Parallel algorithms and architectures , 1994

[12] Berkeley Open Infrastructure for Network Computing (BOINC)
project: http://boinc.berkeley.edu/

[13] Justiniano, C., “Tapping the Matrix: Revisited”, BoF LinuxForum,
Copenhagen 2005

[14] Justiniano, C., “Tapping the Matrix”, 2004, O’Reilly Network
Technical Articles, 16th, 23rd April 2004.
http://www.oreillynet.com/pub/au/1812

[15] Lew, K., Justiniano, C., Frayn, C.M., “Early experiences with clusters
and compute farms in ChessBrain II”. BoF LinuxForum, Copenhagen
2005

1-4244-0464-9/06/$20.00 2006 IEEE. 18 CIG'06 (May 22-24 2006)

Grid-Robot Drivers:
an Evolutionary Multi-agent Virtual Robotics Task

Daniel Ashlock
Department of Mathematics and Statistics

University of Guelph
Guelph, Ontario, Canada, N1G 2W1

dashlock@uoguelph.ca

ABSTRACT

Beginning with artificial ants and including such tasks as
Tartarus, software agents that are situated on a grid have
been a staple of evolutionary computation. This manuscript
introduces a grid-robot problem in which the agents simulate
single or multiple drivers on a two-lane interstate freeway that
may have obstructions. The drivers are represented as If-Skip-
Action lists, a linear genetic programming structure. With one
driver present, the problem is similar to an artificial ant task,
requiring only that the grid robot learn where fixed obstacles
are placed. When multiple drivers are present, the process of
driving can be cast as a game similar to the prisoner’s dilemma.
The relative advantage to be gained from inducing another
vehicle to crash is analogous to defection in the prisoner’s
dilemma. The game differs from prisoner’s dilemma in that
defecting is a complex learned behavior, not simply a move
the grid robot may choose. A skilled opponent may doge an
attempt at “defection”. Six sets of experiments with up to five
drivers and two fixed obstacles are performed in this study.
In multi-driver simulations evolution locates a diversity of
behaviors within the context of the driver task.

I. INTRODUCTION

The problem of evolving a controller for a model race car
is one that has been examined before in the evolutionary com-
putation literature [10]. Evolved controllers have competed at
the Congress on Evolutionary Computation in a competition
organized by Simon Lucas for the last several years. This paper
introduces a grid-robot version of the car racing problem, a
discrete version of the problem. A grid robot is a virtual robot
that lives on a grid made of squares. The robot has a position
and heading on the the grid and shares it with other robotic
agents and both fixed and movable obstacles. Examples of
other grid-robot problems are the Tartarus task [11], [1], [3],
[6], [2] in which a robot living on a 6 × 6 grid is awarded
fitness for pushing boxes against the wall, the Herbivore [2]
task in which a grid-robot forages for food, and the North Wall
builder task [4], [2] in which a grid robot tries to retrieve boxes
from a delivery site and use them to build a wall. Grid robots
have also been used in studying the theoretical biology of a
predator-prey system [5].

The motivation for this research is the creation of a simple
framework in which evolutionary algorithms can be used to
investigate the game theory of driving. In this case “simple”
means a simulation with low computational cost in which
a large number of evolutionary runs can be performed in a
short time to survey the strategy space and obtain statistical
perspective. The idea occurred to the author during drives
back and forth between Southern Ontario and Iowa. In the
regions of Michigan, Indiana, and Illinois at the southern
tip of Lake Michigan the interstate system is in a state of
almost continuous repair. This situation often leads to two
streams of traffic becoming one. This, in turn, creates an
arena in which informal behavioral experiments take place
in an often infuriating fashion. The goal of this research is
a modeling environment in which this situation can be studied
with evolved software agents. This study presents the basic
framework and examines the impact of varying the number
of obstacles and drivers on the road. The remainder of the
manuscript is organized as follows. Section II specifies a two-
lane grid-robot driver problem with variable numbers of cars
and obstructions. Section III gives the representation used
to encode the evolvable grid-robot drivers. Section IV gives
the design of the experiments performed. Section V gives
the results of the experiments and performs some analysis.
Section VI draws conclusions and outlines the next steps in
this research.

II. THE GRID-ROBOT DRIVER PROBLEM

A grid robot is a virtual robot embedded in a grid environ-
ment. The grid for the robotic drivers is a 2×N grid with the
long dimension wrapping to form an arbitrarily long periodic
road. The road contains other grid-robot drivers and obstacles
with a fixed position. Examples of driving grids are shown in
Figure 1.

Henceforth grid-robot drivers will be called drivers. A driver
on the grid has a position along the long dimension of the grid,
a lane, and a speed. The driver is given as inputs the distance
to the next other driver and the next barrier both in his own
and in the other lane. In addition the driver is given his own
speed. Distances to the next obstacle and driver are limited to
a sight distance Ds. If no driver or obstacle is visible within
sight distance for a given lane then the input reports a value

1-4244-0464-9/06/$20.00 2006 IEEE. 19 CIG'06 (May 22-24 2006)

0123456789012345689
===================
> #

===================

012345678901234567890123456789
==============================
> > > > > #

#
==============================

Fig. 1. Above are segments of the periodic grids for the driving agents. The
starting position of driving agents on the grid is shown with > while barriers
are denoted by a #. The environment has two lanes.

of zero. On a given time step, a driver may take one of eight
actions:

1) Slow down two, to a minimum speed of zero.
2) Slow down one, to a minimum speed of zero.
3) Do not change speed.
4) Speed up one, to a maximum speed of Smax.
5) Slow down two, to a minimum speed of zero, while

changing lanes.
6) Slow down one, to a minimum speed of zero, while

changing lanes.
7) Do not change speed while changing lanes.
8) Speed up one while changing lanes.
Algorithm 1 specifies how driver speed and position are

updated. Updating happens by time-steps with each driver
executing one action and moving a number of grids equal
to its speed in each time-step. On a time step each drivers
action is computed, and then the drivers move in a random
order that is recomputed each time step. If a driver is trying
to change lanes, it does so the first time it is trying to move
forward and there is a space open beside it in the other lane.
Movement is in speed order as well as random order in the
following sense. Counting down from the highest speed, all
drivers with a speed at least the current speed in the countdown
advance one grid. If a driver advances into a grid occupied
by another driver or an obstacle, then the advancing driver
“crashes” and is removed from the simulation. This is not the
typical result of a crash, that only the nominally guilty party
should suffer. The exploration of other alternatives such as
both drivers being removed or a probabilistic result are left
for subsequent studies.

This updating algorithm was chosen because it is simple and
approximates continuous movement as well as possible given

the grid environment. Other than crashes, it is impossible to
drive off the road because the lanes are “‘current” and “other”
rather than “left” and “right.”

Algorithm 1:

Initialize driver positions as in Figure 1
Initialize driver speed to zero
For T steps

Shuffle drivers into a random order
For all drivers in random order

Compute each driver’s action
If action includes lane-change

Set driver lane change flag
Change speed as per action
For(s=Smax down to 1)

If(driver speed at least s)
If(lane-change flag and possible)

Change lanes, reset flag
End If
Advance driver one square
If grid is occupied

crash, driver is removed from grid
End If

End If
End For

End for
End For

The fitness of a driver in the current study is the distance
(number of grids) it drives in a fixed number of time steps
T . Crashing thus results in a fitness penalty, because fitness
evaluation for the crashing agent ends early. When multiple
drivers are present, it is possible to slow down abruptly or
lane change in front of another driver. The lack of an input
reporting the distance to the nearest driver behind makes these
sorts of behaviors harder, but not impossible.

Experiments with single drivers are similar to artificial ant
problems [8], [9], because the driver must simply learn a fixed
set of obstacles, not a complex and changing environment
populated by other drivers. The driver problems are simpler
than artificial ant problems because they are essentially one-
dimensional in character and have fewer obstacles than the ant
has pieces of food to locate. They are more complex in that the
drivers can see more of their world than artificial ants and in
that drivers must deal with a more complex simulated physics
involving velocity. Nevertheless both artificial ant and single
driver problems are optimization tasks. Once learned, a set
of correctly times turns or lane changes form an unchanging
optima solution to their respective problems.

As will become apparent in Section V the driver problems
have very different character when the number of obstacles
and other drivers are changed. The values for the simulation
parameters Ds, Smax, and T are given in the Experimental
Design section.

1-4244-0464-9/06/$20.00 2006 IEEE. 20 CIG'06 (May 22-24 2006)

III. ISAC LIST DRIVERS

The evolvable structure used to control the driver is an ISAc
list. The ISAc list used in this manuscript is a generalization
of the one presented in [1], [5], and [2]. An ISAc list is an
array of ISAc nodes. An ISAC node is a hextuple

(a, b, c, t, act, jmp)

where a and b are indexes into the set of inputs available to
to the driver, c is a constant in the range 0 ≤ c ≤ Ds, t

is the type of the Boolean test used by the node, act is an
action that the ISAc list may take, and jmp is a specification
of which position in the list to jump to if the action happens
to be a jump action. An ISAc list comes equipped with a set
of Boolean tests available to each node. The tests available to
the nodes in this study have types 0-3 and are, respectively,
v[a] < v[b], v[a] < c, v[a] ≤ v[b], and v[a] ≤ c. The array
v[] is the set of inputs available to the driver. Execution in an
ISAc list is controlled by the instruction pointer.

The instruction pointer starts at the beginning of the ISAc
list, indexing the zeroth node. Using the entries a, b, c, t, act,
and jmp of that node, inputs v[a] and v[b] are retrieved for
the current driver, and the Boolean test of type t is applied to
v[a] and v[b] or a and c, as appropriate. Recall that the vector
v[] holds the distance from the driver to the next driver and
obstacle ahead in each lane as well as the driver’s current
speed, a total of five inputs.. If the test is true, then the
action in the act field of the node is performed; otherwise,
nothing is done. If that action is “jump,” the contents of the
jmp field are loaded into the instruction pointer. Any other
action is executed according to its own type, as described
subsequently. After execution of any action, the instruction
pointer is incremented. Pseudocode for the basic ISAc list
execution loop is given in Algorithm 2.

Algorithm 2:
IP← 0 //Set Instruction Pointer to 0.
Get Inputs; //Put initial values in data vector.
Repeat //ISAc evaluation loop

With ISAc[IP] do //with the current ISAc node,
If test(v[a],v[b],c) then //Conditionally

PerformAction(act); //perform action
Update Inputs; //Revise the data vector
IP ← IP + 1 //Increment instruction pointer
ifIP > Length IP ← 0 //Wrap at end

Until Done;

There are 3 types of actions used in the act field of an
ISAc node. The first is the NOP action, which does nothing.
The inclusion of the NOP action is inspired by experience in
machine-language programming. An ISAc list that has been
evolving for a while will have its performance tied to the
pattern of jumps it has chosen. If new instructions are inserted,
then the target addresses of many of the jumps change. An
“insert an instruction” mutation operator could be tied to a “re-
number all the jumps” routine, but this is clumsy. In particular,
it would create problems when the crossover operator was
applied is one parent had been renumbered and the other had

not. Instead a “do nothing” instruction serves as a placeholder.
Instructions can be inserted by mutating a NOP instruction,
and they can be deleted by mutating the instruction to be
deleted into a NOP instruction. Both of these mutations are
possible without the annoyance of renumbering everything.
The second type of action is the jmp or jump action that moves
the instruction pointer, changing the flow of control. The third
type of actions is an exterior action that causes an ISAc list to
generate an action relevant to the simulation. In this study there
are eight external actions corresponding to the eight possible
actions a driver can take. There are thus 10 total actions; do
nothing, jump, and the eight possible simulation actions.

ISAc lists are initialized at random, filling in uniformly
selected, semantically valid values to the six fields of each
node. This means that it is not difficult to create an ISAc list
that can run indefinitely without generating an exterior action.
To prevent such “infinite loop” behaviors, there is a maximum
number of ISAc nodes an ISAc list may execute. This limit is
called the node limit for the ISAc list. If it exceeds this limit
the list has timed out and is removed from the simulation as
if the driver it was controlling had crashed.

ISAc lists are a form of genetic programming [7] that uses
a fixed-size linear data structure. The data structure has been
specified: it remains to specify the variation operators. The
evolution used in this study uses two variation operators. The
first is two-point crossover operating on the array of ISAc
nodes with the nodes treated as atomic objects. The second
is a mutation operator that first selects a node uniformly at
random and then modifies one of its six fields to a new, valid
value, also selected uniformly at random.

The ISAc lists presented here are a generalization of earlier
designs in that they permit multiple Boolean tests to be
available rather than a single test and in that they have
constants localized to the nodes. The constants also have a
greater range of values. Previously, ISAc lists used constants
as additional inputs. This means that when the number of
constants is large there is a high probability of two constants
being compared. The grid-robot driving problem uses more
constants (0-Ds = 8) than inputs (5) and so has an enhanced
probability of comparing constants in the original design for
ISAc lists.

IV. EXPERIMENTAL DESIGN

The evolutionary algorithm used in this study operates on a
population of 120 ISAc lists functioning as drivers. Each ISAc
list has 30 nodes. The model of evolution is single tournament
selection [2] with tournament size four. The model of evolution
is generational. The population is shuffled into groups of four
drivers. The two best in each group of four are copied over the
two worst. The copies undergo crossover and a single mutation
each. Evolution continues for 1000 generations in each run.

For fitness evaluation the following parameters are used.
Drivers execute T = 100 time steps with a maximum speed
of Smax = 6, a sight distance of Ds = 8, and a node limit
of 2000 ISAc nodes. A collection of six experiments were
performed using the two grids shown in Figure 1 as well as

1-4244-0464-9/06/$20.00 2006 IEEE. 21 CIG'06 (May 22-24 2006)

TABLE I

NUMBERS OF CARS AND OBSTACLES IN THE SIX EXPERIMENTS

PERFORMED IN THIS STUDY.

Experiment Cars Obstacles
1 1 1
2 1 2
3 2 1
4 2 2
5 5 0
6 5 1

a grid with no obstacles. The details of these experiments
are given in Table I. One hundred evolutionary runs were
performed in each experiment. The fitness evaluation in these
experiments used one driver and one obstacle, one driver and
two obstacles, two drivers and one obstacle, two drivers and
two obstacles, five drivers and no obstacles, and five drivers
and one obstacle, respectively.

V. RESULTS AND ANALYSIS

Figure 2 shows the trajectory of crashes as a function of
generations. Figure 3 shows the trajectory of driver speed as
a function of generations. Evolution functioned nominally in
the sense that the number of crashes decreased and speed
increased. The degree of these effects varied significantly
between experiments.

The results suggest that the grid-robot driver environment
replicates some features of actual driving.

• A driver by himself can learn to drive rapidly while
missing isolated obstacles. The runs with one driver and
one obstacle achieved the maximum possible speed for its
best fitness and had relatively few crashes. Note that some
crashes are inevitable because half the population consists
of drivers newly produced by crossover and mutation.

• A single driver with frequent obstacles is still fairly
safe and drives quickly, but not at top speed. The runs
with an obstacle in each lane and one driver achieved
about 60% of the maximum speed on average and even-
tually had the average number of crashes decrease to a
fairly low level.

• Hell is other drivers. The very slowest populations
were those with five cars and the number of crashes
stayed persistently above a level that could be explained
by new, mutant drivers. The experiment using five cars
with one obstacle was significantly slower than all other
sets of runs, and using five cars with no obstacles was
significantly slower than all the remaining runs.

• Obstacles are far more dangerous if there are other
drivers. The runs with two cars and two obstacles ex-
perienced a significantly higher level of crashes than any
other type of run. The five-car one-obstacle runs did not

have an exceptional level of crashes, but this was achieved
by driving at about 1

12
of the maximum possible speed.

Examples of runs from each of the six experiments showing
the mean competent fitness, best fitness, and number of crashes
appear in Figure 4. These runs are not entirely typical, rather
they were chosen to demonstrate interesting dynamics. Mean
competent fitness was first used, as far as the author is
aware, in [6], though the name for it is coined here. In
any evolutionary computation system with disruptive variation
operators, the fitness of newly created creatures is often quite
low. For the drivers both variation operators can, in some
circumstances, create drivers that cheerfully accelerate into the
first obstacle, yielding a fitness less than 1% of the maximum
possible. In order to get a statistic with lower variation and
more information than mean fitness over the entire population,
mean fitness is instead computed over only those creatures
that have survived one round of selection. This removes the
substantial majority of the completely incompetent mutants’s
fitness values from the mean-fitness statistic.

The plot shown for one vehicle and one obstacle is atyp-
ically bad in the sense that the mean and best fitness did
not arrive at 585 within five generations. The fitness of 585
results from a driver simply stepping on the accelerator while
managing to avoid obstacles. In the run shown, a locally
optimal (slower) strategy dominated for about 30 generations.
A small increase in the number of crashes accompanies the
takeover by a fitness 585 strategy near generation 50. This
suggests that the initial slowness of the run resulted from a
strategy that had trouble avoiding the obstacle at top speed.
The bump in the crash statistic suggests intermediate forms,
perhaps created by crossover, that had higher speed and also
a good chance of hitting the obstacle. With only one car, the
fitness function is deterministic, and so a crash is genetically
predestined.

Examining the plot for one car with two obstacles, the
presence of a bump in the crash statistic accompanying inno-
vation is far more pronounced. Such a crash-bump appears in
generations 10, 25, and 90, each accompanied by a noticeable
jump in the best fitness. The model of evolution used is elitist
with the best two drivers at no risk of death. With one driver
the determinism of fitness evaluation yields a fitness ratchet.
The mean competent fitness simply chases the best fitness
efficiently in both sets of runs with a single driver.

All four plots with multiple drivers exhibit maximum fitness
that falls back. This is typical behavior for multiple driver
runs. When multiple drivers are present, a relative fitness
advantage may be obtained either by having a high absolute
fitness (driving fast without crashing) or by getting the other
drivers to crash. Cursory examination of the ISAc lists shows
that actions with lane changes are more common for the
drivers evolved in multiple-driver runs. Crashes are far more
common in multiple-driver runs; the presence of an excess of
lane changing, especially in the five-driver no-obstacle runs,
strongly suggests that many of the crashes are strategic.

The random shuffling of driver action order in multiple-
driver runs makes fitness evaluation stochastic: running the

1-4244-0464-9/06/$20.00 2006 IEEE. 22 CIG'06 (May 22-24 2006)

0

20

40

60

80

100

120

0 20 40 60 80 100

C
ra

sh
es

generations

95% Confidence, number of crashes per generation

2 cars 2 obstacles

1 car 1 obstacle

5 cars 1 obstacle

Other runs

Fig. 2. This figure shows confidence intervals on the number of crashes in each generation for all six experiments for the first 100 generations. After 100
generations there is no substantial change in the average number of crashes.

same set of drivers twice need not yield the same fitness
numbers. In addition to being stochastic the multiple driver
fitness evaluation is co-evolutionary: fitness of an individual
depends on the identity of the others being co-evaluated. This
means that the evolutionary dynamics should be substantially
more complex in the multiple-driver runs. Examination of the
plots suggest they are. The time for mean competent fitness
to catch best fitness is longer, and both the fitness and crash
statistics jump around more.

The two-car two-obstacle run shows a not uncommon
behavior from about generations 30-120 in which the number
of crashes exceeds the best fitness. This could mean that
competitive crash-induction exceeds speed as a source of
relative fitness in some epochs. In spite of its initial “Death
Race 2000” character, this run eventually steadies down to
achieve a fairly high fitness, well above the average for two-
driver two-obstacles runs. The two five-driver plots shown
are among the most fit in their respective experiments. The
bump near generation 130 in the five-driver one-obstacle run
is a common feature that seems to represent a momentary
advantage in getting others to crash that is rapidly lost.

VI. CONCLUSIONS AND NEXT STEPS

As presented, the driving task for grid robots can be run as
an optimization task with a single driver or as a co-evolving
game with multiple drivers. In many instances the system
locates fast drivers. The multiple-driver experiments do not

achieve as high a speed on average, perhaps because crashing
other drivers is a more efficient means of achieving high
fitness. Even in the very simple system presented in this study,
the presence of multiple drivers enables complex evolutionary
dynamics.

A. Why would drivers ever cooperate?

In the prisoner’s dilemma, two agents are given a choice of
cooperating or defecting. They make their choices of which
move to make simultaneously. The highest payoff T comes
from successful defection into cooperation by an opponent.
The other half of a defect-cooperate pair receives the lowest
possible payoff S. The other payoffs are D for mutual defection
and C for mutual cooperation. In order to be prisoner’s
dilemma, the payoffs must satisfy the following inequalities:

S ≤ D ≤ C ≤ T (1)

and
S + T ≤ 2C. (2)

The game that drivers play fails to be precisely prisoner’s
dilemma on grounds that it is not a simultaneous game. The
driver that manages to crash his opponent removes the oppo-
nent from the game, making reciprocal defection impossible.
Attempted reciprocal defection, however, is possible. A pair
of drivers in close proximity on the grid could be thought
of as playing a two-player game very similar to prisoner’s

1-4244-0464-9/06/$20.00 2006 IEEE. 23 CIG'06 (May 22-24 2006)

0

100

200

300

400

500

600

0 50 100 150 200

F
itn

es
s

generations

95% Confidence, population mean distance driven

1 car 1 obstacle

1 car 2 obstacles

5 cars 1 obstacle

All other runs

0

20

40

60

80

100

120

140

160

180

200

0 50 100 150 200

F
itn

es
s

generations

95% Confidence, population mean distance driven

Five cars, no obstacles

Two cars, one and two obstacles

Fig. 3. This figure shows confidence intervals on the distance driven by the drivers for all six experiments (upper plot) and the three experiments in the
middle of the distribution (lower plot) for the first 200 generations. After 200 generations there is no substantial change in the average number of crashes.

dilemma with moves attempt to crash the other player (defect)
and do not attempt to crash the other player (cooperate). If
both players cooperate, then both remain on the track driving.
While this could lead to a maximal payoff, its expectation is
lower because of the congestion caused by the presence of the
other driver. A successful crash results in a lower payoff for
the driver that crashes, although how much lower depends on
how far into the evaluation period the driver is. A successful
crash also clears the way for the driver that did not crash,
creating a less congested roadway. If both players decide to

try to crash one another, then the expected payoff of both
players is changed, probably down.

The lack of mutual defection and the lack of simultaneity
make the grid-robot driver task with multiple drivers some-
thing that is clearly not a strict prisoner’s dilemma. The game
of deciding whether or not to attempt to crash one’s opponent
has many of the same elements as prisoner’s dilemma, and
in fact of the one-shot prisoner’s dilemma. This makes the
multiple driver runs with high fitness somewhat puzzling.
Evolution of the one-shot prisoner’s dilemma leads, almost

1-4244-0464-9/06/$20.00 2006 IEEE. 24 CIG'06 (May 22-24 2006)

0

100

200

300

400

500

600

0 50 100 150 200 250

F
itn

es
s

or
 C

ra
sh

es

Generations

Mean and best fitness and number of crashes, run0

One car, One obstacle Average
Best

Crashes

0

100

200

300

400

500

600

0 50 100 150 200 250

F
itn

es
s

or
 C

ra
sh

es

Generations

Mean and best fitness and number of crashes, run34

One car, two obstacles Average
Best

Crashes

0

100

200

300

400

500

600

0 50 100 150 200 250

F
itn

es
s

or
 C

ra
sh

es

Generations

Mean and best fitness and number of crashes, run38

Two cars, one obstacle Average
Best

Crashes

0

100

200

300

400

500

600

0 50 100 150 200 250

F
itn

es
s

or
 C

ra
sh

es

Generations

Mean and best fitness and number of crashes, run24

Two cars, two obstacles Average
Best

Crashes

0

100

200

300

400

500

600

0 50 100 150 200 250

F
itn

es
s

or
 C

ra
sh

es

Generations

Mean and best fitness and number of crashes, run29

Five cars, no obstacle Average
Best

Crashes

0

100

200

300

400

500

600

0 50 100 150 200 250

F
itn

es
s

or
 C

ra
sh

es

Generations

Mean and best fitness and number of crashes, run74

Five cars, one obstacle Average
Best

Crashes

Fig. 4. Examples of runs from all six experiments showing mean competent and best fitness as well as the number of crashes. Crashes and fitness are both
counted as integers and, happily, are of similar enough scale to be displayed on the same axis.

1-4244-0464-9/06/$20.00 2006 IEEE. 25 CIG'06 (May 22-24 2006)

inexorably, to a population of mutually defecting agents. It
is conjectured that non-simultaneity is the key difference
that permits cooperation among drivers. An attempt to crash
another driver requires some preparation. With sight distance
more than maximum speed, a driver can see another driver
ahead of it and avoid it. If a driver just misses another driver
a couple times via lane-changing, then it may deduce that
an attempted crash is in progress. This will manifest as a
short distance to the next car in its own lane several times.
In this case the driver could choose to slow down, ceding
some fitness to substantially lower the probability of a crash.
Behavior consisting in slowing down to avoid a wild driver is
consistent with the very low speeds observed in the runs with
five drivers.

B. A need for visualization.

The speculation in the preceding section points firmly to
the need for a visualization tool to aid in analysis. Such a
tool, with the ability to load evolved drivers and design boards
on which to test them, would permit resolution of some of
the questions about the behavior of the evolved drivers. In
addition such a tool would be valuable for fish-out-of-water
analysis of the drivers. Examining a driver evolved in a five-
driver world by itself on a grid would permit a researcher
to check and see if the low speed of drivers in the five-driver
world is genetically hard-coded or the result of congestion. The
visualization tool might also be an entree into making a game
where evolved and designed vehicles compete against one
another, a further application of this piece of computational
intelligence to games.

It seems likely that drivers within a population evolve a
particular “culture,” akin to the rules of the road for drivers in
the United States of Canada. This could be tested in a ham-
handed way by juxtaposing drivers from distinct populations
and examining the crash and fitness statistics in the resulting
groups of drivers. An understanding or comparison of the self-
organized cultures would require a good visualization tool.

C. Angel drivers: a next step.

The motivating situation for this research is observation
of human drivers on sections of a two-lane interstate that is
under repair. Thus far, negative behavior has been emphasized,
largely because it was what arose under the selfish imperative
of a fitness function which rewards driving farther than the
other drivers on the road with you. A next step is to model
helpful drivers. What fitness function might permit evolution
to search for those atypical drivers that help traffic move
smoothly and quickly past an obstruction?

The following is proposed. The current study yields a
diverse set of 600 best-of-run drivers that exhibit various
“typical driver” behaviors. Placing a substantial number of
these driver on the grid, without permitting them to evolve,
yields a training ground for angel drivers. The fitness of an
angel driver is the total distance moved by all drivers in the
simulation. This rewards not only the promotion of traffic flow
but the avoidance of crashes by any driver. There is a chance,

if the total number of drivers is small, that an angel driver
would remove itself from the simulation in order to reduce
congestion.

Interesting questions for an angel driver simulation include:

• What fraction of angels is required to see improvement?
• What behavior would arise if no “typical” drivers were

present?
• Are angels among the slowest drivers within their fitness

evaluation cohorts?
• Would an angel ever identify and terminate a very trou-

blesome driver?
• Are there general-purpose angel drivers or are they spe-

cific to one culture of “typical” drivers?

Many other experiments are possible within the framework
presented here: co-evolving difficult patterns of obstacles or
optimizing to produce psychotic drivers whose fitness is the
number of crashes they cause. It is also possible to generalize
the problem to include more lanes, entrance and exit ramps,
and other sources of automotive chaos.

VII. ACKNOWLEDGMENTS

The author would like to thank the University of Guelph
Department of Mathematics and Statistics for its support of
this research. The author acknowledges the contribution of
various rude and helpful drivers on the interstate system south
of Lake Michigan who inspired this work.

REFERENCES

[1] Dan Ashlock and Mark Joenks. ISAc lists, a different representation for
program induction. In Genetic Programming 98, proceedings of the third
annual genetic programming conference., pages 3–10, San Francisco,
1998. Morgan Kaufmann.

[2] Daniel Ashlock. Evolutionary Computation for Opimization and Mod-
eling. Springer, New York, 2006.

[3] Daniel Ashlock and Jennifer Freeman. A pure finite state baseline
for tartarus. In Proceedings of the 2000 Congress on Evolutionary
Computation, pages 1223–1230. IEEE Press, 2000.

[4] Daniel Ashlock and James I. Lathrop. Program induction: Building a
wall. In Proceedings of the 2004 Congress on Evolutionary Computa-
tion, volume 2, pages 1844–1850. IEEE Press, 2004.

[5] Daniel Ashlock and Adam Sherk. Non-local adaptation of artificial
predators and prey. In Proceedings of the 2005 Congress on Evolutionary
Computation, volume 1, pages 98–105. IEEE Press, 2005.

[6] Daniel Ashlock, Stephen Willson, and Nicole Leahy. Coevolution
and tartus. In Proceedings of the 2004 Congress on Evolutionary
Computation, volume 2, pages 1618–1624. IEEE Press, 2004.

[7] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D.
Francone. Genetic Programming : An Introduction : On the Automatic
Evolution of Computer Programs and Its Applications. Morgan Kauf-
mann, San Francisco, 1998.

[8] John R. Koza. Genetic Programming. The MIT Press, Cambridge, MA,
1992.

[9] William B. Langdon and Riccardo Poli. Foundations of Genetic
Programming. Springer, New York.

[10] T. P. Runarsson and S. M. Lucas. Evolving controllers for simulated
car racing. In Proceedings of the 2005 Congress on Evolutionary
Computation, volume 1, pages 1906–1913, Piscataway NJ, 2005. IEEE
Press.

[11] Astro Teller. The evolution of mental models. In Kenneth Kinnear,
editor, Advances in Genetic Programming, chapter 9. The MIT Press,
1994.

1-4244-0464-9/06/$20.00 2006 IEEE. 26 CIG'06 (May 22-24 2006)

Optimizations of data structures, heuristics and algorithms for

path-finding on maps

Tristan Cazenave
Labo IA

Dept. Informatique
Université Paris 8, Saint-Denis, France

cazenave@ai.univ-paris8.fr

Abstract— This paper presents some optimizations of A* and
IDA* for pathfinding on maps. The best optimal pathfinder we
present can be up to seven times faster than the commonly
used pathfinders as shown by experimental results. We also
present algorithms based on IDA* that can be even faster
at the cost of optimality. The optimizations concern the data
structures used for the open nodes, the admissible heuristic and
the re-expansion of points. We uncover a problem related to
the non re-expansion of dead-ends for sub-optimal IDA*, and
we provide a way to repair it.

Keywords: path-finding, game maps, mazes, A-star, IDA*

I. INTRODUCTION

Path-finding is an important part of many applications,
including commercial games and robot navigation. In games
it is important to use an optimized path-finding algorithm
because the CPU resources are also needed by other algo-
rithms, and because many games are real-time. The particular
problem addressed in this paper is grid-based path-finding.
It is often used in real-time strategy games for example, in
order to find the shortest path for an agent to its ������� location
on the map.

A* [1] is the standard algorithm for finding shortest paths.
The usual heuristic associated to A* is the Manhattan heuris-
tic. We present data structures and heuristics that enable A*
to be up to seven times faster than the usual implementation.

The contributions of this paper are :
� It is better to use an array of stacks than a priority queue

for maintaining the open nodes of an A* search.
� The �
	����������� heuristic is introduced, and is shown

to perform better than the Manhattan heuristic and than
the ALT heuristic [2].

� It is useful for IDA* to maintain a two-step lazy cache
of the length of the shortest paths found so far.

� Adding a constant to the next threshold of IDA* enables
large speed-ups at the cost of optimality. However the
lengths of the paths are within 2% of the optimal. Sub-
optimal IDA* can be competitive with A*.

� Recording the minimum f for each searched location
is useful to find dead-ends, but it can cut valid paths
when used with a sufficiently large added constant to the
threshold of IDA*. Our program can detect and repair
the problem.

Section two describes related work. Section three presents
optimizations related to the choice of the best open node.

Section four deals with the re-expansion of points. Section
five presents the different admissible heuristics we have
tested. Section six details experimental results. Section seven
concludes and outlines future work.

II. RELATED WORK

A* [1] is a search algorithm that finds shortest paths. It
uses a fast heuristic function that never over-estimates the
length of the path to the goal state, i.e. an admissible heuristic
often named h. For each node, it knows g the cost of the path
from the root of the search to the node, and it computes f =
g + h. The f function is used to develop the tree in a best
first manner: A* expands the node with the smallest possible
f. IDA* [5] is the iterative deepening version of A*. It can
be enhanced with a transposition table that detects positions
that have already been searched [6].

Fringe Search [4] is a hybrid of A* and IDA* that reduces
slightly the computation time compared to A*. The Fringe
Search paper also presents useful optimizations of IDA* for
game maps.

The use of map abstractions can be combined with A* to
make it faster. For example, Path-Refinement A* [7] builds
high level plans and progressively refines them into low-level
actions.

The admissible heuristic used for path-finding on road
maps, which are much more constrained than game maps,
can be improved (i.e. give greater admissible values) using
the ALT heuristic [2]. The heuristics used on road maps can
be reused for game maps, especially when the game maps
are complex and are close to mazes.

III. CHOOSING THE BEST OPEN NODE

Each time it expands a node, A* chooses the node with
the smallest f function. Therefore the cost of finding the
node with the smallest f is very important for A*. In this
section we present three methods and the associated data
structures used to find the best open node. The first method
is using a list of open nodes. The second method is widely
used and implements the open list as a priority queue. The
third method is faster than the two others and uses an array
of stacks.

1-4244-0464-9/06/$20.00 2006 IEEE. 27 CIG'06 (May 22-24 2006)

A. Maintaining a list

The naive method for finding the open node with the
smallest f is to go through all the open list to find it. When
the open list grows up to more than ten thousand nodes as
it can be the case for game maps, it becomes quite time
consuming.

B. Maintaining a priority queue

A commonly used optimization for maintaining the open
list is to use a priority queue [8], [3], [4], [7]. If N is the
number of elements in the priority queue, the insertion and
the extraction of an element both take O(log N) which is
faster than a constant time for inserting and a linear time for
extracting as in the list implementation.

C. Maintaining an array of stacks

Given that the f values are bounded by a relatively small
value, it is possible to implement a data structure that inserts
nodes in constant time, and that extracts the best node in a
short time. This structure is an array of stacks. The index of
a stack in the array is the common f value of all the nodes
in the stack.

The node class has a � ��� � field which is a pointer to
another node, and which can be used to put the node on top
of a stack of nodes. The code is as follows:

Node Open [MaxLength + 1];
int currentf;

void insert (Node *node) {
Node * tmp = & Open [node->f ()];
node->next = tmp->next;
tmp->next = node;

}

Node * best () {
while (Open [currentf].next == NULL &&

currentf < MaxLength)
currentf++;

return Open [currentf].next;
}

The insert function inserts a node in constant time in the
array of stacks. The best function is used to extract the node
with the best f, and takes very little time too.

The property used to extract the best node starting at
currentf in the

� � ��� function is that moves in the map domain
never decrease the f function, given the h heuristics used by
the program. In domains with possibly decreasing f values,
it is straightforward to adapt the code by maintaining the
currentf variable in the insert function, taking the minimum
of the f of the inserted node and of currentf.

The space complexity of the array is the maximum length
of a shortest path, which is low. The space complexity of the
stacks is proportional to the number of open nodes.

IV. AVOIDING RE-EXPANSION OF POINTS

Avoiding re-expansion of points is important for path-
finding on maps because there are many paths that goes
through a point. Among these paths, many arrive at the point
with a path longer than the shortest path to the point and must
not be expanded. Among the paths that arrive with a length
equal to the length of the shortest path, it is necessary to
expand only one, and it saves time to cut the others.

A. Checking of the open and closed nodes

A simple method to avoid re-expanding points that have
already been expanded with a shorter path is to go through
the open and closed lists and verify if the point has already
been seen. However when the number of open and closed
nodes grows up, this method is quite inefficient.

B. The lazy cache optimization

As game maps fits in memory, it is more efficient to use
an array of the size of the map. Each point in the map has
an associated index, and the value stored at this index in the
array is the shortest path found so far to the point. As it is
time consuming to reinitialize the whole array before each
search, an optimization is to use a lazy initialization [4]. It
consists in having an integer named the � ����� � � initially set
to zero, and another array of the size of the map initially set
to zero too. Let � � �	� be the name of the array that contains
the length of the shortest path found, and � � � ��� be the name
of the array that is used for the lazy initialization. Before
each search, the only thing to do to reinitialize the arrays
is to increment the � ����� � � . To verify if the length of the
shortest path to a point has been stored, the program verifies
that the � � � �	� array has the value of the � ���
� � � at the
index of the point. To update a shortest path, the program
stores the length of the shortest path in the � � ��� array at the
index of the point, and put the value of � ����� � � at the index
of the point in the � � � �	� array. This optimization can be
used both for the A* and the IDA* algorithms.

C. Maintaining the best path for each visited point

For each point the program keeps the length of the shortest
path to this point that has been found yet. Each time the
search passes through the point, the value of g is compared
to the stored value for the point. If g is strictly smaller,
the value is replaced with g and the search continues. If
g is greater or equal to the value of the point, the search is
stopped. When using the lazy cache optimization for A*, a
single lazy initialization is sufficient. When using it for IDA*,
two lazy initializations are better. A first lazy initialization
is used before the first search of IDA*, as in A*, in order
to reinitialize the values. However, before performing the
second search of the IDA* algorithm, we are faced with
a dilemma: if we reinitialize the values the program loses
the valuable information of the length of the shortest paths
found so far, and if we do not reinitialize the values, the
program won’t expand the nodes that have already been
searched coming from a shortest path and then the search
will fail. The solution is to use two lazy arrays and two

1-4244-0464-9/06/$20.00 2006 IEEE. 28 CIG'06 (May 22-24 2006)

markers: � ��� �	� and � ����� � � to differentiate the searches
between different points, and � �

�
� � and � ����� � � � � � � to

differentiate between different searches between the same
points. Note that the later differentiation is only useful and
used for IDA*.

Before making a move, the program calls the � � �	� func-
tion that tells him if the move leads to a re-expansion. To
make things even clearer, we give the code of the function
that uses the two lazy arrays:

bool Seen (int pos, int g) {
if (mseen [pos] != marker) {

seen [pos] = g;
mseen [pos] = marker;
mming [pos] = markerming;
return false;

}
if (g < seen [pos]) {

seen [pos] = g;
mming [pos] = markerming;
return false;

}
if (g == seen [pos])

if (mming [pos] != markerming) {
mming [pos] = markerming;
return false;

}
return true;

}

The points on the map are represented by an integer,
and the map and its associated arrays are represented by
unidimensional arrays.

D. Maintaining the minimum f for each visited point

A lazy cache can also be used to memorize for each node
the minimum f found over all leaves under the node. It can
be used to detect dead ends of the map [4].

The code of IDA* with the memorization of the minimum
f, and the related cut of dead-ends is:

bool IDA (int g, int pos, int & minf) {
// minf is passed by reference, it can
// be changed in the calling function
nodes++;
int f = g + h (pos);
// currentfIDA is the threshold of
// the iterative deepening search
if (f > currentfIDA) {
if (f < minf)

minf = f;
return false;

}
if (pos == goalPos)
return true;

int tmpminf = MaxLength;
for (newpos in all neighbors) {
if (!occupied (newpos))

if (!Seen (newpos, g)) {
if (Seenminf (newpos) &&

Minf (newpos) == MaxLength)
continue;

if (IDA (g + dg, newpos, tmpminf))
return true;

Setminf (newpos, tmpminf);
}

}
if (tmpminf < minf)
minf = tmpminf;

return false;
}

The lazy cache is modified using the ����� � �
��� function.

A cut occurs when a location has already been searched
(� � �	� � � ����� � ���
	 � ��� returns true) and when no minimum
f has been found with this search (�

����� � ���
	 � ��� returns
 � � 	 �	� � ���).

E. Thresholds for IDA*

The minimum f found over all the leaves of the root node
(�

�
���) can be used for the next threshold of the IDA*

search, instead of simply incrementing the threshold. It saves
the searches with the thresholds between the last threshold
and minf.

A problem with IDA* on maps is that the number of nodes
of a search with a threshold is not small in comparison with
the number of nodes of the search with the next threshold.
This is the main reason why IDA* is not competitive with
A* on maps. If we accept to find slightly sub-optimal paths,
it is possible to improve the speed of IDA* by taking a
threshold slightly greater than minf at each iteration of IDA*.
We call this algorithm ��� ����� when the threshold for the
next iteration is minf + D.

A

C D

B

E F

Fig. 1. Problem cutting with the minimum f

However, there is a problem using the minimum f opti-
mization with increased thresholds. Let’s look at the possible
paths from A in figure 1. We choose for this example that
going horizontally and vertically costs two, and that going
diagonally costs three. If the program starts searching paths
ADE and ADF, the ��� �	� value of D is three, the � � �	� value
of E is six, and the � � �	� value of F is five. Now if the
program search the paths ABC, it arrives at C with a g of
five, and therefore the tree is cut when it continues to E (g
is seven and � � �	�
����� is six), to F (g is eight and � � ���
�����
is five), and to D (g is seven and � � �	�
����� is three). The

1-4244-0464-9/06/$20.00 2006 IEEE. 29 CIG'06 (May 22-24 2006)

consequence is that the minimum f stored at C is MaxLength
and that C is considered a dead-end. So when the program
looks at the path that starts with AC (and which may be the
shortest path), the tree is cut.

In our experiments the problem does not appear when
using the minf threshold with IDA* or when using tiles.
However it appears on complex maps using octiles and a
large delta for ��� � � � .

V. IMPROVING THE ADMISSIBLE HEURISTIC

The usual heuristic for path-finding on maps is the Man-
hattan heuristic. The ALT heuristic usually finds better values
than the Manhattan heuristic, but it takes more memory since
for each point of the heuristic the pre-computations take a
memory proportional to the size of the map, and it also takes
more time to compute. The ALTBest � heuristic gives better
values than the Manhattan heuristic but takes more time than
it, and worse values than the ALT heuristic but takes less time
than it. This section presents these three heuristics.

A. The Manhattan heuristic

The Manhattan heuristic is a very popular heuristic. It is
used for path-finding on maps, but also for other games such
as the 15-Puzzle or Rubik’s cube. It consists in considering
that the path to the goal is free of obstacles, which allows
a very fast computation of a lower bound on the length
of the shortest path. For maps, the heuristic is different if
the moves are restricted to the four horizontal and vertical
neighbors (tiles), or if the eight neighbors including diagonals
are allowed (octiles). The code for the Manhattan heuristic
on maps is:

int h (int pos) {
int dx = abs (x (goalPos) - x (pos));
int dy = abs (y (goalPos) - y (pos));
if (nbNeighbors == 8)

return CostDiag * min (dx, dy) +
Cost * (max (dx, dy) -

min (dx, dy));
else

return dx + dy;
}

where
� � � � is the cost of moving to a horizontal or vertical

neighbor, and
� � ��� � � � � the cost of moving to a diagonal

neighbor.

B. The ALT heuristic

ALT is a heuristic that works well on road maps [2]. It
consists in pre-computing the distance to all points from a
given point, and then in using these pre-computed distances
to calculate an admissible heuristic. The heuristic is based
on the triangular inequality. For example if � ������� � is the
length of the shortest path between � and � , if the distances
are pre-computed from 	
	 � � , the current node is at ��	 � � ,
and the goal position is at � 	 � � , we have the following
inequalities:

� ���	 � ����	�	 � ������� ���	 � ��� � 	 � ������� � � 	 � ����	�	 � ��� (1)

� ���	 � ��� � 	 � ������� ����	 � ����	�	 � ������� � 	�	 � ��� � 	 � ��� (2)

� � � 	 � ����	�	 � ������� � � 	 � ������	 � ������� ���	 � ����	
	 � ��� (3)

From 1 and 3 we can show, respectively:

� ���	 � ��� � 	 � ������� ����	 � ����	�	 � ������� � � 	 � ����	
	 � ��� (4)

and

� � � 	 � ������	 � ������� � � 	 � ����	�	 � ������� ���	 � ����	
	 � ��� (5)

Given that � � � 	 � ������	 � ���! "� ���#	 � �$� � 	 � ��� we have (� � �
is the absolute value):

� � � 	 � ������	 � ����� � � � �� � � 	 � ����	�	 � �����%� ���#	 � �$��	�	 � �����
(6)

Therefore, an admissible heuristic, which only uses pre-
computed values, is:

�& � � ����� � � 	 � ����	
	 � ������� ����	 � ����	
	 � ����� (7)

If distances are pre-computed for multiple points, the heuris-
tic chooses for h the maximum value over the ALT values
given by each point.

C. The ALTBest � heuristic

The ALTBest � uses pre-computed distances from P points.
Instead of taking the maximum value over the h values
computed with the P points at each node of the search, it
selects among the P points the one that gives the highest h
value at the root node. For all nodes of the search, it chooses
as h value the maximum of the ALT value computed with the
selected point and of the Manhattan heuristic. The h values
found with this heuristic are worse than the h values found
with the ALT heuristic, therefore the search will develop
more nodes. The advantage of ALTBest � is that it takes less
time at each node and that it is not much worse.

D. Other use of pre-computed distances

Pre-computed distances can also be used to find if a goal
is impossible. If the starting location has a distance to a pre-
computed point, and that the goal location has an infinite
distance to the pre-computed point, the program knows it is
useless to search a path, and it can find it without search.
This is also true for the reverse situation where there is an
infinite distance to the starting location, and a finite distance
to the goal location.

The symmetric use of pre-computed points is to find if
a path is possible. This can be useful for the � � � � �
algorithm when it has problems due to the minimum f dead-
end cuts. If the algorithm finds a path is impossible when a
pre-computed point finds there is one, the program can revert
to a slower but more safe algorithm such as IDA* without
the minimum f dead-end cut optimization, or to a simple
IDA* with a D set to zero.

1-4244-0464-9/06/$20.00 2006 IEEE. 30 CIG'06 (May 22-24 2006)

VI. EXPERIMENTAL RESULTS

The maximum number of nodes per search is set to
10,000,000. Experiments are performed on a Celeron 1.7
GHz with 1GB of RAM. When the program only considers
four neighbors for each point on the map, the cost of a
move to one of the four neighbor is set to one. When it
considers eight neighbors, the cost of going to a vertical or
a horizontal neighbor is set to two, and the cost of going
to a diagonal neighbor is set to three. If the horizontal and
vertical cost is two, the real diagonal cost is 2.8 which is
close to three. The reason we choose three is that the array
of stacks optimization works more simply with integer costs.

A. Memory allocation

Memory allocation is one of the instructions that takes the
most time with current operating systems. The standard A*
algorithm allocates memory for each new node of the search.
In order to optimize further A*, we have used pre-allocation.
An array of 10,000,000 nodes is allocated once for all the
searches at the beginning of the program, and when a new
node is needed it is taken from the array. When a search is
over, to reinitialize memory, the only thing to do is to put the
integer associated to the array back to the top of the array.
This optimization is linked to the buffering optimization used
in [3], but we find the use of a pre-allocated array more
simple and more efficient.

B. The tested algorithms

The different algorithms that have been tested are:
� ��� � is A* with the Manhattan heuristic, each point

has N neighbors. The structure used to maintain the
open list sorted is an array of stacks, and new nodes
are taken from a pre-allocated array of nodes.

� � �	� ��� � is M (N) with memory allocation at each
node.

� ���� ��� � ��� � is M (N) with a STL (Standard Template
Library) priority queue for finding the best open node.

� ��	�� � ��� � is A* with the ALT heuristic, points on
the map have N neighbors, and P points chosen at
random are used for computing the distances for the
ALT heuristic. All the distances are pre-computed, and
their pre-computation is not taken into account for
the timing of the algorithm. The admissible heuristic
consists in computing, for all the pre-computed P points,
the absolute value of the difference of the distance
between the point and the goal position, and of the
distance between the point and the node’s position. It
then chooses the maximum value over all the absolute
values and the Manhattan heuristic.

� ��	��
 � ��� � ��� � is A* with the ALTBest � heuristic,
points on the map have N neighbors. P points are
randomly chosen and the distances to each point of
the map are pre-computed for each of the P points.
At the root of the search, the program selects the pre-
computed point which has the highest h value. During
the remainder of the search, it computes h as the

maximum of the ALT value computed with this point
and of the Manhattan heuristic.

� � � � ��� � is iterative deepening A* with the Manhattan
heuristic. Each point has N neighbors.

� � � �������� � ��� � is iterative deepening A* with the
ALTBest � heuristic. Each point on the map has N
neighbors.

� � � ����������
������� � is iterative deepening A* with the
ALTBest � heuristic. Each point on the map has N
neighbors. At each iteration of the iterative deepening
search, instead of taking minf as the next threshold for
the search, the programs takes the minimum f over the
leaves of the previous search (minf) plus D.

� � � ��������� � is iterative deepening A* with the Man-
hattan heuristic. At each iteration, the next threshold is
minf + D.

� � � � � � ����� � is � � ����� � except that the program does
not use the recorded minf at each node to cut the search.

C. The experimental testbed

The algorithms have been tested with different values for
the number of neighbors, the number of pre-computed points,
and the delta threshold. There are three experiments, all with
300x300 maps. The experiments use maps with respectively
two hundred walls of size twenty, four hundred walls, and six
hundred walls. A set of one hundred maps has been generated
for each experiment. The walls of a map are generated by
taking at random an unoccupied point and one of the eight
directions, for vertical and horizontal directions the wall is
generated as a line with a thickness of one, and for diagonal
directions it is generated as a line with a thickness of two
in order to avoid a path that goes diagonally through a
diagonal wall. For each map, two unoccupied points are
chosen at random and the algorithm searches for a shortest
path between these two points. For each algorithm, we give
the sum of the number of nodes of all the searches, the time
spent, the number of problems where the algorithm found a
path, and the sum of the lengths of the found paths.

D. Results on simple maps

Table I gives the nodes, time, number of solved problems
and sum of lengths of paths found for different algorithms
on 300x300 maps with 200 random walls of size 20.

The best algorithm for speed is ��� �
 � ���	��
����
 both for
tiles and octiles. The length of the paths it finds is close to
the shortest path as can be seen comparing the sums of the
lengths.

The best exact algorithm is ��	��
 � ��� �
 . For tiles it is
interesting and surprising to note that ��� �������� �
 ����� always
finds the shortest path and is faster than �
	 �
������ ��
 ����� .

Another result is that using an array of stacks (�����) is
twice as fast as using priority queues (���� ��� � �����) for oc-
tiles, and three times faster for tiles (����� vs ���� ��� � ��� �).
The number of nodes is different in the favor of priority
queue for the two algorithms because they do not expand
nodes in the same order due to their different algorithms for
selecting the best node.

1-4244-0464-9/06/$20.00 2006 IEEE. 31 CIG'06 (May 22-24 2006)

TABLE I

300X300 MAPS WITH 200 WALLS OF SIZE 20.

���������
	����� ���
���
� ��	���� ����������� �����
��� �! "�
�#�%$'&)(�$'&+*�,�-

1,102,592 0.79s 98 36,387�/.10! "�����%$'&+*�,�-
480,407 1.60s 98 35,998��� �! "�
�#� $'& *�,�-

2,146,234 1.98s 98 35,9982 *�,�-
764,262 2.10s 98 35,998�/.10 $'& *�,�-
335,418 3.21s 98 35,998��� �3*�,�-

4,340,651 3.42s 98 35,998�/.10�4�*�,�-
500,989 3.80s 98 35,998265 �7���7��*�,�-
722,344 4.16s 98 35,998��� �! "�
�#�%$'&)(�$'&+*�8�-
479,046 0.26s 98 21,300��� �! "�
�#�%$'&+*�8�-
690,457 0.49s 98 21,072�/.10! "�����%$'&+*98�-
399,839 0.77s 98 21,0722 *�8�-
611,595 0.91s 98 21,072��� �3*98�-

1,628,550 1.08s 98 21,072�/.10:$'&+*98�-
256,310 1.23s 98 21,072265 �7���7��*98�-
664,504 2.96s 98 21,072

TABLE II

300X300 MAPS WITH 400 WALLS OF SIZE 20.

�/�;�����
	���<� ��������� ��	���� ���
������� �#�7�
�=� �/ "�
���%$'&)(>$'&+*�,�-

2,601,120 2.05s 95 39,362�=� �/ "�
���%$'&)(@?%&+*�,�-
2,773,262 2.07s 95 39,969�/.:0/ "�
�#�%$'&A*�,�-

950,862 2.93s 95 38,9112 *�,�-
1,455,092 4.24s 95 38,911�/.:0B4=*�,�-

866,041 4.85s 95 38,9112 �C���D*�,�-
1,455,092 6.30s 95 38,911�=� �/ "�
���%$'&+*�,�-
7,901,822 7.92s 95 38,911265 �7���7��*�,�-
1,358,262 8.36s 95 38,911�/.:01$'&+*�,�-

646,554 11.74s 95 38,911�=� �E*�,�-
21,837,340 19.71s 95 38,911�=� �F���)GB*�,�-

133,089,043 98.93s 95 38,911

� � � ����� and ��� ������� are worse than ��� � and ��� � as
already found in other studies [4], but the difference between
the two is much smaller than what was found before (20%
to 60% more time instead of six to twenty times more time).

The ALT heuristic searches half of the nodes of the
Manhattan heuristic but is slower.

E. Results on moderately complex maps

Table II gives the results for different algorithms on
300x300 maps with 400 random walls of size 20.

The � � �
������ �
�� �
 ��� � is the fastest algorithm, it solves
all the solvable problems, and the sum of the lengths of the
found paths is within 2% of the sum of the shortest paths.

The best exact algorithm is again �
	 �
������ ��
 ��� � , it
develops less nodes in less time than the Manhattan heuristic.
�
	 �IH ����� and ��	�� �
 ����� also develop less nodes than the two
previous algorithms, but take more time due to the overhead
of computing the ALT heuristic at each node.

Comparing ���� ��� � ��� � and ��� � , we can see that main-
taining an array of stacks enables a speed-up of two com-
pared to maintaining a priority queue. Pre-allocating nodes
in an array gives a speed-up of 1.5 as can be seen when
comparing � �	� ��� � and ��� � .

Concerning the � � � ����� algorithm, it is almost five times
slower than the ��� � algorithm. Even if the minimum f

TABLE III

300X300 MAPS WITH 600 WALLS OF SIZE 20.

���������
	����� ���
���
� ��	���� ���
�;�=��� �#�7�
��� �! "�
�#�%$'&)(�$'&+*�,�-

1,880,053 1.42s 61 36,513��� �! "�
�#�%$'&)(J?%&+*�,�-
2,262,738 1.71s 60 36,008�/.10! "����� $'& *�,�-

604,461 1.81s 61 36,208��� �! "�
�#� $'& (?%& ���)GB*�,�-
3,302,562 2.36s 61 36,785��� �! "�
�#� $'& ($'& ���)GB*�,�-
3,318,593 2.50s 61 36,469�/.10�4�*�,�-

542,129 2.71s 61 36,208�/.10:$'&+*�,�-
347,189 3.00s 61 36,208��� �! "�
�#�%$'&+*�,�-

6,683,647 6.33s 61 36,2082 *�,�-
2,438,460 6.67s 61 36,208��� �/(J?%&=*�,�-

12,111,234 9.45s 56 33,0872 �C���D*�,�-
2,438,460 10.05s 61 36,208��� �/(�$'&=*�,�-

12,233,668 10.93s 61 36,637265 �7���7��*�,�-
2,296,036 13.67s 61 36,208��� �3*�,�-

67,483,398 70.27s 61 36,247��� �! "�
�#� $'& ($'& *�8�-
614,865 0.37s 44 15,889��� �! "�
�#� $'& (?%& *�8�-
693,650 0.37s 44 16,161�/.10! "����� $'& *98�-
401,287 0.61s 44 15,711��� �! "�
�#�%$'&+*�8�-

2,954,173 1.81s 44 15,7112 *�8�-
1,886,487 2.94s 44 15,711��� �/(J?%&=*98�-
7,575,321 4.66s 44 16,199��� �/(�$'&=*98�-
7,839,990 5.49s 44 15,959��� �3*98�-

233,428,544 131.24s 44 15,711

dead-end cut can be harmful with � � �������� �
�� �
���� � or
with ��� �������� ��
 �LK
������ , it is not the case here as they
solve all the problems. However we tested the usefulness
of the minimum f dead-end cut by removing it, and we
see that � � � � � ������� is five times slower than ��� ����� � with
the optimization. Using the ��	��
 � ���	��
 heuristic with IDA*
improves it since ��� �
 ��� � �
 ��� � is more than twice as fast
as � � � ����� .

F. Results on complex maps

Table III gives the nodes and time for different algorithms
on 300x300 maps with 600 random walls of size 20.

The first observation is that on complex maps that look
more like mazes or road maps, the ALT H and the ALT ��

heuristics are now faster than the Manhattan heuristic. The
overhead of computing the ALT values at each node is
compensated by a greater number of cut nodes. However
the �
	 �
������ �
 ����� is still the best exact algorithm and it is
more than three times faster than the Manhattan heuristic,
and more than seven times faster than ���� ��� ����� � which is
the standard implementation for path-finding on game maps.
 ����� with arrays of stacks is still twice as fast as

���� ��� � ����� , and 1.5 faster than � ��� ����� .
The fastest algorithm is still ��� �
 ��� � �
 � �
 and it

is within 2% of the optimal sum of lengths. However
��� �
 ��� � �
 � K
 ��� � and ��� ��� K
 ����� do not find all the
paths, due to the problem with the minf dead-end cut
when employed with a sufficiently large delta. This problem
appears on octiles and not on tiles. A possible repair to the
problem is to use the pre-computed distances. If the program
knows a path is possible, and � � ���MK
���� � does not find it,
it can revert to � � �
������ ��
��NK
 � � ����� � or ��� �
 ��� � ��
���� �
only for this problem.

1-4244-0464-9/06/$20.00 2006 IEEE. 32 CIG'06 (May 22-24 2006)

Unlike � � � � � ������� which was five times slower
than ��� � ��� � in the previous experiment, here
��� �
 � ��� �
 � �
 � � ����� � is less than two times slower
than � � �������� �
 � ��
 ����� , and ��� �������� �
 � K
 � � ������� finds
all the paths when ��� �
 ��� � �
 � K
 ��� � misses one.

The ��	��
 ��� � ��
 heuristic is even more useful on complex
maps than on more simple maps. ��� �
 ��� �	�
���� � is more
than ten times faster than ��� � ��� � , and it is even better with
tiles since � � �������� �
 ����� is more than seventy times faster
than ��� ������� .

VII. CONCLUSIONS AND FUTURE WORK

New data structures, heuristics and algorithms for fast
path-finding have been described and tested.

We showed that maintaining an array of stacks enables
A* to be faster than usual implementations of A* that use a
priority queue.

We presented the �
	��������� � heuristic and we experimen-
tally proved it is better than the Manhattan heuristic and the
ALT heuristic for maps of different complexities, both for
A* and IDA*. The best exact algorithm we have presented,
based on ��	��
 ��� � � and A* with arrays of stacks, is up to
seven times faster than the usual algorithm for path-finding
on maps.

Another result is that IDA* can be competitive with
A* on maps. We presented an algorithm based on IDA*
(� � �������� ��
 � ��
) that finds close to optimal paths faster
than our best implementation of A* (�
	 �
������ ��
). We also
observed that the speed up of traditional A* over traditional
IDA* depends on the complexity of the map.

We have also shown that it is useful to have a two-step lazy
cache strategy for remembering the length of the shortest path
to visited points of the maps. A potential problem with the
use of a recorded minimum f for each visited point, when
it is used to cut the search, has been uncovered. A repair
strategy has been proposed when this problem happens. It
uses the pre-computed distances from the ALT heuristic to
detect the problem, and it falls back on a safe algorithm when
the problem occurs.

The ��	��
 � ����� heuristic as well as the lazy cache opti-
mizations increase the space requirements of the algorithms
by an ammount proportional to the size of the map.

For future work, it is interesting to find a way to deal better
with the problems encountered while cutting nodes due to the
memorized minimum f. In particular, it would be valuable to
keep the current power of memorizing the minimum f-value
for each node and of cutting dead-end nodes, while enabling
to increase the threshold of IDA* by more than the minimum
f, without losing some paths.

It is also interesting to have a better selection of the points
used for the ALT heuristic, like for example selecting the
points which are the farthest away from already existing
points [2].

Combining the optimizations presented in this paper with
optimizations due to abstractions of the maps, or optimiza-
tions related to way-points can also be of interest.

REFERENCES

[1] P. Hart, N. Nilsson, and B. Raphael, “A formal basis for the heuristic
determination of minimum cost paths,” IEEE Trans. Syst. Sci. Cybernet.,
vol. 4, no. 2, pp. 100–107, 1968.

[2] A. V. Goldberg and C. Harrelson, “Computing the shortest path: A*
search meets graph theory,” in SODA’05, 2005.

[3] P. Kumar, L. Bottaci, Q. Mehdi, N. Gough, and S. Natkin, “Efficient
path finding for 2D games,” in CGAIDE 2004, Reading, UK, 2004, pp.
263–267.

[4] Y. Bjornsson, M. Enzenberger, R. C. Holte, and J. Schaeffer, “Fringe
search: beating A* at pathfinding on game maps,” in IEEE CIG’05,
Colchester, UK, 2005, pp. 125–132.

[5] R. E. Korf, “Depth-first iterative-deepening: an optimal admissible tree
search,” Artificial Intelligence, vol. 27, no. 1, pp. 97–109, 1985.

[6] A. Reinefeld and T. Marsland, “Enhanced iterative-deepening search,”
IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 16, pp. 701–710, 1994.

[7] N. Sturtevant and M. Buro, “Partial pathfinding using map abstraction
and refinement,” in AAAI 2005, Pittsburgh, 2005.

[8] B. Stout, “Smart moves: Intelligent path-finding,” Game Developper
Magazine., pp. 28–35, October 1996.

1-4244-0464-9/06/$20.00 2006 IEEE. 33 CIG'06 (May 22-24 2006)

Abstract — Traditionally, the game of Tic-tac-toe is a pencil
and paper game played by two people who take turn to place
their pieces on a 3×3 grid with the objective of being the first
player to fill a horizontal, vertical, or diagonal row with their
pieces. What if instead of having one person playing against
another, one person plays against a team of nine players, each
of whom is responsible for one cell in the 3×3 grid? In this new
way of playing the game, the team has to coordinate its players,
who are acting independently based on their limited informa-
tion. In this paper, we present a solution that can be extended
to the case where two such teams play against each other, and
also to other board games. Essentially, the solution uses a de-
centralized decision making, which at first seems to complicate
the solution. However, surprisingly, we show that in this mode,
an equivalent level of decision making ability comes from sim-
ple components that reduce system complexity.

I. INTRODUCTION

ERHAPS it is not an exaggeration to claim that the game
of Tic-tac-toe is among the most popular childhood

games in the world. The game is played by two players who
place their different colored or shaped game pieces on a 3×3
grid. Unlike checker, chess, weiqi (go), and many other
board games, the relatively simple grid enables people since
antiquity to play Tic-tac-toe on beach sands, napkins, dusty
windshields, or wherever the grid can be drawn. The rule is
very simple: players take turn, each time placing one of their
pieces in an unoccupied position on the grid until the grid is
filled, or until someone wins. The objective is also easy to
understand: the first player to fill a horizontal, vertical, or
diagonal row with his / her pieces wins the game.

The fact that Tic-tac-toe is so simple and widely known
makes it the ideal game of choice for classroom introduction
to programming, game theory, data structure, and combina-
torial enumeration of all possible game outcomes. By one
account, there are 765 essentially different configurations of
the game pieces, which translate into 26,830 possible games,
taking into account different symmetries. If symmetry is not
considered, in total, there are 255,168 possible games.

While 255,168 sounds like a large number for a human
player to memorize, it is certainly not a large number for
most modern computers. One can imagine “training” a com-
puter to be a competent player in Tic-tac-toe by memorizing
all 255,168 games and use this knowledge to calculate the
best move based on the existing board configuration.

Manuscript received December 18, 2005.
E. Soedarmadji is with the California Institute of Technology,
Pasadena, CA 91125 USA. edwins@systems.caltech.edu.
This work was sponsored by the Lee Center for Advanced Networking.

This approach is of course a far cry from how people
play. No one memorizes all 255,168 games to calculate the
best move. Instead, we humans use simple rules that provide
several possible moves, from which the best move was cho-
sen. Sooner or later, most human players discover that the
game of Tic-tac-toe always ends in a draw when both play-
ers know and use the optimal rules of the game.

Just as we humans develop our decision making ability
through playing games — starting from the simple and con-
crete games to the more complex and abstract games — in
its evolution, computers spent some of their “childhood”
years playing Tic-tac-toe (ironically, after being forced into
the horror of calculating ballistic trajectories, code breaking,
and simulating atomic explosions in its “infanthood” years!)

One of the first computers in the 1950’s to play Tic-Tac-
Toe, EDSAC1 was capable of playing a perfect game with a
program less than 4,000 bytes long. A human played
against a single player, the machine. This tradition continued
well into the modern era of Internet. A casual search on the
Internet would return hundreds, if not thousands, of interac-
tive web pages capable of playing perfect games against
human players. Taking a peek into the source codes behind
these games and stripping away the user interface codes —
leaving behind only the equations, logic, and database used
by the programs — one cannot avoid the impression of rela-
tive complexity for such a simple game. Can we do better?

This paper addresses the interesting question: is there a
simpler way to program a competent Tic-tac-toe player? Can
complexity be further reduced by a different, i.e., decentral-
ized mode of decision making? Later, we elaborate the defi-
nition of a competent player. For now, we simply mean a
player who makes no mistake and can consistently force a
draw, regardless of which player starts the game.

What if instead of trying to create one monolithic compe-
tent player, we create nine agents and one manager, together
acting as a single competent player? At first, it sounds like
we have increased the complexity of our solution. After all,
the team still has to respect the original rules of the game,
meet the same priorities, and on top of that, coordinate its
action. However, in this paper we show that surprisingly,
the end result is a simpler set of rules for each agent. Conse-
quently, the team has a much lower complexity compared to
an equivalent centralized implementation, as evidenced by
the types and numbers of instructions used by the team.

Further, it is not hard to imagine that in certain computing
platforms, decentralized decision making is the only possi-
ble avenue of computation. In the next section, we begin the
presentation by analyzing a competent Tic-tac-toe player.

Decentralized Decision Making in the Game of Tic-tac-toe
Edwin Soedarmadji, Student Member, IEEE

P

1-4244-0464-9/06/$20.00 2006 IEEE. 34 CIG'06 (May 22-24 2006)

II. COMPETENT PLAYER
A competent player is defined as a player who has in its

arsenal a complete collection of strategies that are necessary
to consistently force a draw when faced with another com-
petent player or win when the other player makes a mistake.
In contrast, a less-than-competent player only has a subset of
these strategies. For convention, the grid is numbered as in
Figure 1 below. In this paper, we assume that the opponent
plays the O (for “opponent”) while the team plays the X.

1 2 3
4 5 6
7 8 9

Figure 1 Grid cell numbering convention

Based on which defensive strategies a player has, we can
categorize the players into the following player categories:

A. Defensive Strategic Categories
A novice defensive player can block an immediate threat,

i.e., it can prevent an opponent from completing a row.
Such a player detects the presence of two opponent pieces
on a row and reacts by placing its own piece in the remain-
ing space on the targeted row.

An intermediate defensive player can detect and preempt
any attempt by the opponent to introduce two possible com-
pletions. For example, in Figure 2, suppose the opponent,
player O, just moved. An intermediate defensive player
would know that the right move is to prevent the opponent
from occupying cell 8, thus preventing a two-completion
attack on cell 5 and 9 in the next move.

O O
X X

O O X
Figure 2 Intermediate defensive player

However, note that the opponent can also launch a two-
completion attack on cell 3 and 4 by occupying cell 1. To
force a draw, the player needs to utilize more than defensive
moves. As the famous dictum says, “The best defense is
offense.” If we occupy cell 5, the opponent is forced to fol-
low a series of defensive moves that lead to a draw.

An advanced defensive player can react appropriately to
an opening move. In Tic-tac-toe, this translates to placing a
piece in the center cell if the opponent starts anywhere but
the center. If the opponent starts from the center cell, such a
player reacts by occupying one of the corner cells.

Similarly, we can categorize players based on their offen-
sive capabilities, which are listed below.

B. Offensive Strategic Categories
A novice offensive player can complete a row when two

of its own pieces are already placed in a row with one re-
maining empty position. This is, as the name suggests, the
most basic offensive capability a player must have to have a
chance of effectively winning against another player.

An intermediate offensive player can threaten the oppo-
nent with a one-completion attack, thus forcing the opponent
to react and defend the position, possibly disrupting any
planned move. For example, in Figure 3, suppose the oppo-
nent just placed an O in cell 6. An intermediate offensive
player would threaten the opponent by placing his piece in
cell 1 (or 2), forcing the opponent to occupy cell 2 (or 1).

X X X
O O

O O
Figure 3 Intermediate offensive player

An experienced offensive player can threaten the oppo-
nent with two possible completions on two rows, thus guar-
anteeing a win. For example, in Figure 4, suppose the oppo-
nent just placed an O in cell 6. An experienced offensive
player would force a win by placing an X in cell 2, threaten-
ing a two-completion attack in cell 1 and 5.

X X X
O O

O X O X
Figure 4 Experienced offensive player

Finally, an advanced offensive player can make the most
aggressive opening move. Playing against an opponent exe-
cuting random moves, this means occupying any one of the
corner cells, giving a 7 out of 8 chance of winning. Playing
against a competent opponent, the most strategic move is to
occupy the center cell, denying four possible completions.

III. TEAM INFRASTRUCTURE
Having described the different player categories, of

course we eventually want to create a team of 9 agents (plus
one manager) that can emulate, through their independent
actions, the level of competence shown by an advanced de-
fensive and offensive player. However, first let us describe
the infrastructure available to the team members.

First, let us describe the role of the manager as shown in
the algorithm below. It performs a primitive coordinating
role for the agents and nothing more. In fact, the same man-
ager can be used for Tic-tac-toe or other turn-based (could
be multi-player) board games because the manager knows
almost nothing about the game its agents are playing.

MANAGER
1: Wait until a new opponent piece is placed.
2: Once placed, ask all active agents to start calculation.
3: Wait for the agents to submit their responses.
4: Choose one of the responses with the highest priority.
5: Notify all agents which agent is selected.
6: If all cells are filled, then end. Otherwise, go back to 1.

Each agent responds back with a priority number, essen-
tially saying “let me handle this.” In step 4, the manager
selects the agent with the highest priority. If there is a tie, it
selects one response (either at random or first arrival, etc.)

1-4244-0464-9/06/$20.00 2006 IEEE. 35 CIG'06 (May 22-24 2006)

These priority numbers convey the subjective and private
belief of each agent of how important it thinks the informa-
tion it has, and the reaction it plans to do, to the success of
the team (in this case, in playing the Tic-tac-toe game, al-
though this could be easily extended to other applications!)
The manager thus resolves any possibly conflicting subjec-
tive views by impartially (or partially, in a consistent way)
selecting one of the agents. Let us now describe the role of
the agents, as shown in the algorithm below:

AGENT
1: Wait for the instruction to start from the manager.
2: If the opponent already landed in this cell, or reaction

is already made, then end. Otherwise, move to 3.
3: Obtain all accessible information about the board.
4: Consult the function T for a priority number.
5: Once found, submit the priority number as a response.
6: Wait for the selection notification from the manager.
7: If selected, then react. Otherwise, go to 1.

Before explaining the algorithm, let us distinguish the
word “response” and “reaction”. An agent responds to the
manager by providing a priority number. In contrast, an a-
gent reacts to the opponent by placing a friendly piece
where the agent is assigned to operate.

Step 1 is trivial. It simply asks the agent to wait for the in-
struction from the manager before it begins calculating. This
is important because in order for a calculation to be reliable,
it has to be done based on the most current and relevant state
of information available. The manager has a global knowl-
edge of when the opponent introduces a new piece into the
board. Therefore, step 1 provides the synchronizing signal
for information processing that precedes decision making.

Step 2 is also easy to understand. An agent no longer has
to compute a reaction if it has already made one, or if the
opponent has eliminated any reason for the agent to make
one (by placing its piece where the agent is located.)

Step 3 is very crucial to an agent’s operation. In one ex-
treme case, an agent might calculate a response in absence
of any factual information of the board configuration, i.e., it
is simply a “fortune-teller” – providing suggestion to the
manager based on its internal and unsubstantiated private
beliefs. In another extreme, an agent has complete informa-
tion on the board configuration. It is easy to say that both
modes of information access are not desirable (or practical).

What makes our model interesting is the case where the
agents have incomplete information (by design) about the
board, from which they infer the best move in their own
areas of responsibility. The agents then convey this infer-
ence to a manager, who then arbitrates conflicting priorities.

In what will become clear in the imminent examples in
this paper, the agents do not have to access the same rule,
level, scope, and type of information. In many simple board
games, the agents can be identically programmed. However,
in more complex games, the agents can easily operate within
an informational and operational (rule) hierarchy.

Step 4 essentially declares the existence of a “rule book”
for each agent. Of course, in some games, the agents can
also be permitted to “improvise”, i.e., suggesting certain
actions and priorities based on their own internal probabilis-
tic process unknown to the manager. Confronted with a
board scenario (which is nothing more than the information
about the board available to the agent), the agent attempts to
judge, “how important is my reaction going to be compared
to those of other agents?” The answer is scored by its prior-
ity number and then submitted to the manager in step 5.

Finally, in steps 6 and 7, the agent simply waits for the
manager’s response. If the manager decides to activate the
agent, then the agent reacts and fulfills its mission. If not, it
waits for another round of decision making.

IV. TIC-TAC-TOE TEAM
The team infrastructure described in the previous section

allows us to start our construction of a competent Tic-tac-toe
player by first building a novice defensive team that per-
fectly emulates a novice defensive player.

Let us assume that there are three types of agents, each
with their own programs and level of information access.
Therefore, there are three types of functions T used in step 4.

In case of Tic-tac-toe, the information access rule is such
that “an agent has perfect information on the states of all
cells located in the same horizontal and vertical (and when-
ever appropriate, diagonal) row as the cell it is in”. The state
could be empty, occupied by an opponent piece, or by a
friendly piece. Each agent knows the cell it occupies. In
Figure 5, the agent is marked by an X, and the cells to which
it has perfect information is marked by the bullet symbols.

• • • X • • •
• X • • • X • •
• • • • • •

Figure 5 Information access rule

The agent located in the center cell of the grid must have
what amounts to a perfect information on all the cells (see
the left box). The agents in the corner cells must have ac-
cess to the horizontal, vertical, and diagonal rows (6 cells –
see the middle box), and the agents along the edges only
have to know the horizontal and vertical rows (4 cells).

if n(oo) ≥ 1 then return 1
return 2

Figure 6 Novice defensive strategy

We claim that for a novice defensive team, the function T
can be as simple as the one shown in Figure 6. The notation
n(oo) means the number of horizontal, vertical, and diago-
nal rows containing two opponent pieces. In this notation, a
friendly piece is denoted by an x, and a blank cell is by a b.
For example, n(bx) means the number of rows containing a
blank and a friendly piece. Evaluated at the center, corner,
and edge cells, the function n(•) can return up to four, three,
and two rows, respectively.

1-4244-0464-9/06/$20.00 2006 IEEE. 36 CIG'06 (May 22-24 2006)

Suppose the board configuration is shown in Figure 7a. In
this game, the opponent pieces are marked by the O’s.
Figure 7b shows the priority numbers calculated by all the
nine agents as they are submitted to the manager. The team
will correctly block the attack by occupying cell 1.

O O 1 O O
X 2 2 X

X X 2 2
Figure 7 Novice defensive play

Of course, the opponent O could be smarter and present a
two-completion attack as shown in Figure 8 below. In this
scenario, all agents in a novice defensive team report a non-
severe priority number of 2. The manager thus randomly (or
systematically) selects one of the 5 possible agents, and only
with a probability of 1/5, the manager selects the agent in
cell 3, which directly neutralizes the two-completion attack.

O O 2 2
X X O X X O

2 2 2
Figure 8 Failure of the novice defensive strategy

How do we prevent this uncertainty? One obvious solu-
tion is to put more smarts into the team – and since the man-
ager is dumb, this means making the agents smarter. Instead
of the T shown earlier, the agents can use a more robust T:

if n(oo) ≥ 1 then return 1
if n(ob) ≥ 2 then return 2
return 3

Figure 9 Intermediate defensive strategy

The function gains another line, but the agents can now
collectively defend against two-completion attacks from the
opponent! Now, if the agents are confronted with a scenario
shown in Figure 10 below, they independently evaluate pri-
ority numbers shown in the right subfigure, and the manager
correctly chooses the best agent to fend off the attack.

O O 3 2
X X O X X O

3 3 3
Figure 10 Intermediate defensive play

In Figure 8, the agents in cells 2 and 8 can also thwart the
two-completion attack by launching a high-priority attack on
the opponent, rather than neutralizing the opponent’s lower-
priority two-completion attack. But this requires more than
defensive strategies, but also some offensive capabilities. By
process of induction one infers that T needs to be expanded
further and this is indeed correct. To emulate a novice offen-
sive player, the agent now also has to have access to infor-
mation on friendly pieces on the board.

However, now the question is which one should have a
higher priority: the novice offensive strategy (which basi-
cally ends the game with a win) or the novice defensive
strategy (which averts a loss by another move)?

Obviously, anything that ends the game with a win takes
higher priority. This principle is reflected in the version of T
implementing offensive capability shown in Figure 11.

if n(xx) ≥ 1 then return 1
if n(oo) ≥ 1 then return 2
if n(ob) ≥ 2 then return 3
return 4

Figure 11 Novice offensive strategy

If an agent is still making this calculation, then the agent
itself has not made a reaction and is located on a blank cell.
Armed with an offensive strategy, the agent can therefore
win the game for the team by making a reaction. For exam-
ple, suppose the X team is confronted with the board con-
figuration shown in Figure 12 below. Using the above func-
tion T, the agent in cell 9 reacts and secures the win.

O O 2 O O
O 4 O 3

X X X X 1
Figure 12 Novice offensive play

We can extend the function T further to implement the in-
termediate and experienced offensive strategies as shown in
Figure 13 below. The symbol ee represents both bb and ox.

if n(xx) ≥ 1 then return 1
if n(oo) ≥ 1 then return 2
if n(bx) = 2 then return 3
if n(bx) ≥ 1 then return 4
if n(bo) = 2 then return 5
if n(ee) = 2 then return 7
if n(ee) ≥ 1 then return 6

Figure 13 Intermediate and experienced offensive strategies

An example of the board configuration that showcases the
application of these new strategies is shown in Figure 14. In
this configuration, the team is confronted with the choice of
blocking a two-completion attack by occupying cell 3, or
completing its own threat of two-completion attack by occu-
pying cell 7. Using the previous function, the team correctly
adopts an aggressive stance and secures the win.

O 4 O 5
X O X 7 O

X 3 X 4
Figure 14 Intermediate and experienced offensive play

At this point, we can claim that we almost have a team of
agents (plus a manager) that emulate the ability of a compe-
tent player. The function T for each agent is very simple and
intuitive. Although coordinated centrally, decision is made
in a decentralized manner with locally available information.

We have not discussed the all-important opening move. In
Tic-tac-toe, this move determines the course of the game. If
the team starts first, how do we customize the function T
such that it starts from the center? If the opponent moves
first, how do we program T so the team responds at the cen-
ter if the opponent starts from the corner and vice versa?

1-4244-0464-9/06/$20.00 2006 IEEE. 37 CIG'06 (May 22-24 2006)

The answer of course lies in the function T. Nowhere in
this paper do we require the agents to be identically pro-
grammed, i.e., they can have different function T! So sup-
pose we use the following functions T1, T2, and T3 for the
center, corner, and edge agents, respectively:

T1: return 1

T2: if n(xx) ≥ 1 or center != x then return 1
if n(oo) ≥ 1 then return 2
if n(bo) = 2 and n(bx) = 1 then return 3
if n(bx) = 2 then return 3
if n(bx) ≥ 1 then return 4
if n(bo) ≥ 2 then return 5
if n(ee) ≥ 2 then return 7
if n(ee) ≥ 1 then return 6

T3: if n(xx) ≥ 1 then return 1
if n(oo) ≥ 1 then return 2
if n(bx) = 2 then return 3
if n(bx) ≥ 1 then return 4
if n(bo) ≥ 2 then return 5
if n(ee) ≥ 2 then return 7
if n(ee) ≥ 1 then return 6

Figure 15 Fully implemented strategy

At this point, we have reached our original objective of
constructing a competent Tic-tac-toe team. In the next sec-
tion, we discuss several theoretical issues and the issue of
extending this framework to other types of board games.

V. DISCUSSION
Many interesting issues arise from this new framework.

For example, is it even possible for the agents to initiate a
two-completion attack on the opponent given that they only
have access to the information from cells on the same row?

The answer is, yes, it is possible. However, it cannot be
done without using indirect inference and reducing the ag-
gressiveness of the agents. In Figure 16, we illustrate why
this is so. Given the board situation shown on the left, the
agents use the T in Figure 15, resulting in Figure 16b.

7 7 4 4 7 4
O 7 O 4 7 O 4

X 4 4 X 4 4 X
Figure 16 Initiating a two-completion attack

Using the program in Figure 15, the agents launch their
attacks immediately. The corner agents can be programmed
to initiate two-completion attacks if the priority number for
the event n(bb)=2 is mapped to a 4, shown in Figure 16c.
Now, instead of being limited to responding with immediate
attacks, the agents can launch a delayed, although more po-
tent, coordinated attack. Thus, we can say that with this
change, the overall aggressiveness of the team is reduced
(although we can argue that the team’s finesse is increased).

Another issue is whether the team manager can ask only a
subset of the active agents that are immediately affected by
the opponent’s move. For example, if the opponent starts
from a corner, the manager could ask the agents on the two
edges and one diagonal intersecting the “invaded” corner.

Obviously, the advantage of this method is a reduced
level of agent activity. Because the Tic-tac-toe grid is small,
the saving is quite small. However, if we extend this method
to a game with a much larger board (for example, checker),
the saving can be substantial. Further, this method allows for
a second level of decentralization (or a hierarchy) by intro-
ducing local managers into the game. These managers then
have their own areas of responsibilities and agents.

The disadvantage does not become obvious until this de-
centralized team faces either a monolithic player with a su-
perior computation capacity, or another superior team oppo-
nent not constrained by limits on agent activity and commu-
nication. Such strong opponents can devise maneuvers that
provoke agents from different managerial areas of responsi-
bility to react in separate ways that might be locally optimal
with respect to the limited knowledge and coordination they
have available, but nevertheless ineffective to neutralize the
lethality posed by the global threat posed by the opponent.

Finally, this paper would not be complete without dis-
cussing the extension of this approach to games other than
Tic-tac-toe. Games similar to Minesweeper (which has been
proven to be NP-complete) can benefit from a decentralized
approach — in fact, in real life minesweeping operations,
this approach is the ONLY way! Reversi is another example
of a game that can use this decentralized approach. In Re-
versi, the manager activates only those agents adjacent to the
occupied cells. The information of interest to these agents is
not only the number of opponent and friendly pieces along
the rows, but rather the number of consecutive opponent
pieces terminated by a friendly piece. Unlike in Tic-tac-toe
where the center cell is the most strategic cell, in Reversi,
the four corner cells can determine the outcome of the game.

VI. CONCLUSION
In this paper, we presented a decentralized method of

playing Tic-tac-toe game. The method is extensible to other
turn-based board games, especially those games where the
pieces do not move once placed on the board. We discussed
a possible extension to the game of Reversi (although a de-
tailed implementation is beyond the scope of this paper).

There are many interesting research questions that rise
from the results we presented in this paper. For example, can
this method be extended to other games such as Checker,
Fox and Geese, etc.? These games differ from Tic-tac-toe
because their pieces move within the board. Finally, is there
an automated way to create the rule table T for team agents,
and a reliable way to verify them once created? We hope
this paper stimulates the readers to answer these questions.

REFERENCES
[1] M. Gardner, “Ticktacktoe Games.” Wheels, Life, and Other Mathe-

matical Amusements. W. H. Freeman, pp. 94-105, 1983.
[2] Wikipedia contributors, “Tic-tac-toe”, Wikipedia, The Free Encyclo-

pedia, http://en.wikipedia.org [accessed 19 December 2005]
[3] M.R. Williams, “Cambridge celebrates 50 years since EDSAC.” IEEE

Annals of the History of Computing, 21(3): 72-72, 1999.

1-4244-0464-9/06/$20.00 2006 IEEE. 38 CIG'06 (May 22-24 2006)

Integration and Evaluation of Exploration-Based Learning in Games

Igor V. Karpov 1, Thomas D’Silva2, Craig Varrichio 3, Kenneth O. Stanley4, Risto Miikkulainen 1

1,2,3 Department of Computer Sciences, The University of Texas at Austin, Austin, TX 78712, USA
4 School of Electrical Engineering and Computer Science, University of Central Florida, Orlando, FL 32816, USA

Abstract

Video and computer games provide a rich platform for test-
ing adaptive decision systems such as value-based reinforce-
ment learning and neuroevolution. However, integrating such
systems into the game environment and evaluating their per-
formance in it is time and labor intensive. In this paper, an
approach is developed for using general integration and eval-
uation software to alleviate these problems. In particular, the
Testbed for Integrating and Evaluating Learning Techniques
(TIELT) is used to integrate a neuroevolution learner with an
off-the-shelf computer game Unreal TournamentTM5 (Aha and
Molineaux 2004). The resulting system is successfully used to
evolve artificial neural network controllers with basic naviga-
tion behavior. Our work leads to formulating a set of require-
ments that make a general integration and evaluation system
such as TIELT a useful tool for benchmarking adaptive deci-
sion systems.

1 Introduction
It is often necessary to compare new machine learning tech-
niques empirically against other similar techniques to gauge
how they improve on previous results. In order to minimize
the influence ofdata biasin the evaluation process, new al-
gorithms should be tested in as large a variety of domains as
possible, especially when general claims about their perfor-
mance are being made. Existing video and computer games
provide a rich platform for testing adaptive decision systems
such as value-based reinforcement learning and neuroevolu-
tion. However, integrating and evaluating multiple algorithms
and implementations against multiple simulation domains is
a difficult process. Moreover, any benchmarking results can
also be skewed byimplementation bias, or intentional or un-
intentional disparity in quality of implementation of the pro-
posed approach vs. the quality of implementation of compet-
ing approaches (Keogh and Kassetty 2002).

One potential way to make empirical comparisons of learn-
ing techniques easier and more principled is to build a flex-
ible software platform that provides a uniform interface for
the learning system across multiple rich simulation domains.

1{ikarpov,risto}@cs.utexas.edu
2tdsilva@mail.utexas.edu
3cavarrichio@yahoo.com
4kstanley@cs.ucf.edu
5Unreal Tournament is a trademark of Epic Games, Inc.

Such a system allows researchers to concentrate on imple-
menting and optimizing their approach to solving the learn-
ing problem and to validate it empirically by comparing with
other approaches.

In this paper we present the results of using one such “glue”
framework to integrate an existing reinforcement learning
technique with an existing game environment. The “glue”
framework used is the Testbed for Integrating and Evaluating
Learning Techniques (TIELT), developed by David Aha and
Matthew Molineaux (Aha and Molineaux 2004). It has been
designed to “integrate AI systems with (e.g., real-time) gam-
ing simulators, and to evaluate how well those systems learn
on selected simulation tasks” (Molineaux and Aha 2005).

The project uses NeuroEvolution of Augmenting Topolo-
gies (NEAT) method as the learning technique (Stanley and
Miikkulainen 2002a). NEAT is a genetic algorithm that
evolves increasingly complex artificial neural network con-
trollers by applying mutation and crossover operators to their
populations based on a fitness function. A real time variant
of NEAT, called rtNEAT, has been used successfully in the
game NERO, produced by the Digital Media Collaboratory
at the University of Texas at Austin (Gold 2005; Stanley et al.
2005b).

Using TIELT, NEAT is embedded into Unreal
TournamentTM , a popular First Person Shooter (FPS)
computer game produced by Epic Games, Inc. in 1999
and winning a Game of the Year title for that year. Unreal
TournamentTMwas previously integrated with the TIELT sys-
tem and other learning methods were tested on it. However,
exploration-based learning algorithms such as value-function
and evolution-based reinforcement learning have not been
tested with Unreal/TIELT before (Molineaux 2004).

The next section describes the state of AI in gaming, the
learning technique of neuroevolution, and the TIELT ap-
proach to integration and evaluation. Section 3 gives an
overview of our system’s architecture, Section 4 summarizes
experiments performed and their results, and Section 5 anal-
yses the results and describes future work.

2 Background
2.1 AI in gaming
Video game technology can provide a rich platform for val-
idating and advancing theoretical AI research (Gold 2005).
On the other hand, the video game industry stands to benefit
from the adapting artificial intelligence and machine learning

1-4244-0464-9/06/$20.00 2006 IEEE. 39 CIG'06 (May 22-24 2006)

http://www.cs.utexas.edu/users/ikarpov/
http://www.cs.ucf.edu/~kstanley/
http://www.cs.utexas.edu/users/risto/
http://www.cs.utexas.edu/
http://www.utexas.edu/
http://www.eecs.ucf.edu/
http://www.ucf.edu/
mailto:ikarpov@cs.utexas.edu
mailto:risto@cs.utexas.edu
mailto:tdsilva@mail.utexas.edu
mailto:cavarrichio@yahoo.com
mailto:kstanley@cs.ucf.edu

techniques into new, more interactive games.

Computer and video games constitute a large and lucrative
market, 7.3 billion dollars in the US in 2004 (ESA 2005).
This allows game studios to develop a variety of what can
be seen as high realism simulations for human-level control
tasks, such as navigation, combat, team and individual tactics
and strategy. The emergence of online multi-player and mas-
sively multi-player games offers unprecedented opportunities
for real-time interaction between human players and artifi-
cially intelligent elements. Because of these factors, com-
puter and video games may indeed be a ’killer application’
for developing and validating machine learning techniques
(Laird and van Lent 2000).

However, adaptive algorithms are used in the game indus-
try setting surprisingly rarely. Most popular video games on
the market today use scripted non-player characters to add
interactivity to their games (Gold 2005). A large fraction of
AI development in the industry is devoted to path-finding al-
gorithms such as A*-search and simple behaviors built us-
ing finite state machines. There may be several reasons for
why this is the case. One is that high-end game applications
have traditionally pushed hardware systems to their limits and
simply did not have the resources to perform online learning.
This is becoming less of a problem with the availability of
cheap processing power and true parallelism. Another, deeper
reason may be that it is difficult to adopt results from aca-
demic AI to games because they are not built and tested with
these applications directly in mind. Where the goal of an AI
researcher is often to build a system that is able to adapt to
an environment to solve difficult tasks, the goal of a game de-
veloper is to build a system that is “human-like” and “fun”.
Integration systems such as TIELT can allow researchers and
engineers to more easily integrate and test new learning algo-
rithms with games, benefiting both academic AI research and
commercial game development.

2.2 Neuroevolution

Neuroevolution is a powerful technique for solving non-
linear, non-Markovian control tasks (Gomez 2003). In neu-
roevolution, a genetic algorithm is used to evolve artificial
neural networks. NeuroEvolution of Augmenting Topologies
(NEAT) is a particularly efficient method of this kind able
to evolve both network weights and topologies (Stanley and
Miikkulainen 2002b). NEAT starts with a population of min-
imal network topologies and complexifies them when neces-
sary to solve the problem at hand. NEAT is able to protect
innovation through a speciation mechanism, and has an ef-
fective encoding scheme that allows it to perform mutation
and recombination operations efficiently.

Neuroevolution and NEAT in particular have been shown
to outperform other methods on a number of benchmark
learning tasks. For example, neuroevolution has been
successfully used in a number of game-playing domains
(Agogino et al. 2000; Stanley et al. 2005a). It is therefore
important to show that methods such as NEAT can benefit
from general integration and evaluation tools such as TIELT.

2.3 Testbed for Integration and Evaluation of
Learning Techniques (TIELT)

The Testbed for Integration and Evaluation of Learning Tech-
niques, or TIELT, is a Java application intended to connect a
game engine to a decision system that learns about the game
(Aha and Molineaux 2004). The goal of the system is to pro-
vide the researcher with a tool that simplifies the task of test-
ing a general learner in several different environments.

The application consists of fiveknowledge basesor mod-
ules which correspond to different areas of TIELT’s function-
ality. The Game Modelencapsulates the information about
the game from a single player’s perspective. TheGame In-
terface Modeldescribes how TIELT communicates with the
game. TheDecision System Interface Modeldescribes in-
teractions with the decision system. TheAgent Description
describes tasks performed by the system in order to play the
game, and theExperimental Methodologymodule is used as
an evaluation platform for particular games and learning tech-
niques.

During integration, TIELT is connected with the game en-
vironment and with the learning system using the appropriate
knowledge bases. The software allows the user to define the
communication protocols between TIELT, the game engine
and the learning system. TIELT also includes a visual script-
ing language that allows scripting of the game behavior and
update rules.

TIELT provides the ability to connect environments and
learners with arbitrary interfaces and rules into a cohesive
learning system and to automate the evaluation of this sys-
tem’s performance. This paper explores how well these fea-
tures support neuroevolution.

3 System architecture
At the highest level, the system consists of three parts: the
Unreal TournamentTMserver, the TIELT integration platform,
and the decision system based on NEAT. The game server
simulates the environment for the learning agent. TIELT
communicates with the environment and accumulates a state,
which is then communicated to the decision system. The de-
cision system selects an action in the environment and com-
municates it back through TIELT. The decision system con-
tinually adopts its behavior by evolving artificial neural net-
work controllers to perform the task.

3.1 Game engine
Unreal TournamentTM is a real-time first person shooter
(FPS) computer game in which a player navigates a three-
dimensional space. The player can walk, run, jump, turn,
shoot and interact with objects in the game such as armor,
doors and health vials. The goal of one variant of the game
(the tournament) is to be the first to destroy a certain number
of opponents. Up to 16 players can play the game concur-
rently in a single level. A player can be controlled either by a
human player connected over a network or an automated bot
controlled by a built-in script.

The Gamebots API from the University of Southern Cali-
fornia modifies the original game to allow players to be con-
trolled via sockets connected to other programs such as an

1-4244-0464-9/06/$20.00 2006 IEEE. 40 CIG'06 (May 22-24 2006)

adaptive decision system (Kaminka et al. 2002). The commu-
nication protocol consists of synchronous and asynchronous
sensory messages sent from the server to all the clients and
of commands sent from the clients back to the server. The
server has all the information about player locations, interac-
tions and status. The synchronous updates occur about every
100 milliseconds, and include updates to the player’s view
of the game state. Asynchronous events include collisions
with objects, players and projectiles, results of queries by the
player and game over events.

3.2 Integration System
TIELT communicates with the GameBots API using TCP/IP
sockets. The game interface model defines a subset of the
GameBots protocol which is used to update the game model
and trigger agent actions.

The Game Modelrepresents the knowledge that a player
has about the game at any given time. It includes the locations
and types of objects encountered in the game, the objects that
are currently visible or reachable, the location and heading of
players, health, armor and other player status indicators. Ad-
ditionally, the game model holds an array of eight Boolean
variables that correspond to whether the locations distributed
at a fixed radius around the player’s most recent position are
reachable. This game model allows the information from syn-
chronous and asynchronous updates to be combined into a
single state that can then be used by the decision system to
generate appropriate actions. Because TIELT scripting lan-
guage did not implement the operations necessary to combine
these values into useful sensory inputs, the final values were
calculated in our decision system implementation.

The Decision System Interface Modeluses Java Reflec-
tion to dynamically load and use libraries of Java classes.
These classes implement the NEAT learning system, as de-
scribed in more detail in the next subsection.

The Agent Description is a script that sends sensor infor-
mation from the Game Model to the Decision System and ex-
ecutes the resulting action on each synchronous update from
the Unreal TournamentTMserver. This process is performed
many times to evaluate a single individual.

The Experimental Methodologymodule in TIELT allows
the user to specify which Game Model, Decision System, and
Agent Description are to be used in an experiment and how
many repetitions of the experiment have to be run. In our
system, a single TIELT experiment corresponds to the eval-
uation of a single individual’s fitness, and must be repeated
e × p times, wheree is the number of epochs andp is the
population size. The state of the NEAT algorithm is persisted
in memory across TIELT experiments.

3.3 Decision System
The output of the decision system is controlled by evolving

neural networks. Each static neural network in a population
performs a number of decisions during a predefined lifetime
of the individual in the Unreal game environment. The re-
sulting behavior is analyzed to compute a fitness score (sec-
tion 4). The Unreal TournamentTMworld is then reset and a
new network is used for decision-making. The decision sys-
tem keeps track of individuals, their fitness functions, evalu-

Algorithm 1 Agent description tasks executed by TIELT

Population← RandomPopulation()
for each epoche do

for each individualI do
while time not expireddo

s← SensorV alues() // TIELT to NEAT
a← Action(I, s) // NEAT to TIELT
Act(a) // TIELT to Unreal

end while
Fitness(I, e)← C - MinDistanceToTarget

end for
Population← NextPopulation(P,Fitness)

end for

Obstacle sensor

Current heading

Radar sector
Step size

Action angle

New target

Figure 1: Agent sensors and actions.Each neural network has
11 sensory inputs: 8 radial Boolean obstacle sensors and 3 forward-
facing “radar” sensors, whose values are derived from the distance
to navigation points visible in each of the three sectors shown on the
figure.

ation times, populations and epochs. The resulting algorithm
is thus simply a serial variant of the neuroevolution algorithm,
which evaluates each individual in turn (Algorithm 1).
Sensors: Each neural network has 11 egocentric sensor in-
puts: eight boolean obstacle sensorsS0..S7 with a small ra-
dius (in relative scale of the game they are roughly equiv-
alent to stretching out the bot’s arms in 8 directions) and
three forward-directed 60-degree “radar” valuesR0..R2 (Fig-
ure 1). In addition to these 11 sensors, each network has a
bias input (a constant 0.3 value found appropriate in previ-
ous NEAT experiments). Each radar valueRI is computed
asRI =

∑
x∈NI

d(x)/C whereNI is the collection of nav-
igation landmarks visible in sectorI, d(x) is the distance to
each landmark, and C is a constant scaling factor. Thus, the
RI can be interpreted as the amount of free space in the di-
rection; with higher activations corresponding to more visible
navigation landmarks and to landmarks that are visible further
away (Figure 1).
Actions: At each update, the decision system scales the sin-
gle output of the network to a relative yaw angle∆α in the

1-4244-0464-9/06/$20.00 2006 IEEE. 41 CIG'06 (May 22-24 2006)

range of[−π, π]. TIELT then sends a command to the Unreal
game server to move towards a point(x+s cos(α+∆α), y+
s sin(α + ∆α), z) wheres is the step size parameter.

4 Experiments
A number of validation experiments were conducted to verify
that the learning system design is effective. The testing was
done on an Intel Pentium 4 machine with a 2.4GHz clock rate
and 1GB of RAM running Microsoft Windows XP. TIELT
version 0.7 alpha and a Java implementation of NEAT were
running on Sun Java Runtime Environment 1.5. An off-the-
shelf copy of Unreal Tournament Game of the Year Edition
was used in “dedicated server” mode (graphics disabled) in
conjunction with a June 8, 2001 build of GameBots API. The
following parameters were used:

• Number of epochs:100 generations were used due to time
constraints. This number of epochs was sufficient to evolve
networks that were able to approach a static target.

• Population size and target speciation:The population
size was set to 50, 100 and 200 individuals with the target
speciation of 5, 10 and 20 species, respectively.

• Number of repeated evaluationsIn order to improve con-
troller robustness in the presence of latency and noise, in-
dividual evaluations were repeated 1, 3 and 5 times and the
average was used as the fitness function.

• Evaluation time: Each individual was evaluated for 10,
20 and 30 seconds, which translates to about 100, 200 and
300 consecutive actions.

• Fitness function: Throughout the lifetime of an individ-
ual, the system tracks the minimum distancedmin to a
static target. The fitness functionf for the individual is
computed asD − dmin where D is a constant greater than
the largest measurement of the game level such thatf ≥ 0.

The task in the experiment was to navigate through the en-
vironment to a static target (Figure 2). At the beginning of
an evaluation, the bot is placed at the origin and performs
actions for the duration of the evaluation. The minimal dis-
tancedmin to the target is measured over the synchronous
updates received by the learning system. The fitness function
C − dmin grows to a maximum value ofC when the bot is
able to approach the target.

In our initial experiments, we are able to reliably evolve
controllers for the simple “go to target” task (Figure 3). Start-
ing from initially random behavior, the record population fit-
ness improved from 3080 to 3350 in 20 generations. At that
time the best agent was able to navigate reliably to within
650 distance units, and further evolution produced better con-
trollers.

Additional proof-of-concept experiments were performed
on a Condor cluster of Intel Pentium 4 (2.4GHz) machines
running Debian Linux. The results of these experiments were
consistent with the data presented here, and demonstrate that
it is possible to use a clustered environment to speed up eval-
uation of learning methods with TIELT.

Figure 2: Example of a path to target task. Three traces of the
best neural network navigating from the starting position to the end-
ing position in an Unreal TournamentTM level. The network shown
is the result of 33 generations of evolution and has the fitness score
of 3518 out of 4000.

0 5 10 15 20 25 30
3000

3050

3100

3150

3200

3250

3300

3350

3400

3450

M
a

x
im

u
m

 F
it
n

e
s
s

Epoch

Maximum Fitness over Epochs

Figure 3: Average population fitness with epochs.Average fit-
ness of 100 individuals per epoch, calculated as a mean of 3 10-
second evaluations of the target navigation task in Figure 2. The
values shown are averages over 6 26-epoch runs with the standard
deviations shown by error bars.

5 Evaluation and Future Work

One important result of our work is an estimate of the time
and effort required when using TIELT to integrate and evalu-
ate a new decision system and the additional specifications for
the future evolution of such systems. The project discussed in
this paper consumed three academic hours of time for one un-
dergraduate and two graduate students during the course of a
semester, with regular consultation by the developer of TIELT
and by the authors of NEAT. TIELT made the work of apply-
ing neuroevolution to Unreal Tournament simpler in several

1-4244-0464-9/06/$20.00 2006 IEEE. 42 CIG'06 (May 22-24 2006)

ways. Above all, the communication layer between Unreal
and TIELT was already implemented and required only mi-
nor adjustments to integrate with the NEAT decision system.

At the end of the semester, the learner-environment system
had basic functionality to evolve agents as single actors in the
environment. However, the system was found to not be well-
suited for running and analyzing repeated experiments effi-
ciently. TIELT’s design did not provide a convenient way to
parallelize evaluations of agents or to evolve multiple agents
acting in the same environment. As a result, a large portion of
the functionality that can be taken care of in the “glue” frame-
work has to be implemented in the decision system. This
makes the decision system specific to the Unreal Tournament
application and reduces the advantages of the middle layer.

There are several ways in which the TIELT system could be
modified or other similar integration platforms be built in the
future to better support exploration-based learning. In partic-
ular, the system can be more efficient, provide better support
for batch experiments, easier to use, more flexible and more
open.

Efficiency: Because the integration, evaluation and deci-
sion systems are implemented as Java applications, they can
incur unexpected garbage collection delays and are often
slower than native implementations. The Unreal Tournament
server, which executes separately and as a native binary, does
not incur such delays. In addition, the extra layers of in-
direction between the environment and the decision system
add computational overhead to the process of making an in-
dividual decision. We observed these factors add up to cre-
ate highly variable per-action latency, which introduces new
challenges into learning a task in a simulated real-time envi-
ronment. A system such as TIELT can minimize these irreg-
ularities by providing a more efficient implementation or by
using low-pause garbage collection techniques.

Parallelism: TIELT is currently designed for evaluation of
a single player learning agent, against an external or a hu-
man opponent, and there is no directly supported way to com-
bine evaluations of several individuals in parallel into a single
learning system, even though such evaluation is possible in
the environment (Unreal Tournament supports up to 16 simul-
taneous players). Adding explicit multi-agent functionality to
TIELT would greatly increase the utility of the platform when
evaluating population-based learning systems like NEAT.

Support for Batch Experiments: While TIELT does pro-
vide some support for running experiments in batch mode,
some settings are only available through the graphical user
interface. This interactive component of TIELT makes it dif-
ficult to run long series of repeated experiments, especially
when distributing the work to a cluster of machines. For some
of our experiments, additional software was used to script
user interactions in a virtual environment, which created un-
necessary overhead. In designing a testbed such as TIELT,
care should be taken to ensure that all use cases can be recre-
ated in non-interactive batch mode.

TIELT has the capability to integrate the game engine, the
TIELT application itself, and the decision system while they
are running on different physical machines and communi-

cate via network messages. This is a powerful feature, and it
should be expanded with the ability to script experiments and
to distribute evaluations over several different computers run-
ning TIELT. This would help optimize use of computational
resources and researcher time.

Usability and Flexibility: In order to make TIELT integra-
tion less time-consuming, the framework can be simplified by
making use of existing technology. Instead of using a custom
scripting language, future integration systems can be made
more powerful and easier to approach by using an existing
scripting language such as Python or Ruby, bringing to bear
existing documentation, libraries, and experience.

If the goal of the middleware is to support many differ-
ent kinds of learning systems, its architecture should be flex-
ible enough to be usable in all those models. The knowledge
bases and modules of TIELT, while well-suited for rule-based
learning, are not as useful with neuroevolution or online rein-
forcement learning. For NEAT as well as other reinforcement
learning methods, the concepts of an evaluation episode, an
individual agent, and a population are beneficial. Future ver-
sions of TIELT and other integration and evaluation systems
can benefit from a more modular architecture which supplies
some specific features needed by different kinds of learning
agents and environments.

Access to Source: Learning agent benchmarking interfaces
such as TIELT must have their source open to the users. Do-
ing so will greatly shorten the debugging cycle as well as
allow researchers to have complete knowledge of the im-
plementation of their experimental system. Unfortunately,
TIELT is currently a closed source project.

6 Conclusion
The results in this paper show that a generic framework such
as TIELT can be used to integrate and evaluate adaptive de-
cision systems with rich computer game environments. Basic
target-seeking behavior was evolved with NEAT neuroevo-
lution method for an agent in the Unreal Tournament video
game. However, in order to make such frameworks practical
and their use more widespread, progress needs to be made in
several aspects. They must be designed and implemented as
high-performance and lightweight applications, better utilize
standard interfaces and existing scripting languages, and pro-
vide support for distributed and scripted operation for batch
computational experiments. With these extensions, it may be
possible to use sophisticated game playing domains in devel-
oping better exploration-based learning methods, as well as
develop more interesting adoptive elements for future games.

A Acknowledgments
Thanks to David Aha and Matthew Molineaux for provid-
ing the TIELT platform. This work was supported in part by
DARPA through an NRL grant #N00173041G025.

References
Agogino, A., Stanley, K., and Miikkulainen, R. (2000). On-

line interactive neuro-evolution.Neural Processing Let-
ters, 11:29–38.

1-4244-0464-9/06/$20.00 2006 IEEE. 43 CIG'06 (May 22-24 2006)

http://nn.cs.utexas.edu/keyword?agogino:npl00
http://nn.cs.utexas.edu/keyword?agogino:npl00

Aha, D. W., and Molineaux, M. (2004). Integrating learning
in interactive gaming simulators. InChallenges of Game
AI: Proceedings of the AAAI’04 Workshop. AAAI Press.

ESA (2005). Essential facts about the computer and video
game industry.

Gold, A. (2005). Academic AI and video games: a case
study... InProceedings of the IEEE 2005 Symposium on
Computational Intelligence and Games (CIG’05). IEEE.

Gomez, F. (2003).Robust Non-Linear Control Through Neu-
roevolution. PhD thesis, Department of Computer Sci-
ences, The University of Texas at Austin.

Kaminka, G. A., Veloso, M. M., Schaffer, S., Sollitto, C.,
Adobbati, R., Marshall, A. N., Scholer, A., and Tejada,
S. (2002). Gamebots: a flexible test bed for multiagent
team research.Communications of the ACM, 45(1):43–
45.

Keogh, E., and Kassetty, S. (2002). On the need for time
series data mining benchmarks: a survey and empiri-
cal demonstration. In8th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
102–111.

Laird, J. E., and van Lent, M. (2000). Human-level AI’s killer
application: Interactive computer games. InProceed-
ings of the 17th National Conference on Artificial Intel-
ligence and the 12th Annual Conference on Innovative
Applications of Artificial Intelligence. Menlo Park, CA:
AAAI Press.

Molineaux, M. (2004).TIELT (v0.5 Alpha) User’s Manual.
Molineaux, M., and Aha, D. W. (2005). TIELT project

website. Project web site, Naval Research Laboratory,
http://nrlsat.ittid.com/ .

Stanley, K. O., Bryant, B. D., and Miikkulainen, R. (2005a).
Evolving neural network agents in the NERO video
game. InProceedings of the 2005 IEEE Symposium on
Computational Intelligence and Games(CIG’05). IEEE.

Stanley, K. O., Cornelius, R., Miikkulainen, R., D’Silva, T.,
and Gold, A. (2005b). Real-time learning in the NERO
video game. InProceedings of the Artificial Intelligence
and Interactive Digital Entertainment Conference (AI-
IDE 2005) Demo Papers.

Stanley, K. O., and Miikkulainen, R. (2002a). Efficient evolu-
tion of neural network topologies. InProceedings of the
2002 Congress on Evolutionary Computation (CEC’02).
Piscataway, NJ: IEEE. In press.

Stanley, K. O., and Miikkulainen, R. (2002b). Evolving neu-
ral networks through augmenting topologies.Evolution-
ary Computation, 10:99–127.

1-4244-0464-9/06/$20.00 2006 IEEE. 44 CIG'06 (May 22-24 2006)

http://www.theesa.com/files/2005EssentialFacts.pdf
http://www.theesa.com/files/2005EssentialFacts.pdf
http://nrlsat.ittid.com/
http://nn.cs.utexas.edu/keyword?stanley:cec02
http://nn.cs.utexas.edu/keyword?stanley:cec02
http://nn.cs.utexas.edu/keyword?stanley:ec02
http://nn.cs.utexas.edu/keyword?stanley:ec02

Abstract— In this paper, coevolution is used to evolve
Artificial Neural Networks (ANN) which evaluate board
positions of a two player zero-sum game (The Virus Game). The
coevolved neural networks play at a level that beats a group of
strong hand-crafted AI players. We investigate the per formance
of coevolution star ting from random initial weights and star ting
with weights that are tuned by gradient based adaptive learning
methods (Backpropagation, RPROP and iRPROP). The results
of coevolutionary exper iments show that pre training of the
population is highly effective in this case.

I. INTRODUCTION

In biology, coevolution is the mutual evolutionary
influence between two species that become dependent on
each other. Each species in a coevolutionary relationship
exerts selective pressures on the other species. Coevolution
occurs if the traits of one species A have evolved due to the
presence of a second species B and vice versa. This natural
phenomenon has motivated AI researchers to apply
coevolution in solving different types of problems where two
or more entities are interacting with each other. Coevolution
is an unsupervised learning method that requires only
relative measurement of phenotype performance, well-suited
to the game-playing domain.

The gradient-based learning methods: Backpropagation
[17], resilient backpropagation (RPROP) [16] and improved
resilient backpropagation (iRPROP) [9] are supervised
learning methods. They use a delta rule and can be applied to
the problem of learning neural network weights to give a
network which produces the desired outputs with minimised
error.

Games continue to be important domains for investigating
problem solving techniques [13]. Games offer tremendous
complexity in a computer manageable form and need
sophisticated AI methods to play at expert level. Board
games like Chess [4], checkers [8], Othello [24] and
backgammon [22] have been used to explore new ideas in
AI. We will survey this work late in this section. In this
paper, we used the “Virus Game” as a testbed to explore
coevolutionary ideas.

The “Virus Game” [6] [7] [10] is a two-person perfect
information board game of skill. The game is played on a

square board. The start position of the game is shown in
Figure 1. The player who always starts the game is the Black
Player and the other player is the White Player.

In the Virus Game, there are two kinds of moves available
for each turn. The first kind of move is grow move or one
step move. In this kind of move, a player moves a piece of
his colour to an empty position adjacent to its current
position. The positions are adjacent if their borders or
corners are adjacent. The result of this move reproduces the
moving piece and occupies both positions, the new position
(which was empty) and the old position. The grow move is
shown in Figure 2. The second kind of move is called jump
move or two step-move. In this case, a player moves a piece
to an empty position which is two squares away from its
current position via an empty square. The piece leaves the
old position empty and occupies the new position. Figure 3
shows a jump move. In either case, all opposing pieces
adjacent to the new player’s piece change colour. Players
alternate, moving only one piece per turn. The game ends
when neither player can move. The player with the greatest
number of pieces is the winner. The game is declared a draw
if both players have the same number of pieces at game end.

The Virus Game has higher branching factor than chess,
draughts and Othello and appears to be a difficult game for a
human player to play well despite its simple rules [7]. We
have a strong pool of hand-crafted AI players for the Virus
Game, each written by a different person since these were
used in an AI-writing competition [6].Competitive learning
was initially explored by Samuel [20] to adjust the
parameters of a deterministic evaluation function in a
checkers playing computer program. Tesauro [22] used the
temporal-difference learning approach to evolve a
backgammon-playing neural network. Tesauro’s TD-
Gammon yields a computer playing backgammon program
of world-champion strength. Coevolutionary competitive
learning is explored for the Repeated Prisoner’s Dilemma
(RPD) by Axelrod [2] and Miller [11]. Axelrod evolve RPD
playing strategies using a fixed environment (i.e. using eight
fixed opponents) while Miller coevolved the RPD strategies
by playing each strategy against every other strategy and
itself in a population. According to the results shown by

A Coevolutionary Model for The Virus Game

P.I.Cowling, M.H.Naveed and M.A. Hossain
MOSAIC Research Centre, Department of Computing,

University of Bradford
Bradford, BD7 1DP, UK.

E-mail: P.I.Cowling, M.H.Naveed and M.A.Hossain1@bradford.ac.uk

1-4244-0464-9/06/$20.00 2006 IEEE. 45 CIG'06 (May 22-24 2006)

Miller, the best evolved RPD playing strategies in his work
performed well against strong strategies (like Tit-for-Tat)
taken from Axelrod’s work. Axelrod and Miller used Genetic
Algorithms to evolve RPD playing strategies.

Fig. 1. The starting position of the Virus Game Board

Fig. 2. This figure represents a one-step or grow move. The White player is
to move the white piece at position (3, 2) moves to position (4, 1). This
move gives another white piece at (4, 1) and captures the pieces of opposite
colour at positions adjacent to (4, 1).

Fig. 3. This figure shows a jump move. Black is to move and chooses to
move the piece at (5, 5) to (7, 7) which captures white pieces in the squares
surrounding square (7, 7).

Angeline and Pollack [1] used competitive coevolution

with Tic Tac Toe as a testbed. They introduced a
competitive fitness function where the total number of
competitions in a generation is n-1 for a population of size n.
This gives a small number of competitions as compared to
the competitions in Miller’s work [11] where the total
number of competitions per generation is n2. This
competitive fitness function saves a considerable amount of
CPU time. Smith and Gray [19] introduced a competitive
function where there are n/2 competitions per generation for
a population of size n. Smith and Gray applied coevolution
to Othello. The weights of a deterministic evaluation
function are evolved using a co-adapted GA with explicit

fitness sharing. The coevolved evaluation function may not
be very strong but the approach is notable for the formation
of stable niches (i.e. stable groups) during the evolutionary
process. The individuals of each group in a generation have
similar characteristics and the results show that the
individuals in a group continuously evolve during the
coevolutionary process.

Potter and De Jong [14] explored cooperative coevolution
for function optimisation. They introduced Cooperative
Coevolutionary Genetic Algorithms (CCGAs) where a group
of subpopulations is maintained which interact with each
other in a modular fashion. Each subpopulation represents a
partial solution and combining the members of all
subpopulations gives complete solutions. The number of
subpopulations is not fixed in CCGAs and there is no
migration between the subpopulations. The competition for
evolution in CCGAs exists among the members of each
subpopulation and each subpopulation has its own
evolutionary algorithm. The results show that CCGAs have
better performance than standard GAs. This approach is also
notable for its natural mapping onto a client server
architecture where subpopulations can be coevolved on
different network machines in parallel (simultaneously) and
each subpopulation can have its own evolutionary algorithm.

The effectiveness of CCGAs in solving complex problems
is explored by Potter et al [15] to evolve the sequential
decision rules which control the behavior of a simulated
robot. In this case, the empirical results demonstrate that
cooperative coevolution has better rule learning speed than
non-coevolutionary systems and it promotes the formation of
stable niches which provide evidence of cooperation among
subpopulations.

Anaconda [8] is a checkers playing neural network which
is evolved using competitive coevolution.The authors have
used Evolutionary Programming to coevolve the neural
networks in a competitive environment and the strongest
neural network, Anaconda, is rated at expert level according
to a tournament conducted at website www.zone.com.

This paper investigates the effectiveness of two
coevolutionary approaches. In the first approach, initial
populations, of varying sizes, containing random neural
networks, are evolved against 10 strong hand-crafted AI
players. The weights of neural networks are evolved using a
Genetic Algorithm. In the second coevolutionary approach, a
large number of neural networks are trained using gradient
based learning methods under the supervision of 10 fixed
hand-crafted AI players. The trained neural networks are
then coevolved against the same and different fixed
opponents. Thus we are able to investigate whether the
combination of coevolution and supervised learning is
effective.

The paper has the following structure. Section II describes
our experimental design. Section III contains results and
their analysis. Section IV concludes the paper.

1-4244-0464-9/06/$20.00 2006 IEEE. 46 CIG'06 (May 22-24 2006)

II. EXPERIMENTAL DESIGN

A. Design of the neural network

The design of a neural network architecture is a complex
task. The selection of an appropriate architecture for a given
problem is very important because the learning capabilities
of a neural network depend heavily on its architecture [25].
In our work, we used different neural network architectures
in our experiments. The selection of the final architecture is
made on the basis of its performance in these initial
experiments. The architecture of our neural networks is
represented by I-H1-H2-O where ‘I’ represents number of
input units, ‘H1’ means the number of hidden neurons in first
hidden layer, ‘H2’ represents total number of hidden neurons
in second hidden layer and ‘O’ represents number of output
neurons. The architectures that were initially explored are
64-20-10-1, 64-25-10-1, 64-30-15-1, 64-35-15-1, 64-44-20-
1, 64-50-25-1, 64-58-27-1, 64-66-34-1 and 64-71-42-1. The
small neural networks show poor performance but use low
CPU time while large neural networks have good
performance with high CPU time. The performance for each
architecture was evaluated by coevolving a population of 20
neural networks (with random weights) against 10 fixed AI
players. Three runs for each architecture were performed to
allow for stochastic variations. The average value of
maximum score in 500 generations represents the fitness of
the architecture. The average value for architecture 64-58-
27-1 is higher than the average values of other architectures.
The first five architectures mentioned earlier in this
subsection could not converge to a solution within 500
generations (for all three runs) where they can beat all
opponents. The neural networks with last three architectures
defeated all opponents within 10-16 generations of
coevolution. The architecture 64-58-27-1 (smallest among
last three architectures) is used in all subsequent
experiments.

In the selected neural networks architecture, there are 64
input units where each input unit is associated with a square
of board. A location-based input encoding scheme [26] is
used where each input unit is associated with a square of
board. If the corresponding square of an input unit has a
black piece on the board then its value is assigned as '1’, if
square is occupied with white piece the input value for this
unit is ‘-1’ and value ‘0’ is used for empty square.

 All hidden neurons have sigmoid [17] activation function.
All weights are encoded by real numbers in the range [-0.5,
0.5]. The output neuron has linear activation function and
gives a real number as the output of the neural network.

B. Evolutionary Method

A Genetic Algorithm (GA) is used to evolve the
connection weights of a population of neural networks. A
chromosome contains all connection weights of one neural
network as shown in Figure 4.

W1 W2 … W5363
Fig. 4. A representation of a chromosome where W1, W2, … W5363 are

real-valued connection weights.

The fitness of a chromosome is the total score of its

corresponding neural network in playing two games, one as a
black and other as white, with each of 10 fixed AI
opponents. If a neural network wins a game against an
opponent, its score is increased by 3; if the match is draw
then score is increased by 1 and for loss there is no change in
the score. Each neural network plays twenty games per
generation and its total score after twenty games is used to
measure its fitness. All games are run to 1-ply only to keep
search times manageable.

The Selection operator applies a rank selection method
[12]. At the end of the tournament for a given generation, all
chromosomes are arranged in a descending order according
to fitness score. From the sorted list of N chromosomes, the
top N/3 chromosomes are selected for sexual reproduction.
These selected chromosomes are paired to reproduce 2N/3
new chromosomes through a two-point crossover operation.
The process of two-point crossover is shown in Figure 5
where each chromosome is treated as a circular entity. The
Gaussian Mutation Operator [23] is applied to each new
offspring. The weights of a newly created neural network are
changed using following equations.

LiLN

NWW

i
m
i

m
ii

m
i

,...2,1),)(,0(exp(

),,0(
1 =×=

+=
−σσ

σ
 (1)

Where iW is the ith weight of a given chromosome before

mutation operation and m
iW is the ith weight of that

chromosome after mutation operation. The term iσ is self-

adaptive parameter vector related to weight iW of a

chromosome. Initially it is set to 0.10 for all i. The selection
of this value of mutation parameter is based upon [8] where

they used 0.05 for iσ and initial connection weights

between [-0.2, 0.2]. The total length of a chromosome is L.

In [18], σ is initialised to the value 1/L . N(0, σ)
denotes a Gaussian random variable with mean 0 and
standard deviation of σ .

The sets of parameters which are examined in our
coevolutionary model are shown in Table 1.

1-4244-0464-9/06/$20.00 2006 IEEE. 47 CIG'06 (May 22-24 2006)

Fig. 5. The process of two-point crossover. C1 and C2 are the chromosomes
selected for sexual reproduction.

TABLE.1: PARAMETERS FOR GA EXPERIMENTS

POPULATION

SIZE
CROSS OVER

RATE
MUTATION SELF-

ADAPTIVE PARAMETER
6 0% 0.10
6 20% 0.10

15 0% 0.10
15 20% 0.10
20 0% 0.10
20 20% 0.10
30 0% 0.10
30 20% 0.10
50 0% 0.10
50 20% 0.10

C. Supervised learning Methods

Neural networks are trained under the supervision of 10
hand-crafted AI players using gradient-based techniques:
Backpropagation (BP), RPROP and iRPROP. In this case,
10 different training sets are created where each training set
contains a large number of board positions and their
evaluation values as determined by a hand-crafted AI player.
Therefore, each neural network is trained to learn the
evaluation function of a given hand-crafted AI player. Each
neural network is trained using one training set. Four neural
networks are trained using iRPROP, three are trained using
RPROP and three are trained using BP, for each hand-
crafted AI player. BP uses a learning rate of 0.01. The
learning parameters for RPROP and iRPROP are set to
� +=1.2, � -=0.50, � o=0.5, � min=0 and � max=50. The selection
of the learning parameters of gradient-based learning
methods is made according to the recommended values by
authors in [21], [16] and [9]. Thus a pool of 100 neural
networks is trained under the supervision of 10 different
training data sets (each based on a different hand-crafted AI
player).

D. Coevolutionary Model

Our coevolutionary model uses two different approaches
for generating the starting population. In the first approach,
an initial population of neural networks with random weights
is coevolved against ten fixed opponents. The coevolution of

neural networks continues until at least one neural network in
a given population beats all of the fixed opponents or there is
no improvement in the scores of the best neural network for
10 consecutive generations. All games in this coevolutionary
approach are played at 1-ply by both neural networks and
fixed opponents.

In the second approach an initial population of trained
neural networks is used. These neural networks are selected
from the pool of 100 pre-trained neural networks. If the
population size is less than or equal to 10, all neural
networks used are based on different hand-crafted AI
players. If population size is greater than 10, these are
selected randomly in such a way as to ensure that a neural
network trained by each of the 10 hand-crafted AI players is
in the starting population. Therefore two populations of size
20 would have 10 identical and 10 different neural networks
in the initial population. The trained neural networks are
coevolved against 10 fixed opponents. The stopping
condition and ply depth is same as used in first approach. So,
the difference between two approaches is that the second
approach combines two machine learning techniques i.e.
gradient-based learning and coevolution.

To assess the generality of approach, we also test against
another 10 hand-crafted AI players which are not used in
pre-training or coevolution.

III. RESULTS AND ANALYSIS

The results obtained from the randomly initialised neural
networks are summarized in table 2 while the performance of
the best of these coevolved neural networks against 10 hand-
crafted AI players is shown in table 3. All experiments are
run on Pentium IV 1.2 GHz using C#.Net running under
Windows XP.

TABLE. 2. RESULTS OF COEVOLUTION WITH AN INITIAL POPULATION OF

RANDOMLY CREATED NEURAL NETWORKS. COLUMNS 3, 4 AND 5 SHOW

PERFORMANCE AGAINST TEN HAND-CRAFTED OPPONENTS AVERAGED OVER

10 COEVOLUTIONARY RUNS
POP
SIZE

CROSS
OVER

RATE

MEAN

OF

MAX

MEAN

OF MIN

MEAN

OF
MEAN

MEAN

OF
GENER

ATION

MEAN
CPU
TIME
(SEC)

6 0% 3 0 2 11 9
6 20% 18 0 9 10 13

15 0% 9 0 1 10 28
15 20% 6 0 1 11 40
20 0% 12 0 5 11 53
20 20% 30 0 3 6 57
30 0% 30 0 16 11 61
30 20% 60 0 34 6 72
50 0% 21 0 22 11 132
50 20% 60 0 35 5 72

Table 2 shows the results of coevolution with populations
starting from randomly created neural networks. The column
“Mean of Generation” represents average number of
generations over 10 runs and “mean CPU time” represents

1-4244-0464-9/06/$20.00 2006 IEEE. 48 CIG'06 (May 22-24 2006)

usage of average CPU time in seconds by a population
during coevolutionary process over 10 runs.

We can see that small populations give much worse results
than large ones. The difference between the performance of
small and large populations is probably due to the number of
parallel directions for exploring potential solutions in the
search space. The experimental results also demonstrate that
small populations use less CPU time than large populations,
essentially since less neural network evolution are required..

 The average maximum scores with 0% and 20%
crossover rates demonstrate that neural networks evolved
using crossover generally have higher scores than those
which do not. The crossover operation appears to help the
evolutionary process to explore a more interesting region of
the search space. The crossover operator speeds
convergence, and the population converges to better solution
than without crossover. The mean of min and mean values
show that diverse populations are maintained.

TABLE. 3. THE SCORE OF THE STRONGEST NEURAL NETWORK FROM EACH

COEVOLVED POPULATION STARTING FROM AN INITIAL POPULATION OF

RANDOMLY CREATED NEURAL NETWORKS AGAINST 10 HAND-CRAFTED AI
OPPONENTS.

POP

SIZE
CROSS
OVER
RATE

PLAYING AS BLACK PLAYING AS WHITE

 WIN DRAW WIN DRAW

6 0% 10 0 0 0
6 20% 10 0 10 0

15 0% 10 0 0 0
15 20% 10 0 0 0
20 0% 10 0 0 0
20 20% 10 0 10 0
30 0% 10 0 0 10
30 20% 10 0 10 0
50 0% 10 0 0 0
50 20% 10 0 10 0

Table 3 summarises the results of the best evolved neural

network from each population where coevolution was started
from an initial population of randomly generated neural
networks. Each evolved neural network plays as black and
white against ten hand-crafted AI, as in table 2. All the best
neural networks with 0% crossover rate have won games as
black against all AI opponents but none is able to win when
playing as white. The best-evolved neural networks of all
populations (except population of size 15) with 20%
crossover rate won all games when playing as black and
white. Table 2 and 3 provide clear evidence for the
effectiveness of the crossover operator, and support the
advantage of Black and White in the Virus game, at least for
approaches using 1-ply search.

Table 4 shows the mean of maximum, mean, and
minimum scores of coevolved neural networks with a
starting population of pre-trained neural networks. The table
also shows the mean number of generations and CPU time
(in seconds) for each population with different crossover
rates. Again we see that small populations perform more
poorly than larger populations. If we compare the results of

tables 2 and 4, it can be construed that starting from a
population of pre trained neural networks gives better and
more consistent performance (in terms of playing strength)
than starting from a population of random neural networks.
Large sized populations (started with initial population of pre
trained neural networks) use a smaller number of generations
but still require more CPU time during the coevolution of
neural networks than small size populations. The values of
mean of minimum and maximum scores show the diversity is
maintained in the population. Note that CPU times in this
case include the time need for learning of the initial
population

Generally, we see from table 4 that coevolution with
crossover needs fewer generations and less CPU time than
without crossover.

TABLE. 4. RESULTS OF COEVOLUTION WITH AN INITIAL POPULATION OF PRE-
TRAINED NEURAL NETWORKS. COLUMNS 3, 4 AND 5 SHOW PERFORMANCE

AGAINST TEN HAND-CRAFTED OPPONENTS AVERAGED OVER 10

COEVOLUTIONARY RUNS.
POP
SIZE

CROSS

OVER

RATE

MEAN

OF

MAX

MEAN

OF MIN

MEAN

OF
MEAN

MEAN
OF

GENER

ATIONS

MEAN
CPU
TIME
(SEC)

6 0% 40 0 28 13 12
6 20% 60 0 31 5 7

15 0% 60 0 22 3 18
15 20% 60 0 28 1 18
20 0% 60 0 26 3 31
20 20% 60 0 31 1 25
30 0% 60 0 29 2 66
30 20% 60 0 36 1 55
50 0% 60 0 32 1 84
50 20% 60 0 34 1 84

Table 5 gives the mean results of the maximum, mean and

minimum scores of the initial populations before the start of
evolution. The results after the coevolution are shown in
table 4. In many cases evolution is not required, in spite of
the fact that the performance of the AI players is variable, as
table 7 shows.

TABLE 5. RESULTS FOR PRE TRAINED NEURAL NETWORKS PRIOR TO

EVOLUTION.
POP
SIZE

CROSS
OVER

RATE

MEAN OF

MAX

MEAN OF

MIN

MEAN OF
MEAN

6 0% 40 0 30
6 20% 40 0 30

15 0% 55 0 40
15 20% 55 0 44
20 0% 55 0 40
20 20% 60 0 45
30 0% 55 0 44
30 20% 60 0 45
50 0% 60 10 35
50 20% 60 0 40

The results of table 5 show that the populations of large

size (starting from the initial population of pre trained neural

1-4244-0464-9/06/$20.00 2006 IEEE. 49 CIG'06 (May 22-24 2006)

networks) generally have at least one pre trained neural
network which beats all the opponents before the start of
coevolution when playing as black and white. We see from
table 4 that the values of mean of mean scores are reduced
during coevolutionary process when compared with the
values in table 5, and that average mean scores with
crossover are larger than average mean scores without
crossover.

In order to further investigate the generality of populations
starting from an initial population of pre trained neural
networks, we introduced 10 more hand-crafted AI opponents
which were not used in the training of the initial population.
Table 6 gives the average results of coevolution with
different populations starting from initial population of
trained neural networks where neural networks play as black
and white against 20 AI opponents in each generation which
include the 10 previously unseen opponents. In this case, pre
trained neural networks in larger populations were able to
beat not only AI players used for initialisation but also the AI
players which were unseen by them during the supervised
training of initial population of pre trained neural networks.
The results shown in tables 6 and 4 are quite similar. The
results of these both tables with populations of small sizes
show that coevolution with 20% crossover rate has better
performance than coevolution with 0% crossover rate. The
coevolution of populations of large size has same
performance with both crossover rates (essentially since the
initial populations were very strong).

TABLE . 6. SUMMARY OF RESULTS FROM 10 RUNS OF COEVOLUTION OF PRE-
TRAINED NEURAL NETWORKS USING 20 OPPONENTS.

POP
SIZE

CROSS
OVER

RATE

MEAN

OF

MAX

MEAN

OF MIN

MEAN

OF
MEAN

MEAN

OF
GENER

ATION

MEAN
CPU
TIME
(SEC)

6 0% 80 0 66 12 102
6 20% 120 60 73 4 96

15 0% 120 0 45 2 48
15 20% 120 0 52 1 48
20 0% 120 0 45 2 48
20 20% 120 0 55 1 78
30 0% 120 0 59 1 102
30 20% 120 0 70 1 132
50 0% 120 0 87 1 168
50 20% 120 0 95 1 210

Table 7 shows the results of tournament among the 10 AI

players used for population initialisation. The results of the
tournament reveal that all these players have similar strength
with no obvious champion. According to the table 5, in the
populations of large size, there is at least one trained neural
network, which beats all 10 opponents when playing as black
and white against them. According to Tesauro and Sejnowski
[26], a trained neural network can play as well as the teacher
that trained it. Our results appear to indicate that a trained
network can greatly outperform its teacher in this case.

TABLE. 7. SUMMARY OF RESULTS OF TOURNAMENT AMONG FIXED AI

PLAYERS. COLUMNS 2 AND 3 SHOW THE PERFORMANCE OF EACH HAND-
CRAFTED AI PLAYER AGAINST 9 OTHER HAND-CRAFTED AI PLAYERS.
FIXED PLAYER

NO
PLAYING AS BLACK PLAYING AS WHITE

 WIN DRAW WIN DRAW

1 4 1 4 1
2 1 0 7 0
3 7 1 5 0
4 3 0 6 0
5 5 0 4 0
6 6 0 5 0
7 1 0 7 1
8 7 1 5 1
9 3 0 7 0

10 6 1 6 0

TABLE. 8. SUMMARY OF TOURNAMENT RESULTS FOR COEVOLVED NEURAL

NETWORKS FROM INITIAL POPULATIONS OF RANDOMLY CREATED NEURAL

NETWORKS. COLUMNS 2 AND 3 SHOW THE PERFORMANCE OF EACH ANN

AGAINST EACH OTHER ANN.
PLAYERS

NO
NO OF

GAMES

WON AS

BLACK

PLAYER

NO OF

GAMES

WON AS

WHITE
PLAYER

TOTAL

SCORE
RANK
(1-20)

R6,0 4 4 26 18
R6,20 1 7 32 16
R15,0 4 5 28 17
R15,20 5 2 22 19
R20,0 5 5 32 15
R20,20 9 6 47 12
R30,0 9 9 54 11
R30,20 2 4 20 20
R50,0 7 7 42 13
R50,20 7 6 39 14

TABLE. 9. SUMMARY OF TOURNAMENT RESULTS FOR COEVOLVED NEURAL

NETWORKS FROM POPULATIONS STARTING FROM PRE TRAINED NEURAL

NETWORKS. COLUMNS 2 AND 3 SHOW THE PERFORMANCE OF EACH ANN

AGAINST EACH OTHER ANN
PLAYERS

NO
NO OF

GAMES

WON AS

BLACK

PLAYER

NO OF

GAMES

WON AS

WHITE
PLAYER

TOTAL

SCORE
RANK
(1-20)

P6,0 10 10 63 10
P6,20 14 13 83 5
P15,0 16 15 93 1
P15,20 16 15 93 2
P20,0 16 15 93 3
P20,20 16 7 70 8
P30,0 16 7 70 9
P30,20 13 13 84 4
P50,0 16 8 73 6
P50,20 16 8 73 7

Tables 8 and 9 present the results for a tournament

between the best player from each set of experiments starting
with random initial weights, R6,0, R6,20, ..., R50,20, and the
best player from each set of experiments starting with pre-
trained networks, P6,0, P6,20, ..., P50,20. Each of these
players plays 19 games as black against each other player,

1-4244-0464-9/06/$20.00 2006 IEEE. 50 CIG'06 (May 22-24 2006)

and 19 games as white against each other player. Since every
one of P6,0, P6,20, ..., P50,20 is ranked higher than every
one of R6,0, R6,20, ..., R50,20 this provides very clear
evidence for the superiority of pre-training, particularly since
the training times for pre-trained networks were significantly
smaller than for the random initial population. Within R6,0,
R6,20, ..., R50,20 and within P6,0, P6,20, ..., P50,20 we see
significant variations in performance. It is clear that there are
still significant variations in the phenotype among these best
players.

IV. CONCLUSION

A coevolutionary model is presented where artificial
neural networks adapt and learn to play the Virus Game
using competitions with fixed strong hand-crafted
(deterministic) AI players. The neural networks are provided
with only raw board positions.

The results presented in this paper evidence the potential
advantages of a combination of coevolution and supervised
learning techniques for building knowledge into artificial
neural networks. The combination of coevolution and
gradient-based learning techniques gives improved playing
performance and faster learning when compared to either
approach combined in isolation. It would be interesting to
explore the combination of gradient-based learning
techniques and coevolution for other games and in the case
where a deeper search is used.

The Genetic Operators of Crossover and Mutation are also
analysed and we show that an evolutionary algorithm with
crossover has much better performance than one with
mutation alone in most experiments. In future we aim to
investigate the dynamics which make crossover an effective
operator.

REFERENCES

[1] P.J. Angeline and J.B. Pollack, “Competitive Environments Evolve
Better Solutions for Complex Tasks”, in the proceedings of 5th
International Conference on Genetic Algorithms (GAs-93), pp. 264-
270, 1993.

[2] R. Axelrod, “The Evolution of Strategies in the Iterated Prisoner’s
Dilemma”, Genetic Algorithms and Simulated Annealing, in
Lawrence Davis (ed.), Morgan Kaufmann, pp. 32-41, 1987.

[3] D. Beasley, D.R. Bull and R.R. Martin, “An Overview of Genetic
Algorithms: Part2, Research Topics”, University Computing, Vol. 15,
No. 4, pp. 170-181, 1993.

[4] M. Campbell, A.J. Haone Jr., F-h. Hsu, “Deep Blue”, Artificial
Intelligence, Vol.134, pp.57-83, 2002.

[5] S.Y. Chong, M.K. Tan and J.D. White, “Observing the Evolution of
Neural Networks Learning to Play the Game of Othello”, IEEE
Transactions on Evolutionary Computation, Vol.9, No.3, pp. 240-251,
2005.

[6] P.I. Cowling, R. Fennell , R. Hogg , G. King, P. Rhodes, N. Sephton,
“Using Bugs and Viruses to Teach Artificial Intelligence”, in the
proceedings of 5th Game-on International Conference on Computer
Games: Artificial Intelligence, Design and Education, pp. 360-364,
2004.

[7] P.I. Cowling, “Board Evaluation for the Virus Game”, in the
proceeding of IEEE 2005 Symposium on computational Intelligence
and Games (CIG’05), Graham Kendall and Simon Lucas (editors), pp.
59-65, 2005.

[8] D.B. Fogel and K. Chellapilla, “Verifying Anaconda’s expert rating
by competing against Chinook: experiments in co-evolving a neural
checkers player”, Neurocomputing, Vol.42, pp.69-86, 2002.

[9] C. Igel and M. Husken, “Empirical Evaluation of the Improved
RPROP Learning Algorithms”, Neurocomputing, Vol. 50C, pp.105-
123, 2003.

[10] J. Matthews, “Virus Game Project”,
http://www.generation5.org/content/2000/virus.asp, 2000.

[11] J.H. Miller, “The Coevolution of automata in the repeated prisoner’s
dilemma”, Journal of Economics Behavior and Organization, Vol.29,
pp.87-112, 1996.

[12] M. Mitchell, “An Introduction to Genetic Algorithms”, MIT Press,
1998.

[13] D.E. Moriarty and R. Miikkulainen, “Discovering Complex Othello
Strategies Through Evolutionary Neural Networks”, Connection
Science, Vol.7 No.3, pp. 195-209, 1995.

[14] M.A. Potter and K.A. De Jong, “A Cooperative Coevolutionary
Approach to Function Optimization”, in the proceedings of 3rd
Parallel Problem Solvign From Nature, pp. 249-257, 1994.

[15] M.A. Potter, K.A. De jong and J.J. Grefenstette, “A Coevolutionary
Approach to Learning Sequential Decision Rules”, in the proceedings
of the 6th International Conference on Genetic Algorithms, pp.366-
372, 1995.

[16] M. Riedmiller and B. Heinrich, “A Direct Adaptive Method for Faster
Backpropagation Learning: The RPROP Algorithm”, in the
proceedings of IEEE International conference on Neural Networks,
pp.586-591, 1993.

[17] D.E. Rumelhart, J.L. McMlelland and the PDP Research Group,
“Parallel Distributed Processing”, Exploration in the Microstructure
of Cognition, Vol. 1, MIT Press, 1986.

[18] T.P. Runarsson and S. Lucas, “Co-evolution versus Self-play
Temporal Difference Learning for Acquiring Position Evaluation in
Small-Board Go”, IEEE Transaction on Evolutionary Computation:
Special Issue on Evolutionary Computation and Games, Vol.9, pp.
628-640, 2005.

[19] R.E. Smith and B. Gray, “Co-Adaptive Genetic Algorithms: An
Example in Othello Strategy”, in the proceeding of The Florida
Artificial Intelligence Research Symposium, 1994.

[20] A.L. Samuel, “Some Studies in Machine Learning using the Game of
checkers”, IBM Research and Development Journal, pp. 211-229,
1959.

[21] W. Schiffmann, M. Joost and R. Werner, “Optimization of the
Backpropagation Algorithm for Training Multilayer Perceptrons”,
Technical Report, Second edition, University of Koblenz, Institute of
Physics, 1993.

[22] G.J. Tesauro, “Temporal Difference Learning and TD-Gammon”,
Communications of the ACM, Vol. 38, No. 3, pp. 56-68, 1995.

[23] X. Yao and Y. Liu, “Fast Evolutionary Programming”, in the
proceedings of 5th annaual conference on Evolutionary programming,
pp. 451-460, 1996.

[24] M. Buro, “The Othello Match of the Year: Takeshi Murakami vs.
Logistello”, ICCA Journal, Vol. 20, No.3, pp.189-193, 1997.

[25] X. Yao, “Evolving Artificial Neural Networks”, in the proceedings of
the IEEE, Vol. 87, No.9, pp.1423-1446, 1999.

[26] G.J. Tesauro and T.J. Sejnowski, “A Parallel Network that Learns to
Play Backgammon”, Artificial Intelligence, Vol. 39, pp.357-390,
1989.

1-4244-0464-9/06/$20.00 2006 IEEE. 51 CIG'06 (May 22-24 2006)

Temporal Difference Learning Versus Co-Evolution

for Acquiring Othello Position Evaluation

Simon M. Lucas
Department of Computer Science

University of Essex, Colchester, UK
sml@essex.ac.uk

Thomas P. Runarsson
Science Institute

University of Iceland, Iceland
tpr@hi.is

Abstract— This paper compares the use of temporal differ-
ence learning (TDL) versus co-evolutionary learning (CEL) for
acquiring position evaluation functions for the game of Othello.
The paper provides important insights into the strengths and
weaknesses of each approach. The main findings are that
for Othello, TDL learns much faster than CEL, but that
properly tuned CEL can learn better playing strategies. For
CEL, it is essential to use parent-child weighted averaging in
order to achieve good performance. Using this method a high
quality weighted piece counter was evolved, and was shown to
significantly outperform a set of standard heuristic weights.

Keywords: Othello, temporal difference learning, co-
evolution.

I. I NTRODUCTION

Both Temporal Difference Learning (TDL) and Co-
Evolutionary Learning (CEL) are able to acquire game
strategies without reference to any expert knowledge of game
strategy, and without using any prior available player to
train against. Typically, CEL achieves this by generating an
initial random population of strategies which are then played
against each other, with the parents for each successive
generation being chosen on the basis of their playing ability.
Standard TDL achieves this through self-play.

The main difference between the two methods (at least
in their most typical forms) is that CEL uses only the end
information of win/lose/draw aggregated over a set of games,
whereas TDL aims to exploit all the information during the
course of a game, as well as at the end of each game when
the final rewards are known. Comparisons of this kind are
both timely and important, since recent years have seen an
explosion of interest in the CEL method, while applications
of TDL to the same problem have been less numerous.

In a recent paper [9] the authors investigated temporal
difference learning versus co-evolution for learning small-
board Go strategies. There it was found that TDL learned
faster, but that with careful tuning, CEL eventually learned
better strategies. In particular, with CEL it was necessaryto
use parent-offspring weighted averaging in order to cope with
the effects of noise. In this paper a similar set of experiments
for Othello are reported and it is found that similar results
hold, but to an even greater extent. In particular, without
parent-child averaging, CEL performs very poorly. When
properly tuned, however, CEL eventually finds strategies that
significantly outperform a standard heuristic player [11],and
also the best strategies found by TDL.

The game playing strategies are encapsulated in the
weights of a weighted piece counter (WPC). Each game
is played by using a1-ply minimax search, with the WPC
being used to estimate the value of the game-board after each
possible move from the current board.

The paper is organised as follows. In section II a brief
description of the game Othello is given and some of the
more notable research on learning game strategies for Othello
listed. In section III the implementation of TDL and CEL is
described in full detail. This is followed by an extensive set
of experimental results and evaluation of players learned in
section IV. The paper is then concluded with a discussion
and summary of main findings.

II. OTHELLO

The game of Othello is played on an8 × 8 board, with a
starting configuration as shown in fig. 1 with the middle4
squares occupied. Black plays first, and the game continues
until the board is full (after60 turns), or until neither player
is able to move. Note that a playermust move if able to,
passing only happens when a player has no legal moves
available.

A legal move is one which causes one or more opponent
counters to be flipped. Counters are flipped when they lie on
a continuous line (horizontal, vertical, or diagonal) between
the newly placed counter, and another counter of the placing
player. Counters placed in one of the four corners can never
satisfy this condition, and can therefore never be flipped.
Hence, the corners play a pivotal role in the game, and

Fig. 1. The initial Othello board, showing the four possible first moves,
which are all equivalent under reflection and rotation (black moves first).

1-4244-0464-9/06/$20.00 2006 IEEE. 52 CIG'06 (May 22-24 2006)

valuing them highly tends to be the first thing learned, a fact
that can be seen easily by inspecting the evolution of weight
values in a WPC. Indeed the WPC [11] used as a benchmark
in that study also reflects this. There the highest value of1
is given to all four corners. To hinder the possibility of an
opponent getting a corner, the squares next to them should
be avoided. For this reason they are given the lowest value
−0.25. As a consequence the WPC encourages the players
to place its counter at advantageous squares. The total set
of weights for this heuristic player is given in fig. 2. Note
that the weights of this heuristic player are symmetric under
reflection and rotation, and have just10 distinct values out of
a possible64. It would be possible to simplify the learning
task by enforcing this kind of symmetry, and evolving just
10 parameters instead of64. This would mean building
in more expert knowledge however, and could also place
undesirable constraints on the value function. Indeed, the
best weights evolved in this paper are not symmetric (see
Table 10). A direct comparison of learning the reduced set
of 10 weights compared with learning the full64 weights
would be interesting future work.

1.00 -0.25 0.10 0.05 0.05 0.10 -0.25 1.00
-0.25 -0.25 0.01 0.01 0.01 0.01 -0.25 -0.25
0.10 0.01 0.05 0.02 0.02 0.05 0.01 0.10
0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.05
0.05 0.01 0.02 0.01 0.01 0.02 0.01 0.05
0.10 0.01 0.05 0.02 0.02 0.05 0.01 0.10

-0.25 -0.25 0.01 0.01 0.01 0.01 -0.25 -0.25
1.00 -0.25 0.10 0.05 0.05 0.10 -0.25 1.00

Fig. 2. The weights (w) for the heuristic player [11].

The first strong learning Othello program developed was
Bill [6], [7]. Later, the first program to beat a human
champion was Logistello [2], the best Othello program from
1993–1997. Logistello also uses a linear weighted evaluation
function but with more complex features than just the plain
board. Nevertheless, the weights are tuned automatically
using self-play. Logistello also uses an opening book based
on over23, 000 tournament games and fast game tree search
[1].

More recently, Chonget al [4] co-evolved a spatially aware
multi-layer perceptron (MLP) for playing Othello. Their
MLP was similar to the one used by Fogel and Chellapilla
for playing checkers [3], and had a dedicated input unit for
every possible sub-square of the board. Together with the
hidden layers this led to a network with5, 900 weights, which
they evolved with around one hundred thousand games. The
WPC used in the current paper has only64 weights. The
results below show that optimal tuning of such WPCs can
take hundreds of thousands of games, and relies heavily
on parent-child averaging. These considerations suggest that
further improvement in the performance of evolved spatial
MLPs should be possible.

III. I MPLEMENTATION

In order to achieve effective learning it may be necessary
to play many games. This is particularly true for CEL, which

may require hundreds of thousands of games in order to
achieve good performance. Indeed, the experimental work
underlying this paper involved the running of several billion
games of Othello. Therefore, the efficiency of the game
engine plays an important part in this research.

We developed two implementations of all the software,
one written by the first author in Java, the other by the
second author in C. In this way all results are double-checked
and enabled a speed comparison of each implementation to
be made. The speed of each game naturally depends on
the type of player. A multi-layered perceptron (MLP) with
hidden units is necessarily slower than a WPC, for example.
Regarding the WPC, there is a trick implemented for the Java
version, which evaluates only the difference in evaluation
score that a move would make, without actually making the
move. This is however, only applicable for a WPC using 1-
ply lookahead. This means that for WPCs the Java version
is the fastest implementation we have, and is able to play
around1, 500 games per second. The C version plays around
1, 200 games per second using WPCs, but in the case of
greater ply search and MLPs it is faster than Java. At present,
the Java MLP implementation is not particularly efficient,
and in this mode is only able to manage around 60 games
per second, compared with 500 games per second for the C
version.

Each board is represented as a10×10 array ofint, with
a border of ‘off-board’ values surrounding the8 × 8 board.
This enables efficient checking of off-board positions for
line-search termination, which is much faster than catching
ArrayOutOfBounds exceptions, or than explicitly check-
ing the range constraints.

It would be interesting to investigate the use of a bit-board
representation for further speeding up the Othello engine,as
described by Cowling [5] for the Virus game. This could
conceivably lead to a significant speed increase for weighted
piece counter players, but would make little difference for
more complex players (such as MLPs).

A. Co-Evolution

A number of different versions of the evolution strategy
(ES) as implemented in [9] were tried. It was decided
that the more simplified version, described in fig. 3, was
sufficient for the game Othello. This is the so called(1, λ) ES
using arithmetical averaging between the parent and the best
offspring. In this algorithm the parent is deleted at every
generation (non-elitist). Theλ offspring play a single game
against one another both as Black and White. This results
in a total of λ(λ − 1) games per generation. The parent-
child averaging is a standard evolution strategy technique
for dealing with noisy fitness functions. Pollack and Blair [8]
also used averaging when using a random hill-climber (i.e. a
(1 + 1) ES) to successfully learn backgammon strategy, but
for the current paper a(1+1) ES with averaging performed
poorly (though without averaging it performed even worse).

Regarding the win/draw/lose payoffs listed in fig. 3 cap-
tion, we also experimented with basing fitness solely on the
number of wins, but found that these different payoffs did

1-4244-0464-9/06/$20.00 2006 IEEE. 53 CIG'06 (May 22-24 2006)

not lead to a significant difference in final playing quality.
An alternative that was not investigates would be to base the
fitness function on the piece difference at the end of each
game.

The WPC (w) co-evolved in this manner is described by:

f(x) =

8×8
∑

i=1

wixi + x0 (1)

wherexi is the value at squarei on the board, which is0
when Empty,1 if Black, and−1 for White. The bias termx0

is set to zero for the CEL runs. The single scalar output of
function f(x) is interpreted as follows. The value indicates
which position is most favorable for a particular player, with
larger values favouring Black, and smaller values White.

1 Initialize: w
′ = 0 andβ = 0.05 (or 1.0)

2 while termination criteria not satisfieddo
3 for k := 1 to λ do (replication)
4 wk ← w

′ + N(0, 1/n)
5 od
6 each individualwk, k = 1, . . . , λ plays another

(once each color) for a total ofλ(λ − 1) games,
7 find the playeri with the highest score (breaking ties randomly)
8 w

′
← w

′ + β(wi − w
′) (arithmetic average)

9 od

Fig. 3. The(1, λ) evolution strategy. For each win the player receives a
score of1, 0 for a draw, and−2 for loss.

It is also possible to force random moves during game
play. The experimental studies show that this slows down
learning, but may lead to slightly better strategies in the long
run. The best player found in this paper was evolved with
forced random play.

B. Temporal Difference Learning

In TDL the weights of the evaluation function are updated
during game play using a gradient-descent method. Letx be
the board observed by a player about to move, and similarly
x
′ the board after the player has moved. Then the evaluation

function may be updated during play as follows [10, p.199]:

wi ← wi + α
[

v(x′) − v(x)
]∂v(x)

∂wi

(2)

= wi + α
[

v(x′) − v(x)
](

1 − v(x)2
)

xi

where

v(x) = tanh(f(x)) =
2

1 + exp(−2f(x))
− 1 (3)

is used to force the value functionv to be in the range−1
to 1. This method is known as gradient-descent TD(0) [10].
If x

′ is a terminal state then the game has ended and the
following update is used:

wi ← wi + α
[

r − v(x)
](

1 − v(x)2
)

xi

wherer corresponds to the final utilities:+1 if the winner
is Black,−1 when White, and0 for a draw.

The update rule is perhaps the simplest version of temporal
difference learning and works quite well on this task. If the

1 if u() < ε do
2 make purely random legal move
3 else
4 make best legal move based on the state evaluation function
5 od

Fig. 4. The ε-greedy technique for forcing random moves, whereu()
returns a random number drawn from a uniform distribution∈ [0 1].

step size parameterα, in (2), is reduced properly over time
this method will also converge [10, p. 13]. During game play,
with probability ε = 0.1, a random or exploratory move is
forced. This is known as anε-greedy policy and is describe in
fig 4. Note that, TD(0) is attempting to learn the probability
of winning from a given state (when following theε-greedy
policy), while the ES is only learning the relative ordering
of the set of game states.

To satisfy our curiosity, a TDL run with no noise (i.e.ε =
0.0) was tried. In this case, every run is deterministic, with all
weight-values initialised to zero, and a deterministic tie-break
policy being used (always picking the first encountered move
among a set of equal moves). Under these conditions, exactly
the same sequence of players is always produced. While
this approach did not produce the best TDL players, it did
nonetheless produce quite reasonable players. The interesting
point here is that the dynamics of the game, and of the
weight updates are sufficient to produce a large degree of
game strategy exploration.

IV. EXPERIMENTAL RESULTS

For each learning method, some time was spent experi-
mentally tuning the parameters in order to get best perfor-
mance. The critical factor for TDL is the update rateα, while
for CEL it is the population sizeλ and smoothing factorβ. In
our previous study for Go [9] it was found that a population
size ofλ = 30 was needed for a5×5 Go board and a setting
of β = 0.05 was necessary. Similar finding are observed here
for Othello, however, smaller population sizes are adequate,
resulting in much faster CEL learning for Othello than for
Go. For TDL an initial step size ofα = 0.01 worked best,
which was then reduced by a factor of0.95 every 45, 000
games played.

A. Evaluation

Each experiment is repeated independently30 times, with
the average and standard deviations reported. During CEL
and TDL the players are evaluated by playing against a
standard heuristic player (see fig. 2) and a random player
at 1-ply. This is repeated10, 000 times for each point on the
graphs (the player under test plays5, 000 games as White
and5, 000 games as Black).

Secondly, leagues of learned players are played against
each other. It is interesting to note that which player is
regarded as best depends on the chosen evaluation method.
Evaluation against a fixed opponent can give a very quick
guide to a player’s ability, but what usually matters more is
how well the player fares against a wide variety of players.

1-4244-0464-9/06/$20.00 2006 IEEE. 54 CIG'06 (May 22-24 2006)

In order to get a good measure of a player’s ability, players
are forced to make a random move with probabilityε =
0.1, as shown in fig. 4. This is the same policy used during
TDL, and for CEL with noise. Note that when playing two
players against each other multiple times with forced random
play, the expectation of a particular player winning follows
a Bernoulli distribution. If the player has a true probability p
of winning, then the variance ofp is given byp(1−p). When
estimatingp from n games, this allows confidence intervals
to be placed. The standard error (i.e. the standard deviation
of the mean) is given by

√

p(1 − p)/n.
Strictly speaking, when forcing the players to make occa-

sional random moves, the game is no longer truly Othello,
but a slightly randomized version of it. Nonetheless, it seems
likely that playing ability for the randomized game will be
highly correlated with playing ability for the true game.

B. Co-evolution

For the CEL runs the following experimental results are
presented:

a. (1, 10) ES usingβ = 1.0 (no arithmetical averag-
ing). This will illustrate the necessity of using such
an average. See fig. 5 and fig. 6.

b. (1, 10) ES with β = 0.05. See fig. 5 and fig. 6.
c. (1, 10) ES with β = 0.05 and forced random play

with probability ε = 0.1. See fig. 5 and fig. 6.
d. experiments b. and c. are repeated with a population

size ofλ = 5 (a population size greater than10 did
not show significant improvement in performance).
The performance statistic for these runs are only
given for when playing against the heuristic player.
See fig. 7.

In fig. 5 the average (with one standard deviation) for
the 30 independent runs playing10, 000 games against the
heuristic player is shown, for experiments a., b., and c. It is
interesting to note that without the smoothing (β = 0.05), the
results are significantly poorer. Also, initially, an evolution
without forced random moves performs better, but eventually
the evolution with forced random moves achieves a slightly
higher level of play. Similar results are observed when
playing against a purely random player. These results are
depicted in fig. 6.

The results for experiment d., the(1, 5) ES, are presented
in fig. 7. Similar trends are observed as for the(1, 10) ES
in fig. 5, however, the average performance against the
heuristic player is now worse. The only difference here is the
number of offspring produced per generation and therefore
the number of games played per generation. However, the
overall total number of games played remains the same.

In fig. 8 a single CEL run is compared with a single TDL
run. Both of these runs are subjected to a forced random
move with probability ε = 0.1. These are snapshots of
the 10, 000 game performance versus the heuristic player
taken every45, 000 games played during learning. It is also
interesting to see if there is any significant difference between
these100 players taken as snapshots during learning. To

0 20 40 60 80 100

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

p
ro

b
a
b
il
it
y

o
f
w

in
n
in

g

games played (×1/45000)

β = 1.00, ε = 0.0

β = 0.05, ε = 0.0

β = 0.05, ε = 0.1

Fig. 5. CEL average performance (probability of a win) versus the heuristic
player, plotted against generation. The grey lines indicate one standard
deviation from the mean. This run used a(1, 10) ES.

0 20 40 60 80 100

0.95

0.9

0.85

0.8

0.75

0.7

0.65

0.6

0.55

0.5

0.45

p
ro

b
a
b
il
it
y

o
f
w

in
n
in

g

games played (×1/45000)

β = 1.00, ε = 0.0

β = 0.05, ε = 0.0

β = 0.05, ε = 0.1

Fig. 6. CEL average performance (probability of a win) versus a pure
random player, plotted against games played. The grey linesindicate one
standard deviation from the mean. This run used a(1, 10) ES.

investigate this a league was set up where these100 players
are matched up against each other without any forced random
moves. Let these players be labeled as player-1 to player-100.
The top three and bottom three ranking players are presented
in table I. This clearly shows that the better players are found
towards the end of the run and the worst in the beginning.

C. Temporal Difference Learning

For this experiment, an initial value ofα = 0.01 was
used, decreasing by a factor of0.95 every 45, 000 games
played. The probability of making a purely random move,
ε = 0.1. The initial weights are set to0.0 and30 independent
runs performed. The mean results against the heuristic and
random players (along with one standard deviation) is plotted
in fig. 9. The ultimate performance of the TDL players
against the heuristic and random players are similar, however,

1-4244-0464-9/06/$20.00 2006 IEEE. 55 CIG'06 (May 22-24 2006)

0 20 40 60 80 100

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

0.15

0.1

p
ro

b
a
b
il
it
y

o
f
w

in
n
in

g

games played (×1/45000)

β = 0.05, ε = 0.0

β = 0.05, ε = 0.1

Fig. 7. CEL average performance (probability of a win) versus the heuristic
player, plotted against games played. The grey lines indicate one standard
deviation from the mean. This run used a(1, 5) ES.

TABLE I

A partial league of players sampled at regular intervals during a CEL

run, then played against each other.

Place Played Won Drew Lost Player
1 198 123 7 68 Player-82
2 198 119 6 73 Player-86
3 198 119 11 68 Player-92

98 198 44 5 149 Player-2
99 198 43 2 153 Player-6
100 198 27 6 165 Player-1

there appears to be a downward trend towards the end of
the runs. Recall that the step size is being reduced over
time. Furthermore, when observing a single typical TDL
run in fig. 8 one can see that there is greater variation
in performance against the heuristic player during learning.
This difference can be observed by playing the100 snapshot
players against each other and labeling them as before, from
Player-1 to Player-100. Here the top three and bottom three
players may be found at any time as shown in table II.

TABLE II

A partial league of players sampled at each epoch during a TDLrun, then

played against each other.

Place Played Won Drew Lost Player
1 198 134 4 60 Player-68
2 198 130 6 62 Player-60
3 198 129 5 64 Player-2
98 198 69 10 119 Player-92
99 198 66 5 127 Player-5
100 198 62 9 127 Player-64

D. Champions League

As a final evaluation six different WPCs are compared in a
champions league. These are the heuristic WPC (see fig. 2),
the best TDL and CEL found against the heuristic player
(TDL-HB and CEL-HB). Furthermore, the best out of the

0 20 40 60 80 100

0.55

0.5

0.45

0.4

0.35

0.3

0.25

0.2

p
ro

b
a
b
il
it
y

o
f
w

in
n
in

g

games played (×1/45000)

CEL, β = 0.05

TD(0)

Fig. 8. An example of a single run of CEL and TDL performance against
the heuristic player. In both cases a noise level ofε = 0.1 is used during
game play.

0 20 40 60 80 100

0.8

0.7

0.6

0.5

0.4

0.3

0.2

p
ro

b
a
b
il
it
y

o
f
w

in
n
in

g

games played (×1/45000)

playing heuristic

playing random

Fig. 9. TD(0) average performance (probability of a win) versus the
heuristic and random player, plotted against games played.The grey lines
indicate one standard deviation from the mean.

30 final players found for the different CEL experiments b.
and c. and TDL experiments are tested. These are called
CEL, CEL-N, and TDL respectively and were found using a
separate champions league among the final30 players, each
playing 10, 000 games with forced random moves.

TABLE III

Champions league with the selected WPCs.

Place Played Won Drew Lost Player
1 10000 5502 350 4148 CEL-N
2 10000 5474 314 4212 CEL
3 10000 5229 301 4470 CEL-HB
4 10000 4875 308 4817 Heuristic
5 10000 4243 315 5442 TDL-HB
6 10000 3735 296 5969 TDL

The results are shown in Table III where these6 different

1-4244-0464-9/06/$20.00 2006 IEEE. 56 CIG'06 (May 22-24 2006)

WPCs are matched up in a round-robin (i.e. each player
players every other player as black and as white) champions
league , each playing10, 000 games in total with forced
random moves (ε = 0.1). The CEL players significantly
outperform the other players, with the TDL players on the
bottom. The champion WPC is the noisy CEL given in
fig. 10.

To show how each player fares against every other player,
as black and as white, the round-robin league was run again,
but presented in a different way. This time, each player
played every other player (including itself)1000 times as
black, and1000 times as white. Table IV now shows the
average score from the point of view of the black player
(named for each row of the table), scoring1.0 for a win,
0.5 for a draw, and0.0 for a loss. The results again show
the superiority of the CEL players over the heuristic player
and over the TDL players. Since three possible outcomes
are now being measured (win, lose, or draw) the Bernoulli
estimate of the variance cannot be directly applied. If it were,
it would give a standard error to an average score of0.5
over 1000 games, of0.015; this may still give an idea of
the statistical significance of the table entries. One point
that does seem significant, and was repeated in five runs of
the same experiment, is that the best player (CEL-N) plays
against itself weaker as black than as white. In the same five
runs, CEL-N versus the Heuristic player always ended in a
favourable score for CEL-N, either as black or as white.

V. D ISCUSSION ANDCONCLUSIONS

TDL was able to learn quite good strategies very rapidly
on some runs within a few thousand games. CEL learned
much more slowly, but eventually significantly out-played not
only the TDL strategies, but also a set of standard heuristic
weights.

TDL is sensitive to the setting ofα, although great care
was taken in setting its value. The CEL used a simple WPC
while the TDL needed to squash its values to be in the range
from −1 to +1 using thetanh functions. It is possible that
learning the relative ordering of the board positions is an
easier task than trying to learn a value function which tellsus
the probability of winning at each state of the board. Clearly,
a simple WPC will have difficulties approximating this value
function.

A promising future development is a hybrid algorithm,
where some TDL runs are used to generate an initial popu-
lation for CEL. Such a hybrid might exploit the best aspects
of each method: the rapid learning of TDL, and the ultimately
superior strategies obtainable with CEL.

A surprising aspect of TDL is that for this problem, it
could run entirely deterministically and still achieve good
performance. Initially, in a perfect information game suchas
Othello, we supposed that random exploratory moves would
be essential in order to achieve sufficient exploration of game
space, or game strategy space, which is a widely held belief
regarding TDL. At least for a weighted piece counter, this
proved to be non-essential. When playing deterministically,
the on-line weight updates, together with an arbitrary but

consistent tie-breaking strategy provided sufficient explo-
ration.

An important point to note is that for most runs, TDL
failed to converge reliably to its best play, and would
typically follow some chaotic performance pattern. Varying
the α reduction rate would not cure this, since there would
be no guarantee of converging to its best play. This therefore
provides an important cautionary note against using TDL for
a fixed number of iterations, and then taking the final set of
weights. This would typically be very hit and miss. A much
better approach, is to constantly monitor the performance of
the learned weights during training, and then choose those
which perform best. If no external agent is available for this
purpose, then the best technique is to sample the weights
regularly, then play all the samples against each other in
the league, and finally return the winning weight vector
(assuming that a single best player is required). A possible
explanation for why TDL fails to converge is that the true
value function for this game is a highly non-linear function
of the input vector. The attempt to approximate the value
function with a linear function (a weighted piece counter) is
therefore doomed to fail. In a similar way, using the delta
rule to train a single layer perceptron on a non-linear function
such as XOR will also fail to converge.

In order to achieve an even higher level of play a deeper
search than1-ply must be used. Furthermore, more complex
features, such as those used by Logistello, must be employed.
One notable limitation of TDL when learning evaluation
functions is that the functions must be differentiable. The
WPCs used in this study satisfy this requirement, but other
choices of architecture, such GP-style expression trees,
would not necessarily do so (depending on the function
set used). Our immediate future work is to compare TDL
versus CEL for learning the parameters of more sophisticated
architectures to play Othello.

In order to allow direct comparison between various learn-
ing methods and value function architectures implemented
by different researchers, we are also running a web-based
Othello function evaluation league1. This allows the param-
eters for a number of standard architectures to be submitted
via an on-line form for immediate evaluation against the
standard heuristic player of fig. 2. The submitted players will
then participate in an Othello competition associated withthe
2006 IEEE Congress on Evolutionary Computation.

Finally, perhaps the most significant conclusion of this
paper is that standard co-evolution performs very poorly on
this problem. To get good performance, we found the use of
parent-child averaging to be essential. This was also true for
small-board Go [9], and may well be true for many other
games.

ACKNOWLEDGMENTS

We are grateful to the anonymous reviewers for their
helpful comments. The work was supported by a visiting

1http://algoval.essex.ac.uk:8080/othello/html/Othello.html

1-4244-0464-9/06/$20.00 2006 IEEE. 57 CIG'06 (May 22-24 2006)

researcher grant for Thomas Runarsson, funded by the Com-
puter Science Department, University of Essex.

APPENDIX

To allow others to test our best player directly, we list
here the weights of our overall champion (see fig. 10). The
weights are listed in row order, left to right, top to bottom
(i.e. the first eight weights are for the top row).

REFERENCES

[1] M. Buro, “ProbCut: An effective selective extension of the Aalpha-
Beta algorithm,”ICGA Journal, vol. 18, pp. 71 – 76, 1995.

[2] ——, “LOGISTELLO – a strong learning othello program,” 1997,
http://www.cs.ualberta.ca/ mburo/ps/log-overview.ps.gz.

[3] K. Chellapilla and D. Fogel, “Evolving an expert checkers playing
program without using human expertise,”IEEE Transactions on Evo-
lutionary Computation, vol. 5, pp. 422 – 428, 2001.

[4] S. Y. Chong, M. K. Tan, and J. D. White, “Observing the evolution
of neural networks learning to play the game of othello,”IEEE
Transactions on Evolutionary Computation, vol. 9, pp. 240 – 251,
2005.

[5] P. Cowling, “Board evaluation for the virus game,” inIEEE Symposium
on Computational Intelligence and Games, 2005, pp. 59 – 65.

[6] K.-F. Lee and S. Mahajan, “A pattern classification approach to
evaluation function learning,”Artificial Intelligence, vol. 36, pp. 1 –
25, 1988.

[7] ——, “The development of a world class othello program,”Artificial
Intelligence, vol. 43, pp. 21 – 36, 1990.

[8] J. Pollack and A. Blair, “Co-evolution in the successfullearning of
backgammon strategy,”Machine Learning, vol. 32, pp. 225–240, 1998.

[9] T. P. Runarsson and S. M. Lucas, “Co-evolution versus self-play
temporal difference learning for acquiring position evaluation in small-
board go,” IEEE Transactions on Evolutionary Computation, vol. 9,
pp. 628 – 640, 2005.

[10] R. Sutton and A. Barto,Introduction to Reinforcement Learning. MIT
Press, 1998.

[11] T. Yoshioka, S. Ishii, and M. Ito, “Strategy acquisition for the game
”othello” based on reinforcement learning,” inIEICE Transactions on
Information and Systems E82-D 12, 1999, pp. 1618–1626.

1-4244-0464-9/06/$20.00 2006 IEEE. 58 CIG'06 (May 22-24 2006)

TABLE IV

Champions league showing the round-robin results. Each entry shows the score (see text) obtained by the black player averaged over1000 games. The

player named on each row plays as black, against the player named in each column playing as white.

CEL-N CEL CEL-HB Heuristic TDL-HB TDL
CEL-N 0.4555 0.458 0.4955 0.5645 0.582 0.661
CEL 0.4865 0.5065 0.4845 0.4435 0.5785 0.6545

CEL-HB 0.4625 0.434 0.534 0.491 0.582 0.684
Heuristic 0.4425 0.4505 0.4935 0.4975 0.5705 0.5345
TDL-HB 0.387 0.4475 0.412 0.4445 0.4585 0.52

TDL 0.3035 0.3 0.3075 0.4575 0.5305 0.5155

4.622507 -1.477853 1.409644 -0.066975 -0.305214 1.633019 -1.050899 4.365550
-1.329145 -2.245663 -1.060633 -0.541089 -0.332716 -0.475830 -2.274535 -0.032595
2.681550 -0.906628 0.229372 0.059260 -0.150415 0.321982 -1.145060 2.986767

-0.746066 -0.317389 0.140040 -0.045266 0.236595 0.158543 -0.720833 -0.131124
-0.305566 -0.328398 0.073872 -0.131472 -0.172101 0.016603 -0.511448 -0.264125
2.777411 -0.769551 0.676483 0.282190 0.007184 0.269876 -1.408169 2.396238

-1.566175 -3.049899 -0.637408 -0.077690 -0.648382 -0.911066 -3.329772 -0.870962
5.046583 -1.468806 1.545046 -0.031175 0.263998 2.063148 -0.148002 5.781035

Fig. 10. The weights for the overall champion.

1-4244-0464-9/06/$20.00 2006 IEEE. 59 CIG'06 (May 22-24 2006)

The Effect of Using Match History

on the Evolution of RoboCup Soccer Team Strategies

Tomoharu Nakashima Masahiro Takatani
Dept. of Computer Science and Intelligent Systems Dept. of Industrial Engineering

Osaka Prefecture University, Japan Osaka Prefecture University, Japan
nakashi@cs.osakafu-u.ac.jp takatani@ci.cs.osakafu-u.ac.jp

Hisao Ishibuchi Manabu Nii
Dept. of Computer Science and Intelligent Systems Dept. of Computer Engineering

Osaka Prefecture University, Japan University of Hyogo, Japan
hisaoi@cs.osakafu-u.ac.jp nii@eng.u-hyogo.ac.jp

Abstract— In this paper we improve the performance of an
evolutionary method for obtaining team strategies in simulated
robot soccer. In the previous method each team strategy was
evaluated based on the goals and the goals against of a single
game. It is possible for a good team strategy to be eliminated
from the population in the evolutionary method as there is
a high degree of uncertainty in the simulated soccer field. In
order to tackle the problem of uncertainty, we propose a robust
evaluation method using match history. The performance of
team strategies in the proposed method is measured by the
average goals and average goals against. Through a series of
computer simulations, we show the effectiveness of our robust
evaluation method.

Keywords: Evolutionary Computation, Match History,
Multi-Agent Systems, RoboCup Soccer, Rule-Based Systems

I. I NTRODUCTION

RoboCup soccer [1] is a competition between soccer
robots/agents. Its ultimate aim is to win against the hu-
man soccer champion team by the year 2050. Developing
RoboCup teams typically involves solving the cooperation
of multiple agents, the learning of adaptive behavior, and
the problem of noisy data handling. Many approaches have
been presented that try to tackle these problems, an example
is the application of soft computing techniques [2].

In general, the behavior of the soccer agents is hierarchi-
cally structured. This structure is divided into two groups.
One is low-level behavior which performs basic information
processing such as visual and sound information. Basic
actions such as dribble, pass, and shoot are also included
in the low-level behavior. The other is high-level behavior
that makes a decision from the viewpoint of global team
strategy such as cooperative play among the teammates.

For the low-level behavior Nakashima et al. [2] proposed a
fuzzy Q-learning method for acquiring a ball intercept skill.
It was shown that the performance of the agent gradually
improves in an on-line manner.

Evolutionary computation has been used to evolve strate-
gies of various games. For example, Chellapilla and Fo-
gel [3], [4] proposed a method based on the framework
of evolutionary programming to automatically generate a

checker player without incorporating human expertise on
the game. An idea of coevolution is also employed in [3],
[4]. For RoboCup soccer agents a genetic programming
approach has been applied to obtain the soccer team strategy
in [5]. In [5] the idea of coevolution is also employed. The
evolution of team strategy from kiddy soccer (i.e., all players
gather around the ball) to formation soccer (i.e., each player
maintains its own position during the game) is reported.

Another evolutionary method for RoboCup soccer has
been proposed by Nakashima et al. [6] where a set of
action rules is used to determine the action of players. The
antecedent part of the action rule concerns the position of
the nearest opponent and the position of the player. Each
action rule is examined whether its antecedent part matches
with the player’s current situation. The action of the player is
specified by the consequent part of the action rule that exactly
matches the current situation. A strategy for a single team
is constructed by concatenating a set of action rules of the
agents in the team. Each set of action rules are represented
by an integer string and treated as an individual through
the course of evolutionary process. It was shown that the
performance of the generated soccer team improved against
a fixed opponent team.

The performance of the team strategy in [6] is evaluated by
scores (i.e., goals and goals against) in the game. However, a
problem arises because there is a high degree of uncertainty
in the game. For example, different game results can be
obtained against the same team if we iterate a number of
times. We observed that some good teams are eliminated
from the evolutionary process because their performance is
not good enough in a single evaluation. On the other hand,
poor teams can remain in the evolutionary process as they
happen to score more than the potentially high-performing
teams.

In order to tackle the problem of uncertainty, we propose a
robust evaluation method of the soccer team strategy where
the performance of soccer team strategies is evaluated by
using the match history of the teams. In the evolutionary
process, those integer strings with high average goals have a

1-4244-0464-9/06/$20.00 2006 IEEE. 60 CIG'06 (May 22-24 2006)

better chance of survival than those with low average goals.
Through a series of computer simulations, we show that
potentially high-performing teams survive more than low-
performing teams.

II. T EAM SETUP

A. UvA Trilearn: Base Team

In this paper we use UvA Trilearn for our evolutionary
computation method. UvA Trilearn won the RoboCup world
competition in 2003. The source codes of UvA Trilearn
are available from their web site [7]. Low level behaviors
such as communication with the soccer server, message
parsing, sensing, and information pre-processing are already
implemented. Basic skills such as player’s positioning, ball
intercept, and kicking are also implemented in the UvA
Trilearn source codes. High level behaviors such as strategic
teamwork, however, are omitted from the source codes.

UvA Trilearn players take rather simple actions as high
level behaviors are not implemented in the released source
codes. We show the action tree of UvA Trilearn players in
Fig. 1. There are two action modes: One is ball handling
mode, and the other is positioning mode. Each player uses
one of these two modes in every time step depending on its
situation in the soccer field. If a player is nearer to the ball
than the rest of the team, ball handling mode is invoked. On
the other hand, when a player is not the nearest one to the
ball, it goes into positioning mode.

Nearest to the ball?

Positioning mode Ball handling mode

Kickable?

Yes No

Yes No

Action Intercept

Fig. 1. Action tree of UvA Trilearn players.

Note that the action tree in Fig. 1 is common for all
players. Thus, the action of players is the same if they are in
the same situation. Since their conditions and home positions
are different from each other, the action taken at a time step
is not necessarily the same for all players. The following
subsections explain these two modes in detail.

B. Ball Handling Mode

The ball handling mode is employed when a player is the
nearer to the ball than the rest of the team. In this mode,
the player checks whether it is possible to kick the ball or
not. A kickable margin is defined by the RoboCup soccer
server. We show the kickable margin of a player in Fig. 2.
A player can kick the ball if the ball is in the kickable area

of the player, otherwise it is impossible to kick the ball. In
the latter case, the player moves towards the ball until the
ball is within its kickable area.

Player

Kickable margin

Kickable area

Fig. 2. Kickable margin and kickable area.

According to the UvA Trilearn source codes, the player
always shoots the ball to the opponent goal if the ball can
be kicked. We modified this behavior for our evolutionary
computation. We use action rules for determining the action
of the player that can kick the ball (i.e., the ball is within the
kickable area of the player). The action rule set represents
the strategy of a soccer team. In this paper we evolve action
rule sets to find a competitive soccer team strategy.

The action rules of the following type are used in this
paper:

Rj : If Agent is in AreaAj and
the nearest opponent isBj

then the action isCj , j = 1, . . . , N,
(1)

whereRj is the rule index,Aj is the antecedent integer value,
Bj is the antecedent linguistic value,Cj is the consequent
action, andN is the number of action rules.

The antecedent integer valueAj , j = 1, . . . , N refers to
a subarea of the soccer field. We divide the soccer field into
48 subareas as in Fig. 3.

48

47

46

45

44

43 37

38

39

40

41

42

31

32

33

34

35

36 30

29

28

27

26

25

18

17

16

15

14

13 7

8

9

10

11

12

19

20

21

22

23

24

1

2

3

4

5

6

Fig. 3. Partition of the soccer field.

Each subarea is indicated by an integer value. The an-
tecedent valueAj of the action ruleRj is hence an integer

1-4244-0464-9/06/$20.00 2006 IEEE. 61 CIG'06 (May 22-24 2006)

value in the interval [1, 48]. In this way, the action of a soccer
agent depends on the position of the agent. The action of the
soccer agent also depends on the distance between the agent
and its nearest opponent. The antecedentBj takes one of two
linguistic values near or not near. The player that is able to
kick the ball examines whether the nearest opponent is near
the agent or not. The nearest opponent is regarded as near
if the distance between the agent and its nearest opponent is
less than a prespecified value. If not, the nearest opponent
is regarded as not near. The consequent actionCj represents
the action that is taken by the agent when the two conditions
in the antecedent part of the action ruleRj (i.e., Aj and
Bj) are satisfied. In this paper we use the following twelve
actions for the consequent actionCj .

1. Dribble toward the opponent side. The direction is parallel
to the horizontal axis of the soccer field.

2. Dribble toward the opponent side. The direction is the
center of the opponent goal.

3. Dribble carefully toward the opponent side. The direction
is the center of the opponent goal. The dribble speed is
low so that the agent can avoid opponent agents.

4. Dribble toward the nearest post of the opponent goal.
5. Dribble carefully toward the nearest post of the opponent

goal. The dribble speed is low so that the agent can avoid
opponent agents.

6. Dribble toward the nearest side line.
7. Pass the ball to the nearest teammate. If the nearest

teammate is not ahead of the agent, the agent does not
kick to the nearest teammate. Instead, it clears the ball
toward the opponent side.

8. Pass the ball to the second nearest teammate. If the second
nearest teammate is not ahead of the agent, the agent does
not kick to the second nearest teammate. Instead, it clears
the ball toward the opponent side.

9. Clear the ball toward the opponent side.
10. Clear the ball toward the nearest side line of the soccer

field.
11. Kick the ball toward the penalty area of the opponent side

(i.e., centering).
12. Perform a leading pass to the nearest teammate.

Note that each player has a set of action rules. Since there
are 48 subareas in the soccer field and near and not near
are available for the second antecedent part in action rules
(i.e., Bj), the number of action rules for a single player is
48 × 2 = 96. There are96 × 10 = 960 action rules in total
for a single team with ten field players. Action rules for a
goal keeper are not considered in this paper.

There is a special case where players do not follow the
action rules. If a player keeps the ball within the penalty
area of the opponent side (i.e., if the agent is in Areas 38 -
41 or 44 - 47 in Fig. 3), the player checks if it is possible
to shoot the ball to the opponent goal. The player decides to
shoot the ball if the line segment from the ball to either goal
post of the opponent side is clear (i.e., there are no players
near the line segment). If the line is not clear, the player
follows the action rule whose antecedent part is compatible

to the player’s condition.
If the ball cannot be kicked by a player that is in the ball

handling mode, the player’s action is to intercept the ball,
that is, the player moves to catch the ball. In the intercept
process the player determines whether it dashes forward or
turns its body angle based on the relative distance of the ball
to the player.

C. Positioning Mode

UvA Trilearn players have their own home positions in
the field (see Fig. 4). We use a 4-3-3 formation system
where there are four defenders, three mid-fielders, and three
forwards. This formation system is fixed and never changes
throughout a game. The home position of a player and the
ball position are used to determine the player’s position when
it is in the positioning mode. The position is specified as
an externally dividing point of the ball position and the
home position. If the current position of the player in the
positioning mode is different from the determined position,
the player moves toward the determined position. If the
difference between the two positions is not large, the player
remains in its current position.

1

2

3 4 5 8

10

9

FW DF DF

DF

DF

MF

MF

MF

FW

FW

Attack direction

GK

6

7

Fig. 4. Home positions of the soccer agents.

III. E VOLUTIONARY COMPUTATION

In this paper we use an evolutionary method to obtain
team strategies for soccer agents that are effective for playing
soccer. Specifically, our aim is to find the best action rule
sets for ten soccer players. Each player has its own set of
action rules that are used when it is in the ball handling mode
(see Subsection II-B). We encode an entire team strategy
into an integer string. Note that we do not optimize player’s
individual behavior but a team strategy as a whole. Thus, we
evaluate the performance of a team strategy only from its
match result, not from players’ individual tactics. We show
in our computer simulations that the performance of team
strategies successfully improves through the evolutionary
process. The following subsections explain our evolutionary
method in detail.

1-4244-0464-9/06/$20.00 2006 IEEE. 62 CIG'06 (May 22-24 2006)

A. Encoding

As described in Subsection II-B, the action of the agents is
specified by the action rules in (1) when they keep the ball.
Considering that the soccer field is divided into 48 subareas
(see Fig. 3) and the position of the nearest opponent agent
(i.e., it is near the agent or not near) is taken into account in
the antecedent part of the action rules, we can see that there
are48 × 2 = 96 action rules for each player. We apply our
evolutionary method to ten soccer agents excluding the goal
keeper. Thus, the total number of action rules for a single
team is96 × 10 = 960. We use an integer string of length
960 to represent a rule set of action rules for ten players.
The task of our evolutionary method is then to evolve the
integer strings of length 960 to obtain team strategies with
high performance. We show in Fig. 5 the first 96 bits of an
integer string in our evolutionary method. This figure shows
an integer string for a single agent. Thus, the integer string
of an individual in our evolutionary method has ten such
integer strings as we optimize the team strategy with ten
soccer agents excluding a goal keeper.

8 3 4 5 3 10 9 6

96 integers

1s 2s 3s 4s 93s 94s 95s 96s

Rule 1

1
R :

If Player 1 is in Area 1 and the nearest opponent

is near then Action is Dribble toward the nearest
side line

Fig. 5. Integer string for a single agent.

In Fig. 5, the first 48 bits represent the action of an agent
when the nearest opponent agent is near the agent. The order
of the integer bits is based on the division of the soccer field
(see Fig. 3). On the other hand, the actions of the agent in the
case where the nearest opponent agent is not near the agent
are shown in the other 48 bits. The value of each integer bit
ranges from an integer interval of [1, 12] as the number of
possible actions for each rule is twelve. These integer values
correspond to the index number of twelve actions described
in Subsection II-B.

B. Evaluation of Integer Strings

In the evaluation process, each of the integer strings in the
population plays a soccer game once against a fixed opponent
team. That is, the evaluation of integer strings is based on the
game results with a fixed opponent team. In the experiments
of this paper, UvA Trilearn Base is employed as a fixed
opponent team in the evaluation process of our evolutionary
method.

Generally, the main idea of evolutionary methods is to ex-
ploit the information of those individuals whose performance
is highly evaluated. In the previous work [6], we evaluated
the performance of integer strings from one single game
result. Since the game has a high degree of uncertainty such

as noise in object movement and the sensing information, the
same game result cannot be obtained from multiple games
with the same teams. Thus it is possible for potentially high-
performing teams to have poor results and conversely it is
also possible for low-performing teams to have better results.
This problem is caused because the performance is measured
from only a single game. One solution to this problem is to
play multiple games. However, this leads to an extremely
time-consuming process as it takes ten minutes to complete
a single game.

We therefore propose a new evaluation method that uses
a match history of integer strings. Each integer string has
a match history since it is generated by genetic operations.
The average goals and the average goals against are used in
the proposed method.

In the proposed method we first check the goals scored by
the soccer teams that are represented by the integer strings.
The performance of integer strings is evaluated as high if it
has a large number of average goals. In our evolutionary
method, the number of average goals is more important
than that of average goals against. When the number of the
goals is the same among multiple soccer teams, the average
goals against are used as a second performance measure. The
soccer teams with lower goals against are evaluated as better
teams. We do not consider the average goals against at all
when the average goals are different between different soccer
teams to be evaluated.

C. Evolutionary Operation

We use one-point crossover, bit-change mutation, and ES-
type selection as evolutionary operations in our evolutionary
method. New integer strings are generated by crossover and
mutation, and selection is used for generation update.

In the crossover operation, we first randomly select two
integer strings without considering the fitness value. Then
a cut point is randomly selected that is used for both the
two selected integer strings. The latter part of both strings
is exchanged with each other from the cut point. Note that
we do not use any evaluation results when two integer
strings for the crossover operation are selected from the
current population. All new integer strings generated by the
crossover operation are subject to a mutation operation. In the
mutation operation, the value of each integer bit is replaced
with a randomly specified integer value in the interval [1, 12]
with a prespecified mutation probability. It is possible that
the replaced value is the same as the one before the mutation
operation.

Generation update is performed by using ES-type selection
in our method. We use a so-called(µ + λ)-ES [8] for our
generation update scheme. By iterating the crossover and the
mutation operations we produce the same number of new
integer strings as that of current strings. Then the best half
integer strings from the merged set of the current and the
new strings are chosen as the next population. The selection
is based on the match results as described in Subsection
III-B. Note that the current strings are also evaluated in
this selection process. Thus, it is possible that a current

1-4244-0464-9/06/$20.00 2006 IEEE. 63 CIG'06 (May 22-24 2006)

integer string with the best performance at the previous
generation update is not selected in the next generation
update because the average goals of the integer string after
the next performance evaluation may become lower if the
result of the game at the next evaluation is poor.

To summarize, our evolutionary method is written as
follows:

[Procedure of the evolutionary method]

Step 1. Initialization. A prespecified number of integer
strings of length 960 are generated by randomly
assigning an integer value from the interval [1, 12]
for each bit.

Step 2.Generation of new integer strings.First randomly
select two integer strings from the current popu-
lation. Then the one-point crossover and the bit-
change mutation operations are performed to gen-
erate new integer strings. This process is iterated
until a prespecified number of new integer strings
are generated.

Step 3.Performance evaluation.The performance of both
the current integer strings and new integer strings
generated by Step 2 is evaluated through the re-
sults of soccer games. Note that the performance
of current integer strings is also evaluated every
generation because the game results are not the same
but different game by game.

Step 4.Generation update.From the merged set of the cur-
rent integer strings and new ones, select best integer
strings according to the performance evaluation in
Subsection III-B. The selected bit strings form the
next generation.

Step 5.Termination of the procedure.If a prespecified ter-
mination condition is satisfied, stop the procedure.
Otherwise go to Step 2.

IV. COMPUTATIONAL EXPERIMENTS

The following parameter specifications were used for all
the computer simulations in this paper:

The number of integer strings in a population: 5,
The probability of crossover: 1.0,
The probability of mutation for each bit: 5/96,
Termination condition: 500 generations.

The population size is specified as five. This is a
small number compared to commonly used parameter
specifications. The reason for this is that it takes at
least five minutes to complete a single soccer game. If
the population size is specified large, it is difficult to
perform the evolutionary method for a large number of
generations. Currently we use a 16-node cluster system for
the computational experiments in this paper. It still takes
several days to perform a single run of the evolutionary
process. The population size will be increased when the

more powerful computational environments are equipped in
the laboratory.

The number of new integer strings generated from the
population at each generation is five. Thus it can be said
that the values ofµ andλ are specified asµ = 5 andλ = 5.

The initial population was created by randomly assigning
an integer value in the interval [1, 12] for each integer bit.
We performed the proposed method for 500 generations. We
iterated the above experiment five times to obtain the average
goals and goals against for each generation over the five
trials.

Figure 6 shows the average goals and the average goals
against at each generation. That is, we examined the per-
formance of the five integer strings after they are selected
as the next population. From Fig. 6, we can see that the
performance of integer strings becomes better as the number
of generations increases. For example, the average goals
increase over generation. On the other hand, the average
goals against do not change over generation. This is because
we focus on the evolution of offensive ability of team
strategies. Nevertheless, it should be noted that the average
goals against do not increase because we consider not only
offensive ability but also defensive ability. It should be noted
that the performance of integer strings does not improve
monotonically over generation because the soccer games in
the evaluation process for the best half integer strings are
performed every generation. That is, Fig. 6 shows the on-
line performance of the best half integer strings and the
performance at a generation is discarded at the following
one.

Generation(10)

A
v
e
ra

g
e
 g

o
a
ls

a
n
d

 a
v
e
ra

g
e
 g

o
a
ls

 a
g
a
in

st Goals

Goals against

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

×

Fig. 6. Simulation results with match history.

For the purpose of comparison, we show an experimental
result in the case where match history was not used in the
evolutionary process. That is, the fitness of integer strings
is calculated by using only the game results at the current
generation. From Fig. 6 and Fig. 7, we can see that the
higher offensive ability is obtained by using match history
than without match history (i.e., average goals with match
history is larger than without it). We can also see that the
defensive ability is slightly higher when match history is
used.

Next, we further examined the performance of obtained

1-4244-0464-9/06/$20.00 2006 IEEE. 64 CIG'06 (May 22-24 2006)

Generation(10)

A
v
e
ra

g
e
 g

o
a
ls

a
n
d

 a
v
e
ra

g
e
 g

o
a
ls

 a
g
a
in

st Goals

Goals against

0 10 20 30 40 50
0

1

2

3

4

5

6

7

8

9

10

×

Fig. 7. Simulation results without match history.

teams by the evolutionary algorithm. Each of the best five
integer strings at 0-th, 100-th, 200-th, 300-th, 400-th, and
500-th generation played soccer against UvA Trilearn base
team ten times. Thus, for each generation we performed5×
10 = 50 soccer games. The experimental results are shown
in Table I and Table II. In these tables, average goals and
goals against over the5× 10 = 50 games are shown.

TABLE I

PERFORMANCE OF INTEGER STRINGS OBTAINED WITH MATCH HISTORY.

Generation Wins Losses Draws Goals Goals against
0 6 36 8 1.08 2.50

100 31 11 8 3.38 2.34
200 33 10 7 4.48 2.46
300 41 5 4 5.66 2.18
400 37 10 3 4.62 2.42
500 38 8 4 4.96 2.56

TABLE II

PERFORMANCE OF INTEGER STRINGS OBTAINED

WITHOUT MATCH HISTORY.

Generation Wins Losses Draws Goals Goals Against
0 5 36 9 1.34 2.82

100 22 18 10 2.10 2.10
200 32 14 4 3.14 2.12
300 29 16 5 2.72 2.00
400 14 26 10 1.90 2.68
500 12 30 8 2.14 3.34

In order to compare the performance of those integer
strings that survived for a long period with those that
disappeared from the population in a short time, we selected
21 integer strings that survived for different numbers of
generations. In Table III we summarize the selected inte-
ger strings and the number of generations for which they
survived in the population.

Each integer string played soccer for 20 times against
the fixed opponent team that was used in the evolutionary
computation. We show the results of the simulation results
in Table IV. Table IV shows the total results of the games for
each category. Since each category has three integer strings,
60 games were conducted for each category in total.

TABLE III

SURVIVAL OF INTEGER STRINGS.

Category Generation of
(# of generations) disappearance

0-5 175 225 275
5-10 175 225 275
10-15 178 228 275
15-20 175 225 276
20-25 177 230 281
25-30 182 235 286
30- 187 270 300

TABLE IV

GAME RESULTS AND PERIOD OF SURVIVAL.

Category Wins Losses Draws Goals Goals against
0-5 33 17 10 267 171
5-10 44 10 6 274 152
10-15 44 11 5 308 143
15-20 46 8 6 279 135
20-25 44 8 8 279 150
25-30 45 11 4 281 155
30- 44 8 8 305 123

From Table IV we can see that those individuals that
disappeared from the population in a short time do not
perform well. On the other hand, the performance of those
integer strings that survived for a long period of generations
is good in terms of the number of wins, losses, goals, and
goals against. Thus we can see that using match history
is effective for increasing the chance of potentially high-
performance integer strings to survive in the population
for a long time and reducing the risk of maintaining low-
performing integer strings.

Finally, we examined how long the best five integer strings
at each generation survived during the execution of the
evolutionary algorithm. In Fig. 8 we show the maximum
number of survived generations among the population at
each generation for three cases. Line marked with “with
MH” shows the results obtained in the case where the match
history was used in the evolutionary algorithm. Another
line marked with “No MH” is drawn from the case where
match history was not used in the evolutionary algorithm.
The other line marked with “Random” is a benchmark line
that shows a probabilistic estimation of survived generations
where randomly selected five integer strings are used to gen-
erate the next population (this estimation is calculated from
9C4/10C5 = 1/2). From Fig. 8, we can see that the number
of survived generations is larger than the benchmark one for
both with and without match history cases. Furthermore, it
is the largest when match history is used in the evolutionary
algorithm. This is because the evolutionary algorithm with
match history is robust against the randomness and noise
involved in the soccer games.

V. CONCLUSIONS

In this paper we proposed an evaluation method of soccer
team strategies by using match history. The match history
is used to calculate the average goals and the average goals

1-4244-0464-9/06/$20.00 2006 IEEE. 65 CIG'06 (May 22-24 2006)

×Generation(10)

M
a
x
im

u
m

 s
u
rv

iv
e
d
 g

e
n
e
ra

ti
o
n
s with MH No MH Random

0 10 20 30 40 50
0

5

10

15

20

Fig. 8. Survived generations at each generation.

against. Those teams with high average goals are evaluated as
better than those with low average goals. The average goals
against are used when the average goals are the same among
more than one soccer team strategies. This method avoids the
problem caused by uncertainty in the RoboCup soccer such
as noise in object movement and the sensing information.

In the evolutionary process of this paper the action of
soccer players that keep the ball is determined by a set of
action rules. The antecedent part of the action rules includes
the positions of the agent and its nearest opponent. The
soccer field is divided into 48 subareas. The action of the
agent is specified for each subarea. The candidate actions
for the consequent part of the action rules consist in a set
of 12 basic actions such as dribble and kick. The strategy
of a soccer team is represented by an integer string of
the consequent actions. In the evolutionary process, one-
point crossover, bit-change mutation, and ES-type generation
update are used as evolutionary operators. The generation
update is performed in a similar manner to the(µ + λ)-ES
strategy of evolution strategy. That is, best integer strings
are selected from a merged set of current integer strings and
new integer strings that are generated from the current integer
strings by the mutation operation.

In a series of computer simulations, we examined the
performance of our evaluation method. We showed that the
performance of the soccer team strategies becomes better
over generation. For example, the number of the average
goals at the end of the evolutionary process is larger than in
the initial population. We also observed that the number of
goals against did not increase as the evolutionary computa-
tion progresses.

There is a lot of space for the extension to our evolutionary
method. For example, the field partition in Fig. 3 can be
adaptive instead of fixed. That is, each agent has its own field
of partition and can find the optimal one through evolutionary
process. Using multiple opponent teams instead of just one
is also the possibility for the extension.

REFERENCES

[1] RoboCup official page, http://www.robocup.org.

[2] T. Nakashima, M. Udo, and H. Ishibuchi, “A Fuzzy Reinforcement
Learning for a Ball Interception Problem,”Lecture Notes in Artificial
Intelligence 3020: RoboCup 2003: Robot Soccer World Cup VIII, pp.
559–567, Springer, Berlin, July 2003.

[3] K. Chellapilla and D.B. Fogel, “Evolving Neural Networks to Play
Checkers Without Relying on Expert Knowledge,”IEEE Transactions
on Neural Networks, Vol. 10, No. 6, pp. 1382–1391, 1999.

[4] K. Chellapilla and D.B. Fogel, “Evolving an Expert Checkers Playing
Program Without Using Human Expertise,”IEEE Transactions on
Evolutionary Computation, Vol. 5, No. 4, pp. 422–428, 2001.

[5] S. Luke and L. Spector, “Evolving Teamwork and Coordination with
Genetic Programming,” inProceedings of the First Annual Conference
on Genetic Programming, pp. 150–156, 1996.

[6] T. Nakashima, M. Takatani, M. Udo, H. Ishibuchi, and M. Nii, “Per-
formance Evaluation of an Evolutionary Method for RoboCup Soccer
Strategies,”RoboCup 2005: Robot Soccer World Cup IX, in press.

[7] UvA Trilearn team description page,
http://www.science.uva.nl/˜jellekok/robocup/indexen.html.

[8] T. Bäck, Evolutionary Algorithms in Theory and Practice, Oxford
University Press, New York, 1996.

1-4244-0464-9/06/$20.00 2006 IEEE. 66 CIG'06 (May 22-24 2006)

Training Bao Game-Playing Agents using Coevolutionary Particle

Swarm Optimization

Johan Conradie
Department of Computer Science

University of Pretoria, Pretoria
South Africa

Andries P. Engelbrecht
Department of Computer Science

University of Pretoria, Pretoria
South Africa

engel@cs.up.ac.za

Abstract— Bao, an African board game of the Mancala
family, is a complex two-player game with a very large search
space and complex rule set. The success of game tree approaches
to create game-playing agents rests heavily on the, usually
handcrafted, static evaluation function. One of the first steps
towards using a game tree is to design an appropriate, efficient
evaluation function. This paper investigates the effectiveness of
a coevolutionary particle swarm optimization (PSO) approach
to evolve the evaluation function for the game of Bao. This
approach uses a PSO algorithm to evolve a neural network as
evaluation function, using an unsupervised, competitive learning
approach. The coevolutionary approach to evolving game-
playing agents assumes no prior knowledge of game strategies.
The only domain specific information used by the model are
the rules of the game, and the outcomes of games played.

The performance of the evolved game-playing agents is
compared to a game tree-based agent using a handcrafted
evaluation function, as well as a player that makes random
moves. Results show that the coevolutionary PSO approach
succeeded in learning playing strategies for Bao.

Keywords: Bao, Particle swarm optimization, coevolution

I. INTRODUCTION

Traditional game agents for two-player board games use
game trees to determine the best next move. A statically
defined evaluation function is typically used to evaluate the
desirability of board states, represented by the leaf nodes
of the game tree. Such static evaluators force the agent to
become unnecessarily rigid in its decision process, which
leaves it unable to compensate for weaknesses. Furthermore,
with handwritten evaluation functions expert knowledge of
the game in question is required to design an efficient
evaluation function. This is not problematic for well-known,
popular games such as checkers or chess. However, for less-
known and played games, it is difficult to obtain expert
knowledge about the game and playing strategies.

The ideal is that the game agent learns for itself how
to play the game, without being biased with a predefined
evaluation function. Given only the rules of the game, the
agent should be able to discover and exploit different game
strategies by playing against other game agents.

Co-evolutionary techniques have been used successfully
to evolve game-playing agents for games such as chess [1],
[2], go [3], [4], checkers [5], [6], othello [7], the iterated
prisoner’s dilemma [8], Awari [9], and Kalah [10].

The co-evolutionary approach to train agents to play
checkers, developed by Chellapilla and Fogel [5], [6], enables

and algorithm to learn by itself to play the game at the
level of expert human players using the rules of the game,
and the number, type, and location of pieces on the board.
Neural networks were used as evaluation function of leaf-
nodes. A population of neural networks was trained using
an evolutionary program. Extensive online testing was done
to verify the performance of the algorithm, where players
from all over the world could play against the best evolved
neural network (known as Blondie24 [6]) over the Internet at
www.zone.com. It was shown that after playing 165 games,
Blondie24 was rated better than 99.61% of over 120000 rated
players at the website. Recently, Fogel et al [2] applied the
same model to evolve chess players. In simulated tournament
conditions in 12 games (6 as black and 6 as white), the
evolved chess player competed against Pocket Fritz 2.0
(having a rating of 2300-2350). The evolved player won the
contest with 9 wins, 2 losses and 1 draw.

Messerschmidt and Engelbrecht [11] adapted this co-
evolutionary approach to train the neural network evaluation
functions using particle swarm optimization (PSO) algo-
rithms for the simple game of tic-tac-toe. The PSO approach
performed significantly better than using an evolutionary
programming approach. Franken and Engelbrecht extended
the PSO co-evolutionary approach to the games of Checkers
and the iterated prisoner’s dilemma (IPD) [8]. Three novel
approaches to using PSO to evolve IPD strategies were
developed. Results in [8] have shown that the PSO co-
evolutionary approach is successful on more complex games.

Based on this sucess, the main objective of this paper is to
illustrate the performance of PSO on an even more complex
game, namely Bao. In addition to the application to a more
complex game, the paper investigates

• performance against a handcrafted evaluation function;
• methods to address premature stagnation to a point

where no more learning occurs; and
• performance under different game tree ply depths.

The rest of the paper is organized as follows: The game
Bao is described in Section II, along with the rules used
for this paper. Section III provides a short overview of
game tree approaches to Bao, and presents a handcrafted
evaluation function for Bao. A brief overview of PSO is
given in Section IV. The co-evolutionary PSO method is
summarised in Section V. Experimental results are presented

1-4244-0464-9/06/$20.00 2006 IEEE. 67 CIG'06 (May 22-24 2006)

North

South

F1 F2 F3 F4 F5 F6 F7 F8

f1f2f3f4f5f6f7f8

S

N

B4 B5 B6

b3b4

B1 B2 B3 B7 B8

b1b2b5b6b7b8

(a) Labeling of Pits

2

2 2 6

6 2

22

22

North

South

(b) Initial State

Fig. 1. The Bao Game Board

and discussed in Section VI.

II. THE GAME OF BAO

Bao is an African board game of the Mancala family,
which also includes the games Awari and Kalah. Bao is
generally considered to be the most difficult of the Mancala
family of games. The state-space complexity of Bao is
approximated to be 1025, whereas that of Awari and Kalah
is respectively 2.8 × 1011 and 1.3 × 1013 [12]. The Bao
state space is considerably more than that of checkers, but
not nearly as large as chess. What makes Bao even more
interesting, and adds to its complexity are that

• the game is played in two phases, where each phase
follows a different rule set;

• the game is not purely turn-based, allowing one player
to execute a number of actions until a specific condition
is satisfied before the opponent gets a turn;

• it is possible to have endless moves in Bao, and a game
could, theoretically, last for ever; and

• unlike games such as checkers, chess, Awari and Kalah,
no piece is ever removed from the game. This makes
it nearly impossible to construct an endgame database
by retrograde analysis [12], which is frequently used in
games such as chess or checkers.

The Bao rules implemented for this paper are a variation of
those described by De Voogt [13]. Some rules are omitted
for simplicity, while a few have been modified to suit the
purposes of this paper.

The game board has four rows with eight columns of pits
(or holes) per row (refer to Figure 1(a)). The game is played
by two people. The top two rows (labeled using lower case
b and f) are owned by the North player, and the bottom two
rows (labeled using upper case B and F) are owned by the
South player. The middle two rows are the front rows of each

player (labeled as F1, · · · , F8 for the South Player and as
f1, · · · , f8 for the North player). The top and bottom rows
are called the back rows. When the board layout for a player
is described, it should be assumed that the board is rotated so
that the relevant player’s owned rows are at the bottom (thus
the 2 south rows). The two outmost pits of the front row are
called the ‘Kitchwa’ (F1 and F8 for the South player) and
the pits directly adjacent to the ‘Kitchwa’ (on the front row
only) are called the ‘Kimbi’ (pits F2, . . . , F4, F6, F7 for
the South player). The fifth pit from the left on the front row
(pit F5 for South) typically has a different shape (usually
square instead of round) and is called the ‘Nyumba’, or
house. Bao is played with 64 counters, which are also called
seeds, stones, or ‘Kete’.

The goal in Bao is to empty the opposing player’s front
row (pits f1, . . . , f8 for South) of kete or to deprive the
opposing player (North) of any valid moves. Each player
starts with ten counters on the board. Six counters are placed
in the Nyumba, two counters are placed in the pit directly
to the right of the Nyumba, and the remaining two counters
are again placed in the pit to the right of the previous two
counters. Figure 1(b) illustrates the initial layout of the Bao
board.

The South player always makes the first move. In the first
phase, called the ‘Namua’ phase, each player starts with
22 counters in his/her stock (in pits N for North and S

for South). In this phase, each player sows a counter from
the store until both players’ stores have been depleted, at
which time the game then moves on to the ‘Mtaji’ stage.
The specific rules for each phase will be explained later.

The basic move of Bao is sowing, which is the process of
inserting a number of counters, one by one, into consecutive
pits within the two owned rows of the board. The direction of
the sowing process can be either clockwise or anti-clockwise.
However, the direction cannot change during the sowing
process. The sowing process has four attributes: starting pit,
number of counters to sow, sowing direction, and ending pit.
When sowing ends on a non-empty pit in the front row and
the opposing hole in the front row of the opposing player,
also called the ‘Mtaji’, is non-empty then capturing occurs.
The capturing player’s pit is referred to as the ‘capturing pit’
and the opponent’s pit (Mtaji) is referred to as the ‘captured
pit’. In a capture, all of the counters in the captured pit
are removed. These counters are then immediately added
and sown from one of the current player’s kitchwa’s. If the
capturing pit is either the left kitchwa or kimbi, then the
sowing must occur from the left kitchwa. Conversely, the
same holds for the right side. If the capturing pit is the
kitchwa or kimbi, then the player must select from which
kitchwa the sowing will occur. If sowing starts from the
left kitcwha, then the sowing direction must be clockwise.
If the sowing starts from the right kitchwa then the sowing
direction must be anti-clockwise. It is important to note that
if a capture move is at all possible, then a capture action
must be taken.

1-4244-0464-9/06/$20.00 2006 IEEE. 68 CIG'06 (May 22-24 2006)

2

2 2 6

7 3

22

21

North

South

11

(a) South places counter in F6

2

2 2 7

7 3

21

21

North

South

11

(b) South sows to the left

2

2 2 7

7 3

21

21

North

South

01

1

(c) North places counter in f5, captures F4 and
sows from f1

Fig. 2. Illustration of Sowing and Capturing

Figure 2 illustrates capturing and sowing actions. Assum-
ing the initial layout as given in Figure 1(b), Figure 2(a)
illustrates the first action of South, namely a counter removed
from the store, S, and placed in pit F6. South then sows to
the left by placing one counter in each of the pits, F5, F4
and F3 as illustrated in figure 2(b). North then plays by
placing a counter from N in pit f5, at which point North
has to capture the counter of South in F4. Since the counter
is on the left side of South, North sows from its f1 kitchwa,
and places the captured counter in f1.

When sowing ends on a non-empty pit and a capture is not
possible, then sowing continues from the ending pit of the
last sowing process. This continuation of sowing is called
‘endelea’. Sowing continues until the sowing process ends
in an empty pit. A special rule allows the player to stop the
sowing process if a sowing action ends in the Nyumba. This
special rule for endelea is not implemented for this paper.
Figure 3 illustrates the endelea, assuming the board state as
given in figure 3(a). Assume that South sows from F6 to
the left, with the last counter placed in F3 as illustrated in
figure 3(b). F3 was not empty, but f6 is empty, and therefor
capturing can not take place. South then continues to sow to
the left from F3 as indicated in figure 3(c).

2

2

2 3

North

South

4

3

(a) South places counter in F6

2

2

3 0

North

South

5

3

1

(b) South sows to the left

2

2

3 0

North

South

0

3

111

1 1 1

(c) North places counter in f5, captures F4 and
sows from f1

Fig. 3. Illustration of Endelea

A move in Bao is considered to be a string of sow and
capture actions, and a move only ends when a sow action
ends in an empty pit. After a player’s move has ended, it is
the opponent’s turn to perform a move.

In the first phase, each player starts with 22 counters in
hand (in the S and N pits). For each move in this phase,
the player must enter one counter from its hand into a non-
empty pit in the front row. Only pits in the front row may
be played. If the Mtaji, or opposing hole, is non-empty then
capturing takes place as described earlier. If a capture is not
possible then the player must sow from where the counter
was entered. The player may choose the direction in which
the kete is sown. The endelea continues until no further
sowing is possible. The player’s move then ends and it is
the opponent’s turn. If a player wins the game in the Namua
phase, it is called ‘mkononi’ (‘in hand’).

The second phase starts when all of the kete have been
entered into the board. The rules now vary only slightly. Only
pits with more than one counter may be played (or sown),
but pits from the back row may now also be played. Thus if
a player has only pits with one or zero counters in the front
row, then that player loses the game. A player chooses a pit
with at least two counters and sows it. The direction is again
chosen by the player. If a capture is possible, then a capture

1-4244-0464-9/06/$20.00 2006 IEEE. 69 CIG'06 (May 22-24 2006)

must take place. Sowing occurs just as in the Namua phase.
The game ends when a player cannot make a legal move.
A special rule is used to prevent a player from forcing the
opposing player to have only singular pits left (thus forcing
him to lose).

III. GAME TREES

There have been several Bao game-playing agents that
implement game trees to determine the best possible move.
Donkers et al. [12] created five different game-tree-based
Bao agent implementations. Two implementations used hand-
written evaluation functions to evaluate game nodes. The
third implementation used a genetic algorithm to evolve
the evaluation function. The fourth implementation used
temporal difference (TD)-leaf learning [12] in order to learn
the evaluation function. The fifth approach also utilized the
TD-leaf learning method, but with a normalized Gaussian
network [14] as evaluation function.

Daoud et al. [15] describe a game-tree-based implemen-
tation for the game of Awari, called Ayo. Ayo uses minimax
to explore the search space. A genetic algorithm was used to
evolve the evaluation function for the leaf nodes of the game
tree.

For the purposes of this paper, a game-tree-based opponent
was developed to test the performance of the PSO-based Bao
game agent. This opponent will be referred to as the expert
player, since it was developed from human knowledge. Let
the South player be the MIN player, and let the North player
be the MAX player. The static evaluation function computes
the desirability of a move represented by a leaf node as
follows:

1) If the node is a winning state for the North player,
return 100000.

2) If the node is a winning state for the South player,
return -100000.

3) Initialize the evaluation value to 0.
4) For each kete possessed by the North player, add 1 to

the evaluation value.
5) For each kete possessed by the South player, subtract

1 from the evaluation value.
6) Add (44− Number of kete in front row of South

player) to the evaluation value.
7) Subtract (44− Number of kete in front row of South

player) from the evaluation value.
8) Return the evaluation value.

Results of this evaluation function can be found in Sec-
tion VI.

IV. PARTICLE SWARM OPTIMIZATION

Particle swarm optimization (PSO) was first introduced by
Kennedy and Eberhart in [16] as a population-based, stochas-
tic optimization algorithm, modelled after a simple social
model of bird flocking. Candidate solutions are referred to
as particles, and the collection of all particles is referred to
as a swarm. PSO can be described as the “flying” of particles
through the hyperdimensional search space. The population

is divided into different neighborhoods, depending on the
PSO strategy that has been implemented. A neighborhood
can be defined from a single particle, to the entire swarm.
The position of a particle is influenced by its personal best
position, as well as the position of the best particle in its
neighborhood. The performance of each particle is deter-
mined using a specialized fitness function, which is different
for each optimization problem. The personal best position of
a particle refers to the position where the performance of the
particle was the best achieved so far. It represents the best
position found by the particle in the search space.

If the neighborhood of a particle encompasses all of the
particles, the algorithm is referred to as gbest PSO. When
smaller neighborhoods are used, the algorithm is referred to
as lbest PSO. It is important to note that a neighborhood
does not define a certain subspace of the search space, but
rather the grouping of particles.

PSO has been applied successfully to many artificial and
real-world optimization problems (refer to [17] for sum-
maries of PSO applications). PSO has also been used to train
supervised neural networks [18], [19], [20], [21]. In this case,
each particle represents the weights of a neural network, and
the fitness is calculated as the mean squared error (in the
case of supervised training). For the co-evolutionary PSO
approach, neural networks are trained to approximate the
evaluation function of board states. Each neural network
receives as inputs the current state of the game board
and produces as output a single value which expresses the
desirability of the corresponding board state. For this task,
no target information is available, which makes it impossible
to calculate a mean-squared error. Instead, the fitness of a
particle (i.e. a neural network) is quantified as how well
the network performs in playing complete games against
other particles. Neural network weights are adjusted using
the velocity and position update equations.

For more detail on PSO, the reader is referred to [22],
[17].

V. COEVOLUTIONARY PARTICLE SWARM OPTIMIZATION

This section shows how PSO, feedforward neural net-
works, and game trees can be used to train a Bao agent
from zero knowledge about playing strategies. The model
is similar to that used by Messerschmidt and Engelbrecht
[11] and Franken and Engelbrecht [23], [8]. Section V-A
describes the co-evolutionary PSO model, while a summary
of the algorithm is given in Section V-B.

A. The model

The co-evolutionary PSO model for training Bao agents
consists of the following components:

• A swarm of neural networks. For this paper multi-layer
feedforward neural networks are used consisting of only
one hidden layer of three units. Input values indicate the
number of counters (seeds) in the corresponding pit.
Sigmoid activation functions are used in the hidden and
output layers.

1-4244-0464-9/06/$20.00 2006 IEEE. 70 CIG'06 (May 22-24 2006)

• An alpha-beta game tree, which is used in this study to
a ply-depth of three. The leaf nodes are evaluated using
a neural network.

• A neural network training algorithm, which is the gbest
PSO for this paper.

• A competition pool consisting of all particles in the
swarm and all personal best positions. The competition
pool includes the personal best positions since these are
the best positions found by the swarm and therefor pro-
vide the best known competitors. Each particle (neural
network) in the swarm plays complete games against a
randomly selected group from the competition pool.

The training process consists of first randomly initializing
the swarm of neural networks. The performance of each
neural network against a randomly selected group of com-
petitors is calculated and used as the fitness evaluation of
the particle. Weight adjustments are then done using the
following position and velocity update equations:

xi(t) = xi(t − 1) + vi(t) (1)

where

vij(t + 1) = wvij(t) + c1r1j(t)[yij(t) − xij(t)]

+c2r2j(t)[ŷj(t) − xij(t)] (2)

with xi the position of particle i (i.e. the weights of the i-th
neural network), vi is the velocity of particle i, yi and ŷ are
respectively the personal best and global best positions, w

is the inertia weight, c1 and c2 are acceleration coefficients,
and r1j , r2j ∼ U(0, 1).

For the purposes of this paper, the training process con-
tinued for 500 iterations.

The training of the agents is unsupervised, which means
that the performance of a candidate solution is gauged by
how well it plays against its peers. There is no human
intervention or insight on how the performance of that
individual candidate solution is determined.

In [11], [8], [23], each neural network was played against
individuals of the current population. Theoretical studies
have shown that, for gbest PSO (under convergent parameter
choices), each particle converges to one stable point [18],
[24]. At this point, no further learning occurs. Experimental
results in Section VI illustrate the problem occurs relatively
early in the training process for Bao. To address this problem,
the model is extended such that each particle also competes
against five ‘dumb’ opponents. A dumb opponent is simply
a neural network with randomly generated weight values,
representing a player that makes random moves. A dumb
agent thus has no intelligent behavior.

In addition to adding competitions against random oppo-
nents, two other variations to the model have been imple-
mented for this study. Both approaches add an expert player
to the competition pool (using the evaluation function of
Section II. The one approach adds the expert player from
the first iteration, while the second approach adds the expert
player after 250 iterations. The ply is one more for the expert
player than for the agent.

It is important to note that for every match played against a
competitor, two games are played: One as the North player
and one as the South player. This ensures that the agent
does not receive any advantage simply because it made the
first move. From playing dumb agents against each other
for 100000 games, it was determined that the South player
(which moves first) has a 48.744% chance of winning, while
the North player as a 51.25% chance of winning. The North
player thus has a slight advantage.

B. The algorithm

The coevolutionary PSO algorithm is summarized below:

• Initialize the swarm of particles (neural networks) to
random weight values.

• Repeat for 500 iterations.

– For every agent in the competition pool (including
personal best positions), set the score for the agent
to 0, and repeat for 5 opponents:

∗ Pick an opponent at random from the competi-
tion pool (excluding itself)

∗ Play a match against the selected opponent. If
the agent won, add 5 points to the agent’s score.
Otherwise, deduct 10 points from the agent’s
score.

∗ Play a match against a dumb opponent, using the
same scoring as above.

∗ Optionally, play a match against an ‘expert’
opponent, using the same scoring as above.

– Find the agent with the highest score, and flag that
agent as the ‘global best’ agent.

– Update the personal best positions using the com-
puted scores.

– Update the velocities and positions of all particles
(i.e. adjust the weights of the neural networks).

• Return the global best particle as the game-playing
agent.

VI. EXPERIMENTAL RESULTS

This section presents results of the application of the co-
evolutionary PSO approach to the game of Bao. For all
experiments, 15 particles have been used, trained for 500
iterations. The inertia weight was set to w = 0.729844, and
the acceleration coefficients to c1 = c2 = 1.496810. These
parameter values have been shown to ensure convergent
behavior [18]. The maximum velocity was set to Vmax =
0.729844. Each particle represented a neural network with
32 input units (one for each pit), 3 hidden units and 1
output unit. The swarm consisted of 15 particles. Due to the
computational effort and time constraints, each experiment
was repeated for only 10 times to report an average behaviour
of the model.

For the experimental work, three variations of the co-
evolutionary PSO model have been tested, namely

• Model A, where particles competed against agents in
the competition pool and dumb agents.

1-4244-0464-9/06/$20.00 2006 IEEE. 71 CIG'06 (May 22-24 2006)

• Model B, where an expert player is added from the first
training iteration.

• Model C, where the expert player is added after iteration
250.

A. Computational Complexity

For the given architecture1 it took respectively 1, 5 and 24
seconds per iteration to train for agents of ply-depth 1, 2 and
3. It is clear that the calculation times increase exponentially
in relation to the ply-depth of the agent. To get a better
idea of the computational time of the training process, three
experiments were conducted for each of the models listed
above, where each experiment uses a different ply-depth. For
each experiment 10 different runs were executed, each with
different starting conditions. The average training time per
simulation is 0.1387 hours for ply 1, 0.6943 hours for ply 2,
and 3.3333 hours for ply 3. For the results presented in this
section, the computational time amounts to 5.2 days.

B. Performance Results

This section summarizes the performance results of the
different models. Table I summarizes the performance against
a random player. Performance is measured as the percent-
age of games won against the opponent. These results are
averages over the games played as both the South and the
North player. For each side, 10000 games have been played.
Table II gives the performance against the expert player.
Results are given separately for the directions South and
North as averages over 10 runs.

For the remainder of this section, the trained Bao agent
is referred to as Agent(Level), where Level refers to the
ply-depth of the agent. The expert player is referred to as
Expert(Level), where Level refers to the ply-depth of the
expert player.

Theoretically, results against the expert player should show
a decline in performance if the ply-depth of the expert player
is higher than the agent. Also, results against the dumb player
should show an increase in performance as the ply-depth of
the Bao agent is increased. Performances above 50% show
that the agent learned some good playing strategies. Results
obtained against dumb opponents are the average over 20000
games (10000 games each for North and South).

Model A

In this case, agents competed (during training) against the
competition pool and dumb opponents. No other external
influences were allowed.

The results against the dumb opponent are very encour-
aging. Agent(1) managed to achieve an average win rate of
74%. As expected, the performance of the agent increases
with larger ply-depths.

The performance against the expert player, however, was
not as encouraging. Agent(1) managed to win 60% of the
games against Expert(1). The performance of the agent
dropped sharply to only 5% against Expert(2). While a drop

1AMD Athlon(tm) XP 2600+

in performance was expected, the sudden drop from 60% to
5% demonstrates that the agent in this model seems incapable
of playing against the expert player at larger ply-depths.

The performance of Agent(2) against Expert(1) curiously
drops down to 30%, while the performance of Agent(3)
against Expert(1) seems to recover. Agent(2) and Agent(3)
achieved slightly better results than Agent(1) for higher
levels of the expert player. Overall, the results show that
the performance did not improve significantly when the ply-
depth of the Bao agent was increased.

While the Bao game agent performed well against the
dumb opponent, it clearly has a weakness against the expert
player. The main cause for the bad performance stems from
the fact that the Bao agent has never before encountered
the expert player. This means that the Bao agent never
trained against the expert player, causing the agent to become
more specialized at winning against the dumb opponents. It
is for this reason that an expert player is included in the
competitions in later experiments.

Model B

For model B, matches against the expert player were
introduced from the beginning, allowing the expert player
to have an influence on training as from iteration 0. Using
the expert player as a competitor during training tests the
hypothesis that the trained agents will perform better if they
play against stronger opponents.

Results against dumb players showed similar performance
to that of model A. Agent(1) achieved an average perfor-
mance of 72%. As expected, performance increased with an
increase in ply-depth.

Results against the expert player showed a dramatic
increase in performance over that of model A. Agent(1)
managed to achieve a performance of 90% against both
Expert(1) and Expert(2). The performance against Expert(3)
dropped down to 10%. This drop in performance is expected,
since the ply-depth of the Bao agent was only 1.

Agent(2) still managed a high performance of 85% against
Expert(1), while showing a decline in performance against
Expert(2). The performance of Agent(2) showed the expected
decline in performance as the ply-depth of the expert player
was increased.

Model B agents show an overall increase in performance
as the ply-depth of the Bao agent is increased.

Compared to the results of model A, model B clearly
illustrates that introduction of an expert player into the com-
petition pool too early in the training process has a negative
influence on performance. The reason for this behavior needs
to be further investigated.

Model C

For the results presented in this section, the expert player
was introduced at training iteration 250 (arbitrarily chosen)
and onwards.

Results against the dumb player showed similar perfor-
mance to that of models A and B. Agent(1) achieved an

1-4244-0464-9/06/$20.00 2006 IEEE. 72 CIG'06 (May 22-24 2006)

TABLE I

PERFORMANCE OF ALL MODELS AGAINST DUMB OPPONENTS.

Model A Model B Model C
Simulation Ply 1 Ply 2 Ply 3 Ply 1 Ply 2 Ply 3 Ply 1 Ply 2 Ply 3

0 82.4 87.2 93 65.3 80.9 86.8 75.5 88 93.5
1 81.6 87.6 88.6 68.1 88.1 85.1 83 90 94.2
2 78 74.7 96 59.5 81.2 83 80.8 87.1 91.1
3 73.2 89.8 89.9 71.4 90.8 89.1 83.1 82.6 94
4 60.6 92 92 78.5 84.9 81.1 81.3 87.1 91.3
5 79.3 87.3 91.3 78.6 89.2 86.9 65.1 82.3 88.5
6 73.9 88 91.7 80.4 75.9 84.8 86.3 79.6 92.5
7 78.7 89.1 94.6 75.5 78.8 89.6 71.5 87.5 91.9
8 79 88 87.7 73.2 72.2 88.8 76.8 83.1 91
9 54 84.2 93.1 69.4 85.4 84.9 76.9 87 92

Average 74 87 92 72 82 86 78 85.4 92

TABLE II

PERFORMANCE OF ALL MODELS AGAINST THE EXPERT PLAYER

Model A against Model B against Model C against
Game Agent Expert Player Expert Player Expert Player

Direction Ply-depth 1 2 3 1 2 3 4 1 2 3 4
South 1 40 - - 80 80 - - 90 80 - -

2 40 30 - 100 50 30 - 100 50 30 -
3 70 30 10 90 70 - - 100 70 - -

North 1 80 10 - 100 100 20 - 90 90 - -
2 20 10 - 70 30 30 - 80 50 50 -
3 50 20 - 80 60 20 10 100 70 30 10

Average 1 60 5 - 90 90 10 - 90 85 - -
2 30 20 - 85 40 30 - 90 50 40 -
3 60 25 5 85 65 10 5 100 70 15 5

average performance of 78%. As expected, performance
increased with an increase in ply-depth.

Results against the expert player showed similar perfor-
mance to that of model B. Agent(1) managed to achieve a
performance of 90% against Expert(1), and a performance
of 85% against Expert(2).

Agent(2) still managed a high performance of 90% against
Expert(1), while showing a decline in performance against
Expert(2). The performance of Agent(2) showed the expected
decline in performance as the ply-depth of the expert player
was increased.

Agent(3) showed a major improvement over Agent(2)
against both Expert(1) and Expert(2). Agent(3) managed to
achieve a performance of 100% against Expert(1), and a
performance of 70% against Expert(2). Agent(3), however,
showed a significant drop in performance against Expert(3)
in comparison to Agent(2).

Model C agents show an overall increase in performance
as the ply-depth of the Bao agent is increased.

Summary

This section provides a summary of the results presented
in the given tables. The agents of all three models produced

similar results. Model B gave the worst results for all ply-
depths. Models A and C showed very similar results. Model
C showed the best performance of 78% at ply-depth 1, while
model A gave the best performance of 87% at ply-depth 2.
Models A and C performed equally well at ply-depth 3.

From the results of model B, the injection of matches
against the expert player caused a slight drop in performance
against dumb players. The results for model C showed that
delayed injection of the matches against the expert player
corrected this problem.

While model A achieved good results against the dumb op-
ponents, it fared considerably worse against the expert player.
Considering the results of Agent(1) against the expert player,
model B performed the worst of all the models. Against
Expert(1) it managed a performance of 60%, whereas both
models B and C achieved 90%. The performance of model
A dropped to 5% against Expert(2), with models B and
C achieving 90% and 85% respectively. Only model B
managed to compete against Expert(3), although only with a
performance of 10%. It is clear from the figure that model A
was the worst performer in this case, with models B and C
delivering very similar results. Model B performed slightly
better against model C.

1-4244-0464-9/06/$20.00 2006 IEEE. 73 CIG'06 (May 22-24 2006)

For Agent(2) against the expert player, model A was again
the worst performer of the group, with models B and C giving
similar results. Model C performed the best overall, with
model B just behind. It is curious to note that the overall
performance against Expert(2) dropped with Agent(2). The
reason behind this could be because Agent(2) only trained
against Expert(3), causing the visible increase in performance
against Expert(3). Models B and C performed much better
against Expert(3) than with Agent(1).

For Agent(3) against the expert player, model C again
showed to be the best performer.

In summary: (1) Models A and C achieved the highest
overall performance against the dumb opponents; (2) Model
C achieved the highest overall performance against the
expert player; and (3) Model B gave similar, and sometimes
superior, performance as model C against the expert player.

Overall, model C produced the best Bao game play-
ing agent. Model B was designed to improve the overall
performance against the expert player, which was clearly
shown. Unfortunately model B’s performance against the
dumb opponent suffered as a result. Model C improved the
performance against the expert player, while maintaining a
high performance against the dumb opponent.

VII. CONCLUSION AND FUTURE WORK

This paper adapted the co-evolutionary PSO model pre-
sented in [11], [8], [23] to train Bao game playing agents.
The same trained agent is used for both phases of the Bao
game. Three different models have been tested, where each
model differs in the competitors used during training. The
first model includes competitions against random players in
an effort to increase diversity. For the second model, each
agent also competes, during training, against an expert player
(a game tree with a static evaluation function) from the first
training iteration. The last model introduces the expert player
only mid-way through the training process. The objective of
the last two models is to ensure that the agents train against
a good adversary.

The results have shown that the co-evolutionary PSO
model is successfull both against random players and the
expert players at different ply-depths. Using the expert player
from mid-training significantly improved the performance of
the Bao agent.

Future research will include a more rigorous analysis of
the influence of PSO and neural network parameters on
the performance. Investigations into the effects of different
PSO neighborhood topologies will also be done. A detailed
analysis of the steps made by the agent will be done to
determine exactly what the agent has learned. The reasons for
decrease in performance due to inclusion of an expert player
in the competition pool, and for certain ply depths will be
investigated. Finally, the model will be extended such that
a different neural network is used for the two phases of the
game.

REFERENCES

[1] G. Kendall and G. Whitwell, “An Evolutionary Approach for the
Training of a Chess Evaluation Function using Population Dynamics,”
in Proceedings of the IEEE Congress on Evolutionary Computation,
2001, pp. 995–1002.

[2] D. Fogel, T. Hays, S. Hahn, and J. Quan, “An Evolutionary Self-
Learning Chess Program,” in Proceedings of the IEEE, 2004, pp.
1947–1954.

[3] N. Richards, D. Moriarty, and P. McQueston, “Evolving Neural
Networks to Play Go,” in Proceedings of the Seventh International
Conference on Genetic Algorithms, 1998.

[4] A. Lubberts and R. Miikkulainen, “Co-Evolving a Go-Playing Neural
Network,” in in: Coevolution: Turnnig Adaptive Algorithms upon
Themselves, 2001, pp. 14–19.

[5] K. Chellapilla and D. Fogel, “Evolving Neural Networks to Play
Checkers without Expert Knowledge,” IEEE Transactions on Neural
Networks, vol. 10, no. 6, pp. 1382–1391, 1999.

[6] D. Fogel, Blondie24: Playing at the Edge of AI. Academic Press,
2002.

[7] D. Moriarty and R. Miikkulainen, “Discovering Complex Othello
Strategies through Evolutionary Neural Networks,” Connection Sci-
ence, vol. 7, no. 3-4, pp. 195–209.

[8] N. Franken and A. Engelbrecht, “Particle Swarm Optimization Ap-
proaches to Coevolve Strategies for the Iterated Prisoner’s Dilemma,”
IEEE Transactions on Evolutionary Computation, vol. 9, no. 6, pp.
562–579, 2005.

[9] J. Davis and G. Kendall, “An Investigation, using Co-Evolution, to
Evolve an Awari Player,” in Proceedings of the IEEE Congress on
Evolutionary Computation, 2002, pp. 1408–1413.

[10] W.-C. Oon and Y.-J. Lim, “An Investigation on Piece Differential
Information in Co-Evolution on Games using Kalah,” in Proceedings
of the IEEE Congress on Evolutionary Computation, 2003, pp. 1632–
1638.

[11] L. Messerschmidt and A. Engelbrecht, “Learning to play games using
a pso-based competitive learning approach,” IEEE Transactions On
Evolutionary Computation, vol. 8, no. 3, pp. 280–288, June 2004.

[12] H. Donkers, H. van den Herik, and J. Uiterwijk, “Opponent-
model search in bao: Conditions for a successful application,”
http://www.cs.unimaas.nl/ donkers/pdf/acg10.pdf.

[13] A. J. de Voogt, “Limits of the mind. towards a characterization of bao
mastership,” Ph.D. dissertation, Rijksuniversiteit Leiden, Leiden, The
Netherlands, 1995.

[14] T. Yoshioka, S. Ishii, and M. Ito, “Strategy Acquisition for the Game
Othello based on Reinforcement Learnnig,” IEICE Transactions on
Information and Systems, vol. E82-D, no. 12, pp. 1618–1626, 1999.

[15] M. Daoud, N. Kharma, A. Haidar, and J.Popoola, “Ayo, the awari
player, or how better representation trumps deeper search,” in Pro-
ceedings of IEEE Congress on Evolutionary Computation, 2004, pp.
1001–1006.

[16] J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” in Pro-
ceedings of the IEEE International Conference on Neural Networks,
vol. IV, 1995, pp. 1942–1948.

[17] A. Engelbrecht, Fundamentals of Computational Swarm Intelligence.
Wiley & Sons, 2005.

[18] F. van den Bergh, “An Analysis of Particle Swarm Optimizers,” Ph.D.
dissertation, Department of Computer Science, University of Pretoria,
Pretoria, South Africa, 2002.

[19] B. Al-kazemi and C. Mohan, “Training feedforward neural networks
with multi-phase particle swarm optimization,” in Proceedings of the
9th International Conference on Neural Information Processing, 2002.

[20] R. Eberhart and Y. Shi, “Evolving artificial neural networks,” in
Proceedings of the International Conference on Neural Networks and
Brain, 1998, pp. PL5–PL13.

[21] A. Engelbrecht and I. Ismail, “Training product unit neural networks,”
Stability and Control: Theory and Applications, vol. 2, no. 1-2, pp.
59–74, 1999.

[22] J. Kennedy, R. Eberhart, and Y. Shi, Swarm Intelligence. Morgan
Kauffmann, 2001.

[23] C. Franken and A. Engelbrehct, “Evolving intelligent game-playing
agents,” South African Computer Journal, vol. 32, pp. 44–49, 2004.

[24] M. Clerc and J. Kennedy, “The particle swarm-explosion, stability, and
convergence in multidimensional complex space,” IEEE Transactions
on Evolutionary Computation, vol. 6, no. 1, pp. 58–73, 2002.

1-4244-0464-9/06/$20.00 2006 IEEE. 74 CIG'06 (May 22-24 2006)

Towards the Co-Evolution of Influence Map Tree Based Strategy

Game Players

Chris Miles
Evolutionary Computing Systems Lab

Dept. of Computer Science and Engineering
University of Nevada, Reno

miles@cse.unr.edu

Sushil J. Louis
Evolutionary Computing Systems Lab

Dept. of Computer Science and Engineering
University of Nevada, Reno

sushil@cse.unr.edu

Abstract— We investigate the use of genetic algorithms to play
real-time computer strategy games. To overcome the knowledge
acquisition bottleneck found in using traditional expert systems,
scripts, or decision trees we use genetic algorithms to evolve
game players. The spatial decision makers in our game players
use influence maps as a basic building block from which they
construct and evolve trees containing complex game playing
strategies. Information from influence map trees is combined
with that from an A* pathfinder, and used by another genetic
algorithm to solve the allocation problems present within many
game decisions. As a first step towards evolving strategic players
we develop this system in the context of a tactical game. Results
show the co-evolution of coordinated attacking and defending
strategies superior to their hand-coded counterparts.

Fig. 1. Earth 2160 - Reality Pump Studios

I. INTRODUCTION

Gaming and entertainment drive research in graphics, mod-
eling and many other computer fields. Although AI research
has in the past been interested in games like checkers and
chess, popular computer games like Starcraft and Counter-
Strike are very different and have not received much attention
from researchers [1], [2], [3], [4], [5]. These games are
situated in a virtual world, involve both long-term and reactive
planning, and provide an immersive, fun experience. At the
same time, we can pose many training, planning, and scientific
problems as games where player decisions determine the final
solution.

Developers of computer players (game AI) for these games
tend to utilize finite state machines, rule-based systems, or
other such knowledge intensive approaches. To develop truly
competitive opponents these computer players often cheat,
changing the nature of the game in their favor, in order to
defeat their human opponents [6]. These approaches work
well - at least until a human player learns their habits and
weaknesses - but require significant player and developer
resources to create and tune to play competently. Development
of game AI therefore suffers from the knowledge acquisition
bottleneck well known to AI researchers.

By using evolutionary techniques to create game players
we aim to overcome these bottlenecks and produce players
that can learn and adapt. The games we are interested in are
Real Time Strategy (RTS) games. These are games such as
Starcraft, Dawn of War, Supreme Ruler, Earth 2160 (Figure 1),
or Age of Empires [7], [8], [9], [10], [11]. Players are given
cities, armies, buildings, and abstract resources - money, gold,
saltpeter. They play by both allocating these resources, to
produce more units and buildings, and by assigning objectives
and commands to their units. Units carry out player orders
automatically, and the game is usually resolved with the
destruction of other players’ assets.

Games are fundamentally about making decisions and ex-
ercising skills. In contrast to some game genres, RTS games
concentrate player involvement primarily around making de-
cisions, the alternative being a game such as a racing game
which requires a high degree of skill. While varying greatly
in content and play, RTS games share common foundational
decisions. Most of these decisions can be categorized as
either resource allocation problems: how much money to
invest on improving my economy, which troops to field, or
what technological enhancements to research; or as spatial
reasoning problems: which parts of the world should I try
to control, how should I assault this defensive installation, or
how do I outmaneuver my opponent in this battle.

”A good game is a series of interesting decisions.
The decisions must be both frequent and meaning-
ful.” - Sid Meier

Our goal is to evolve systems to play RTS games, making
both resource allocation and spatial reasoning decisions Previ-
ous work has used genetic algorithms to make allocation deci-

1-4244-0464-9/06/$20.00 2006 IEEE. 75 CIG'06 (May 22-24 2006)

sions within RTS games, and has evolved influence map trees
to make spatial reasoning decisions within RTS games [12],
[13]. In this paper, our players combine these two systems,
using genetic algorithms for allocation decisions and influence
map trees for spatial reasoning. The spatial decision making
system looks at the game world and decides to build a base
here, to put a wall up there, and to send a feigning attack over
there. An A* pathfinder looks at the feasibility of reaching
those objectives, noting that putting up a wall there would be
great if there wasn’t an enemy army in the way [14]. The
allocation system allocates available resources to objectives,
deciding that this unit group has the weaponry and is in
position to lay siege to the city. These systems combine into
a game player, which is capable of carrying out coordinated
strategies.

RTS games have, by design, a non-linear search space of po-
tential strategies, with players making interesting and complex
decisions which often have difficult to predict consequences
later in the game. Using genetic algorithms we aim to explore
this unknown and non-linear search space.

We represent our game playing strategies within the individ-
uals of a genetic algorithms’ population. The game theoretic
meaning for strategy is used here - a system which can
choose an action in response to any situation [15]. We then
develop a fitness function which evaluates these decision
makers based upon their in-game performance. A genetic
algorithm then evolves increasingly effective players against
whatever opponents are available. Due to the number of games
and evaluations required to reach competent play, we first
use hand-coded automated opponents for this phase of the
research. Co-evolution is the natural extension of playing
against hand-coded opponents, whereby we evolve players
against each other, with the goal of increasing game playing
competence and strategic complexity.

In this paper we develop and test our architecture within
the context of a 3D computer RTS game. Our architecture
ties together a spatial reasoning system based on influence
map trees, with a genetic algorithm performing allocations.
Encoded as individuals of a genetic algorithms population,
these players evolve their game-playing abilities. Results show
this is effective, with players evolving coordinated game-
playing strategies. We describe the spatial decision making
system, and how it ties into the path-finding and genetic
algorithm allocation systems. We then detail the game within
which we test the system, evolving players first against static
hand-coded opponents and later against another population
of co-evolving players. Results present an analysis of the
system’s performance, including the behaviors produced by
evolution. Finally we discuss directions for the continuation
of this research.

II. REPRESENTATION - GAME PLAYER

Each individual in the population represents a game-playing
strategy. RTS games are primarily about making spatial rea-
soning and resource allocation decisions. We first use a com-
bination of influence maps to do spatial reasoning, and later

use genetic algorithms to solve the allocation problems. An
objective zoner converts the influence maps into objectives
for player units to carry out. Each objective is a task to be
carried out at some point in space: attack here, defend this, or
move here. Meta-data is attached to each objective, describing
what kinds of units would be best allocated. For example
a ”siege enemy city” objective requests long range artillery,
while a feigning attack objective requests fast and disposable
troops. A genetic algorithm then allocates unit groups to
these objectives, using the information available to solve the
underlying allocation problems. An A* pathfinder determines
the spatial costs involved in these allocations: objectives that
are far away are more costly, as are objectives which require
traversing dangerous territory. The final allocation takes into
account how beneficial each objective is perceived to be,
how well the unit composition of the groups match the units
requested by the objective, and how readily those unit groups
can reach those objectives. The overall architecture is shown in
Figure 2. Our game players represent their spatial reasoning
strategy within influence maps, we describe these influence
maps in the next section.

Fig. 2. Game Player Architecture

A. Influence Maps

An influence map (IM) is a grid placed over the world,
which has values assigned to each square based on some
function representing a spatial feature or concept. Influence
maps evolved out of work done on spatial reasoning within
the game of Go and have been used sporadically since then
in games such as Age of Empires [16], [11]. Influence maps
combine together to form spatial decision making strategies.
The IM function could be a summation of the natural resources
present in that square, the distance to the closest enemy, or
the number of friendly units in the vicinity. Figure 3 is a
visualization of an influence map, with the triangles in the
game world increasing the values of squares within some
radius of their location.

We create and combine Several IMs to form our spatial deci-
sion making system. For example create two influence maps,
the first using an IM function which produces high values
near vulnerable enemies, the second IM function producing
high negative values near powerful enemies. Then combine
those two influence maps via a weighted sum. High valued

1-4244-0464-9/06/$20.00 2006 IEEE. 76 CIG'06 (May 22-24 2006)

Fig. 3. An Influence Map

points in the IM resulting from the summation, are good places
to attack - places where you can strike vulnerable enemies
while avoiding powerful ones. The next step is to analyze
the resultant IM and translate it into orders which can be
assigned to units. We are looking for multiple points to assign
to multiple unit groups, so we use the system described in
Section V.

The set of IM functions and their parameters can be applied
to produce answers for any situation, encapsulating a decision
making strategy. Each IM conveys simple concepts: near,
away, hide, attack; which combine together to form compli-
cated behavior - hide near neutral units until your enemy is
nearby then attack. A collection of influence maps, in the form
of a tree as described in Sectionr̃efsection:IMTrees, represents
a complete game-playing strategy, and in our work is encoded
with the individuals of a genetic algorithms population. Each
individual encodes which IMs to use, their parameters, and
information on how to combine those influence maps - com-
pactly representing a large variety of potential strategies. Pre-
vious work presented the idea of using a neural network which
took every square from every IM as an input, and produced
the squares of the final IM as output[17]. Our system has an
advantage in its flexibility to evolve both the influence maps
and their combinations, and since the combination operators
are simple arithmetic operators instead of a black-box neural
network, the system is more transparent and therefor easier to
analyze.

B. Influence Map Combinations

We contain IMs within a tree structure instead of the
traditional list [16]. Each tree represents a complete decision
making strategy, and is encoded within an individual in a
genetic algorithm. Influence map trees are a generalization of
the traditional method of using a weighted sum on a list of
influence maps [16]. Leaf nodes in the tree are regular IMs,
using functions to generate their values based on the game-
state. Branch nodes perform operations upon their children’s
values in order to create their own values. These operations

include simple arithmetic operators: combining their children’s
values in a weighted sum or multiplication to form new values.
These nodes can also perform processing upon the values
of a single child, smoothing or normalizing their values to
produce their own. Many game AI developers use specialized
post-processing methods to manipulate and customize their
influence maps. For example, Age of Empires uses multi-
pass smoothing on influence maps to determine locations on
which to construct buildings. By allowing nodes in our tree
to perform such processing methods, a single IMTree can
concisely represent the variety of influence map based game-
playing strategies hand-coded within many other game AI
systems.

IMTrees were designed to contain all the important infor-
mation about influence maps within one structure in a way
that could be straightforwardly encoded. Each individual in
the population encodes an IMTree, including 1) the structure
of the tree, 2) which IM functions to apply at each node,
3) which parameters to use in those functions, and 4) any
processing to be done. With crossover and mutation operators
we can then evolve towards more effective spatial decision
making strategies. This is in many ways similar to genetic
programming as it involves the evolution of a tree structure,
but taken in the context of spatial reasoning. Next, we explore
the effectiveness of this representation in the context of a naval
combat game - Lagoon.

III. THE GAME - LAGOON

We developed Lagoon, a Real-Time 3D naval combat sim-
ulation game. Figure 4 shows a screen-shot from the bridge of
one destroyer which is about to collide with another destroyer.
The world is accurately modeled, and the game can be played
from either the helm of a single boat or as a real-time
strategy game with players commanding fleets of boats. The
complexities of the physics model are particularly demanding
on the players, as the largest boats take several minutes to
come to a stop. To deal with these and other complexities,
Lagoon has a hierarchical AI system which distributes the
work. At the top level sits the strategic planning system being
developed by our group, this system allocates resources and
assigns objectives to the various groups of boats. Behavior
networks then carry out those orders for each individual
boat, following proper naval procedure within the complexities
and constraints of the physics model. They then relay their
desired speeds and headings to a helmsman controller, which
manipulates the various actuators and effectors on the boats -
rudders and rpm settings to the engines.

A. The Mission

To test our players we created the mission shown in Fig-
ure 5. Two small cigarette boats - triangles at top, attempt to
attack an oil platform - pentagon, which is being guarded by
a destroyer - hexagon. The cigarette boats are fast, maneuver-
able, and equipped with rocket propelled grenade launchers.
Their primary advantage over the defending destroyer is that
there are two of them and that they can quickly accelerate,

1-4244-0464-9/06/$20.00 2006 IEEE. 77 CIG'06 (May 22-24 2006)

Fig. 4. Lagoon

decelerate and turn. The destroyer on the other hand is also
quite fast, with a higher top speed than the attacking cigarette
boats, but it takes a significant period of time to change speeds
or turn. The six-inch gun on the destroyer has been disabled
for this mission, requiring it to rely upon machine gun banks
mounted on its sides. While the cigarette boats have slightly
more range, the destroyer has far more firepower.

This mission was chosen as it was relatively simple, and
requires the players to understand the effectiveness of their
units, with the possibility of evolving coordinated attacks. We
also chose this mission because we could develop hand-coded
players for both sides easily. In many ways this is more of a
tactical than a strategic mission in that there are few boats on
each side, and no ”complex long term” decisions to make such
as where to place a base. We think of this mission as an initial
test of our ability to evolve effective spatial decision making
strategies. Future work would be tested on missions involving
large numbers of boats and more complex interactions.

Fig. 5. Mission

IV. PLAYER IMPLEMENTATION

Both sides of the game have a player controlling them, with
each player having its own influence map tree and allocation
GA. The players do continuous processing throughout the
game, calculating a small amount of an influence map, or
running another evaluation in the allocation GA at each slice
of time. In this way the players do complex calculations
without consuming too much processing power. Currently it
takes between 10-20 seconds for each player to complete a
processing cycle, at which point new objectives are assigned
to player units. We next describe our implementation of the
various player components, starting with the influence maps
and their combination into a tree.

A. Influence Map Tree Implementation

The IMs calculate the value of their squares with IM
functions based on which units are near those squares as
shown in Figure 3. Units in the world add various circles
of influence to each IM - increasing the values assigned to
all squares around those units. The IM function must first
determine which units it considers relevant, this is based on
a parameter which we encode in the GA. It can be either
friendly units, neutral units, or enemy units. The next issue,
and GA parameter, is how large of a circle to use, with the
IM either using the weapons radius of the unit the circle is
around, or a large fixed radius. Next, the IM determines how
much to increment values within the circle. Each unit has
an abstract power or strength rating associated with it, which
gives a general idea how powerful that unit is in combat. The
IM can either use this strength rating, or it can use the value of
that unit. The next issue is how to distribute values within the
circle. In Figure 3 we increased the value of each square within
a circle by one, regardless of its distance to the unit the circle
is centered around. The IM function can also distribute values
with a bias towards the center, so points near the center get the
maximum value and as you move towards the perimeter you
get fewer points. There is an also an inverse distribution, giving
maximum points at the perimeter and zero points in the center.
All of these options to the IM function are parameterized, and
encoded within individuals in the genetic algorithm. To allow
fine tuning of each IM, two coefficient parameters are also
encoded. The first directly scales the radius of the circle used
for each unit - this is bound within (0,4]. The second directly
scales the values given to squares within the circle - bound
within [-10,10].

Branch nodes in the IMTree can be any of the four basic
arithmetic operators - addition, subtraction, multiplication, and
division. There is also an ”OR” branch node which takes the
largest values from its children at each point. The OR node
generally functions as the root of the tree, choosing between
the various courses of actions contained within its children.
With these nodes we then constructed players for both sides,
tuning and testing them over a few games.

1-4244-0464-9/06/$20.00 2006 IEEE. 78 CIG'06 (May 22-24 2006)

V. OBJECTIVE ZONER

Processing the influence map produced by the influence
map tree into objectives is the job of the objective zoner. An
objective is a task for a unit group to carry out at some point
in space. The objective zoner should reduce the influence map
to a set of objectives representing its most important points,
including all the distinct peaks in the landscape without being
redundant. In Figure 2 the IMTree produces as output the
objective IM, from which the objectives are parsed. The zoner
in response picks three key points, the two peaks on the left,
and one of the points from the plateau on the right. The zoner
determines the first two points correspond to attack actions,
because the influence map which produced them was linked
to that behavior, while the third point and its corresponding
IM was linked to a move behavior. This gives three objectives,
attack those two points, or move to this point and distract the
enemy.

Our objective zoner uses a simple algorithm to create the
objectives. It finds the highest point in the influence map that
is not to close to an already chosen objective, and takes it
as an objective. It then repeats the process, until no eligible
points are left. Points are ineligible if their value is less then
some ratio of the highest point, 1/2 in this case. They are
also ineligible if they are too close to a previously assigned
objective. Currently all objectives carry a generic attack-move
behavior, where they move directly to the target point firing
at enemies that come within range.

VI. A* PATHFINDER

Once the objectives have been calculated, an A* router
determines how accessible they are. A* looks at the unit
groups available to the player, searching for how easily they
can reach each objective. The allocation genetic algorithm
uses this information to prioritize more accessible objectives
and keep units from being allocated to objectives they cannot
reach.

We used a traditional A* pathfinder to do path-finding,
A* is shown to always produce the optimal path through a
graph so long as it has a proper underestimate, which we
have. Our pathfinder searches through squares in an influence
map to find the optimal path from one point to another.
The A* influence map is separate from the players influence
map tree, with each square representing how preferable it is
to route through. It has high negative values near powerful
enemies, and more positive numbers in open water. Because
the A* router uses an influence map, the search space could
be arbitrarily complicated, routing units so that they try to stay
close to neutral units, or as far from land as possible.

VII. ALLOCATION GA

AllocGA, a genetic algorithm, allocates units to objectives.
AllocGA is a non-generational GA which uses single point
crossover, bitwise mutation and roulette wheel selection. It
determines its resources currently available, and maps them
to appropriate objectives taking into account the information
provided by the other systems. Each individual in AllocGA’s

population encodes an allocation table, listing which objective
each unit is assigned too. The fitness for each individual is a
summation of the benefit expected from allocating each unit
group to its objective. The benefit for allocating a group to an
objective is given by: 1) the expected benefit from the objective
2) how well that groups units match the units requested for
the objective 3) how easily the unit group can reach that
objective. The expected benefit for an objective is the value
from its location in the influence map. How well units match
those requested is based upon the composition of the group,
and the meta-data assigned to those objectives as discussed
in SectionVII-.1. The penalties for risk incurred, and travel
distance is the total cost associated with the route from unit
to objective found by the A* pathfinder. Attacking an enemy
city might yield tremendous benefit, but not for a group of
units without the appropriate weaponry, or for units occupied
on the far side of the map.

1) Objective Meta-Data: To determine which units to allo-
cate to which objectives we attach meta-data describing what
kind of units would be useful to each objective. We use three
coefficients, representing the power, speed, and value of the
units allocated. To each unit we associate three abstract values,
a power rating summarizing how effective it is in combat, a
speed rating summarizing how fast and maneuverable it is, and
a value rating representing its cost. Each is an abstract hand
set value summarizing the complex workings of the entity, the
destroyer’s has a high power rating, the cigarette boats have
high speed ratings, and the oil-platform has a high value rating.
AllocGA calculates benefit based how the units allocated
to an objective match up with the coefficients attached to
the objective. If an objective has a high power coefficient,
then allocating powerful units increases the fitness of that
allocation. Conversely if an objective has a negative value
coefficient, then allocating expensive units reduces the fitness.
Each unit’s attributes are multiplied by the corresponding
coefficient, and the summation is applied to the fitness of that
allocation. By changing these values an influence map can
declare itself as suited for fast cheap units, powerful expensive
ones, or weak valuable units (maybe a hide in the rear IM).
Each objective can also have a unit cap, beyond which no
benefit is received for adding units, so that distracting with 10
units is not more beneficial than using 1.

VIII. HAND-CODED PLAYERS

To test this system we first develop hand-coded players for
both sides, tuning their behavior over a few games to test how
well the players work. Our hand-coded attacker work by using
an OR node on two child subtrees. The first subtree represents
an attack behavior which takes the weighted sum of two nodes.
The first node has high values near vulnerable enemies, the
second has large negative values near powerful enemies. This
gives points near vulnerable enemies, but away from powerful
ones The second subtree represents a distract behavior where
the cigarette boat tries to stay just out of range of the destroyer,
baiting it into following it and in the process abandoning the
oil platform. The distract child node has two children of its

1-4244-0464-9/06/$20.00 2006 IEEE. 79 CIG'06 (May 22-24 2006)

own, the first representing a ring of points just outside the
destroyers range, and the second with high values away from
the oil platform To generate the ring of points outside the
destroyers range it sums two influence maps - one with radius
equal to the destroyers weapon range but with negative points
and one with a slightly larger radius and positive points. This
gives a ring of positive points just outside of weapons range.
The second child of the distract behavior represents points
away from the oil platform, and by multiplying this with the
ring outside of weapons range we get points just outside of the
destroyers weapons range that are away from the oil-platform.

The defender counters this with a similar tree, once again
using an OR node on two subtrees. The first behavior puts
the destroyer in-between any attackers and the oil platform, it
works by multiplying high values near valuable friendly units
with high values near powerful enemies. The second behavior
keeps the destroyer near the oil platform in the direction facing
the attackers if it has nothing else to do, it is a multiplication
of high values in close proximity to the oil platform, with
high values in a very large are around the attacker. Both of
these hand-coded IM trees worked reasonably well, with the
attackers trying to out-maneuver the defender as it patrols
around the oil-platform.

We found our hand-coded attackers showed a reasonable
level of coordination, with one boat distracting while the
other attacked. The defender was effective, staying near the
oil platform until the cigarette boats approached. If they
approached it would try to chase them off, firing if they got
too close. The attackers behavior was quirky however, and
not particularly well rounded. If the defender did not take
the attackers bait it could often catch them by surprise and
destroy them. The attackers were also not very efficient with
their firepower, not taking full advantage of their weapons
long reload time. Evolved attackers often switched places,
with one distracting for the other while it reloaded. The
attackers also had a hard time getting from one side of the
destroyer to the other, often entering its field of fire and being
destroyed. The defender was often fooled by the attackers as
well, lured well away from the oil-platform it was trying to
protect. To improve upon both of these behaviors we turned to
evolutionary techniques, allowing the GA to evolve IMTrees
for controlling units in our game.

IX. EVOLVING PLAYERS

We evolved our players with a non-generational genetic
algorithm (PlayerGA) with roulette wheel selection, one point
crossover and bitwise mutation. The influence map trees used
by the players are encoded within individuals of PlayerGA.
Crossover took place with 75% probability, and the bitwise
mutation probability was chosen to give on average 2 bit
mutations per child. At this initial phase we were not evolving
the structure of the tree, purely the parameters and coefficients
for each IM. PlayerGA uses the same structure as our hand-
coded attackers and defenders. More complicated missions and
strategies would likely require a more complex tree, but we
found this structure to be sufficient for our desired behavior.

A. Encoding

The GA packs all the parameters for each IM in the IMTree
into a bit-string, with fixed point binary integer encoding for
the enumerations and fixed point binary fraction encoding for
the real valued parameters and coefficients.

B. Evaluation and Fitness

To evaluate each individual we play them against an oppo-
nent and examine the results of the match. Fitness is calculated
as fitness = damagedone− damagereceived at the end of
the game, which makes it a zero-sum two player game.

X. RESULTS

Our hand-coded attacker had a basic attack-distract behav-
ior, with one cigarette boat trying to distract and occupy the
destroyer while the other went for the oil-platform. Our basic
defender spent most of its effort chasing after the attackers,
hoping to cut them off and broadside them with its machine
guns. Our hand-coded attackers were reasonably effective -
winning most of the missions, but often making mistakes. The
attackers would easily occupy the destroyer while it chased
them, but if it switched who it was chasing they would often
try to cut across its field of fire. To improve this we first
evolved an attacker against our hand-coded defender. This
gave better behavior, with the evolved attackers being more
flexible and reliable. We then evolved the defender, with
the defender becoming a bit more robust in how it would
deal with two attackers, not getting lured as easily away
from the oil platform. Finally we evolve the two populations
simultaneously, seeing more types of behaviors from both
players, before ultimately producing two well rounded players.

A. Results: Evolving the Attacker

The GA first evolved our attacker, evaluating 1000 indi-
viduals against our hand-coded defender. While we ran the
system multiple times, we will discuss a single representative
run which illustrates the results we consistently achieved. The
attackers eventually discover a reasonably good attack-avoid
strategy, staying well away from the destroyer while trying to
get close to the oil platform. Over the following evaluations
this evolves into an attack-distract strategy, where the attacks
split their time occupying the destroyer and attacking the
oil-platform. Unlike our hand-coded attacker they were not
reluctant to switch roles, with one boat distracting for several
seconds then going back to the oil platform. This allows
them to attack the platform, and spend their long reloading
time distracting the destroyer, limiting the amount of shots
they fired on the destroyer - who is more heavily armored.
They were also much more cautious about approaching the
destroyer, going well out of their way to avoid it. This avoiding
the problem of our hand-coded attacker, whereby it would
occasionally skim the destroyers firing range, taking heavy
fire. The evolved attacker proved frustrating to play against
as an opponent, as it was very chaotic in its actions. While
psychologically effective it did make mistakes, but overall it
represented a significant improvement from our hand-coded
attacker.

1-4244-0464-9/06/$20.00 2006 IEEE. 80 CIG'06 (May 22-24 2006)

Fig. 6. Behavior Exhibited by Evolved Attacker

B. Results: Evolving the Defender

The evolved attackers were effective against the hand-coded
defender, coordinating an effective attack-distract strategy. We
next re-ran the genetic algorithm to evolve the defender to
see if it could find a counter to the attackers strategy. The
attack distract behavior capitalizes well on the advantage
given to the attackers, making it difficult for the destroyer
to effectively defend. The defenders evolved did surpass the
quality of our own hand-coded defenders however, learning
how to trick the attackers into making mistakes. Figure 7
shows an exceptional defense, where the defender pushes
both attackers back by manipulating their constant switches in
roles. While the evolved attacker and evolved defender were
effective, particularly against each other, they made obvious
mistakes against human opponents. To improve our players
further we utilized co-evolution, aiming to generate ever more
robust players.

Fig. 7. Behavior Exhibited by Evolved Defender

C. Co-Evolution

Co-evolution occurs when the evaluation of an individ-
ual is dependent upon other individuals. We implemented
co-evolution with a traditional two population model, with
one population containing attacking strategies, and the other
containing defending strategies. We evaluated individuals by
playing them against un-evaluated individuals in the other
population, with fitness calculated as before. The goal being
an ”arms race” whereby each side is constantly innovating new
strategies in order to better their opponent.

D. Results: Co-evolving Attackers and Defenders

To implement co-evolution we run two genetic algorithms
- one evolving attackers, and one evolving defenders. We
play unevaluated members from each population against each
other, and calculate fitness as before. As before we allowed
each GA to evaluate 1000 candidate strategies. Figure 8
shows the minimum, maximum, and average fitness in the two
populations over time. At first there is chaos, with both players
using random strategies. Effective attackers and defenders start
to emerge however, with the attacker learning to go for the oil
platform and the defender learning to go for the attackers.
The attackers suffer for a few hundred generations, trying to
learn an attack-distract or an attack-avoid behavior. Eventually
those start to emerge, and their fitness rises dramatically. This
leads to improvements in the defenders AI, learning not to
be lured away from the oil platform, and to keep its speed
up. Ultimately they develop the behaviors shown in Figure 9
- the attacker develops a well rounded attack-distract-avoid
behavior, and the defender develops a diligent defensive be-
havior. The attackers spends less time distracting than before,
preferring to stay on the opposite side of the oil-platform and
fight. One boat will occasionally lure the defender away, and
then return while the defender turns around. The attackers
also tend to stay far away, generally opposite sides as shown
in Figure 9, which makes them much more flexible than if
they bunch up. The defenders behavior was very protective,
generally staying very close to the oil-platform. It was difficult
to lure off, and did a good job of overcoming its slow turning
rate by staying in good positions.. Both attacker and defender
learned generalized behaviors, similar to those we had tried to
develop in our hand-coded behaviors. The co-evolved players
were superior to the hand-coded players, with the attackers
clearly out-maneuvering the destroyer, and the defender doing
its best to defend the oil-platform. Co-evolution gave them the
robustness necessary to play against human opponents.

XI. CONCLUSIONS AND FUTURE WORK

Co-evolved influence map trees were capable of produc-
ing competent behavior inside our RTS game. While our
mission was relatively simple, and the IMTrees were used
more as operational controllers than as strategic planners,
the IMTrees functioned adequately. By combining influence
maps with genetic algorithms we produced behavior that
was much more coordinated than in either of the previous
systems. The attackers learned how to effectively work as a

1-4244-0464-9/06/$20.00 2006 IEEE. 81 CIG'06 (May 22-24 2006)

Fig. 8. Min/Max/Avg Fitness’s of Attacker / Defender Co-evolving

Fig. 9. Final Co-Evolved Players

team, taking advantage of their unit’s abilities to overcome
a more powerful defender. This is in contrast to previous
work, where the attackers functioned independently and were
defeated by the defender [12]. The final behaviors were robust
and effective, both against other evolved players and against
human opponents. Our results indicate that co-evolving IM
Trees is a promising technique, with the potential to evolve
strategic players who learn to use complex strategies to win
long-term games.

The other avenue of future work is that of increasing the
complexity present in the mission and the game. An element
of stealth has been added to the game, where attackers can
hide behind neutral boats in order to approach and hide
undetected. Neutral traffic is also being used, requiring the
destroyer to maneuver around, and not fire upon, neutral
boats while trying to defend a moving ally. Combined with
stealth this greatly complicates the games for both players.
Evolution of the structure of the tree is also a major step
under development, allowing strategies to evolve increasing

levels of complexity over time, without a steep initial learning
curve. Future work would expand our implementation of co-
evolution, utilizing a hall-of-fame system or a maintaining a
sub-sampled population of opponents to test against. Fitness
sharing, or some other form of speciation would also be good,
protecting and encouraging more complicated strategies to
develop. These techniques were developed for improving the
performance of co-evolution, and would likely lead to faster
more consistent improvement [18]. Pareto co-evolution would
also provide similar improvements, helping to develop and
maintain different attacking and defending strategies within
the population [19].

XII. ACKNOWLEDGMENTS

This material is based upon work supported by the Office
of Naval Research under contract number N00014-03-1-0104.

REFERENCES

[1] P. J. Angeline and J. B. Pollack, “Competitive environments evolve better
solutions for complex tasks,” in Proceedings of the 5th International
Conference on Genetic Algorithms (GA-93), 1993, pp. 264–270.
[Online]. Available: citeseer.ist.psu.edu/angeline93competitive.html

[2] D. B. Fogel, Blondie24: Playing at the Edge of AI. Morgan Kauffman,
2001.

[3] A. L. Samuel, “Some studies in machine learning using the game of
checkers,” IBM Journal of Research and Development, vol. 3, pp. 210–
229, 1959.

[4] J. B. Pollack, A. D. Blair, and M. Land, “Coevolution of a backgammon
player,” in Artificial Life V: Proc. of the Fifth Int. Workshop on
the Synthesis and Simulation of Living Systems, C. G. Langton and
K. Shimohara, Eds. Cambridge, MA: The MIT Press, 1997, pp. 92–98.

[5] G. Tesauro, “Temporal difference learning and td-gammon,” Communi-
cations of the ACM, vol. 38, no. 3, 1995.

[6] J. E. Laird and M. van Lent, “Human-level ai’s killer
application: Interactive computer games,” 2000. [Online]. Available:
http://ai.eecs.umich.edu/people/laird/papers/AAAI-00.pdf

[7] R. E. Inc., “Dawn of war,” 2005, http://www.dawnofwargame.com.
[8] B. Studios., “Supreme ruler 2010,” 2005.
[9] R. Pump., “Earth 2160,” 2005.

[10] Blizzard, “Starcraft,” 1998, www.blizzard.com/starcraft. [Online].
Available: www.blizzard.com/starcraft

[11] E. Studios, “Age of empires 3,” 2005, www.ageofempires3.com.
[Online]. Available: www.ageofempires3.com

[12] C. Miles and S. J. Louis, “Co-evolving real-time strategy game playing
influence map trees with genetic algorithms,” in Proceedings of the
International Congress on Evolutionary Computation, Portland, Oregon.
IEEE Press, 2006, pp. 0–999 999 999 999.

[13] S. J. Louis, C. Miles, N. Cole, and J. McDonnell, “Learning to play
like a human: Case injected genetic algorithms for strategic computer
gaming,” in Proceedings of the second Workshop on Military and
Security Applications of Evolutionary Computation, 2005, pp. 6–12.

[14] B. Stout, “The basics of a* for path planning,” in Game Programming
Gems. Charles River media, 2000, pp. 254–262.

[15] R. Gibbons, Game Theory for Applied Economists. Princeton University
Press, 1992.

[16] A. L. Zobrist, “A model of visual organization for the game of go,” in
AFIPS Conf. Proc., 1969, pp. 34, 103–112.

[17] P. Sweetser, “Strategic decision-making with neural networks and influ-
ence maps,” AI Game Programming Wisdom 2, pp. 439–446, 2001.

[18] C. D. Rosin and R. K. Belew, “Methods for competitive co-evolution:
Finding opponents worth beating,” in Proceedings of the Sixth Inter-
national Conference on Genetic Algorithms, L. Eshelman, Ed. San
Francisco, CA: Morgan Kaufmann, 1995, pp. 373–380.

[19] A. Bucci and J. Pollack, “A mathematical framework for the study of
coevolution,” in Foundations of Genetic Algorithms 7. Proceedings of
FOGA VII, 2002.

1-4244-0464-9/06/$20.00 2006 IEEE. 82 CIG'06 (May 22-24 2006)

AbstractThis work discusses the use of evolutionary
computation for an automated player of a real-time strategic
tactics game in which assets are assigned to targets and threats
belonging to the opposing team. Strategy games such as this are
essentially a series of asset allocation problems to which
evolutionary algorithms are particularly adept. This game
contains a significant coupling affect between the assets
assigned to targets and those assigned to threats. The effort
considers targets and threats in a non-spatiotemporal
framework to evaluate the proposed approach. In addition, the
architecture that supports the implemented evolutionary
search algorithm is also discussed.

I. INTRODUCTION
HIS work explores the use of an evolutionary search
algorithm as the core of an automated player of strategic
tactical games in which two players attempt to defend

their own assets while accomplishing objectives of
destruction against the other. This class of games can be
viewed essentially as a series of generalized asset allocation
problems. These allocation problems often contain
complicated spatial and temporal constraints affected by
such things as target placement, time windows, fuel, and
geographic features. Further complexity is introduced by the
existence of coupling effects between a player’s assets.

If your paper is intended for a conference, please contact
your conference editor concerning acceptable word
processor formats for your particular conference.

 Our research focuses on an automated player for the blue
team in a tactical air strike game similar to the one presented
in [1]-[3] and maps to a range of asset allocation problems
found throughout the military and industry. The objective of
the game for the blue team is to inflict predefined levels of
destruction to a dynamically changing set of targets
belonging to the red team while preserving the health of its
own strike aircraft. For the red team, the objective is to

Manuscript received January 31, 2006. This work was supported as an

Internal Applied Research project for SPAWAR Systems Center – San
Diego.

A. J. Rice is with SPAWAR Systems Center – San Diego, San Diego,
CA 92152-5001 USA (phone: 619-553-9597; fax: 619-553-9483; e-mail:
aaron.rice@navy.mil).

J. R. McDonnell is with SPAWAR Systems Center – San Diego, San
Diego, CA 92152-5001 USA (phone: 619-553-5762; fax: 619-553-9483; e-
mail: john.mcdonnell@navy.mil).

A. Spydell was with G2 Software Systems, Encinitas, CA 92024 USA
(e-mail: aspydell@g2ss.com).

S. Stremler is with G2 Software Systems, Encinitas, CA 92024 USA (e-
mail: stremler@g2ss.com).

protect valuable assets (targets) while inflicting as much
destruction as possible to the blue force aircraft.

 To accomplish their objectives the blue team assigns
weapons, with varying effectiveness against different
structure types, to enemy targets. Each target has a
predefined priority value, and the most important targets
should be hit over targets with a lower priority value. Each
red target may be protected by one or more air defense sites
(hereafter referred to simply as threats), each of which has
its own destruction capabilities against the various types of
blue force aircraft. To protect its strike aircraft, the blue
player allocates Suppression of Enemy Air Defense (SEAD)
assets to threats of concern in the area of an attack. These
SEAD assets have distinct levels of effectiveness for
suppressing different types of threats. This introduces the
coupling affect, shown in Fig. 1, where the effectiveness of
the SEAD assets has a direct influence on the risk level of
the attack aircraft. This risk level is based upon an aircraft’s
exposure to the threat systems. This assignment problem
represents unique challenges because of the coupling effect.
The temporal component increases the problem complexity
due to the need for SEAD assets to maintain suppression of
enemy threats over time windows to allow the Attack assets
to effectively prosecute the desired target set and is not
addressed in the context of this effort.

The red team seeks to accomplish its objectives by
changing the layout of its targets and threats. Certain targets
and threats can be moved whereas others are stationary. The
red team may have threats and targets that are hidden or not
present when the game starts. Strategic introduction of these
entities is key to the red team’s success. Changing the layout
of red team assets creates the need for the blue team to
retask its assets in order to adapt to the changes and maintain
objectives.

 Previous efforts on strike force asset allocation have

A Player for Tactical Air Strike Games Using Evolutionary
Computation

Aaron J. Rice, John R. McDonnell, Andy Spydell and Stewart Stremler

T

Strike
Assets

SEAD
Assets

Targets

Threats

Fig. 1. The Coupling effect between strike and SEAD assets caused
by threats that protect prosecuted targets.

1-4244-0464-9/06/$20.00 2006 IEEE. 83 CIG'06 (May 22-24 2006)

focused primarily on target assignment and effectiveness
models for static pre-mission planning [4]-[8]. This work
considers dynamic retasking, and extends previous research
by incorporating both persistence of the original plan and
aircraft risk and modifying the effectiveness component to
accommodate overkill and underkill relative to the desired
effect. The risk component is readily incorporated via an
attrition matrix as well as a SEAD effectiveness matrix. The
attrition matrix approach serves as a placeholder for a kill-
chain analysis module that more accurately quantifies risk to
each blue force entity. This effort considers targets and
threats in a non-spatiotemporal framework to evaluate the
proposed approach.

II. TECHNICAL APPROACH

A. Formulation
An allocation consists of a particular assignment of

assets, from attack and SEAD missions, to known targets
and threats. A weapon may be assigned to at most one target
or threat, but a target or threat may be prosecuted/suppressed
by multiple assets. An allocation is represented as an
assignment matrix X, where X = [η, ω]. The matrix η gives
the assignment of attack weapons to targets, and ω is an
assignment matrix for SEAD assets to threat systems.

The allocation of assets to targets/threats is formulated as
a problem where the objective is to find an assignment
matrix X where overall utility, J(X), is maximized. The
utility function J(X) combines three functions: Je(X) for the
level to which targeting objectives are satisfied, Jr(X) for
risk to the attack aircraft, and Jp(X) for persistence of the
original mission plan. This utility function is formulated as

},..,2,1{i 1

},..,2,1{i 1

],[
1

},,{ 10 :
)()()()(:

1j

1j

M

m

X

aatosubject
XJXJXJXJMaximize

N

ij

n

ij

pre

∈∀≤

∈∀≤

=
=++

∈∀≤≤

++=

∑

∑

=

=

ω

η

ωη
γβα

γβα

γβα

 (1)

where α, β, and γ are specified importance values. As
mandated by the first and second constraints, these
importance values are percentages, and are used to weight
the three elements of the fitness score. The size of the attack
weapon assignment matrix is m weapons by n targets.
Similarly, there are M SEAD assets and N threats
represented in the assignment matrix ω. The fourth and fifth
constraints state that a single weapon/asset can be assigned
to at most one target/threat. There is no constraint on the
number of weapons/assets assigned to a single target/threat.
It should also be noted that the weapons/assets from a single
aircraft may be assigned to different targets/threats, and that
weapons/assets of different types may be used against the
same target/threat.

1) Weapon Effectiveness: The weapon effectiveness
component of the objective function is based upon desired
level of destruction against each target. These desired kill
levels are captured in the original plan for previously
planned targets, and are explicitly specified for unplanned or
modified targets. This baseline allows the extent of under-
kill, over-kill, or acceptable-kill for each target to be
determined. The kill levels are then used to generate an
effectiveness score for each target.

The kill level for a target j is determined by comparing the
actual probability of destruction (Pj

da) from all weapons
assigned to the target, to the user’s intended probability of
destruction (Pj

du). The Pj
da for all weapons assigned to target

j is determined by

∏
=

−−=
m

i
ij

da
ij

da
j PP

1

)1(1 η (2)

where m is the number of attack weapons, Pij
da is the

probability of destruction of weapon i against target j
ranging from zero to one inclusive, and ηij is an indicator
variable which has a value of one if weapon i is assigned to
target j, and zero otherwise. The function used to assign an
effectiveness value to each target j is decomposed into
underkill, overkill, and desired-kill regions as given by the
effectiveness function

.
1,

),(,
),(,

+<
−<

=
otherwise

PPoPP
PPuPP

e du
j

da
j

da
j

du
j

du
j

da
j

du
j

da
j

j ε
ε

 (3)

This function is depicted graphically in Fig. 2.

The effectiveness values for each target are combined
using weights based on target priorities to yield an
effectiveness score for the entire allocation

∑∑
==

=
n

i i

n

i
i

i
e eJ

11

11
ρρ

 (4)

where n is the number of targets and ρi is the priority of
target i. Target priorities are assigned prior to game play and
define the relative importance of each target to the blue
team’s objectives. Every priority is greater than zero, and a

Fig. 2. Weapon effectiveness mapping for all weapons assigned to a
target. Note that underkill is much less desirable than overkill.

1-4244-0464-9/06/$20.00 2006 IEEE. 84 CIG'06 (May 22-24 2006)

more important target has a higher rank as designated by a
lower integer value.

2) Risk: The current notion of risk implemented in this
work pertains only to the risk presented by the enemy threats
(i.e. weapon systems). The risk component is base-lined
against a predefined risk threshold. The risk to each attack
mission is calculated in order to determine whether and by
how much the threshold is exceeded. This threshold should
be based on the proficiency of the blue aircraft and the pilots
flying them.

In order to ascertain the risk to an attack mission, the level
of suppression Ps to each threat inflicted by the SEAD assets
assigned to that threat must be determined. The Ps against a
threat k (Pk

s) from all assigned SEAD assets is calculated as

∏
=

−−=
M

i
ik

s
ik

s
k PP

1

)1(1 ω (5)

where M is the number of SEAD assets, Pik
s is the

probability that asset i will fully suppress threat k ranging
from zero to one inclusive, and ωik is an indicator variable
which has a value of one if SEAD asset i is assigned to
threat k, and zero otherwise. Recall that a SEAD asset may
be assigned to at most one threat.

The risk to an individual attack mission is currently
defined as the overall risk generated by exposure to the
threats that protect the target set to which that mission is
assigned. More specifically, this risk is computed as the
maximum risk incurred in pursuit of any of the mission’s
assigned targets.

The risk impinged on a mission i from prosecuting target j
is computed as the Hamacher Sum (defined in [9])

xy
xyyx

−
−+

1
2

 (6)

of the risk rijk to mission i in pursuit of target j from each
threat k. The value rijk is calculated as

jkij
s

kikijk Pr υστ)1(−= (7)

where τik is the risk to mission i from threat k, σij is an
assignment variable which has a value of one if mission i is
assigned to target j and zero otherwise, and υjk has a value of
one if target j is protected by threat k, and zero otherwise. It
should be noted that τik is currently the maximum risk from
threat k to any of the aircraft in mission i. This risk ranges
from zero to one inclusive.

Since high risk against an individual mission is worse
than low risk across missions, each mission’s risk is
compared to the risk threshold before combining it with
other mission risks. Mission risk that is below the risk
threshold receives a value of zero, and excessive risk is
assigned a value using a monotonically increasing function.
The assignment of this risk value is depicted in Fig. 3.

The risk values for all attack missions in an allocation are
aggregated using the Hamacher Sum. Because the overall
objective function is to be maximized but risk should be
minimized, this aggregation is subtracted from one to give a
risk score where higher values are better.

3) Persistence: The purpose of the persistence component

of the objective function is to minimize disruption to the
existing mission plan and is hence not used for original pre-
mission planning. Directing a pilot to deviate from planned
mission operations inherently affects the probability of
mission success adversely. Mission success is also
endangered when the target/threat set to which a mission is
assigned is enlarged. This is especially true when disparate
targets or threats are added to the set.

Pilot persistence is the lack of changes to the original
mission plan that require a pilot to deviate from planned
operations. Pilot persistence is maintained by minimizing the
number of changes involving previously assigned assets.
This number of changes (cp) can be quantified as

prpap ccc += (8)

∑∑
= =

−=
m

i

n

j

new
ij

old
ij

pac
1 1

)0,max(ηη (9)

∑∑
= =

−=
M

i

N

j

new
ij

old
ij

prc
1 1

)0,max(ωω (10)

where ηold is the assignment matrix η for the original plan,
ηnew is η for the current allocation, ωold is the assignment
matrix ω for the original plan, ωnew is ω for the current
allocation, N is the number of threats, and all other variables
are defined previously.

The term mission persistence as used here refers to the
degree to which the target/threat sets assigned to the
missions in the plan remain unchanged. In order to maintain
mission persistence, the number of targets/threats added to
each mission’s assigned set is minimized. The change (cm) in
terms of mission persistence is formally defined as

mrmam ccc += (11)

()∑∑
= =

−=
q

i

n

j

old
ij

new
ij

mac
1 1

0,max σσ (12)

()∑∑
= =

−=
q

i

N

j

old
ij

new
ij

mrc
1 1

0,max ϕϕ (13)

where q is the number of missions. The variables σij
old and

Fig. 3. Risk mapping for a mission based upon a user defined
acceptable threshold level

1-4244-0464-9/06/$20.00 2006 IEEE. 85 CIG'06 (May 22-24 2006)

σij
new are assignment variables for the original and current

allocations respectively which have the value of one if
mission i is assigned to target j and zero otherwise.
Similarly, φij

old and φij
new are assignment variables for the

original and current allocations respectively which have the
value of one if mission i is assigned to threat j and zero
otherwise.

The overall number of changes is obtained by combining
cp and cm. This number is then normalized and subtracted
from one to give a persistence score. Note that persistence
should be maximized and that change is the inverse of
persistence.

mp

mp

p cc
ccJ

maxmax

1
+
+

−= (14)

B. Evolutionary Search
With this formulation, our blue team game player uses an

Evolutionary Search Algorithm (ESA) to find a satisficing
allocation option. The algorithm starts with a population of
random individuals. An individual consists of an allocation
coupled with a fitness value. During each generation a
number of evolutionary operations are applied, in a specified
order, to evolve a successor population from the current
population. Throughout all the generations in a single run of
the algorithm, the best solution is retained. This solution is
then used as our game player’s next move.

The first evolutionary operation executed copies all of the
individuals from the current population to the new
population. This operation is elite preserving because the
most fit solutions have no chance of being excluded from
the new population.

The next three operations are used to fill the new
population to twice the size of the current population. A
deterministic selection mechanism is used, in which each
individual is selected in turn from the current population.
With equal probability, either the mutate, the swap, or the
invert operation is executed on the individual to produce a
new allocation. Each resulting individual is placed into the
successor population.

The mutate operation modifies the allocation from the
individual it receives to create a new individual. A defined
number of weapons/assets are chosen at random. Then the
assignment of each chosen weapon/asset is randomly given
another valid assignment.

The swap operation chooses either two attack weapons or
two SEAD assets at random from the allocation contained
by the individual it receives. The assignments of the chosen
weapons/assets are interchanged to create a new valid
allocation.

The invert operation starts by randomly selecting a
segment of either the attack portion or the SEAD portion of
the allocation (the size of this segment is random). The
assignments in that segment are then inverted by exchanging
the first and last assignments, the second and second to last
assignments and so on.

Finally, the cull operation is executed. This operation
modifies the new population by removing the least fit one
half of its individuals. This operation promotes survival of
the fittest and prevents unfit members of the population from
propagating to successive generations.

C. Implementation
Our game player is implemented in Java and utilizes an

evolutionary search algorithm. This implementation consists
of several basic abstractions which support the evolutionary
search model: the chromosome, individual, population,
evaluator, evolver, reporter, and terminus. A control flow
diagram showing the interactions of these elements is given
in Fig. 4.

The chromosome abstraction allows for any
representation. It is used as a marker simply to define a type
without placing constraints on an implementation. This
generality allows for a high degree of flexibility as bit-array
and integer-array chromosomes have been used. The only
strong coupling within the architecture is between the
chromosome, evaluator and evolver.

The individual is a wrapper containing the chromosome
and an associated fitness score. A fitness score is established
by applying an evaluator instance to the individual. The
individual is a concrete implementation but can be
subclassed to provide extended functionality. Individuals are
comparable amongst themselves (based on fitness) thus
providing an ordering.

The population maintains a collection of individuals and
an associated generation index. The population also provides
basic information about its individuals as a whole (e.g.
maximum, minimum, and average scores). As with the
individual, the population is a concrete implementation but
can be subclassed to provide extended functionality.

The reporter allows for reporting to be performed on a
given population. We have provided an abstraction layer
that allows populations and individuals to be formatted in an
implementation specific manner within the basic reporter.
Typically we use a reporter that gives statistics (e.g.
maximum, minimum, and average score) for data analysis,
or a null reporter that does nothing (for efficiency).

Evaluator
<<Abstration>>

Reporter
<<Abstration>>

Evolver
<<Abstration>>

Predator
<<Abstration>>

Terminus
<<Abstration>>

 Optional

Fig. 4. Visualization of the evolutionary search algorithm’s run loop.

1-4244-0464-9/06/$20.00 2006 IEEE. 86 CIG'06 (May 22-24 2006)

The terminus abstraction allows flexibility in the way the
termination criterion is implemented. This criterion could be
as simple as a generational count, or could be a test based
upon some convergence criteria.

The evaluator determines the fitness of individuals in a
population. Because the evaluator is not concrete, any
evaluation scheme can be utilized.

The evolver implementation provides a means of creating
a successive generation from a given population. The
evolver is instantiated with a defined set of selectors (i.e.
evolutionary operations) and for each population applies
each selector in turn. This allows great flexibility and
expressiveness since the basic system is not coupled to any
particular set of genetic operations.

Because culling requires fitness values for all individuals
in the population, this process must happen before new
individuals are introduced. The optional predator abstraction
is provided to allow a population to be culled after
evaluation, but before termination is considered or reporting
is done.

III. RESULTS
A set of five problems has been generated to investigate

the viability of the proposed evolutionary optimization
approach for a blue team game player. Each problem is a
game simulation complete with effectiveness, attrition, and
all other auxiliary data. The flow of each game simulation is
very similar and shown generally in Fig. 5 where red team
events are shown as plain text, and blue team events are
shown as bold text.

The tests were conducted after the red team introduces
new threat(s) to protect the target it previously introduced.
The algorithm generates modified mission plans to
accommodate the introduced target and threat(s) and each
test intentionally contains only a single optimal solution.
Because the algorithm was originally intended for dynamic
mission replanning, validation of the original mission plans
generated by the algorithm is left for future work.

The first simulation is very small and has a solution space
of only 66+32. The original plan consists of three missions.
Mission 1 and mission 3 contain four and two attack aircraft
respectively with each aircraft carrying a single weapon.
Mission 2 contains two support aircraft with one SEAD
asset each. Every weapon/asset is assigned to a target/threat
in the original mission plans with mission 2 defending
mission 1. Not all of the attack weapons are the same type,
and the two SEAD assets are unique.

The second simulation consists of six targets each
protected by a single threat. The size of this problem is
86+86. Each target and threat has a unique type. Six attack
missions (numbered 1 through 6) are planned, each of which
contains a single aircraft with one attack weapon. Mission 7
and mission 8 are support missions consisting of three
aircraft each with one SEAD asset per aircraft. Each
weapon/asset is unique and very effective against the type of
target/threat to which it was originally assigned, and rather
ineffective against all others.

In the third simulation, there is the same number of
missions, aircraft and weapons/assets as in the previous
scenario, but only four targets. Again each target is
protected by a single threat and the type of each target and
threat is unique. Every weapon/asset is originally assigned.
Some of the targets and threats require more than one
weapon or asset to obtain intended results. The solution
space for this test is 66+66.

The fourth simulation builds upon simulation two by
duplicating the weapons in missions 1, 2, 3, and 7 leaving
them unassigned. The size of this problem is 810+87.

Finally, simulation five is the same as the second
simulation except that two threats are introduced instead of
one to protect the previously introduced target. This means
that to prosecute the pop-up target, two SEAD assets will be
required leaving some mission unprotected.

Each test was run 500 times on a Pentium III processor
running some form of MS Windows. A population size of
500 was used for each test with the weighting coefficients
set according to (effectiveness) α = 0.4, (risk) β = 0.4, and
(persistence) γ = 0.2. The results of each test are shown in
Table I.

TABLE I
TEST RESULTS

Generations Required Test #
Min Max Mean

Times
Optimum

Found

%

1 43 182 71.57 489 97.8%

2 234 482 386.8 500 100%

3 68 180 126.3 500 100%

4 227 470 352.6 500 100%

5 208 422 301.0 127 25.3%

The algorithm does very well against simulations 1-4.
Although simulation 5 is somewhat more complicated, the
results for it are somewhat concerning at first look. The
other 373 runs of simulation 5 yielded the second best
answer. The difference in the scores of the best and second
best solutions is 61%. This convergence on a local optimum
is currently being investigated. The algorithm converges
rather quickly for small problems with the time to
convergence increasing with problem size as would be
expected. The convergence properties for each algorithm are

Fig. 5. Game simulation time-line.

1-4244-0464-9/06/$20.00 2006 IEEE. 87 CIG'06 (May 22-24 2006)

shown in Fig. 6 through Fig. 10.

IV. CONCLUSIONS
Evolutionary computation is well suited to the type of

problems encountered in games like the one discussed here.
Although our automated game player only considers the
non-spatiotemporal aspects of the problems it solves, it is
able to find satisficing solutions on the order of seconds.

This work provides a technology basis, a first step
towards a complete automated player for real-time strategic
tactics games. Future work will consider the spatiotemporal
aspects of game presented herein. This work will consider
geography and time components such as target time
windows, tanking, and routes. The complex choreography
involved with providing SEAD support when and where it is
needed will also be addressed.

ACKNOWLEDGMENT
The authors would like to thank Dr. Sushil Louis for his

support of this work.

Fig. 10. The worst, average and best fitness scores at each generation
for simulation 5.

Fig. 9. The worst, average and best fitness scores at each generation
for simulation 4.

Fig. 8. The worst, average and best fitness scores at each generation
for simulation 3.

Fig. 7. The worst, average and best fitness scores at each generation
for simulation 2.

Fig. 6. The worst, average and best fitness scores at each generation
for simulation 1.

1-4244-0464-9/06/$20.00 2006 IEEE. 88 CIG'06 (May 22-24 2006)

REFERENCES
[1] S. Louis and C. Miles, “Combining case-based memory with genetic

algorithm search for competent game AI,” in Proc. 2005 Workshop on
CBR in Games, 2005.

[2] S. Louis, C. Miles, N. Cole, and J. McDonnell, “Learning to play like
a human: Case injected genetic algorithms for strategic computer
gaming,” in Proc. 2nd Workshop on Military and Security
Applications of Evolutionary Computation, Seattle, WA, 2005.

[3] C. Miles and S. Louis, “Case-injection improves response time for a
real-time strategy game,” in Proc. 2005 IEEE Symposium on
Computational Intelligence in Game, New York, 2005.

[4] B. Griggs, G. Parnell, and L. Lehmkuhl, “An air mission planning
algorithm using decision analysis and mixed integer programming,”
Operations Research, vol. 45, no. 5, pp. 662-676, 1997.

[5] V. C. Li, G. L. Curry, and E. A. Boyd, “Towards the real time solution
of strike force asset allocation problems,” Computers & Operations
Research, vol. 31, no. 2, pp. 273-291, 2004.

[6] P. Abrahams, et al., “Maap: the military aircraft allocation planner,” in
Proc. IEEE World Congress on Computational Intelligence, pp. 336-
341, 1998.

[7] J. McDonnell, N. Gizzi, and S. Louis, “Strike force asset allocation
using genetic search,” in Proc. International Conference on Artificial
Intelligence, Las Vegas, NV, 2002

[8] S. Louis, J. McDonnell, and N. Gizzi, “Dynamic strike force asset
allocation using genetic algorithms and case-based reasoning,” in
Proc. 6th Conference on Systemics, Cybernetics, and Informatics,
Orlando, FL, pp. 855-861, 2002.

[9] L. F. Sugianto, “Optimal decision making with imprecise data,”
International Journal of Fuzzy Systems, vol. 3, no. 4, pp. 569-576,
2001.

1-4244-0464-9/06/$20.00 2006 IEEE. 89 CIG'06 (May 22-24 2006)

Exploiting Sensor Symmetries in Example-based Training
for Intelligent Agents

Bobby D. Bryant
Department of Computer Sciences
The University of Texas at Austin

bdbryant@cs.utexas.edu

Risto Miikkulainen
Department of Computer Sciences
The University of Texas at Austin

risto@cs.utexas.edu

Abstract— Intelligent agents in games and simulators often
operate in environments subject to symmetric transformations
that produce new but equally legitimate environments, such as
reflections or rotations of maps. That fact suggests two hypotheses
of interest for machine-learning approaches to creating intelligent
agents for use in such environments. First, that exploiting
symmetric transformations can broaden the range of experience
made available to the agents during training, and thus result in
improved performance at the task for which they are trained.
Second, that exploiting symmetric transformations during train-
ing can make the agents’ response to environments not seen
during training measurably more consistent. In this paper the
two hypotheses are evaluated experimentally by exploiting sensor
symmetries and potential symmetries of the environment while
training intelligent agents for a strategy game. The experiments
reveal that when a corpus of human-generated training examples
is supplemented with artificial examples generated by means of
reflections and rotations, improvement is obtained in both task
performance and consistency of behavior.

Keywords: Agents, Multi-Agent Systems, Adaptive Team
of Agents, Games, Simulators,Legion II, Sensors, Symmetries,
Human-generated Examples

I. I NTRODUCTION

Intelligent agents in games and simulators often operate in
geometric environments subject to reflections and rotations.
For example, a two dimensional map can be reflected across an
explorer agent or rotated about it, providing new and different
but still reasonable maps. Similarly, the visible universe can
be reflected or rotated on any of the three axes of a robotic
construction worker in deep space. A well trained general
purpose agent for deployment in such environments should
be able to operate equally well in a given environment and
its symmetric transformations. In general it is desirable for
intelligent agents to exhibit symmetrical behavior as well. That
is, if the optimal action in a given environment is to move to
the left, then the optimal action in a mirror image of that
environment would be to move to the right.

Symmetry of behavior is desirable for two reasons. First, if
a correct or optimal move can be defined for a given context,
failing to choose the symmetrical move in the symmetrical
context will be sub-optimal behavior, and will degrade an
agent’s overall performance if it ever encounters such a
context. Second, if the agent operates in an environment ob-
servable by humans, such as a game or a simulator, the humans
will expect to see “visibly intelligent” behavior, i.e., they will
expect the agent to always do the right thing because it is
smart, rather than intermittently doing the right thing because

it has been programmed or trained to manage only certain
cases.

If an agent’s controller operates by mapping sensory inputs
onto behavioral responses, the desired symmetries can be
identified by analyzing the structure of the agent and its
sensors. For example, if the agent and its sensors are both
bilaterally symmetrical then it will be desirable for the agent’s
responses to be bilaterally symmetrical as well. However, if
they are not symmetrical – e.g. for a construction robot with a
grip on one side and a tool on the other – then its optimal
behavior is asymmetrical. Thus the desirable symmetry of
behavior depends critically on the symmetry of the agent and
its sensors.

When an agent’s controller is directly programmed it is a
straightforward task to ensure that its behavior observes the
desired symmetries. However, when a controller is trained
by machine learning there is no guarantee that it will learn
symmetrical behavior. Therefore it will be useful to devise
machine learning methods that encourage behavioral invariants
across relevant symmetries in agents trained by those methods.

This paper reports initial results on solving the symmetry
challenge with supervised learning. A controller is trained for
agents that operate in an environment that supports multiple
symmetries of reflection and rotation. Human-generated ex-
amples of appropriate contextual behavior are used for the
training, and artificial examples are generated from the human
examples to expose the learner to symmetrical contexts and
the appropriate symmetrical moves. This training mechanism
addresses both of the motivations for symmetrical behavioral
invariants, i.e. it improves the agents’ task performance and
also provides measurable improvements in the symmetry of
their behavior with respect to their environment, even in
environments not seen during training.

The learning environment and the structure of the agents’
sensors and controller are described in the following section,
then the training methodology and experimental results are
explained in section III. The experimental results are discussed
in section IV, along with a look at future directions for the
research.

II. T HE LEARNING ENVIRONMENT

The use of artificial examples generated by exploiting
symmetries was tested in a game/simulator calledLegion II,
which is a slight modification of theLegion I game described
in [1]. Legion II is a discrete-state strategy game designed

1-4244-0464-9/06/$20.00 2006 IEEE. 90 CIG'06 (May 22-24 2006)

as a test bed for multi-agent learning problems, with legions
controlled by artificial neural networks acting as the intelligent
agents in the game.

A. The Legion II game/simulator

The Legion II game/simulator is played on a map that
represents a province of the Roman empire, complete with
several cities and a handful of legions for its garrison (figure
1). Gameplay requires the legions to minimize the pillage
inflicted on the province by a steady stream of randomly
appearing barbarian warbands. The barbarians collect a small
amount of pillage each turn they spend in the open countryside,
but a great deal each turn they spend in one of the cities.

Fig. 1. The Legion II game. A large hexagonal playing area is tiled with
smaller hexagons in order to quantize the positions of the game objects.
Legions are shown iconically as close pairs of men ranked behind large
rectangular shields, and barbarians as individuals bearing an axe and a smaller
round shield. Each icon represents a large body of men, i.e. a legion or a
warband. Cities are shown in white, with any occupant superimposed. All
non-city hexes are farmland, shown with a mottled pattern. The game is a
test bed for multi-agent learning methods, whereby the legions must learn
to contest possession of the playing area with the barbarians. (An animation
of the Legion II game can be viewed athttp://nn.cs.utexas.edu/
keyword?ATA .)

The game is parameterized to provide enough legions to
garrison all the cities and have a few left over, which can
be used to disperse any warbands they find prowling the
countryside. The original purpose of this parameterization was
to require the legions to learn an on-line division of labor
between garrisoning the cities and patrolling the countryside,
in a multi-agent cooperative architecture called anAdaptive
Team of Agents[1]. The game is used here to test the use of
training examples generated from symmetries, because it is a
challenging learning task that offers multiple symmetries in
its environment.

The Legion II map is in the shape of a large hexagon,
divided into small hexagonal cells to discretize the placement
of game objects such as legions and cities (figure 1). Moves

are taken in sequential turns. During a turn each legion makes
a move, and then each barbarian makes a move. All moves
are atomic, i.e. during a game agent’s move it can either elect
to remain stationary for that turn or else move into one of the
six hexagons of the map tiling adjacent to its current position.

Only one agent, whether legion or barbarian, can occupy
any map cell at a time. A legion can bump off a barbarian by
moving into its cell as if it were a chess piece; the barbarian is
then removed from play. Barbarians cannot bump off legions:
they can only hurt the legions by running up the pillage score.
Neither legions nor barbarians can move into a cell occupied
by one of their own kind, nor can they move off the edge of
the map.

A game is started with the legions and cities placed at
random positions on the map; the combinatorics allow a vast
number of distinct game setups. The barbarians enter play
at random unoccupied locations, one per turn. If the roving
legions do not eliminate them they will accumulate over time
until the map is almost entirely filled with barbarians, costing
the province a fortune in goods lost to pillage.

Fig. 2. A legion’s sensor fields.A legion’s sensor array divides the world into
six symmetrical “pie slices”, centered on the legion itself (black lines). The
objectsi falling within a slice are detected as the scalar aggregate

P
i 1/di,

whered is the hexagonal Manhattan distance to the object (white arrow). For
any given sensory input the symmetries in the sensor architecture allow a set
of six 60◦ rotations about the legion, plus a reflection of each rotation, for
a total of twelve isomorphic sensory views of the world. If a legion makes
the optimal move in all circumstances, then a reflection and/or rotation of
its sensory inputs produces a corresponding reflection and/or rotation in its
choice of moves. This behavioral invariant allows artificial training examples
to be constructed from reflections and rotations of human-generated training
examples.

Play continues for 200 turns, with the losses to pillage
accumulated from turn to turn. At the end of the game the
legions’ score is the amount of pillage lost to the barbarians,
rescaled to the range[0, 100] so that the worst possible score
is 100. Lower scores are better for the legions, because they
represent less pillage. The learning methods described in this
paper allow the legions to learn behaviors that reduce the score

1-4244-0464-9/06/$20.00 2006 IEEE. 91 CIG'06 (May 22-24 2006)

http://nn.cs.utexas.edu/keyword?ATA
http://nn.cs.utexas.edu/keyword?ATA

to around 6 when tested on a random game setup never seen
during training (i.e. to reduce pillage to about 6% of what the
province would suffer if they had sat idle for the entire game).

The barbarians are programmed to follow a simple strategy
of approaching cities and fleeing legions, with a slight prefer-
ence for the approaching. The are not very bright, which suits
the needs of the game and perhaps approximates the behavior
of barbarians keen on pillage.

B. Agent sensors and controllers

The legions must be trained to acquire appropriate behav-
iors. They are provided with sensors that divide the map up
into six pie slices centered on their own location (figure 2).
All the relevant objectsi in a pie slice are sensed as a single
scalar value, calculated as

∑
i 1/di. This design provides only

a fuzzy, alias-prone sense of what is in each sector of the
legion’s field of view, but it works well as a threat/opportunity
indicator: a few barbarians nearby will be seen as a sensory
signal similar to what would be seen of a large group of
barbarians further away.

NE E NWSE SW W NE E NWSE SW WX

Sense Adjacent Sense DistantLocal
Sense

Sensor Array

Fig. 3. A legion’s sensor architecture.Each sensor array for a legion consists
of three sub-arrays as shown here. A single-element sub-array (left) detects
objects colocated in the map cell that the legion occupies. Two six-element
sub-arrays detect objects in the six radial fields of view; one only detects
adjacent objects, and the other only detects objects farther away. The legions
are equipped with three complete sensor arrays with this structure, one each
for detecting cities, barbarians, and other legions. The three 13-element arrays
are concatenated to serve as a 39-element input layer for an artificial neural
network that controls the legion’s behavior (figure 4). Artificial reflections
and rotations of a legion’s view of the world can be generated on demand
by appropriate permutations of the activation values of the sensors in the
sub-arrays.

There is a separate sensor array for each type of object in
play: cities, barbarians, and other legions. There are additional
sensors in each array to provide more detail about what is in
the map cells adjacent to the sensing legion, or colocated in
the legion’s own cell (figure 3). In practice only a city can
be in the legion’s own cell, but for simplicity the same sensor
architecture is used for all three object types.

The scalar sensor values, 39 in all, are fed into a feed-
forward neural network with a single hidden layer of ten
neurons and an output layer of seven neurons (figure 4). The
output neurons are associated with the seven possible actions a
legion can take in its turn: remain stationary, or move into one
of the six adjacent map cells. This localistaction unit coding
is decoded by selecting the action associated with the output
neuron that has the highest activation level after the sensor
signals have been propagated through the network.

The Legion II sensor architecture allows reflections and
rotations of the world about a legion’s egocentric viewpoint.
The transformations can be represented by permutations of the
values in the sensors. For example, a north-south reflection

X NE E SE SW W NW

Hidden
Layer
Neurons

Key:

Neuron

Scalar

S
ig

na
l P

ro
pa

ga
tio

n

Output
Neurons

Controller Outputs

Sensor Inputs (39 elements)
...

Fig. 4. A legion’s controller network. During play the values obtained by a
legion’s sensors are propagated through an artificial neural network to create
an activation pattern at the network’s output. This pattern is then interpreted as
a choice of one of the discrete actions available to the legion. When properly
trained, the network serves as the controller for the legion as an intelligent
agent.

can be implemented by swapping the northwest (NW) sensor
values with the southwest (SW), and the NE with the SE.
Similarly, a 60◦ clockwise rotation can be implemented by
moving the sensor values for the eastern (E) sector to the
southeastern (SE) sensor, for the SE to the SW, etc., all the
way around the legion. The legions’ choices of action for a
reflected or rotated sensory input can be reflected or rotated
by the same sort of swapping. For example, a60◦ clockwise
rotation would convert the choice of a NE move to an E move.
The option to remain stationary is not affected by reflections
or rotations: if a legion correctly chooses to remain stationary
with a given sensory input, it should also remain stationary
for any reflection or rotation of that input.

III. E XPERIMENTAL EVALUATION

Experiments were designed to test two hypotheses: first, that
exploiting symmetric transformations can broaden the range of
experience made available to the agents during training, and
thus result in improved performance at their task; and second,
that exploiting symmetric transformations during training can
make the agents’ response to environments not seen during
training measurably more consistent. These hypotheses were
tested by training sets of networks with human-generated
examples, with or without supplementary examples created by
reflecting and/or rotating them, and then applying appropriate
metrics to the trained agents’ performance and behavior during
runs on a set of test games.

After a summary of the experimental methodology in sec-
tion III-A, the first hypothesis is examined in section III-B and
the second in section III-C.

A. Experimental methodology

Examples of human play were generated by providing
Legion II with a user interface and playing 12 games, with the
game engine recording the sensory input and associated choice
of action for each of the 1,000 legion moves during a game.
Each game was played from a different randomized starting
setup in order to provide a greater diversity of examples.

1-4244-0464-9/06/$20.00 2006 IEEE. 92 CIG'06 (May 22-24 2006)

In an Adaptive Team of Agents all of the agents have
identical control policies [1]. This design is implemented in
Legion II by using the same neural network to control each
legion. Such uniform control means that all the examples
recorded for the various legions during play can be pooled
into a single set for training a controller network.

Artificial examples were created by the training program at
run time, by permuting fields in the human-generated examples
according to the patterns described in section II-B above. Since
the legions inLegion II have no distinguished orientation, all
the reflections were generated by flipping the sensory input
and choice of move from north to south. When both reflections
and rotations were used, the N-S reflection was applied to each
rotation, to create a full set of twelve distinct training examples
from each original.

The four possibilities of using vs. not using reflections
and/or rotations define four sets of training examples. The
choice between these sets defines four training methods for
comparison. The four methods were used to train the standard
Legion II controller network (figure 4) with backpropagation
[2]. Training was repeated with from one to twelve games’
worth of examples for each method. Due to the relatively large
number of examples available, the learning rateη was set to
the relatively low value of 0.001. On-line backpropagation
was applied for 20,000 iterations over the training set, to
ensure that none of the networks were undertrained, and the
presentation order of the examples was reshuffled between
each iteration.

After every tenth iteration of backpropagation across the
training set the network in training was tested against a
validation set, and saved if its performance was better than at
any prior test on that set. At the end of the 20,000 iterations the
most recently saved network was returned as the output of the
training algorithm; this network provides better generalization
than the network at the end of the training run, which may
suffer from overtraining.

Validation was done by play on a set of actual games
rather than by classifying a reserved set of test examples,
so all the example moves were available for use in training.
The validation set consisted of ten games with randomly
generated setup positions and barbarian arrival points; they
were reproduced as needed by saving the internal state of a
random number generator at the start of training and restoring
it each time it was necessary to re-create the validation set.
Strict accounting on the number of random numbers consumed
during play ensured that the same validation set was created
each time.

Each differently parameterized training regime – method
× number of games’ examples used – was repeated 31
times with a different seed for the random number generator
each time, producing a set of 31 networks trained by each
parameterization. The seed controlled the randomization of the
network’s initial weights and generation of the validation set
for that run. The 31 independent runs satisfy the requirement
of a sample size of at least 30 when using parametric statistical
significance tests [3], plus one extra so that there is always a

clearly defined median performer if ever a single run needs to
be singled out as “typical” for plotting or analysis.

After training, each network was tested by play on set of 31
test games, created randomly like the validation sets, but using
a different seed to ensure independence from them. Unlike
the validation games, the same 31 test games were used to
evaluate every network. The test score for a training run was
defined as the average score its network obtained on those 31
games. Thus there were 31 independent training runs for each
parameterization, and the network produced by each training
run was tested on a constant set of 31 games. The results of
these tests are presented in the following sections.

B. Effect on performance

The first experiment illustrates the effect of adding artifi-
cially generated training examples on the performance of the
controller networks. Networks were trained by each method on
from one to twelve games’ worth of examples. As described
in section III-A, each game provided 1,000 human-generated
examples, and the reflections and rotations greatly increased
this number.

2 4 6 8 10 12

0
5

10
15

Number of Example Games

A
ve

ra
ge

 T
es

t S
co

re

Human examples only
Human + reflections
Human + rotations
Human + both

Fig. 5. Effect of generated examples on performance.Lines show the
average test score for 31 runs of each method vs. the number of example
games used for training. (Lower scores are better.) Each game provided 1,000
human-generated examples; reflections increased the number of examples to
2,000 per game, rotations to 6,000, and both together to 12,000. All three
symmetry-exploiting methods provided significant improvement over the base
method throughout the range of available examples, albeit by a diminishing
amount as more human examples were made available.

The results of the experiment, summarized in figure 5,
show that an increase in the number of example games gen-
erally improved learning when the human-generated examples
alone were used for training, although with decreasing returns
as more games were added. The three methods using the
artificially generated examples improved learning over the

1-4244-0464-9/06/$20.00 2006 IEEE. 93 CIG'06 (May 22-24 2006)

use of human examples alone, regardless of the number of
games used; each of the three provided statistically significant
improvement at the 95% confidence level everywhere. The
improvement was very substantial when only a few example
games were available, and the best performance obtained
anywhere was when both reflections and rotations were used
with only five games’ worth of examples.

Rotations alone provided almost as much improvement as
reflections and rotations together, and at only half the training
time, since it only increased the number of exmples per game
to 6,000 rather than 12,000. Thus in some circumstances
using rotations alone may be an optimal trade-off between
performance and training time. Reflections alone increased
training only to 2000 examples per game,1/3 of what rotations
alone provided, but with substantially less improvement in per-
formance when fewer than six example games were available.

It is worthwhile to understand how much of the improved
performance resulted from the increased number of training
examples provided by the reflections and rotations, vs. how
much resulted from the fact that the additional examples were
reflections and rotationsper se. A second experiment exam-
ined this distinction by normalizing the number of examples
used by each method. For example, when a single example
game was used in the first experiment, the human-example-
only method had access to 1,000 examples, but the method
using both reflections and rotations had access to 12× 1,000
examples. For this second experiment the various methods
were only allowed access to the same number of examples,
regardless of how many could be created by reflections and
rotations.

It was also necessary to control for the structural variety
of the examples. Such variety arises from the fact that each
training game is played with a different random set-up – most
importantly, with randomized locations for the cities. In some
games the cities are scattered, while in other games they are
placed near one another. This sort of variety is very beneficial
to generalization: the games in the test set may not be similar
to any of the individual games in the human-generated training
set, but agents exposed to a greater variety of set-ups during
training learn to manage previously unseen situations better.
Thus if the training example count is normalized by using the
12,000 human-generated examples from the twelve example
games, to be compared against training with the 12,000
examples generated by applying reflections and rotations to
the 1,000 human-generated examples from a single example
game, the latter method will have less structural variety in its
training examples, and its generalization will suffer.

So the second experiment controlled for both count and
structural variety by selecting examples at random, without
replacement, from the full set of 12,000 human-generated
examples available for use. When the method of using human-
generated examples alone selectedn examples at random, the
method using reflections selectedn/2 examples and doubled
the count by reflecting, the method using rotations selected
bn/6c examples and multiplied the count by six by rotating,
and the method using both reflections and rotations selected

bn/12c examples and multiplied the count by twelve by
reflecting and rotating. Since each method drew its randomly
selected examples from the full set of the 12,000 available
human-generated examples, each sampled the full structural
variety of the examples. The divisions equalized the counts,
to within rounding errors.

2 4 6 8 10 12

0
5

10
15

Number of Examples (thousands)

A
ve

ra
ge

 T
es

t S
co

re

Human examples only
Human with reflections
Human with rotations
Human with both

Fig. 6. Effect of reflections and rotations on performance.Lines show the
average test score for 31 runs of each method vs. the number of examples used
for training, when the examples used by the four methods were controlled
for count and structural variety. The tight clustering of the performance
curves shows that most of the improvements obtained by using reflections
and rotations in the the first experiment (figure 5) were the result of the
increased number of training examples they provided, rather than being the
result of the use of reflections and rotationsper se.

The results of the experiment, shown in figure 6, show
little difference in the performance of the four methods when
their training examples are controlled for count and structural
variety. Thus most of the improvements obtained in the first
experiment were the result of the increased number of training
examples generated by the reflections and rotations, rather than
by the fact that the additional examples were reflections or
rotationsper se.

C. Effect on behavioral consistency

Further experiments reveal the effect of artificially generated
examples on the detailed behavior of the legions. As described
in section I, a perfectly trained legion will show behavior that
is invariant with respect to reflections and rotations. That is, if
its sensory view of the world is reflected and/or rotated, then
its response will be reflected and/or rotated the same way.

Although legion controllers trained by machine learning
techniques are not guaranteed to provide perfect play, training
them with reflected and/or rotated examples should make them
behave more consistently with respect to reflections and rota-
tions of their sensory input. This consistency can be measured

1-4244-0464-9/06/$20.00 2006 IEEE. 94 CIG'06 (May 22-24 2006)

2 4 6 8 10 12

0
5

10
15

20

Number of Example Games

A
ve

ra
ge

 C
on

si
st

en
cy

 E
rr

or
 R

at
e

(%
)

Human examples only
Human + reflections
Human + rotations
Human + both

Fig. 7. Effect of generated examples on consistency.Lines show the
average consistency error rates for 31 runs of each method, vs. the number
of example games used for training. (Lower rates are better.) All three
symmetry-exploiting methods provided a significant improvement in consis-
tency throughout the range of available examples.

when playing against the test set by generating reflections and
rotations of the sensory patterns actually encountered during
the test games, and making a side test of how the legions
respond to those patterns. These responses are discarded after
testing, so that they have no effect on play. For each move
in a test game a count is made of how many of the twelve
possible reflections and rotations result in a move that does not
conform to the desired behavioral invariant. Each such failure
is counted as aconsistency error, and at the end of the test a
consistency error rate can be calculated.

Since the perfect move for a legion is not actually known,
the consistency errors are counted by deviation from a majority
vote. That is, for each reflection and/or rotation of a sensory
input, a move is obtained from the network and then un-
reflected and/or un-rotated to produce an “absolute” move.
The 12 absolute moves are counted as votes, and the winner
of the vote is treated as the “correct” move for the current game
state [4]. The reflections and rotations that do not produce a
move that corresponds to the same reflection or rotation of the
“correct” move are counted as consistency errors.

All of the networks produced by the performance experi-
ments described in section III-B were tested to examine the
effect of the various training regimes on behavioral consis-
tency. The results, summarized in figure 7, show that the three
methods using reflections and rotations reduce consistency
errors substantially in comparison to the base method of using
only the human-generated examples, regardless of how many
example games are used. In every case the improvements were
statistically significant at the 95% confidence level. The best

2 4 6 8 10 12

0
5

10
15

20

Number of Examples (thousands)

A
ve

ra
ge

 C
on

si
st

en
cy

 E
rr

or
 R

at
e

(%
)

Human examples only
Human with reflections
Human with rotations
Human with both

Fig. 8. Effect of reflections and rotations on consistency.Lines show the
average consistency error rates for 31 runs of each method vs. the number
of examples used for training, when the examples used by the four methods
were controlled for count and structural variety. The substantial gaps between
the lines show that much of the improvement obtained by using reflections
and rotations in the the third experiment (figure 7) were the result of the use
of reflections and rotationsper se, rather than merely being a result of the
increased number of training examples they provided.

consistency was obtained when both reflections and rotations
were used, and as with the performance experiment (figure 5),
a local minimum was obtained when relatively few training
games were used (six in this case). The consistency error rate
for this optimal method is approximately flat thereafter.

Again, it is worthwhile to understand how much of the
reduced consistency error rate resulted from the increased
number of training examples provided by the reflections and
rotations, vs. how much resulted from the fact that the addi-
tional examples were reflections and rotationsper se. Thus
the networks from the normalization experiment were also
tested for behavioral consistency. The results, shown in figure
8, show the familiar trend of improvement as the number of
training examples increases, but also show very substantial
differences between the four methods, even when their training
examples are controlled for count and structural variety. Thus
much of the improvement in the consistency error rate in the
uncontrolled experiment (figure 7) can be attributed to the fact
that the generated examples used reflections and/or rotations
per se, rather than simply resulting from the increased number
of training examples.

IV. D ISCUSSION AND FUTURE WORK

The experiments show that training intelligent agents for
games and simulators can benefit from the extra examples
artificially generated from reflections and rotations of available
human-generated examples. In accord with the hypotheses

1-4244-0464-9/06/$20.00 2006 IEEE. 95 CIG'06 (May 22-24 2006)

stated in section III, the technique results in agents that score
better in the game and behave more consistently.

The improved performance scores were shown to result
primarily from the increased number of training examples
provided by the reflections and rotations, but the improved
behavioral consistency resulted largely from the fact that those
examples were reflections and rotationsper se. In principle,
reflections and rotationsper se could improve performance
scores as well, by providing a more systematic coverage of the
input space. However, inLegion II, the base method already
provided over 80% consistency with respect to reflections and
rotations when only a single game’s examples were used for
training (figure 7). The agents quickly learned the symmetries
necessary for the situations that had the most impact on their
game scores. Further improvements in behavioral consistency
provided polish, but had no substantial impact on the scores. In
other domains the base coverage may be more idiosyncratic,
so that reflections and rotationsper se would significantly
improve performance.

The combination of both reflections and rotations provided
the best results throughout. That method provided the best per-
formance and consistency when relatively few example games
were made available for training, five and six games respec-
tively. This is a very promising result, because it suggests that
good training can be obtained without excessive human effort
at generating examples. Rapid learning from relatively few
examples will be important for training agents in a Machine
Learning Game [5], where a player trains game agents by
example at run time, and for simulations where agents must
be re-trained to adapt to changed environments, doctrines, or
opponent strategies. Future work will thus investigate whether
rapid learning from relatively few examples is seen in other
applications, and also whether a greatly increased number of
human-generated examples will ever converge to the same
optimum.

The number of examples that can be generated from sym-
metries depends critically on the sensor geometry of the agent
being trained. The number of radial sensors may vary with the
application and implementation, providing a greater or lesser
number of rotations. However, if radial sensors do not all
encompass equal arcs then rotations may not be possible at
all. For example, the agents in the NERO video game [5] also
use “pie slice” sensors, but with narrower arcs to the front
than to the rear, in order to improve their frontal resolution.
There is therefore no suitable invariant for the rotation of the
NERO agents’ sensors.

However, the NERO agents, and probably most mechanical
robots as well, have a bilateral symmetry that allows applying
the behavioral invariant for reflections across their longitudinal
axis. The results presented in this paper show that artificially
generated examples provide significant training benefits even
when only reflections are used, especially when relatively few
human-generated examples are available (figures 5 and 7).
Thus the methods examined here should prove useful even
in situations with far more restrictive symmetries than in
the Legion II game. On the other hand, agents operating in

three-dimensional environments, such as under water or in
outer space, may have a greater number of symmetries to be
exploited, offering even greater advantage for these methods.
Future work will also investigate the effect of exploiting
symmetries in boardgames with symmetrical boards, such
as Go, where an external player-agent manipulates passive
playing pieces on the board.

Supervised learning is not always the best way to train
agents for environments such asLegion II. Work in progress
shows that training with neuroevolution ([6], [7], [8], [5]),
using on-line gameplay for fitness evaluations, can produce
controller networks that perform somewhat better than those
produced by backpropagation in the experiments reported here.
However, evolutionary results can sometimes be improved
by combining evolution with supervised learning. Thus an
obvious avenue of future work is to use examples artificially
generated from sensor symmetries with methods such as
Baldwinian or Lamarckian evolution ([9], [10]) in order to
improve performance and behavioral consistency, the way
they benefited ordinary backpropagation in the experiments
reported in this paper.

V. CONCLUSIONS

Intelligent agents with sense-response controllers often have
symmetries in their sensor architecture, and it is then possible
to define behavioral invariants that would be observed across
those symmetries by perfectly trained agents. This observa-
tion suggests that symmetrical invariants of sense-response
behavior can be exploited for training the agents, making
their responses more symmetrical and effective. This paper
shows that both types of improvement are obtained in a game-
like test environment, and suggests that further attempts to
exploit sensor symmetries may provide similar benefits in
other environments and with other learning methods.

ACKNOWLEDGMENTS

This research was supported in part by the Digital Media
Collaboratory at the IC2 Institute at the University of Texas
at Austin. The images used inLegion II’s animated display
are derived from graphics supplied with the gameFreeciv,
http://www.freeciv.org/ .

REFERENCES

[1] B. D. Bryant and R. Miikkulainen, “Neuroevolution for adaptive teams,”
in Proceeedings of the 2003 Congress on Evolutionary Computation
(CEC 2003), vol. 3. Piscataway, NJ: IEEE, 2003, pp. 2194–2201.
[Online]. Available: http://nn.cs.utexas.edu/keyword?bryant:cec03

[2] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning in-
ternal representations by error propagation,” inParallel Distributed
Processing: Explorations in the Microstructure of Cognition, Volume 1:
Foundations, D. E. Rumelhart and J. L. McClelland, Eds. Cambridge,
MA: MIT Press, 1986, pp. 318–362.

[3] R. R. Pagano,Understanding Statistics in the Behavioral Sciences,
2nd ed. St. Paul, MN: West Publishing, 1986.

[4] B. D. Bryant, “Virtual bagging for an evolved agent controller,” 2006,
manuscript in preparation.

[5] K. O. Stanley, B. D. Bryant, and R. Miikkulainen, “Real-time
neuroevolution in the NERO video game,”IEEE Transactions on
Evolutionary Computation Special Issue on Evolutionary Computation
and Games, vol. 9, no. 6, pp. 653–668, 2005. [Online]. Available:
http://nn.cs.utexas.edu/keyword?stanley:ieeetec05

1-4244-0464-9/06/$20.00 2006 IEEE. 96 CIG'06 (May 22-24 2006)

http://www.freeciv.org/
http://nn.cs.utexas.edu/keyword?bryant:cec03
http://nn.cs.utexas.edu/keyword?stanley:ieeetec05

[6] J. Branke, “Evolutionary algorithms for neural network design
and training,” in Proceedings 1st Nordic Workshop on Genetic
Algorithms and Its Applications, J. T. Alander, Ed. Vaasa, Finland:
University of Vaasa Press, 1995, pp. 145 – 163. [Online]. Available:
http://citeseer.nj.nec.com/branke95evolutionary.html

[7] X. Yao, “Evolving artificial neural networks,”Proceedings of the
IEEE, vol. 87, no. 9, pp. 1423–1447, 1999. [Online]. Available:
ftp://www.cs.adfa.edu.au/pub/xin/yaoie3proconline.ps.gz

[8] F. Gomez, “Learning robust nonlinear control with neuroevolution,”
Ph.D. dissertation, Department of Computer Sciences, The University

of Texas at Austin, 2003. [Online]. Available: http://nn.cs.utexas.edu/
keyword?gomez:phd03

[9] R. K. Belew and M. Mitchell, Eds., Adaptive Individuals in
Evolving Populations: Models and Algorithms. Reading, MA:
Addison-Wesley, 1996. [Online]. Available: http://www.santafe.edu/sfi/
publications/Bookinforev/ipep.html

[10] D. Whitley, V. S. Gordon, and K. Mathias, “Lamarckian evolution,
the Baldwin effect and function optimization,” inProceedings of the
International Conference on Evolutionary Computation, Y. Davidor, H.-
P. Schwefel, and R. Maenner, Eds., vol. 866, Jerusalem, Israel, October
1994.

1-4244-0464-9/06/$20.00 2006 IEEE. 97 CIG'06 (May 22-24 2006)

http://citeseer.nj.nec.com/branke95evolutionary.html
ftp://www.cs.adfa.edu.au/pub/xin/yao_ie3proc_online.ps.gz
http://nn.cs.utexas.edu/keyword?gomez:phd03
http://nn.cs.utexas.edu/keyword?gomez:phd03
http://www.santafe.edu/sfi/publications/Bookinforev/ipep.html
http://www.santafe.edu/sfi/publications/Bookinforev/ipep.html

Using Wearable Sensors for Real-Time Recognition Tasks

in Games of Martial Arts – An Initial Experiment

Ernst A. Heinz, Kai S. Kunze, Matthias Gruber, David Bannach, Paul Lukowicz

Institute for Computer Systems and Networks (CSN)
UMIT – University of Health Systems, Medical Informatics and Technology

Hall in Tyrol, =Austria=

{ernst.heinz, kai.kunze, matthias.gruber, david.bannach, paul.lukowicz}@ umit.at, URL = http://csn.umit.at/

Abstract— Beside their stunning graphics, modern entertain-
ment systems feature ever-higher levels of immersive user-
interaction. Today, this is mostly achieved by virtual (VR) and
augmented reality (AR) setups. On top of these, we envision
to add ambient intelligence and context awareness to gaming
applications in general and games of martial arts in particular.
To this end, we conducted an initial experiment with inexpensive
body-worn gyroscopes and acceleration sensors for the Chum
Kiu motion sequence in Wing Tsun (a popular form of Kung
Fu). The resulting data confirm the feasibility of our vision.
Fine-tuned adaptations of various thresholding and pattern-
matching techniques known from the fields of computational
intelligence and signal processing should suffice to automate the
analysis and recognition of important Wing Tsun movements
in real time. Moreover, the data also seem to allow for the
possibility of automatically distinguishing between certain levels
of expertise and quality in executing the movements.

Keywords: Body-worn Sensors, Experiment, Games of
Martial Arts, Kung Fu, Motion Analysis, Movement Recog-
nition, Wearable Computing, Wing Tsun

I. INTRODUCTION

Video analysis and motion capturing are standard tools in
professional sports to monitor and improve athletic perfor-
mance by recognizing and fine-tuning the quality of move-
ment. Cutting-edge systems with high-quality sensors hardly
suffice to fulfill these professionals’ needs. Quite often,
trainers and other experts still process the recorded data by
hand. The whole setup and procedure are not only expensive
and time-consuming but also error-prone in the sense that the
effectiveness of the analysis depends on the humans doing it.
Hence, the large-scale use of similar analyses for the hobbyist
and gaming masses requires a completely different approach.
In particular, as we like to increase the immersiveness of the
user experience and interaction in video games of martial
arts where people’s real-world physical actions directly need
to directly affect their playing reality.

We envision to employ inexpensive wearable sensors to
achieve this – preferably tiny gyroscopes and accelerometers
worn by people on their bodies integrated into their clothes
and other personal accessories (e.g., watches or jewelery).
Such body-mounted sensors provide an inexpensive alterna-
tive for motion analysis while letting users move and roam
about freely, independent of any additional infrastructure.
Whether our envisioned applications will actually become
real depends on the ability of data processing algorithms to

compensate for various inaccuracies inherent in inexpensive
wearable sensor system. The inaccuracies result from the
limited resolution and sampling rate of the sensors, variations
in sensor placement, dynamic sensor displacement during
user motion, and other sources of noise (e.g., environmental
magnetic fields or temperature-related sensor drift). The
challenge in algorithmic design is to find features that are
sensitive to the relevant motion characteristics and at the
same time insensitive to the inaccuracies mentioned before.

As decribed in Section III, we conducted an initial exper-
iment capturing Wing Tsun movements with wearable gyro-
scopes and acceleration sensors to test the feasibility of our
vision. Section IV discusses and analyzes the experimental
results, proving to be very promising indeed. Based thereon,
it certainly seems worthwhile to continue in this direction
and try to automate at least some parts (if not all) of an
expert analysis for many important Wing Tsun movements.

Beside in sports and game play, martial arts from the
Far East gain ever more popularity and importance in many
other areas as well. Tai Chi, for instance, is of special
interest because clinical studies show that it helps to reduce
the probability of falling, especially for the elderly [1] and
patients with chronic conditions [2].

II. RELATED WORK

By now, many independent researchers have demonstrated
the suitability and excellent further potential of body-worn
sensors for automatic context and activity recognition, e.g.,
[3], [4], [5], [6], [7], [8], [9], [11]. The available scientific
literature reports about successful applications of such sen-
sors to various types of activities, ranging from the analysis
of simple modes of locomotion [5] to more complex tasks
of everyday life [4] and even workshop assembly [10].

There are much fewer publications, however, about using
wearable sensors in martial arts. In [12], wearable pressure
sensors integrated into body protectors help to control and de-
cide the counting of points for Taekwando. Supposedly help-
ing children with their Kung Fu education, [13] introduces
some kind of interactive computerized toy ball. Focusing on
Kung Fu, [14] presents a video capturing system for artificial
and augmented reality games of martial arts. The work
emphasizes the specific gaming aspects of the application and
suffers from the usual drawbacks of video-based approaches,

1-4244-0464-9/06/$20.00 2006 IEEE. 98 CIG'06 (May 22-24 2006)

i.e., high sensitivity for lighting conditions and demanding
requirements on equipment and infrastructure. Other video-
based capture and processing systems for augmented virtual
reality gaming and training are presented in [15] and [16].
The latter introduces a wireless virtual reality system and
some prototype Tai Chi training application on top of it.
Yet, the system features only limited usability and very
restricted degrees of freedom for the user. Moreover, it does
not evaluate full motion but just stances instead.

III. EXPERIMENTAL SETUP

Our initial Wing Tsun experiment featured the Chum
Kiu motion sequence as test action (see Section III-C) and
two different persons as test subjects (see Section III-D).
For every subject, we recorded and video-taped five distinct
performances of the motion sequence overall. The sensor data
stem from eight wearable boxes (see Section III-A) affixed
to the test subjects’ rear hip, neck, wrists, knees, and lower
legs directly above their feet (see Fig. 1 and Section III-B).

Fig. 1. Test subjects wearing the wired sensor boxes while performing
(expert on top, amateur below)

A. Hardware Details

We used the XBus Master System (XM-B) manufactured
by XSens (http://www.xsens.com/) as the global sen-
sor control. We wired the XBus master unit by physical cable
to eight boxed MT9 sensors. Each such MT9 box houses
a 3-axis accelerometer, a 3-axis gyroscope, a 2-axis mag-
netometer, and a temperature sensor. Up to now, however,

we did not use the final two thereof. To directly collect the
complete sensor data on some permanent external storage, we
linked an ”oqo” mobile computer (http://oqo.com/) to
the XBus master unit via a wireless Bluetooth connection –
thus streaming the captured data in real time.

B. Sensor Placement
We discussed suitable locations for placing the sensors

with the Wing Tsun expert and finally decided on the
following setup with one MT9 box each at the:

• right and left wrist,
• right and left lower leg (directly above feet),
• right and left knee (directly above knee cap),
• neck (on shoulder height), and
• rear hip (on backbone origin).
All MT9 boxes were oriented with their cables pointing

skywards when the test subjects stood still and relaxed. Then,
the x-axes of the acceleration sensors pointed down towards
the ground while their y- and z-axes pointed horizontally.
Hence, the x-axes of the accelerometers on the wrists always
pointed towards the hands and the x-axes of the accelerom-
eters on the lower legs always pointed towards the feet.

We also affixed the XBus master unit at the hip, but on
the right side of it (see Fig. 1). To strap and keep everything
tight in place, we used flexible bands that work very well in
such settings according to our experience [7], [8], [10].

C. Chum Kiu Motion Sequence
The Chum Kiu motion sequence contains a multitude

of basic Wing Tsun movements (forward and backward)
including side steps, full-body turns, arm and leg blows, and
more involved motion combinations. It is a standardized form
of motion training for Wing Tsun. Literally, Chum Kiu means
”casting / seeking a bridge” to the opponent. While doing
so, you should try to adhere to your so-called central line
of action. The full Chum Kiu motion sequence takes about
two minutes to perform. In our experiment, completion times
varied from one-and-a-half to almost three minutes.

D. Test Subjects
Both test subjects participating in the experiment are

co-authors of this text. The Wing Tsun expert, Matthias
Gruber, is a long-time practitioner and enthusiast of the art.
Kai Kunze, on the other hand, is a Wing Tsun amateur
with limited experience of roughly two-and-a-half years of
training overall spanning several years on and off. But you
must not mistake him for an absolute beginner, of course.

IV. EXPERIMENTAL RESULTS

As described in Section IV-A, the raw z-axis signals of
the gyroscopes at the necks seem to suffice for counting and
recognizing at least some turns. For the rest of the analyses,
we applied 20 different features to the raw signal data,
including absolute value, frequency entropy, frequence range
power, median, mean, 75%-percentile, standard deviation,
variance, and others over the accelerometer and gyroscope
data for each axis and for the absolute sum using a 100-
sample sliding window.

1-4244-0464-9/06/$20.00 2006 IEEE. 99 CIG'06 (May 22-24 2006)

A. Raw z-Axis Signals of Gyroscopes at Neck

Fig. 2. Sequence of six (2 x 3) special turns, graphs show raw z-axis signals
of gyroscopes at neck (expert on top, amateur below)

Fig. 2 shows the expert (top) and amateur (below) perform
three special turns in one direction, followed by another
three in the opposite direction. The graphs on the right
visualize the respective raw z-axis signals for one particular
performance of the turns by each test subject as recorded
by the gyroscopes mounted on their necks. The difference
in appearance of these graphs is quite stunning. Whereas the
expert’s signal shows clear and regular peaks and troughs
of compellingly steady height, the amateur’s signal almost
completely lacks these characteristics featuring fewer irreg-
ular peaks and troughs of rather diminishing height. Taking
the regularity of the expert’s peak signals over time, width,
and height into account, the distinction between badly, fairly,
and really well executed turns should not be too hard. With
appropriate thresholding and sliding windows, the real-time
counting and recognition of such turns also proves feasible in
general. Fig. 3, for instance, presents two graphs showing the
raw z-axis signals for sequences of turns starting in different
directions (expert on top begins with a left turn, while the
amateur below starts with a right turn). Here, the sign of the
z-axis signal easily identifies the direction of the turn.

B. Freq. Range Power of Accelerometers at Lower Left Leg

An important characteristic for many blows and other
movements in martial arts is the speed, or more excatly,
the explosiveness of execution. A typical feature known to
bear the potential of achieving good results in the context
of motion explosiveness runs by the name frequency range

Fig. 3. Raw z-axis signals of gyroscopes at neck when first turning left
(on top, expert) vs. first turning right (below, amateur)

Fig. 4. Frequency range power (FRP) of absolute sum of signals from all
three axes over different sampling windows for accelerometers at lower left
leg (expert’s peaks much higher than the amateur’s ones)

power (FRP). It computes the power of the discrete Fast
Fourier Transform (FFT) components for a given frequency
band. Thus, the frequency range power may serve as some
kind of measure for the explosiveness or impulsiveness of
movements and their specific execution.

Fig. 4 illustrates that FRP delivers as hoped for in Wing

1-4244-0464-9/06/$20.00 2006 IEEE. 100 CIG'06 (May 22-24 2006)

Tsun, too. The graph plots the FRP values of the absolute
signal sums from all three axes over different sampling
windows for the accelerometers worn by the test subjects at
their lower left legs. The expert’s peak FRP values are clearly
much larger than the amateur’s according ones for most
sampling windows. Here, again, appropriate thresholding and
sliding windows should suffice to recognize different kinds
of movements and qualities of motion execution.

C. Frequency Range Power of Remaining Accelerometers

The FRP graphs of the remaining acceleration sensors
look very similar to that of the accelerometer at the lower
left leg (see Fig. 4). In order to avoid almost identical
repetitions, we refrain from including the other FRP plots
with this text. Please note, however, that the explosiveness
of movements and their execution is equally visible for all
the other accelerometers as well. Direct comparisons of the
FRP plots for corresponding left / right accelerometers from
the same performer may actually hint at some preferred or
better trained body half for the particular person. This in
turn provides valuable information for future exercise and
possible improvements.

D. Other Promising but More Complex Features

Fig. 5. 75% percentile vs. full FRP of absolute signal from y-axis of
accelerometers at neck (expert’s values cluster on lower left, amateur’s
values cluster on upper middle)

The frequency entropy (FRE) is defined as Hfreq =
−

∑
p(Xi) ∗ log2(p(Xi)) where Xi are the frequency com-

ponents of the windowed time-domain signal for a given
frequency band and p(Xi) the probability of Xi. The fre-
quency entropy is the normalized information entropy of the
discrete FFT component magnitudes for the windowed time-
domain signal. Thus, it is a measure of the distribution of
the frequency components in the given frequency bands.

The three combinations of complex features visualized
in Figs. 5 to 7 all exhibit promising cluster structures. We
verified the promise by quick, successful classification trials

Fig. 6. Median vs. frequency entropy (FRE) of absolute signal sums
from all three axes of accelerometers at hip (expert’s values cluster around
diagonal bar, amateur’s values show high divergence instead)

Fig. 7. Median vs. absolute signal sum from x-axis of accelerometers at
lower left leg (amateur’s values cluster on diagonal bar, experts’s values
show divergence instead)

with three powerful machine-learning algorithms, namely
C4.5, KNN, and naive Bayes.

V. CONCLUSION AND FUTURE WORK

The initial experimental results discussed in Section IV
look extremely promising. Our manual analyses of the
captured data identify several different features and ways
of calculation to apply to the raw sensor signals in or-
der to automate the recognition of important Wing Tsun
movements. Of course, we still need to adapt and fine-
tune the respective general thresholding and pattern-matching
techniques to achieve acceptable real-time performance.

This requires us to feed much more input data to machine
learning algorithms among other things. Hence, we continue

1-4244-0464-9/06/$20.00 2006 IEEE. 101 CIG'06 (May 22-24 2006)

to conduct further experimental sessions with additional
Wing Tsun motion sequences (e.g., Biu Tse and Siu Nim
Tau) and other test subjects of different skill levels (e.g.,
intermediary). At the same time as aiming towards a sta-
tistically representative data set and model inferred from
it, we also hope to be able to identify even better novel
features for the recognition tasks at hand. The automatic
distinction between certain levels of expertise and quality
in executing the Wing Tsun movements readily deserves
our special interest in this respect. For, once possible, it
opens up a whole new realm of applications based on fully
automated and computerized, interactive Wing Tsun training
functionality. Immersive games, for instance, could exploit
the functionality for special training modes and for adapting
the skill levels of computer-guided opponents to match the
human players.

Fig. 8. Software toolbox to ease the usage of wearable sensors for
complex context recognition tasks on heterogenous systems (including
mobile platforms)

Last but not least, our envisioned real-time motion analysis
and movement recognition for Wing Tsun needs to be im-
plemented and integrated into suitable gaming applications.
To attract interest therein and decrease the required effort to
really do so, we developed a freely available software tool-
box easing the usage of wearable sensors on heterogenous
systems [17]. We invite everybody to try and download the
current version from our server at http://csn.umit.
at/download/toolbox/. Just to wet your appetite a
bit, we like to briefly summarize the main advantages and
features of our sensor toolbox (see http://csn.umit.
at/research/toolbox/ for more details). The toolbox
is GUI-based (see Fig. 8) enabling users to quickly build
distributed, multi-modal context recognition systems by sim-
ply plugging together reusable, parameterizable components.
Thus, the toolbox simplifies the steps from prototypes to
final implementations that might have to fulfill real-time con-
straints on low-power mobile devices. Moreover, it facilitates
portability between platforms and fosters easy adaptation
and extensibility. The toolbox also provides a set of ready-
to-use parameterizable algorithms including different filters,
feature computations and classifiers, a runtime environment
that supports complex synchronous and asynchronous data
flows, encapsulation of hardware-specific aspects including
sensors and data types (e.g., int vs. float), and the ability
to outsource parts of the computation to remote devices.

REFERENCES

[1] S. Wolf, R. Sattin, and M. Kutner, “Intense T’ai Chi exercise training
and fall occurrences in older, transitionally frail adults: a randomized,
controlled trial,” Journal of the American Geriatric Society, Vol. 1,
2003, pp. 188–189.

[2] C. Wang C., J. Collet, and J. Lau, “The effect of Tai Chi on health
outcomes in patients with chronic conditions: a systematic review,”
Arch. Intern. Med., Vol. 1, 2004, pp. 188–189.

[3] O. Cakmakci, J. Coutaz, K. V. Laerhoven, and H.-W. Gellersen,
“Context awareness in systems with limited resources.” [Online].
Available: citeseer.nj.nec.com/cakmakci02context.html

[4] L. Bao and S. Intille, “Activity recognition from user-annotated
acceleration data,” in Pervasive Computing, F. Mattern, Ed., 2004.

[5] L. Seon-Woo and K. Mase, “Recognition of walking behaviors for
pedestrian navigation,” in Proceedings of the 2001 IEEE International
Conference on Control Applications (CCA’01) (Cat, 2001, pp. 1152–
1155.

[6] J. Mantyjarvi, J. Himberg, and T. Seppanen, “Recognizing human
motion with multiple acceleration sensors,” in 2001 IEEE International
Conference on Systems, Man and Cybernetics, vol. 3494, 2001, pp.
747–752.

[7] E. A. Heinz, K. S. Kunze, S. Sulistyo, H. Junker, P. Lukowicz, and
G. Tröster, “Experimental evaluation of variations in primary features
used for accelerometric context recognition,” in Proceedings of the 1st
European Symposium on Ambient Intelligence (EUSAI 2003), E. Aarts,
R. Collier, E. van Loenen, B. de Ruyter (eds.), LNCS 2875, Springer-
Verlag, 2003, pp. 252–263, ISBN 3-540-20418-0.

[8] N. Kern, B. Schiele, H. Junker, P. Lukowicz, and G. Tr̈oster, “Wear-
able sensing to annotate meeting recordings,” in Proceedings Sixth
International Symposium on Wearable Computers ISWC 2002, 2002.

[9] N. Kern, B. Schiele, and A. Schmidt, “Multi-sensor activity context
detection for wearable computing,”in Proceedings of the 1st European
Symposium on Ambient Intelligence (EUSAI 2003), E. Aarts, R. Col-
lier, E. van Loenen, B. de Ruyter (eds.), LNCS 2875, Springer-Verlag,
2003, ISBN 3-540-20418-0.

[10] P. Lukowicz, J. Ward, H. Junker, M. Staeger, G. Tröster, A. Atrash,
and T. Starner, “Recognizing workshop activity using body worn
microphones and accelerometers,” in Pervasive Computing, 2004.

[11] P. H. Veltink, H. B. J. Bussmann, W. de Vries, W. L. J. Martens,
and R. C. van Lummel, “Detection of static and dynamic activities
using uniaxial accelerometers,” IEEE Transactions on Rehabilitation
Engineering. Vol. 4, No. 4, pp. 375–385, 1996.

[12] E. H. Chi, J. Song, and G. Corbin, “”killer app” of wearable
computing: wireless force sensing body protectors for martial
arts,” in UIST ’04: Proceedings of the 17th annual ACM
symposium on User interface software and technology. New York,
NY, USA: ACM Press, 2004, pp. 277–285. [Online]. Available:
http://dx.doi.org/10.1145/1029632.1029680

[13] H. Markus, H. Takafumi, N. Sarah, and T. Sakol, “Chi-ball, an
interactive device assisting martial arts education for children,” in
CHI ’03: CHI ’03 extended abstracts on Human factors in computing
systems. New York, NY, USA: ACM Press, 2003, pp. 962–963.
[Online]. Available: http://dx.doi.org/10.1145/765891.766095

[14] P. Haemaelaeinen, T. Ilmonen, J. HoeysniemI, M. Lindholm,
and A. Nykaenen, “Martial arts in artificial reality,” in CHI ’05:
Proceedings of the SIGCHI conference on Human factors in computing
systems. New York, NY, USA: ACM Press, 2005, pp. 781–790.
[Online]. Available: http://dx.doi.org/10.1145/1054972.1055081

[15] T. Starner, B. Leibe, B. Singletary, and J. Pair, “Mind-warping:
towards creating a compelling collaborative augmented reality game,”
in IUI ’00: Proceedings of the 5th international conference on
Intelligent user interfaces. ACM Press, 2000, pp. 256–259. [Online].
Available: http://portal.acm.org/citation.cfm?id=325864

[16] Chua, Training for physical tasks in virtual environments: Tai Chi,
2003. [Online]. Available: http://ieeexplore.ieee.org/xpls/abs all.jsp?
arnumber=1191125

[17] D. Bannach, K. Kunze, P. Lukowicz, O. Amft, “Distributed modular
toolbox for multi-modal context recognition,” in Proceedings of the
19th International Conference on the Architecture of Computing
Systems (ARCS 2006), LNCS, Springer-Verlag, to be published 2006.

1-4244-0464-9/06/$20.00 2006 IEEE. 102 CIG'06 (May 22-24 2006)

Self-Adapting Payoff Matrices in Repeated Interactions

Siang Y. Chong and Xin Yao
The Centre of Excellence for Research in

Computational Intelligence and Applications
School of Computer Science

University of Birmingham, UK
S.Y.Chong;X.Yao@cs.bham.ac.uk

Abstract— Traditional iterated prisoner’s dilemma (IPD) as-
sumed a fixed payoff matrix for all players, which may not be
realistic because not all players are the same in the real-world.
This paper introduces a novel co-evolutionary framework where
each strategy has its own self-adaptive payoff matrix. This
framework is generic to any simultaneous two-player repeated
encounter game. Here, each strategy has a set of behavioral
responses based on previous moves, and an adaptable payoff
matrix based on reinforcement feedback from game interactions
that is specified by update rules. We study how different update
rules affect the adaptation of initially random payoff matrices,
and how this adaptation in turn affects the learning of strategy
behaviors.

Keywords: Evolutionary games, Co-evolution, Iterated
Prisoner’s Dilemma, Mutualism, Repeated Encounter Games

I. I NTRODUCTION

The IPD game is well-known as the standard metaphor
to explain cooperative behaviors among selfish, unrelated
individuals [1]. In its classical form, two players engagedin
repeated interactions are given two choices: cooperate and
defect. The two players receive their payoffs that depend on
the choices that they make during the course of behavioral
exchange. The game captures thedilemma of cooperating
with unrelated, and ultimately selfish players (i.e., those
that seek the highest payoffs) by rewarding the player that
exploited its opponents with the highest payoff even though
the payoff for mutual cooperation is higher than that for
mutual defection.

In the IPD, defection is not always the best choice. For
example, Axelrod [2], [3] showed through tournaments of
experts-designed strategies that a particular form of coop-
erative strategy, e.g.,tit for tat, which cooperates in the
first round, and reciprocates thereafter the choice that the
opponent made in the previous round, can be viable. Other
studies, such as in [1], [4], have explained cooperation in
the IPD game using the idea of reciprocal altruism. In
particular, cooperation can arise through the mechanism
of direct reciprocity, which requires repeated encounters
between individuals, so that cooperation received can be
returned. Further studies that use co-evolutionary models[5],
[6], [7], [8], [9], [10] stressed that cooperative behaviors
can be learned through a process of adaptation based on
the mechanism of direct reciprocity that is provided through
interactions (game play between strategies).

However, all of these studies assumed that the payoff
matrix, which defines the reward for making a certain choice

in light of the opponent’s, is fixed and symmetric. That is,
the utility expectation of a strategy on rewards for certain
behaviors does not change (i.e., fixed payoff matrix) and
is similar for all strategies (i.e., symmetric payoff matrix).
These two basic assumptions might not be realistic if the IPD
game is used as a model to explain outcomes of real-world
interactions due to variations between individuals on the
payoff matrix [11]. More importantly, these two assumptions
have significant implications to modelling behavioral inter-
actions because they restrict strategies from adapting (e.g.,
learning) their individual payoff matrices based on feedback
of game interactions that reinforces certain behaviors. As
such, cooperative outcomes may not be a result of IPD-like
payoffs [11]. Instead, cooperative outcomes may be due to a
different payoff matrix that favors mutual cooperation (i.e.,
mutualism [12]).

Here, we present a preliminary study that is aimed at ad-
dressing the problem of restrictive assumptions on the payoff
matrix (fixed and symmetric) to the evolutionary outcome of
repeated encounter games. For this paper, we consider the
evolution of strategy payoff matrices through an adaptation
process based on reinforcement feedback from behavioral
interactions using a fixed update rule, and how this process in
turn affects the learning of strategy behaviors. Although this
update-rule-based feedback mechanism may not reflect actual
mechanisms found in real-world interactions, its simplicity
allows for an in-depth study using a co-evolutionary approach
to emphasize how the simultaneous adaptations on behavioral
responses and the expectations of rewards for behavioral
responses affect the learning of behaviors. This approach is
different compared to previous studies that consider a fixed,
symmetric payoff matrix throughout the evolutionary process
[5], [6], [7], [8], [9], [10], or perturbed payoff matrices based
on a noise sources with a fixed probability distribution [11],
i.e., no learning process on payoff matrices.

Through an empirical study, we show how different update
rules, which specify how different elements in the strategy
payoff matrices can be reinforced based on past interactions,
can affect the adaptation of initially random payoff matrices,
which in turn, affects the learning of strategy behaviors
for future interactions. On the one hand, when IPD-like
update rules are used (i.e., favors exploitation of opponent
payoff even though the reinforcement for mutual cooperation
payoff is higher than that of mutual defection), defection
outcomes are more likely to be obtained. On the ther hand,

1-4244-0464-9/06/$20.00 2006 IEEE. 103 CIG'06 (May 22-24 2006)

when update rules favor mutual cooperation, cooperative
outcomes can be easily obtained. However, update rules only
significantly impact the learning of behaviors if the strategy
payoff matrix is not overly constrained, e.g., allows for large
variations between elements of the strategy payoff matrix
from reinforcement feedbacks of game interactions.

The rest of the paper is organized as follows. Section II de-
scribes the general setting for iterated, two-player, two-choice
games. Section III describes the co-evolutionary model used
for the experiments. Section IV presents the results of the
experiments, while section V discusses observations obtained
from the experimental results. Finally, section VI concludes
the paper, with some remarks for future studies.

II. I TERATED GAMES WITH TWO CHOICES

Behavioral interactions can be modelled using a game.
One simple example is to use a symmetric, two-player, two-
choice game as a model for cooperation [13]. Here, the
game consists of two players, each having the choice of
either to cooperate or defect. Depending of the choices that
both players have made, each player receives a payoff that
is specified by a predefined payoff matrix (e.g., Fig. 1).
Referring to figure 1, both players receiveR units if both
cooperates, orP units if both defects. However, if one player
cooperates while the other defects, the cooperator will receive
S units while the defector receivesT units. The valuesR,
S, T , and P must satisfy the constraints,R > P and
R > (S + T)/2. The game is symmetrical if the payoff
matrix is the same for both players [13].

 Cooperate Defect

R T

Cooperate

R S

 S P

Defect

T P

Fig. 1. The payoff matrix framework of a two-player, two-choice game.
The payoff given in the lower left-hand corner is assigned tothe player (row)
choosing the move, while that of the upper right-hand corner is assigned to
the opponent (column).

Depending on the specifications forR, S, T , andP , games
with different characteristics can be produced. Considering
a single iteration, whenT > R > P > S, one obtains
the prisoner’s dilemma game, where the best choice is to
defect. However, whenR > T andS > P , one obtains the
mutualism game, where the best choice is to cooperate [12].
Both of these games can be extended to have more than one
iteration, i.e., iterated (repeated encounter) games. Figures
2 and 3 give examples of payoff matrices for the IPD and
iterated mutualism games, respectively [11].

For this paper, we propose a generic framework of repeated
encounter games, whereby the payoff matrix is different
and adaptable for each strategy. That is, the framework is

 Cooperate Defect

3 5

Cooperate

3 0

 0 1

Defect

5 1

Fig. 2. Typical payoff matrix for an IPD game. The payoff given in
the lower left-hand corner is assigned to the player (row) choosing the
move, while that of the upper right-hand corner is assigned tothe opponent
(column).

 Cooperate Defect

5 3

Cooperate

5 1

 1 0

Defect

3 0

Fig. 3. Typical payoff matrix for an iterated mutualism game. The payoff
given in the lower left-hand corner is assigned to the player(row) choosing
the move, while that of the upper right-hand corner is assigned to the
opponent (column).

applicable to any repeated encounter game with different
payoff matrices, and not just limited to those that satisfy
specific constraints (e.g., IPD or mutualism games).

III. C O-EVOLUTIONARY MODELS FOR LEARNING

PAYOFF MATRIX

A. Strategy Representation

We limit our investigation to only deterministic, memory-
one strategy, both for simplicity and a starting point for a
study on the effect of strategies with different, but adaptable
payoff matrices. As such, we require a simple strategy
representation that consists of: (a) a behavioral response
part (e.g., determines the choice to make based on choices
made in the previous move), and, (b) a payoff matrix part
(e.g., determines what payoff the strategy should receive).
To achieve this, we use the simple direct look-up table
representation [14], which allows direct behavioral evolution
of strategies, to represent a strategy’s behavioral responses
based on previous moves. The look-up table is extended to
store values of a two-choice payoff matrix.

Figure 4 illustrates the direct look-up table representa-
tion for the strategies with two choices and memory-one.
mij , i, j = 1, 2 specifies the choice to be made, given the
inputs i (player’s own previous choice) andj (opponent’s
previous choice). Rather than using pre-game inputs (two
for memory-one strategies), the first move is specified in-
dependently,mfm. Binary choices of+1 and−1 are used.
The payoff matrix part for each strategy specifies payoffs

1-4244-0464-9/06/$20.00 2006 IEEE. 104 CIG'06 (May 22-24 2006)

that the strategy receives given choices made by the strategy
and its opponent for that particular iteration. The elements in
the payoff matrix,pij , i, j = 1, 2, are not fixed, but instead,
variable and depends on choices made by the strategy during
interactions. That is, evolutionary variation is not applied
directly to the payoff matrix (details of the update rule used
to adaptpij is presented in the following section).

Opponent�s Previous Move

 +1 1

Player�s +1 m11 m12

Previous Move 1 m21 m22

(a) Behavior

Opponent�s Previous Move

 +1 1

Player�s +1 p11 p12

Previous Move 1 p21 p22

(b) Payoff Matrix

Fig. 4. The look-up table representation for the two-playerrepeated
encounter game with two choices and memory length one. (a) Behavioral
Response (also includesmfm for the first move, which is not shown in the
figure). (b) Payoff Matrix (utility expectation).

A simple mutation operator is used to generate offspring
from parents. When a response, i.e., the element of the direct
look-up table for behavioral responses (includesmfm and
mij) mutates, it changes to the other possible choice. Each
table element has a fixed probability,pm, of being replaced
by the other choice. The valuepm is not optimized. In
effect, the variation operator for the strategy representation
of the two-choice IPD used here is a uniform mutation with
probability pm.

Crossover is not used in any experiment. With the direct
look-up table for strategy representation, any variation opera-
tor will introduce variations on behavioral responses directly.
As investigated earlier in [14] (even for the more complex
IPD game with intermediate choices), a simple mutation
operator is more than sufficient to introduce the required
variations of strategy behaviors. The use of crossover is not
necessary.

B. Co-evolutionary Procedure

The co-evolutionary learning approach that is used here
is similar to that used in [14]. The original system in [14]
is changed to accommodate the co-evolutionary learning
of strategy behavioral responses and payoff matrix. Given
that the adaptation process occurs for strategy payoff matrix
as well, more experiments are conducted to investigate the
impact of initial strategy payoff matrices on the learning of
strategy behaviors. The initialization schemes are summa-
rized in table I.

The following gives the flow of the co-evolutionary pro-
cedure:

TABLE I

INITIALIZATION SCHEMES FOR STRATEGY PAYOFF MATRIX OF INITIAL

POPULATION. U(0, 5) REFERS TO A RANDOM VALUE DRAWN FROM A

UNIFORM DISTRIBUTION BETWEEN0 AND 5. ASYM REFERS TO THE

INITIALIZATION SCHEME WHERE STRATEGIES CAN BE INITIALIZED

WITH DIFFERENT PAYOFF MATRICES. SYM REFERS TO THE

INITIALIZATION SCHEME WHERE STRATEGIES ARE INITIALIZED WITH

THE SAME PAYOFF MATRIX.

RanAll Ran IPD1 IPD2 MUT1 MUT2
p11 U(0, 5) U(0, 5) 4 3 5 5
p12 U(0, 5) U(0, 5) 0 0 1 1
p21 U(0, 5) U(0, 5) 5 5 4 3
p22 U(0, 5) U(0, 5) 1 1 0 0

ASYM SYM SYM SYM SYM SYM

1) Generation step,t = 0:
Initialize N/2 parent strategies,Pi, i = 1, 2, ..., N/2,
randomly.

a) Each table element,mfm andmij , i, j = 1, 2, is
initialized to values,+1 or −1, each with equal
probability.

b) Each element for the payoff matrix,pij , i, j =
1, 2, is initialized according to values depending
on the investigated initialization scheme (table I).

2) GenerateN/2 offspring, Oi, i = 1, 2, ..., N/2, from
N/2 parents using a mutation operator with probability
pm.

3) All pairs of strategies compete, including the pair
where a strategy plays itself (i.e., round-robin tourna-
ment). ForN strategies in a population, every strategy
competes a total ofN games. Each strategy’s payoff
matrix is updated after every iteration for each game.
The updated payoff matrix is used immediately in the
next iteration. The updates are described as follows:

a) Player cooperates, opponent cooperates:
p′
11

= p11 + δ11

b) Player defects, opponent cooperates:
p′
21

= p21 + δ21

c) Player cooperates, opponent defects:
p′
12

= p12 + δ12

d) Player defects, opponent defects:
p′
22

= p22 + δ22

whereδij ≥ 0, i, j = 1, 2.
4) Select the bestN/2 strategies based on total payoffs of

all games played. Increment generation step,t = t+1.
5) Step 2 to 4 are repeated until termination criterion (i.e.,

a fixed number of generation) is met.
In particular, we useN = 20, and repeat the co-

evolutionary process for 200 generations, which is suffi-
ciently long to observe an evolutionary outcome (e.g., per-
sistent cooperation). A fixed game length of 150 iterations
is used for all games. Experiments are repeated for 30
independent runs.

The update rule, i.e.,δij , i, j = 1, 2, determines how the
elements for each strategy’s payoff matrix part are changed
based on the strategy’s interactions with the opponent. The

1-4244-0464-9/06/$20.00 2006 IEEE. 105 CIG'06 (May 22-24 2006)

update rule follows a reinforcement view whereby only the
element in the payoff matrix that corresponds to the pair of
choices made by the strategy and its opponent is updated.
Note that the adaptation process of the strategy’s payoff
matrix is indirect, i.e., evolutionary variation is not applied
directly to the payoff matrix. Instead, variation to the payoff
matrix is a result of interactions between strategies, which
depend on their behavioral responses that are subjected to
evolutionary variations. Lastly, for simplicity, we assume that
the update rule (e.g., given by theδs) is the same for all
strategies.

As such, it is emphasized that not all interactions conform
to a specific payoff matrix (e.g., IPD) because each strategy’s
payoff matrix is evolving as well. With this in mind, we can
investigate what payoff matrices that emerged, and also what
behaviors that are obtained based on those payoff matrices
from a co-evolutionary process.

IV. RESULTS

A. Learning Behaviors when Exploitation of Opponents is
Favored

We first consider IPD-like update rules to investigate how
update rules can affect the evolution of payoff matrices,
and in turn, the learning of strategy behaviors. IPD-like
update rules favor exploitation of opponents, even though
reinforcement for mutual cooperation is higher compared to
that of mutual defection. That is, the values forδs in the
update rule satisfy the IPD constraints, i.e.,δ21 > δ11 >
δ22 > δ12. The following experiments are motivated to
facilitate the investigation on what strategy payoff matrices
and behaviors that emerged when the update rule favors
strategies exploiting their opponents.

Table II summarizes and compares all update rules used for
the experiments in this paper. We first focus on theURIPD1

update rule with the followingδ values, δ11 = 0.4/150,
δ21 = 0.5/150, δ12 = 0.0/150, δ22 = 0.1/150. Given that
an update to a strategy’s payoff matrix is made after every
iteration, we scale theδs to the number of iteration of a game
(e.g., dividing values by 150).

TABLE II

UPDATE RULES USED FOR THE EMPIRICAL STUDY. BOTH URIPD1 AND

URIPD2 UPDATE RULES FAVOR EXPLOITATION OF OPPONENTS. WITH

URIPD2 , THE REINFORCEMENT OF REWARDS FOR EXPLOITATION OF

OPPONENTS IS FURTHER EMPHASIZED. URMUT UPDATE RULE FAVORS

MUTUAL COOPERATION.

URIPD1 URIPD2 URMUT

δ11 0.4/150 0.4/150 0.5/150
δ12 0.0/150 0.0/150 0.1/150
δ21 0.5/150 0.7/150 0.3/150
δ22 0.1/150 0.1/150 0.0/150

For the first experiment, we considered the RanAll initial-
izations of strategy payoff matrices (table I). Results show
the populations of 12 runs out of 30 evolved to mutual
cooperation (RanAll row andURIPD1 column in table III).
Closer inspection shows that surviving strategies converged

to a similar payoff matrix, and that the the element in the
payoff matrix corresponding to mutual cooperation is much
higher compared to the other elements in these 12 mutual
cooperative runs (e.g.,p11 � p12, p21, p22). This observation
suggests strategies evolving to cooperative behaviors early on
after a random initialization. The persistent cooperationto the
end of the run is a result of continued reinforcement feedback
between mutual cooperative play and strategies’ expectations
on rewards for mutual cooperation.

The populations in the remaining 18 runs evolved to a
point where they engaged in mutual defection. Similar ob-
servation of strategies converging to a similar payoff matrix is
made. Closer inspection reveals that the element in the payoff
matrix corresponding to mutual defection is much higher
than other elements except that of the element corresponding
to exploitation of opponents (or temptation to defect). That is,
p22 � p11, p12 andp22 > p21, suggesting that the defection
outcomes are the result of initial random strategies evolving
to exploit one another first, before evolving to play mutual
defection.

In general, results from the experiment (RanAll) suggest
that cooperative outcomes are less likely to be obtained when
the IPD-like update rule, which favors strategies exploiting
their opponents, is used. This is also observed from results
summarized in table IV that shows the average cooperation
frequency of 30 runs for each experiment. In particular, in the
RanAll row andURIPD1 column of table IV, the average
cooperation frequency of 40.06% (less than 50%) shows
that the co-evolutionary process resulted with more defection
plays.

However, given the convergence to a similar payoff matrix
for the co-evolving population, we conducted additional
experiments with different initializations of payoff matrices
(table I) to determine their impact on the evolutionary
outcome. Results of these experiments are summarized in
URIPD1 column of tables III, IV, and V. In particular, no
statistically significant difference is observed for comparison
between results of experiments (URIPD1 column of table V)
where all strategies were initialized with the same random
payoff matrix (Ran) and where each strategy was randomly
initialized with different payoff matrix (RanAll). Similarly,
no statistically significant difference is observed for compar-
ison between the RanAll experiment and experiments where
strategy payoff matrices were initialized with the same IPD
payoff matrix (IPD1 and IPD2 in table I). However, when
strategy payoff matrices were initialized with mutualism-like
payoffs (MUT1 and MUT2 in table I), cooperative outcomes
were obtained easily, e.g., the higher number of cooperative
outcomes (URIPD1 column of table III) and higher average
cooperation frequencies (URIPD1 column of table IV) are
statistically significantly different compared to that of RanAll
experiment.

Furthermore, as in the original experiment (RanAll), strate-
gies are also observed to converge to a similar payoff matrix
regardless of how strategy payoff matrices are initialized.
In particular, runs with cooperative outcome are always a

1-4244-0464-9/06/$20.00 2006 IEEE. 106 CIG'06 (May 22-24 2006)

result of strategies converging to a similar payoff matrix
with a very high value for the element corresponding to
mutual cooperation. On the other hand, runs with defection
outcome are always a result of strategies converging to a
similar payoff matrix with a very high value for the element
corresponding to mutual defection. However, given that the
update rule remained fixed in these experiments, these results
suggest that the initial payoff matrices of strategies can affect
the outcome of the co-evolutionary process since strategy
behavioral responses are randomly initialized.

In addition, we conducted further experiments whereby
the reinforcement value in the update rule corresponding to
exploitation of opponents (i.e.,δ21) is further increased with
respect to other values to further clarify the impact of IPD-
like update rules on the evolution of strategy payoff matrices
and behaviors. We consider theURIPD2 update rule (ta-
ble I), where value forδ21 in the update rule is increased
from 0.5/150 to 0.7/150 (note that sinceδ11 = 0.4/150 and
δ22 = 0.0/150, then δ21 < 0.8/150 to obtain IPD-like up-
date rules). Comparison of results inURIPD2 column with
URIPD1 column of tables III and IV shows that both the
number of runs with cooperative outcomes and the average
cooperation frequency are reduced when theURIPD2 update
rule was used, regardless of how strategy payoff matrices
were initialized. With the exception of RanAll experiments,
comparison of the pairs of experiments with different update
rules but similar initializations of strategy payoff matrices
indicates statistical significant differences (URIPD2 column
of table V). These results suggest that update rules that
favor exploitation of opponents lead to evolution of mutual
defection play.

B. Learning Behaviors when Mutual Cooperation is Favored

Earlier, we investigated IPD-like update rules that favor
strategies exploiting their opponents even though reinforce-
ment for mutual cooperation is higher compared to that of
mutual defection. However, other update rules can also be
investigated, depending on how update rules are interpreted
to favor specific behaviors. Here, we investigate the impactof
update rules that favor mutual cooperation, e.g., mutualism-
like update rules:δ11 = 0.5/150, δ21 = 0.3/150, δ12 =
0.1/150, δ22 = 0.0/150 (URMUT in table I). δs are scaled
from values used in [11] to the number of iteration used. Note
that any combination ofδs that satisfy mutualism constraints
can be used, i.e., the update rule favors mutual cooperation.

Results of experiments are summarized in column
URMUT of tables III, IV, and V. They show that regardless
of how strategy payoff matrices are initialized, cooperative
outcomes are always obtained. That is, populations in all 30
runs of all experiments evolved to mutual cooperation play
(column URMUT of tables III). Further inspection shows
that in most runs, strategies converge to a mutualism-like
payoff matrix, with the element corresponding to mutual
cooperation (e.g.,p11) having a value that is significantly
higher compared to other elements. That is, strategies learn
cooperative behaviors and mutualism-like payoff matrices.
This observation is consistent for other experiments with

different initialization of payoff matrices. This suggests that
cooperation can be learned easily if update rules that favor
mutual cooperation are used.

C. Learning Behaviors when Reinforcement Feedbacks to
Expectations of Rewards are Constrained

All experiments conducted thus far allowed for strat-
egy payoff matrices to be updated indefinitely without any
constraint. That is, the value for an element with positive
reinforcements gets larger as it is updated. When this re-
inforcement process is allowed to continue long enough,
there is no longer any trade-off in reinforcing other elements
in the strategy payoff matrix, resulting with convergence
to a specific behavioral response (e.g., mutual cooperation
or mutual defection) because the particular element in the
strategy payoff matrix corresponding to that response is much
larger compared to the other elements. At this point, further
evolution will only result with this reinforcement feedback
loop between the converged behavioral response and its
corresponding expectation of reward.

As such, we investigate the impact of constrained strategy
payoff matrix on the evolutionary outcome. We consider a
simple a constraint, i.e.,

∑
2

i,j pij ≤ C (whereC is a prede-
termined and fixed constant) that is applied to all strategies.
Any particular update on apij that results with

∑
2

i,j pij > C
is discarded, i.e., updatedp′ij is the same as originalpij . We
first consider the impact of this constrained strategy payoff
matrix to the evolutionary outcome for the experiment with
URIPD1 update rule and RanAll initialization. The following
C values are considered: 10, 12, 14, 16, 18, 20, 30, 40, 50,
60, 70, 80, and, 90.

 0

 20

 40

 60

 80

 100

 90 80 70 60 50 40 30 20 18 16 14 12 10

C
o
o
p
e
r
a
t
i
o
n

F
r
e
q
u
e
n
c
y

(
%
)

Constraint

UR_IPD1, RanAll, No Shuffle
UR_IPD1, RanAll, With Random Shuffle

Fig. 5. Results of experiments withURIPD1 update rule and RanAll
initialization with constrained strategy payoff matrix. The first graph (dashed
line) plots the average cooperation frequency in % of 30 runs(taken at the
end of the run) with 95% confidence interval as the value forC is changed.
The second graph (bold line) plots the result when strategies are randomly
shuffled at the start of each generation before competitions.

Figure 5 plots the average cooperation frequency (%) of all
30 runs taken at the end of the co-evolutionary run. The graph
with dashed line shows that average cooperation frequencies
are greater than 50% (e.g., more than half the total number of
runs resulted with mutual cooperation) forC values between
14 and 30, and less than 50% (e.g., more than half the total

1-4244-0464-9/06/$20.00 2006 IEEE. 107 CIG'06 (May 22-24 2006)

TABLE III

RESULTS OF EXPERIMENTS WITH DIFFERENT UPDATE RULES FOR STRATEGY PAYOFF MATRIX. ALL RESULTS ARE TAKEN AT THE END OF

CO-EVOLUTIONARY RUN. “No < 25%” INDICATES THE NUMBER OF RUNS WHERE THE MAJORITY PLAY IS DEFECTION. “No > 75%” INDICATES THE

NUMBER OF RUNS WHERE THE MAJORITY OF PLAY IS COOPERATION.

URIPD1 URIPD2 URMUT

No < 25% No > 75% No < 25% No > 75% No < 25% No > 75%
RanAll 18 12 20 10 0 30

Ran 13 17 22 8 0 30
IPD1 16 14 22 8 0 30
IPD2 17 13 24 6 0 30

MUT1 7 21 16 14 0 30
MUT2 5 25 16 14 0 30

TABLE IV

RESULTS OF EXPERIMENTS WITH DIFFERENT UPDATE RULES FOR STRATEGY’ S PAYOFF MATRIX. ALL RESULTS ARE TAKEN AT THE END OF

CO-EVOLUTIONARY RUN. RESULTS ARE THE AVERAGE OF COOPERATION FREQUENCY OVER30 RUNS IN % WITH A CONFIDENCE INTERVAL OF 95%

IN % AS WELL.

URIPD1 URIPD2 URMUT

RanAll 40.06± 17.28 33.86± 16.60 97.32± 0.80
Ran 56.22± 17.41 27.76± 15.65 97.24± 1.30
IPD1 47.51± 17.70 28.31± 15.66 97.99± 0.96
IPD2 43.89± 17.74 21.29± 13.97 98.15± 0.78

MUT1 69.87± 16.12 47.54± 17.59 97.74± 1.29
MUT2 82.42± 13.03 48.21± 17.59 97.77± 1.22

TABLE V

COMPARISON OF EXPERIMENTS USING At-TEST FOR STATISTICALLY SIGNIFICANT DIFFERENCE AT A0.05LEVEL OF SIGNIFICANCE BY A

TWO-TAILED TEST WITH 29 DEGREE OF FREEDOM. EACH TABLE ELEMENT CONSISTS OF RESULTS FROM TWOt-TESTS(SEPARATED BY A COMMA)

THAT COMPARE THE AVERAGE COOPERATION FREQUENCIES OF EXPERIMENTS: (1) TEST RESULTS BETWEENRANALL AND OTHERS (WITH THE SAME

UPDATE RULE), (2) TEST RESULTS BETWEENURIPD1 AND OTHERS (WITH THE SAME INITIALIZATIONS OF STRATEGY PAYOFF MATRIX). “-”

INDICATES THAT A TEST IS NOT POSSIBLE. VALUES WITH “ †” INDICATES A STATISTICAL SIGNIFICANT DIFFERENCE.

URIPD1 URIPD2 URMUT

RanAll -, - -, 1.42 -, −6.59†

Ran −1.45, - 0.61,3.47† 0.11,−4.69†

IPD1 0.83, - 0.71,2.31† −1.09, −5.73†

IPD2 0.44, - 1.43,3.00† −1.38, −6.11†

MUT1 −2.93†, - −1.55, 2.63† -0.61,−3.45†

MUT2 −4.37†, - −1.64, 4.07† -0.67,−2.33†

number of runs resulted with mutual defection) for otherC
values. In particular, average cooperation frequencies stay
around 40% (similar to the experiment without constraint to
updating the strategy payoff matrix, e.g., RanAll row and
URIPD1 column of table IV) starting aroundC value of 40.

Note that similar observation is obtained when the exper-
iments are repeated with random shuffling of strategies at
the start of each generation (graph plotted with bold line in
Fig. 5), i.e., there are no statistical significant differences
between the two experiment sets within 95% confidence
interval for differentC values. This is also true for all other
experiments in this study (results omitted to save space). In
general, given the small population of competing strategies
(e.g., 20), the evolutionary outcome does not depend on the
order of strategy encounters.

However, different results were obtained when different
updates rules were used. For example, figure 6 shows the
results of plots whenURIPD1 (dashed line),URIPD2 (bold
line), andURMUT (thin line) update rules were used. On
the one hand, comparison of experiments that usedURIPD2

andURIPD1 shows that the graph forURIPD2 results with
lower average cooperation frequencies for most ofC values
considered. On the other hand, comparison of experiments
that usedURMUT and URIPD1 shows that the graph for
URMUT results with higher average cooperation frequencies
for most of C values considered. As with the experiment
that usedURIPD1, average cooperation frequencies for the
experiments that usedURIPD2 and URMUT converged to
their respective values that correspond to the experiment
without constraint starting aroundC value of 40.

1-4244-0464-9/06/$20.00 2006 IEEE. 108 CIG'06 (May 22-24 2006)

 0

 20

 40

 60

 80

 100

 90 80 70 60 50 40 30 20 18 16 14 12 10

C
o
o
p
e
r
a
t
i
o
n

F
r
e
q
u
e
n
c
y

(
%
)

Constraint

UR_IPD1, RanAll
UR_IPD2, RanAll
UR_MUT, RanAll

Fig. 6. Results of experiments with different update rules and RanAll ini-
tialization with constrained strategy payoff matrix. Strategies are randomly
shuffled at the start of each generation for all experiments. All graphs plot
the average cooperation frequency in % of 30 runs (taken at the end of
the run) with 95% confidence interval as the value forC is changed. The
graphs are plotted using dashed, bold, and thin lines for experiments with
URIPD1, URIPD2, andURMUT update rules, respectively.

Results from figure 6 further suggest that update rules
that favor expectation of rewards for different behavioral
responses affect the co-evolutionary learning of certain be-
haviors. In general, when constraint for updating payoff
matrix is relaxed (i.e., higherC values), the impact of update
rules is more pronounced. For example, IPD-like update
rules will result with more mutual defection due to having
higher expectation of rewards for mutual defection. With
mutualism-like update rules, the opposite occurs, i.e., mutual
cooperation is expected.

However, when constraint for updating payoff matrix is
tightened (i.e., lowerC values), the impact of update rules is
less pronounced. In the case of IPD-like update rules, mutual
cooperation is possible and more likely. For example, figure6
shows that average cooperation frequencies are higher than
50% betweenC values of 14 and 20 for both IPD-like update
rules (e.g.,URIPD1 andURIPD2).

This observation can be explained by considering that
the constraint determines the amount of variations between
the four elements of the strategy payoff matrix due to
reinforcement feedbacks from game interactions. With a re-
laxed constraint, i.e., higherC values, variations between the
elements tend to be larger due to the reinforcement feedbacks
that favor a particular response. With a tighter constraint,
i.e., lower C values, variations between the elements are
smaller. For the case of IPD-like update rules, setting a
higher C value allows the update rule to first reinforce
exploitation of opponents before before reinforcing mutual
defection play. However, when a lowC value is used, mutual
cooperation play is possible given that the co-evolutionary
system with direct look-up table for strategy representation
evolves early on to mutual cooperation (full discussion is
presented in [14]). The update rule has no impact on the
evolutionary process because the constraint disallows further
reinforcement to elements of strategy payoff matrix. That is,
the co-evolutionary learning system behaves as though there

is no adaptation of strategy payoff matrix.

V. D ISCUSSION

A. Learning Strategy Behaviors with Fixed Payoff Matrix is
Not the Same as Learning Strategy Behaviors with Different
Payoff Matrices

Most of the previous studies on evolving strategies using
co-evolution [5], [6], [7], [8], [9], [10], [14] assumed a fixed,
symmetric payoff matrix. Behaviors are learned through a
process of adaptation on a strategy representation, with the
payoff-based fitness determined using a pre-defined global
payoff matrix. Evolutionary pressure is thus exerted only
on strategy behavioral responses. As such, strategies learned
certain behaviors based on the outcome of the evolutionary
process.

This is different compared to the co-evolutionary learning
process considered here, where strategies can have different
payoff matrices that are adaptable through a reinforcement
feedback process (using update rules) that is based on
behavioral interactions. When strategies start with both ran-
dom behavioral responses and payoff matrices, evolutionary
pressure is exerted not only on behavioral responses, but also
the payoff matrices of strategies because both are responsible
for determining their fitnesses. Here, strategies not only learn
behaviors, but also the utility expectations that determine
how behaviors are rewarded (i.e., payoff matrix).

B. Different Update Rules Lead to Different Evolutionary
Outcomes

Results from experiments have shown that different up-
date rules lead to different evolutionary outcomes. Starting
with random initialization of strategy behaviors, defection
outcomes are more likely to be obtained if IPD-like update
rules that favor exploitation of opponents are used. However,
the evolutionary outcome (defection) is also dependent on
how strategy payoff matrices are initialized, and how the re-
inforcement value corresponding to exploitation of opponents
are defined.

These two factors can be explained by considering that the
evolved mutual defection play is the best response to earlier
evolved strategies that are exploiting one another. At the
start of the evolutionary process, strategies that exploitothers
receive increasingly higher payoffs compared to other plays
due to the update rule reinforcing the element corresponding
to exploitation of opponents in the strategy payoff matrix
with higher proportions. After that, given that the element
corresponding to being exploited is not reinforced (i.e.,d12 =
0), strategies eventually evolve to play defection only because
the lost of fitness for being exploited is too large for strategies
to consider playing cooperation.

However, when the update rule is changed so that it
now favors mutual cooperation play, results from experi-
ments show that persistent mutual cooperation can be easily
evolved, regardless of how strategy payoff matrices are
initialized. That is, even when strategy payoff matrices are
initialized so that the element corresponding to exploitation

1-4244-0464-9/06/$20.00 2006 IEEE. 109 CIG'06 (May 22-24 2006)

of opponents are higher compared to the others (e.g., IPD
payoff matrices), strategies that engaged in mutual coopera-
tion receives increasingly higher payoffs due to the update
rule reinforcing the element corresponding to mutual coop-
eration in the strategy payoff matrix with higher proportions.

It should be noted that the impact of update rules on
the evolution of behaviors is only significant if there are
sufficient reinforcements from game interactions that result
with large variations between elements in a strategy payoff
matrix. That is, if updates to the strategy payoff matrix
are not overly constrained to allow for sufficient variations
between the elements that correspond to expectations of
rewards for different responses from reinforcement feedbacks
of game interactions, update rules with different emphasis
on behavioral responses can significantly affect the co-
evolutionary learning of strategy behaviors.

VI. CONCLUSION

This paper presents a preliminary study on evolving strat-
egy payoff matrices, and how such an adaptation process
can affect the learning of strategy behaviors. The study is
motivated from the observation that the assumption of having
fixed, symmetric payoff matrix for all evolving strategies
may not be realistic. Furthermore, the assumption of fixed,
symmetric payoff matrix is highly restrictive because it does
not allow strategies adapting their individual payoff matrices
based on feedback of game interactions that reinforces certain
behaviors.

To facilitate our investigation on the impact of relaxing
the restrictive assumption of fixed, symmetric payoff ma-
trix for each strategy, thereby allowing strategies to have
different payoff matrices that are also adaptable, we focus
specifically on an adaptation process of payoff matrix based
on past behavioral interactions. A simple update rule that
reinforces the elements of the payoff matrix is considered.
The update rule provides a reinforcement feedback process
between strategy behaviors and payoff matrices during the
co-evolutionary process.

The result is a co-evolutionary process, whereby the evo-
lutionary outcome is dependent on the adaptation process of
both behaviors (i.e., strategy behavioral responses) and utility
expectations that determine how behaviors are rewarded
(i.e., strategy payoff matrices). In particular, experiments
are conducted to show how different update rules affect
the adaptation process of payoff matrices, which in turn,
affect the learning of strategy behaviors. Results show that
defection outcomes are more likely to be obtained if IPD-like
update rules that favor the exploitation of opponents are used.
However, cooperative outcomes can be easily obtained when
mutualism-like update rules that favor mutual cooperationare
used. Update rules affect the learning of strategy behaviors
when they lead to large variations between elements in
the strategy payoff matrix (e.g., mutualism-like update rule
results with a significantly larger element corresponding to
mutual cooperation in the payoff matrix compared to the
others).

It is noted that the update-rule-based feedback mechanism
may not reflect actual mechanisms in real-world interactions
even though its simplicity allows for an in-depth study
on how simultaneous adaptations of behavioral responses
and expectations on rewards for behavioral responses af-
fect the learning of strategy behaviors. For future work,
studies should be carried out to determine how adaptations
of behavioral responses and that of the expectations on
rewards are linked with each other, and how this link can
be abstracted and modelled as a mechanism in the co-
evolutionary framework introduced here.

ACKNOWLEDGMENTS

The authors are grateful to EPSRC for its support through
Grant GR/S63472/01, to ARC (Australian Research Council)
for its support through an ARC International Link grant,
and to the School of Computer Science at the University
of Birmingham for its studentship to the first author.

REFERENCES

[1] R. Axelrod, The Evolution of Cooperation. New York: Basic Books,
1984.

[2] ——, “Effective choice in the prisoner’s dilemma,”The Journal of
Conflict Resolution, vol. 24, no. 1, pp. 3–25, Mar. 1980.

[3] ——, “More effective choice in the prisoner’s dilemma,”The Journal
of Conflict Resolution, vol. 24, no. 3, pp. 379–403, Sept. 1980.

[4] M. A. Nowak and K. Sigmund, “Tit for tat in heterogeneous popula-
tions,” Nature, vol. 355, pp. 250–253, 1992.

[5] R. Axelrod, “The evolution of strategies in the iteratedprisoner’s
dilemma,” in Genetic Algorithms and Simulated Annealing, L. D.
Davis, Ed. New York: Morgan Kaufmann, 1987, ch. 3, pp. 32–41.

[6] D. B. Fogel, “The evolution of intelligent decision making in gaming,”
Cybernetics and Systems: An International Journal, vol. 22, pp. 223–
236, 1991.

[7] ——, “Evolving behaviors in the iterated prisoner’s dilemma,” Evolu-
tionary Computation, vol. 1, no. 1, pp. 77–97, 1993.

[8] ——, “On the relationship between the duration of an encouter
and the evolution of cooperation in the iterated prisoner’sdilemma,”
Evolutionary Computation, vol. 3, no. 3, pp. 349–363, 1996.

[9] P. Darwen and X. Yao, “On evolving robust strategies for iterated
prisoner’s dilemma,” inProgress in Evolutionary Computation, ser.
Lecture Notes in Artificial Intelligence, vol. 956, 1995, pp. 276–292.

[10] B. A. Julstrom, “Effects of contest length and noise on reciprocal
altruism, cooperation, and payoffs in the iterated prisoner’s dilemma,”
in Proc. 7th International Conf. on Genetic Algorithms (ICGA’97).
San Francisco, CA: Morgan Kauffman, 1997, pp. 386–392.

[11] D. D. P. Johnson, P. Stopka, and J. Bell, “Individual variation evades
the prisoner’s dilemma,”BMC Evolutionary Biology, vol. 2, no. 15,
2002.

[12] K. C. Clements and D. W. Stephens, “Testing models of non-kin co-
operation: Mutualism and the prisoner’s dilemma,”Animal Behaviour,
vol. 50, pp. 527–535, 1995.

[13] M. Mesterton-Gibbons and L. A. Dugatkin, “Cooperationamong
unrelated individuals: Evolutionary factors,”The Quarterly Review of
Biology, vol. 67, no. 3, pp. 267–281, 1992.

[14] S. Y. Chong and X. Yao, “Behavioral diversity, choices,and noise in
the iterated prisoner’s dilemma,”IEEE Transactions on Evolutionary
Computation, vol. 9, no. 6, pp. 540–551, 2005.

1-4244-0464-9/06/$20.00 2006 IEEE. 110 CIG'06 (May 22-24 2006)

Training Function Stacks to play
the Iterated Prisoner’s Dilemma.

Daniel Ashlock
Department of Mathematics and Statistics

University of Guelph
Guelph, Ontario, Canada, N1G 2W1

dashlock@uoguelph.ca

ABSTRACT

Cartesian genetic programming uses a directed acyclic graph
structure rather than a tree structure for its representation of
evolvable programs or formulas. In this paper a derivative
of Cartesian genetic programming called a function stack is
introduced and trained to play the iterated prisoner’s dilemma
with an evolutionary algorithm. Function stacks differ from
Cartesian genetic programming in that (i) they use a crossover
operator and (ii) they have a form of memory or recurrence
that permits the use of internal state information. Several
properties of function stacks are developed and compared
with other representations for the iterated prisoner’s dilemma.
Function stacks are proved to encode the same strategy space
as finite state machines but to explore that strategy space in a
significantly different manner. A technique called fingerprint-
ing is used to automatically classify the evolved strategies.
Function stacks are shown to produce a significantly different
distribution of strategies from those found when evolution is
used to train finite state machines. Function stacks are shown
to be different from many other representations studied for
the iterated prisoner’s dilemma. They are relatively prone to
cooperation and encode a rich space of strategies.

I. INTRODUCTION

The prisoner’s dilemma [4] is a widely known abstrac-
tion of the tension between cooperation and conflict. In the
prisoner’s dilemma two agents each decide simultaneously,
without communication, whether to cooperate (C) or defect
(D). One situation modeled by the prisoner’s dilemma is that
of two suspected criminals accused of the same serious crime,
say burglary, and placed in separate interrogation rooms.
The sheriff has evidence that can be used to convict both
suspects of some minor crime, say trespassing. He offers each
suspect lenient treatment in return for testifying against his
accomplice. In this case cooperation consists of maintaining
silence, while defection is embodied by testifying. There are
four possible outcomes: mutual silence, the two different
directions of one-way betrayal, and mutual defection. The
agents receive individual payoffs depending on the actions
taken. The best outcome for an individual is to be set free
for unilaterally betraying his partner, yielding a score of T

(temptation), and the worst is to be unilaterally betrayed which

yields a score of S (sucker). In between those extremes mutual
cooperation, yielding a score of C (cooperate), is superior to
mutual defection which yields a score of D(defect). These
scores, together with the numerical values used in this study
are shown in Figure 1. In order for a simultaneous two-player
game to be prisoner’s dilemma, two conditions must hold:

S ≤ D ≤ C ≤ T (1)

and
(S + T) ≤ 2C. (2)

The first of these simply places the payoffs in their intuitive
order; the second requires that the average score for both
players in a unilateral defection be no better than mutual
cooperation.

S

C D

P C 3 5
D 0 1
(1)

S

C D

S C C T

D S D

(2)

Fig. 1. (1) A payoff matrix of prisoner’s dilemma – scores are earned by
strategy S based on its actions and those of its opponent P . (2) A payoff
matrix of the general two player game – S,D,C, and T are scores given for
the game.

If play is repeated many times, the game is called the
iterated prisoner’s dilemma (IPD). The iterated game is very
different from the one-shot game. In the one-shot prisoner’s
dilemma a thoughtful player will notice that his best score
results from defection no matter what his opponent does.
Imagine we are using prisoner’s dilemma to model the behav-
ior involved in the selling of illegal drugs. A dealer who knows
his customer is an out-of-town businessman will sell him icing
sugar instead of actual drugs as this permits him to keep his
drugs and still obtain money. Likewise there is little risk to
the businessman in paying with counterfeit money. If the one-
shot prisoner’s dilemma were a good model for drug dealing,
there would be no drug trade. The iterated prisoner’s dilemma
models the situation of dealing with a regular customer. In this
case, the same dealer could be expected to sell real drugs, and
the customer to pay actual money. At a minimum, defection by

1-4244-0464-9/06/$20.00 2006 IEEE. 111 CIG'06 (May 22-24 2006)

either party would cause the next day’s deal to go sour. This
example shows that when the game is iterated even selfish
agents have a motive to cooperate.

IPD is widely used to demonstrate emergent cooperative
behaviors in populations of selfishly acting agents and is often
used to model biological systems [21], ecological systems
[16], as well as systems in sociology [12], psychology [20],
and economics [11]. When evolutionary computation [6] is
used to study the iterated prisoner’s dilemma, representation
becomes an issue. Representation is the encoding of the game-
playing agents including data structure, variation operators,
and method of evaluating fitness. Perhaps the most common
representation is finite state machines [17], [10], [22], [9],
[3]. An indirect representation for finite state machines, in
which a string of directions for how to build the finite
state machines is used as the representation, appears in [13].
Another representation used is that of a fixed or variable-length
look-up table [5], [14], [15]. In [8] the authors used artificial
neural nets.

Nine different representations are compared in [1], and
it is found that the probability of a population of evolv-
ing agents cooperating varies from 0% to over 90% based
solely on the choice of representation. These representations
include two kinds of artificial neural nets, Boolean formulas
with and without a time-delay operation implemented via
genetic programming, simple look-up tables with time depth 3,
probabilistic look-up tables that are a type of Markov chain,
ISAc lists [2], and finite state machines using both a direct
and cellular representation. Function stacks, introduced in this
study, turn out to be a highly expressive representation, able
to simulate all the representations from [1] except Markov
chains.

The following example strategies for the iterated prisoner’s
dilemma are used in the subsequent analysis of evolved
agents. Always defect (AllD) and always cooperate (AllC)
are self-explanatory. Tit-for-tat (TFT) cooperates initially and
subsequently repeats its opponent’s last move. Psycho (PSY)
defects initially and returns the opposite of its opponent’s last
action thereafter. Punish once (Pun1) defects initially. Its next
move is cooperation. After that, it cooperates in response to
cooperation. If its opponent defects, it returns one defection
and then follows that defection by a cooperation no matter
what the opponent does. Pavlov (PAV) cooperates initially
and cooperates thereafter if it and its opponent performed the
same action on the previous time step. Tit-for-two-tats (TF2T)
defects only if its opponent has defected on the last two moves.
Two-tits-for-tat (TTFT) defects on the two actions after any
defection by its opponent but cooperates otherwise.

The remainder of this study is structured as follows. Section
II gives a careful definition of function stacks and derives
some of their properties as well as comparing them with other
representations at the level of the strategy space encoded by
the representation. Section III gives the experimental design
for training function stacks to play the iterated prisoner’s
dilemma. The results of the experiments are presented and
discussed in Section IV. The results are placed in the context

of other experiments with attention to the representation issue
in Section V.

II. FUNCTION STACKS

A function stack is a representation derived from Cartesian
Genetic Programming [18], [23]. The parse tree structure used
in genetic programming is replaced with a directed acyclic
graph that posesses a form of time-delayed recurrent link. The
vertices of this graph are stored in a linear chromosome. Each
node specifies a binary Boolean operation, an initial output
value for that operation, and two arguments for the operation.
The available Boolean operations are: And, Or, Nand, Nor,
Xor, and Equality (not-Xor). The available arguments are:
Boolean constants, the opponent’s last action, the output of
any Boolean operation with a larger array index than the
current one, and the output from the previous time step of
any Boolean operation in the function stack. This latter type
of argument is called a recurrent link. Permitting references
to the current output of nodes with larger index gives function
stacks a feed forward topology, a directed acyclic graph. This
feed forward character is not present in the use of the recurrent
link arguments; the output of every operation in the previous
time step is available. The recurrent links give function stacks
a form of short-term memory. The initial output values of each
node, mentioned above, are required to give the value used for
the recurrent links on the first time step. Examples of function
stacks are shown in Figures 2, 3, and 4.

The action of the agents encoded by function stacks is
specified by the output of the lowest index (zeroth) node,
also called the output node. For prisoner’s dilemma, function
stacks use the encoding: cooperate=false, defect=true. During
initialization, operations are selected uniformly at random
from those available, and arguments are selected according
to the following scheme. One argument in ten is a constant
(true or false). One quarter of all arguments are recurrent links
with an index selected uniformly at random. The remainder of
the arguments are either references to the output of nodes of
higher index in the function stack or to input variables. The
probability that an argument will be an input variable (if it
is not a memory or constant link) is directly proportional to
the index of the node in the stack. The zeroth node is thus
most likely to reference the output of other nodes while the
arguments of the last node must be input variables if they
are not memory links or constants. This linear ramp-up of
the probability of accessing a variable works with the “feed-
forward” or directed acyclic graph nature of the function stack
that encourages a larger fraction of links to other nodes, either
directly or indirectly, from the output node.

The binary variation operator used on function stacks is
two-point crossover of the linear chromosome. The single-
point mutation operator chooses a random operation three
eighths of the time, a random argument half the time, and an
initial value for a node’s memory one-eighth of the time. If an
operation is selected, then it is replaced with another operation
selected uniformly at random. If an argument is selected, then
it is replaced with a valid argument selected according to the

1-4244-0464-9/06/$20.00 2006 IEEE. 112 CIG'06 (May 22-24 2006)

X1
OutEq −

Pavlov Arguments
node Oper- Initial
index ation Value 1 2

0 Equality False X1 L0

Fig. 2. A function stack with one node that implements the strategy
Pavlov shown as a circuit and in tabular form. Pavlov cooperates initially
and cooperates thereafter if it made the same play as its opponent in the
previous time step. The input X1 is the opponent’s last move. The white
circle denotes the output of the equality operation while the black denotes the
recurrent output. The arguments are the opponent’s last move (X1) and the
operation’s recurrent link (L0) meaning “last-time node 0.”

scheme used in initialization. If an initial memory value is
selected, it is inverted.

A visual notation to make diagrams of function stacks is
helpful in understanding them. The function stacks used in
this study are composed of nodes with two inputs and two
outputs. The inputs are transformed into the first output via
the logic function (And, Or, Nand, Nor, Xor, or Eq) associated
with the node. The second output has the value of the first
output on its previous evaluation or, when no such previous
evaluation is available, the initial value. Recall that the second
output is called the recurrent output of the node. The inputs
are shown on the left side of the node, and the outputs are on
the right side and marked with small circles. The first output
uses a white circle; the second uses a black circle. The logic
function associated with a node is used as a label for that node.
This label is super-scripted with a “+” if the initial value of
the second output is true and a “−” if it is false. A single
input variable is available to the function stack: its opponent’s
previous move, denoted X1.

A. Properties of Function Stacks

An important property of an agent representation for playing
prisoner’s dilemma is the degree to which it can condition its
behavior on its internal state as well as its opponent’s actions.
A finite state machine with n states has n states. A look-up
table has 2k “states” where k is the number of previous actions,
its own and it opponents, that the look-up is conditioned on.
Boolean functions of previous moves and neural nets with
previous moves as inputs are alternate encodings of the same
strategy space as a look-up table (this does not mean these
representations will evolve the same type of agents, see [1]).

Each node in a function stack has a single binary state
variable - the value it produced last time. This means that
an n-node function stack has, potentially, 2n internal states.
It would take a rather remarkable function stack to fully
exploit this huge amount of state information. On the other
hand, a function stack with n nodes has more available state
information than a finite state machine with n nodes. The

+ Out
Or

+
OrX1 Out

Fig. 3. Above are function stacks that implement the strategies always-defect
(top) and tit-for-tat (bottom). Inputs to a node are on the left and outputs are
on the right. Notice that tit-for-tat does not use any recurrent links and so the
“+” has no effect on its behavior.

strategy Pavlov (shown in Figure 2) is, minimally, a two-state
finite state machine but is a one-node function stack. Nodes
in a function stack contain more state information, but these
“states” are difficult to access compared to those in a finite
state machine. The proof of the following theorem sharpens
the sense of this issue.

X1 Nand+ Nand+ Out

Two-tits-for-tat Arguments
node Oper- Initial
index ation Value 1 2

0 NAND TRUE R0 L0
1 NAND TRUE X1 X1

Fig. 4. Two NAND nodes and the use of a single recurrent link yield a
function stack realization of the strategy Two-tits-for-tat. It is depicted above
in circuit and tabular form.

Theorem 1: Function stacks and finite state machines en-
code the same strategy space.
Proof:

Suppose we have a function stack F with n nodes. The
the output of F depends on some set of k recurrent outputs,
those that are arguments of some node in the stack. Call these
the active recurrent outputs. A recurrent output can have one
of two values and so there are at most 2k sets of values that
the active recurrent outputs can take on. The output of the
function stack is a deterministic function of these recurrent
outputs and the current input. Thus a finite state machine with
2k states can encode the same strategy as the function stack.
This shows the strategy space of function stacks is a subset of
that of finite state machines.

Consider a finite state machine M with s states. A node
in a function stack can be configured to simply report its last
input though its recurrent link, e.g. (input OR input), creating
a one-step delay line. Call such a node a one bit register. Let
2r > s and designate r nodes to function as one bit registers.
Read the output of these registers to obtain a binary encoding
of the state of machine M . Set the initial values of the nodes
functioning as one bit registers to the initial state of M . The
next state of M is a deterministic function of the current state
and the current input; use nodes to implement this function as
r individual Boolean functions of the current state and input.

1-4244-0464-9/06/$20.00 2006 IEEE. 113 CIG'06 (May 22-24 2006)

These r Boolean functions compute the binary encoding of the
next state of M from the current state and inputs – something
well within the capability of general Boolean functions. The
value of this representation of the next binary state of M is
simply fed into the input of the one bit registers that store
the state. The output of M is also a deterministic function
of current state and input and so may be computed with an
additional Boolean function implemented with other nodes.
Thus the strategy space for finite state machines is contained
within the strategy space for function stacks. 2

���
�

���
�

���
�

...

Boolean ‘‘next state’’
computations

One bit
registers

output

...

X1 Input

Boolean

compu−
tations

Output

+

−

+

Fig. 5. This figure diagrams the method used in the proof of Theorem 1
to construct a function stack that simulates an arbitrary finite state machine.
The one bit registers are OR nodes with their inputs tied together to create
one-time-step delay lines. The initial values of the recurrent links of these
gates store the initial state of the finite state machine. Boolean functions,
constructed from the automata being simulated, compute the next state and
output from the current state and input.

A diagram of the function stack constructed to simulate
a finite state machine is shown in Figure 5. The theorem
shows that function stacks are an alternate encoding of finite
state machines. In the experimental section the evolutionary
correspondence of finite state machines and function stacks
will be checked in several ways.

III. EXPERIMENTAL DESIGN

Three sets of experiments to train function stacks to play the
iterated prisoner’s dilemma were performed. Each experiment
consisted of 400 independent evolutionary runs. The parameter
varied between experiments was the number of nodes in the
function stack with 10, 20, and 40 nodes being used. Evo-
lutionary runs continued for 250 generations. The population
size in all evolutionary runs was 36. Fitness was evaluated
with a round robin tournament on all possible pairs of agents
within a population of 150 rounds of IPD.

An elite of the 24 highest scoring players, breaking ties
uniformly at random, were copied into the next generation.
Fitness proportional selection with replacement was used to
choose a collection of 6 pairs of parents. These parents were
copied, the copies subjected to the binary variation operator
and then to a single application of the unary variation operator.

The mean, variance, and maximum of both population
fitness and age were recorded in each generation. An agent’s

age is 0 when it is first created and increases by one each
generation. An average of population average fitnesses was
also recorded. The final population of each run was saved for
analysis.

IV. RESULTS AND ANALYSIS

The mean fitnesses over all populations for the three exper-
iments are given in Figure 6. Function stacks with ten nodes
gain in fitness at a lower rate than those with 20 and 40 nodes.
All three populations seem to slowly become more cooperative
as evolution proceeds after their initial rapid rise. The dip-and-
rise curve, similar to that observed for finite state machines,
has a narrower dip and sharper rise, suggesting a faster shake-
out of initial randomness.

A. Comparison with Other Representations

As part of an ongoing project, the level of cooperativeness
and of better-than-random play for many representations are
recorded. This publication places function stacks into this
context. Cooperative play is defined as a population average
score of 2.8 or better over 150 rounds of play. This number
is derived in [22] and implies at most transient defection for
finite state machines that use 16 or fewer states. Better-than-
random play is defined as a population average score of at least
2.25, the value a player that decides its action by flipping a
coin gets when playing against itself.

The probability of cooperative behavior is shown in Figure
8 for generation 250 and in Figure 10 for generation 50.
The probability of better-than-random play is shown in Figure
9 for generation 250 and Figure 11 for generation 50. The
codes F10, F20, and F40 denote function stacks with 10,
20, and 40 nodes respectively. The representations to which
function stacks are compared are as follows. CAT are finite
state machines using an indirect encoding [13]. AUT are
directly encoded finite state machines with 16 states. TRE
are Boolean functions with access to the opponent’s last three
actions encoded via genetic programming with parse trees [7].
MKV are Markov chains implemented as a probabalistic look-
up table indexed by the opponent’s last three actions. LKT are
look-up tables indexed by the opponent’s last three actions.
ISC are If-Skip-Action lists [2], a linear genetic programming
representation acting on the opponent’s last three actions. DEL
are Boolean parse trees identical to TRE save that a one-time-
step delay operator is incorporated into the function set. CNN
are feed-forward neural nets with a per-neuron bias in favor of
the output signifying cooperation; they access the opponent’s
last three actions and have a single hidden layer containing
three neurons. NNN are feed-forward neural nets identical to
CNN save that they have no bias in favor of cooperation or
defection. Details of these representations, other than function
stacks, are given in [1]. The relationship among the strategy
spaces for these representations is given in Figure 7.

Theorem 1 demonstrates that finite state machines and
function stacks encode the same strategy space. In [13] it is
shown that the cellular encoding CAT is complete, i.e. that
it encodes the same strategy space as the directly encoded

1-4244-0464-9/06/$20.00 2006 IEEE. 114 CIG'06 (May 22-24 2006)

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250

F
itn

es
s

Generations

A 95% confidence interval for mean fitness of 10 node function stacks with N=400 populations

Mean fitness

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250

F
itn

es
s

Generations

A 95% confidence interval for mean fitness of 20 node function stacks with N=400 populations

Mean fitness

 1

 1.5

 2

 2.5

 3

 0 50 100 150 200 250

F
itn

es
s

Generations

A 95% confidence interval for mean fitness of 40 node function stacks with N=400 populations

Mean fitness

Fig. 6. The above plots show a 95% confidence intervals, over 250
generations, for the mean population fitness computed over 400 populations
for function stacks with 10, 20, and 40 nodes playing iterated prisoner’s
dilemma.

finite state machines AUT. In spite of this all possible pairs of
finite state machine and function stack representations shown
except F20 and F40 show a statistically significant difference
in their probability of cooperative or better than random play.
Together with the difference in sampling of strategies shown in
Section IV-B, this demonstrate that representation dominates
the possession of a mutual strategy space.

B. Fingerprint Analysis for Function Stacks and Finite State
Machines

Fingerprints are explained in detail in [13]. A fingerprint
is a function from the unit square with corners (0,0) and

Feed−Forward
Neural Nets

Logic Trees Lookup Tables

Logic Trees
with Delay

Function Stacks Finite State
Machines

Markov ChainsISAc lists

Fig. 7. Relationship between the various representations in this study.
Representations within a box encode the same set of strategies. Upward arrows
denote containment. Containment is transitive and so, for example, ISAc lists
can code any of the strategies except some that are encoded by Markov Chains.

(1,1) to the real numbers that is an invariant of a strategy for
playing iterated prisoner’s dilemma. That the fingerprint is an
invariant of a strategy, rather than its implementation, makes it
convenient for cross-representation comparisons. This section
uses fingerprints to compare the rate at which function stacks
with various numbers of nodes and finite state machines locate
some well-known strategies. The theory of fingerprints was
initially developed for agents encoded by finite state machines;
Theorem 1 permits us to apply it to function stacks.

The play of two finite state machines in the presence of
noise can be represented as a Markov process. This allows the
determination of an expected score for any pair of strategies
by standard techniques in stochastic processes [19]. Finger-
prints use game-playing agents with strategies that incorporate
parameterized noise to assess other agents. The independent
variables of a fingerprint are rates for types of noise associated
with each possible move in a game. The value returned
by a fingerprint is the expected score of the agent being
fingerprinted against the type of noisy opponent specified by
the independent variables. For iterated prisoner’s dilemma, the
noise represents probabilities of cooperating and defecting.
The fingerprint for an agent is thus a map from probabilities
(x, y) of respectively cooperating and defecting to a value E,
the expected score of the agent being fingerprinted against the
noisy agent. For the fingerprints used in this study the noisy
agent is based on tit-for-tat. If the play of the noisy agent
as determined by x and y is not noise of either type, then
the noisy agent returns the last move of the strategy being
fingerprinted.

Definition 1: If A is a strategy for playing prisoner’s
dilemma, then Joss-Ann is defined to be

JA(A, x, y),

a strategy which has a probability x of choosing the move C,
a probability y of choosing the move D, and otherwise uses
the response appropriate to the strategy A.

Note that when x + y = 1 the strategy A is not used, and
the resulting behavior is a biased random strategy with play

1-4244-0464-9/06/$20.00 2006 IEEE. 115 CIG'06 (May 22-24 2006)

NNN

CNN

DEL

ISC

LKT

MKV

TRE

AUT

CAT

F10

F20

F40

0 1

95% confidence interval

P(Cooperative), Generation 250

R
epresentation

Fig. 8. Probabilities of essentially cooperative behavior in generation 250
for each of 12 representations. Representations are described in the text.

probabilities x of cooperating and y of defecting.
Definition 2: A fingerprint FA(S, x, y) with 0 ≤ x, y ≤

1, x + y ≤ 1, and strategies S and A, is the function that
returns the expected score of strategy S against JA(A, x, y)
for each possible (x, y). The double fingerprint FAB(S, x, y)
with 0 ≤ x, y ≤ 1 returns the expected score of strategy S

against JA(A, x, y) if x + y ≤ 1 and JA(B, 1 − y, 1 − x) if
x + y ≥ 1.

In this study we use the double fingerprint with A =tit-
for-tat and B =psycho to create a set of numerical features
used to classify prisoner’s dilemma strategies. A grid of 25
points in the interior of the unit square is used to sample the
fingerprint. These points are all those of the form (i/6, j/6)
where 0 < i, j < 6. For the reference strategies, AllD,
AllC, and so on, the values at these points are determined
by using the actual double fingerprint functions, computed in
[13]. For the finite state machines and function stacks, the
value of the fingerprint is determined by sampling play against
JA(TFT, x, y) at the 25 values of the noise parameters. For
any particular value of the noise parameters, sets of 150 rounds
of the IPD are played repeatedly until the variance of the
estimate of the fingerprint value drops to 0.01. A strategy is
classified as similar to a reference strategy if the distance in
Euclidean 25-space between the fingerprint functions is no
more than 0.08. The threshold was chosen because the closest

NNN

CNN

DEL

ISC

LKT

MKV

TRE

AUT

CAT

F10

F20

F40

0 1

95% confidence interval

P(Better-than-random), Generation 250
R

epresentation

Fig. 9. Probabilities of better-than-random behavior in generation 250 for
each of 12 representations. Representations are described in the text.

that any two reference strategies approach is 0.17. The counts
for each agent type in each representation are give in Table I.

The substantial number of agents exhibiting the AllD fin-
gerprint in the representations other than directly encoded
finite state machines requires some explanation that highlights
a weakness of fingerprints for classification. The fingerprint
captures the expected, asymptotic score of a strategy in the
presence of noise. Thus transient states (those a strategy
can leave and never return to) do not affect the fingerprint.
This means that two strategies with different fingerprints are
different, no question, but strategies with the same fingerprint
are not identical; they can differ in their transient states which
are sometimes very significant.

The strategy vengeful cooperates until its opponent’s first
defection and defects thereafter. It is asymptotically indis-
tinguishable from AllD and has the exact same fingerprint.
Unlike AllD, vengeful plays pure cooperation against itself.
Examination of population files showed that many of the
strategies with an AllD fingerprint were, in fact, playing
the strategy vengeful. This resolves an apparent contradiction
between the relatively high level of cooperation exhibited by
function stacks and the substantial fraction of agents exhibiting
an AllD fingerprint.

The enormously higher fraction of “other” strategies in the
finite state machine populations as compared to the function

1-4244-0464-9/06/$20.00 2006 IEEE. 116 CIG'06 (May 22-24 2006)

NNN

CNN

DEL

ISC

LKT

MKV

TRE

AUT

CAT

F10

F20

F40

0 1

95% confidence interval

P(Cooperative), Generation 50

R
epresentation

Fig. 10. Probabilities of cooperative behavior in generation 50 for each of
12 representations. Representations are described in the text.

stack populations suggests that finite state machines are more
likely to create complex strategies. All the known strategies
used for fingerprint comparison in this study use two or fewer
states in a minimal finite state implementation and so may be
reasonably considered simple.

V. CONCLUSIONS

This study introduces function stacks as an extension of
Cartesian genetic programming. The novel features of function
stacks are a binary variation operator and memory in the form
of recurrent links for each Boolean operation. While function
stacks are shown to encode the same set of strategies as
finite state machines, they sample the space of strategies in
a significantly different manner. This difference is apparent in
both the level of internal cooperation exhibited by populations
of function stacks as compared to other representations as well
as by the frequency of simple strategies in evolved populations
shown in Table I.

The far larger number of “other” strategies found in pop-
ulations of finite state machines suggest that function stacks
locate simpler strategies more often than finite state machines.
For the iterated prisoner’s dilemma there is some reason to
suspect that simplicity is a virtue [5]. In spite of this, finite
state machines and function stacks group together in Figures
8-11 which assess the degree of cooperativeness; only look-up

NNN

CNN

DEL

ISC

LKT

MKV

TRE

AUT

CAT

F10

F20

F40

0 1

95% confidence interval

P(Better-than-random), Generation 50
R

epresentation

Fig. 11. Probabilities of better-than-random behavior in generation 50 for
each of 12 representations. Representations are described in the text.

tables are in the interior of the region spanned by finite state
machines and function stacks in these figures. This suggests
that these two encodings may be more similar to one another
than to the other representations studied.

When using game-playing agents to simulate human or
animal behavior, the issue of removing implementation bias
from simulation design becomes a substantial one. This study
continues the demonstration that representation is a large
source of implementation bias even in very simple games. In
addition to introducing and characterizing function stacks, this
study demonstrates that changing the number of nodes in a
function stack causes statistically significant changes in their
evolutionary behavior. Changing the number of nodes is a non-
trivial change in the representation. There is some good news
in that 20 and 40 node function stacks behave in a similar
manner.

This paper proves that finite state machines and function
stacks implement the same strategy space. However given the
different behavior of function stacks with different numbers
of nodes, it is unlikely that this identity holds once a number
of states/nodes is selected. The number of nodes required on
average to implement an s-state finite state machine and the
number of states required for an FSM to simulate an m-node
function stack are not known. A few hand-worked examples
suggest that this equivalence is not simple; the trade-off is

1-4244-0464-9/06/$20.00 2006 IEEE. 117 CIG'06 (May 22-24 2006)

TABLE I

RELATIVE COUNTS OF SEVERAL SIMPLE STRATEGIES IN 400

POPULATIONS OF 36 AUTOMATA FOR FIVE DIFFERENT REPRESENTATIONS.

THESE REPRESENTATIONS ARE FUNCTION STACKS WITH 10, 20, AND 40

NODES AND DIRECTLY AND INDIRECTLY ENCODED FINITE STATE

MACHINES.

Strategy F40 F20 F10 AUT CAT
ALLD 2836 3560 5476 381 6897
ALLC 1155 1077 827 72 221
TFT 8951 8272 6606 2663 2542
PSY 697 799 426 1 362
PAV 3 10 35 69 2
TF2T 1 3 6 53 30
TTFT 559 569 713 6 44
PUN1 12 2 10 442 17
Other 146 108 1041 10713 4285

complex and idiosyncratic.
Fingerprinting was used to demonstrate that the five repre-

sentations participating in the fingerprinting study sample the
strategy space in very different ways. It also highlighted, with
the high fraction of AllD fingerprints, the need to incorporate
information about the transient states of a strategy into the
classification process. This could be done by recording the
sequence of plays a strategy makes against itself for a small
number of moves (10-30) and using this self-play string as
a second identifier, possible for separating the equivalence
classes induced by fingerprinting. The self-play string, like
the fingerprint, is implementation invariant.

This study is part of an ongoing study that seeks to
understand the impact of representation on the way evolution
trains game-playing agents. As part of this study, known
representations are cataloged and new representations are
invented. Potential collaborators with unique or interesting
representations for game-playing agents are invited to contact
the author.

VI. ACKNOWLEDGMENTS

The author would like to thank Julian F. Miller for the
excellent idea of Cartesian genetic programming, inspirational
to this study. David B. Fogel is thanked for many helpful
discussions that improved the design of the experiments per-
formed. The author would also like to thank the University
of Guelph Department of Mathematics and Statistics for its
support of this research.

REFERENCES

[1] D. Ashlock and E. Y. Kim. The impact of cullular representation on
finite state agents for prisoner’s dilemma. In Proceedings of the 2005

Genetic and Evolutionary Computation Conference, pages 59–66, New
York, 2005. ACM Press.

[2] Dan Ashlock and Mark Joenks. ISAc lists, a different representation for
program induction. In Genetic Programming 98, proceedings of the third
annual genetic programming conference., pages 3–10, San Francisco,
1998. Morgan Kaufmann.

[3] Dan Ashlock, Mark D. Smucker, E. Ann Stanley, and Leigh Tesfatsion.
Preferential partner selection in an evolutionary study of prisoner’s
dilemma. Biosystems, 37:99–125, 1996.

[4] Robert Axelrod. The Evolution of Cooperation. Basic Books, New York,
1984.

[5] Robert Axelrod and William D. Hamilton. The evolution of cooperation.
Science, 211:1390–1396, 1981.

[6] T. Back, U. Hammel, and H.-P. Schwefel. Evolutionary computation:
Comments on the history and current state. IEEE Transactions on
Evolutionary Computation, 1(1):3–17, 1997.

[7] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank D.
Francone. Genetic Programming : An Introduction : On the Automatic
Evolution of Computer Programs and Its Applications. Morgan Kauf-
mann, San Francisco, 1998.

[8] D. B. Fogel and P. G. Harrald. Evolving continuous behaviors in the
iterated prisoner’s dilemma. Biosystems, 37:135–145, 1996.

[9] David B. Fogel. On the relationship between the duration of an encounter
and the evolution of cooperation in the iterated prisoner’s dilemma.
Working Paper, July 1994.

[10] D.B. Fogel. Evolving behaviors in the iterated prisoners dilemma.
Evolutionary Computation, 1(1), 1993.

[11] Michael Hemesath. Cooperate or defect? russian and american students
in a prisoner’s dilemma. Comparative Economics Studies, 176:83–93,
1994.

[12] John M. Houston, Judy Kinnie, Bernice Lupo, Christeine Terry, and
Sandy S. Ho. Competitiveness and conflict behavior in simulation of a
social dilemma. Psychological Reports, 86:1219–1225, 2000.

[13] Eun-Youn Kim. Fingerprinting: Automatic Analysis of Evolved Game
Playing Agents. PhD thesis, Iowa State University, 2005.

[14] Kristian Lindgren. Evolutionary phenomena in simple dynamics. In
D. Farmer, C. Langton, S. Rasmussen, and C. Taylor, editors, Artificial
Life II, pages 1–18. Addison-Wesley, 1991.

[15] Kristian Lindgren and Mats G. Nordahl. Evolutionary dynamics of
spatial games. Physica D, 1993. To appear.

[16] Kristian Lindgren and Mats G. Nordahl. Artificial food webs. In Christo-
pher G. Langton, editor, Artificial Life III, pages 73–103. Addison-
Wesley, 1994. SFI Studies in the Sciences of Complexity, Proc. Vol.
XVII.

[17] John H. Miller. The coevolution of automata in the repeated prisoner’s
dilemma. A Working Paper from the SFI Economics Research Program
89-003, Santa Fe Institute and Carnegie-Mellon University, Santa Fe,
NM, July 1989.

[18] Julian F. Miller and Peter Thomson. Cartesian genetic programming.
In Proceedings of the European Conference on Genetic Programming,
pages 121–132, London, UK, 2000. Springer-Verlag.

[19] Sidney I. Resnick. Adventures in Stochastic Processes. Birkhauser,
Boston, 1992.

[20] Duncan Roy. Learning and the theory of games. Journal of Theoretical
Biology, 204:409–414, 2000.

[21] Karl Sigmund and Martin A. Nowak. Evolutionary game theory. Current
Biology, 9(14):R503–505, 1999.

[22] E. Ann Stanley, Dan Ashlock, and Leigh Tesfatsion. Iterated prisoner’s
dilemma with choice and refusal. In Christopher Langton, editor,
Artificial Life III, volume 17 of Santa Fe Institute Studies in the Sciences
of Complexity, pages 131–176, Reading, 1994. Addison-Wesley.

[23] Tina Yu and Julian F. Miller. Finding needles in haystacks is not
hard with neutrality. In EuroGP ’02: Proceedings of the 5th European
Conference on Genetic Programming, pages 13–25, London, UK, 2002.
Springer-Verlag.

1-4244-0464-9/06/$20.00 2006 IEEE. 118 CIG'06 (May 22-24 2006)

Abstract— This paper looks at optimization problem solving
from the standpoint of a predator/prey paradigm. In that
paradigm, knowledge sources (or decision makers) control
the placement of individuals onto a multi-dimensional
landscape. Their score is the sum of the resources collected
by each of the individuals that they control. While simple,
this game has many of the properties present in much more
complex real-time strategy games such as Age of Empires.
In the next time step individuals are allocated from a fixed
population to knowledge sources (empires) in proportion to
the relative scores of the knowledge sources. This game is
embedded in a Cultural Algorithm framework and we show
how it can be used as a paradigm with which to study the
optimization of an engineering design problem from a more
strategic perspective.

Key Words: Cultural Algorithms, Prey/Predator Games,
Optimization, Game AI, Evolutionary Computation.

I. INTRODUCTION

Recently, a number of socially motivated algorithms have
been used to solve optimization problems. Some of the
example algorithms are Particle Swarm Algorithm [1], Ant
Colony Algorithm [2], and Cultural Algorithm [3]-[4]. These
three algorithms all use a population-based model as the
backbone of the algorithm and solve problems by sharing
information via social interaction among agents in the
population.

Here we develop a simple strategy game based upon a
predator /prey analogy and use it as a framework in which to
test different strategies for controlling search in a complex
multi-dimensional domain. An individual collects a certain
amount of renewable resources when placed at a location by
a controlling knowledge source. Knowledge sources that are
more successful in guiding individuals to above average
collections are more likely to control more individuals from
a fixed population in the next generation according to an
influence function.

While the current game prototype allows up to five
individuals, human or automated, we only use cultural
algorithm knowledge sources to control the placement of

Robert G. Reynolds is a professor at Computer Science Department,
Wayne State University, MI, 48202, USA, e-mail: reynolds@cs.wayne.edu.

Mostafa Ali, PhD candidate, Computer Science Department, Wayne
State University, MI 48202, USA, e-mail: mostafa@wayne.edu.

Raja’ S. Alomari, PhD student, Computer Science Department, Wayne
State University, MI, 48202, USA, e-mail: raja80@ wayne.edu.

individuals on a multi-dimensional landscape in this paper.
In future work we will use different human players with
different strategies in order to compare the relative impact of
different strategy combinations for different resource
distribution or optimization problems.

Based on Cultural Algorithms in the proposed game, we
employ the basic set of knowledge sources that are supported
by Cultural Algorithms. These knowledge sources are then
combined to direct the decisions of the individuals
(provinces following empires in our case) in solving
optimization problems. Here we develop an algorithm based
upon an analogy to the marginal value theorem in foraging
theory to guide the integration of these different knowledge
sources to direct the agent population. Various phases of
problem solving emerge from the combined use of these
knowledge sources and these phases result in the emergence
of individual roles within the population in terms of leaders
and followers. These roles result in organized swarming in
the population and knowledge swarms in the social belief
space.

Viewed as a real-time strategy game, our game has up to
five players taking the role of empires (predators here) to
join the game, each with a different strategy of playing and
affecting surrounding preys (individual provinces), for the
purpose of searching for a treasure placed randomly on the
landscape according to a certain function, and the winner
empire is the one having one or more of the individual
follower preys reaching that final stage by finding the
treasure and optimizing the state.

The rest of this paper is organized as follows: Section �II
gives an overview of Cultural Algorithms. Section �III gives
the theory behind the proposed game in this paper using a
Cultural Algorithm framework. In section �IV the proposed
game scenario is sketched. Experimental results are given in
section �V. The paper is concluded in section �VI.

II. CULTURAL ALGORITHMS

The Cultural Algorithm (CA) is a class of computational
models derived from observing the cultural evolution process
in nature [4]. CA has three major components: a population
space, a belief space, and a protocol that describes how
knowledge is exchanged between the first two components.
The population space can support any population-based
computational model, such as Genetic Algorithms, and
Evolutionary Programming. The basic framework is shown
in fig. 1.

The Cultural Algorithm is a dual inheritance system that
characterizes evolution in human culture at both the macro-

Robert G. Reynolds, Mostafa Ali, Raja’ S. Alomari

Optimization Problem Solving using Predator/Prey Games and
Cultural Algorithms

1-4244-0464-9/06/$20.00 2006 IEEE. 119 CIG'06 (May 22-24 2006)

evolutionary level, which takes place within the belief space,
and at the micro-evolutionary level, which occurs in the
population space. Knowledge produced in the population
space at the micro-evolutionary level is selectively accepted
or passed to the belief space and used to adjust the
knowledge structures there. This knowledge can then be used
to influence the changes made by the population in the next
generation. What differentiates Cultural Algorithms is the
fact that the CA can use many knowledge types in the
problem solving process rather than just one or two locally
transmitted values. There are currently five distinct
knowledge types used in the basic Cultural Algorithm:
Normative, Situational, Domain, History, and Topographic
knowledge There is evidence from the field of cognitive
science that each of these knowledge types is supported by
various animal species [5]-[6] and it is assumed that human
social systems minimally support each of these knowledge
types as well. The knowledge sources include normative
knowledge (ranges of acceptable behaviors), situational
knowledge (exemplars or memories of successful and
unsuccessful solutions etc.), domain knowledge (knowledge
of domain objects, their relationships, and interactions),
history knowledge (temporal patterns of behavior), and
topographical knowledge (spatial patterns of behavior). This
set of categories is viewed as being complete for a given
domain in the sense that all available knowledge can be
expressed in terms of a combination of one of these
classifications [19], and [7].

Cultural Algorithms have been studied with benchmark

optimization problems [8] as well as applied successfully in
a number of diverse application areas such as modeling the
evolution of agriculture [9], concept learning [3], real-valued
function optimization [10], re-engineering of knowledge
bases for the manufacturing assembly process, and agent-
based modeling of price incentive systems [12] among
others.

III. CULTURAL ALGORITHMS AS A PREY/PREDATOR GAME

In this paper we are concerned with using the Cultural
Algorithms framework to simulate a Prey/Predator game.
The knowledge sources exist in the belief space, and the
individuals in the population space are controlled by these

empires (knowledge sources). Knowledge sources compete
for control of the limited number of individuals over time.

A. Motivation:
Peng [7] found the emergence of certain problem solving

phases in terms of the relative performance of different
knowledge sources over time. She labeled these phases as
coarse grained, fine grained, and backtracking phases. Each
phase is characterized by the dominance of a suite or subset
of the knowledge sources that are most successful in
generating new solutions in that phase. In fact, the dominant
subset of knowledge sources is often applied in a specific
sequence within each phase. It appears that one type of
knowledge produces new solutions that are consequently
exploited by another knowledge source. Transitions between
phases occur when the solutions produced by one phase can
be better exploited by knowledge sources associated with the
next phase.

If we view the knowledge sources as predators, then they
can recruit individuals from a population to look for prey.
The question is how does each predator shift the area over
which they are looking in an automated fashion here? Here
we take our clue from foraging theory. In foraging theory, it
had been shown that the Marginal Value Theorem (MVT)
was able under certain conditions to optimize the long-term
average rate of energy intake within a patch-base
environment [13]. The principle behind the Marginal Value
Theorem is that residence time in a patch by a forager
affects the expected energy gain. The marginal value
principle states that the forager should reside in the patch
"until the intake rate in a patch drops to the average rate for
the habitat” [14]. It is the "moving-on threshold" intake rate
that is important". The forager when doing so will maximize
the average long term energy intake of the individual. One of
the key assumptions is that the gain function associated with
a patch is initially increasing but eventually negatively
accelerated. Other assumptions are shown in fig. 2 taken
from [15].

Fig. 3 gives a description of the calculation for a single
patch. This figure is also taken from [15]. There are two
quantities plotted on the abscissa, travel time or placement
effort and patch residence time. Each of the knowledge
sources in the influence function is viewed as a predator.
Travel time increases from the origin (vertical line) to the
left, and patch residence time increases from the origin to the
right. The gain function shape exhibits an initial increase and
then escalating decrease. The optimal residence time can be
found by constructing a line tangent to the gain function that
begins at the point (1/λ) on the travel time axis. The slope of
this line is the long-term average rate of energy intake,
because (1/λ) is the average time required to travel between
patches. When the travel time is long (1/λ2), then the rate-
maximizing residence time (t2) is long. When the travel time
is short (1/λ1), then the rate-maximizing residence time (t1) is
shorter. Here travel time is a constant amount that represents
a model time step.

Fig. 1: Framework of Cultural Algorithms

1-4244-0464-9/06/$20.00 2006 IEEE. 120 CIG'06 (May 22-24 2006)

B. MVT and CA
The choice of influence function has a great impact on the

problem solving process. Some influence functions are more
successful than others, as measured by the success of the
agents that each has influenced in the past. Early influence
functions randomly applied the five knowledge sources to
individuals in the population in order to guide their problem
solving process. However, it was felt that some systematic
application of the knowledge sources would be beneficial to
the problem solving process.

Fig. 2: Summary of the Patch Model [15]

Fig. 3: The Marginal-Value Theorem in the One-Patch-Type Case [15].

It was felt that a good approach would optimize the rate at
which resources are processed by the foraging agents as they
searched for the optimum amount of resources. While the
distribution was continuous it was observed that at each time
step that the individuals generated by each knowledge source
using a normal distribution could be described by a
"bounding box" or patch with a given central tendency and
standard deviation. For example, fig. 4 and fig. 5 show the
shifting of the patch for situational knowledge from one
place on the landscape to another. In fact, the original patch
orientation is rotated and then translated towards the optimal
point "+" over time.

Fig. 4: Situational Means and Standard Deviation at Year 1001.

Fig. 5: Situational Means and Standard Deviation at Year 1003.

Peng [7] developed an influence function based upon the

Marginal Value Theorem, MVI. The Marginal Value
Theorem is implemented here in terms of a modification of
the basic roulette wheel process so as to emulate the action
of the energy intake function. The size of a knowledge
sources area under the wheel is a function of its ability to
produce above average gains. Each of the five knowledge
sources, predators, is initially given 20% of the wheel area
with which to generate their patch as shown in fig. 6.

The likelihood of using one of the knowledge sources is
based on size of the area under the wheel and the area for a
knowledge source (predator) is adjusted based upon its
performance of those agents (preys) it influences. At every
time step, each of the agents in the population is influenced
by one of the knowledge sources based upon a spin of the

1/�2 2 1/�1 t1 t2 t2
Travel
time

Patch
residence

ASSUMPTIONS
Decision
The set of residence times for each patch type, ti for patch type i.
Feasible choices: For all patch types 0� ti < �.
Currency
Maximization of long-term average rate of energy intake.
Constraint
C.1 Searching for and hunting within patches are mutually exclusive
activities.
C.2 Encounter with patches is sequential and is a Poisson process.
C.3 Encounter rates when searching are independent of the residence
times chosen.
C.4 Net expected energy gain in a patch is related to residence time

by a well-defined gain function [gi(ti)] with the following
characteristics:

(i) Change in energy gain is zero when zero time is spent in a patch.
(ii) The function is initially increasing and eventually negatively

accelerated.
C.5 Complete information is assumed. The forager knows the

model’s parameters and recognizes patch types, and it does not
acquire and use information about patches while foraging in
them.

IMPORTANT GENERAL POINTS
1. The model solves for an encounter-contingent policy.
2. Significant changes must be made to the model if the forager

assesses patch quality while hunting in patches.
3. The model applies only to patches with negatively accelerated gain

functions – patch depression. This should be confirmed by
observation in empirical tests of the model.

4. The marginal-value condition (equation 1), gives only an implicit
solution of the rate-maximizing patch residence time. It is incorrect
to treat the average rate of energy intake, the right side of equation
1, as if it were independent of patch residence time.

iii

iiii
ii

ct
ktg

tg
+

+=
λ

λ)(
)(' (1)

1-4244-0464-9/06/$20.00 2006 IEEE. 121 CIG'06 (May 22-24 2006)

wheel. The agent then moves to a position within the patch
or bounding box associated with the selected knowledge
source. The gain produced by the agent there is then
recorded for the predator there.

Fig. 6: Example of the Roulette Wheel Function

The performance of a knowledge source can then be

generated via computing the average fitness value of all
individuals generated by each knowledge source. The
average fitness value of individuals generated using a
specific knowledge source (predator (i)) is:

k

xf
avr

k

j
j

i

�
== 1

)(

 (1)

 where k is the number of individuals generated via the
knowledge source and fj(x) is the fitness value of individual j.
 Now, each influence operator is assigned an area on the
roulette wheel relative to its average performance, computed
above, over the average performance for all of the influence
functions:

�

=

= n

j
j

i
i

avr

avr
p

1 (2)

where pi is a percentage on the roulette wheel assigned to
predator i; and n is the number of predators used in the
system.
 When the value for a patch falls below the average its
area under the wheel will approach 0 and fewer individuals
will be placed in that patch. However, its patch dimensions
can be affected by the other active patches and new patch
dimensions produced. If the patch shift is successful, the gain
for the knowledge source will increase and its share of the
wheel will be larger. At the same time, other knowledge
sources will be experiencing a decrease in gain and their
areas will shrink.
 Thus, with a gain function that increases initially and then
decreases exponentially we should get a phased pattern of
knowledge use where as some patches begin to fail others are
getting more individuals and increasing, but with too much
exploitation they begin to fail and the cycle repeats itself.

IV. PROPOSED PREY / PREDATOR GAME SCENARIO:

The co-evolution of the predator-prey systems is an
important area where game theory has been applied. The

game proposed here is a knowledge-based real-time strategy
computer game that combines turn-based predator
development with real-time search for optimal resources.
Finding this treasure determines the winner (dominating
predator).

This game can be played up to five players (predators),
each of which represents an empire that has a pre-assigned
number of individuals when the game starts. These
individuals do the bidding of the knowledge source to which
they are assigned. The human-controlled and computer-
controlled empires can be updated according to certain
predefined play strategy such as Marginal value theorem
(MVT), as discussed in section �III. Fig. 7 gives a general
idea for the proposed game.

Fig. 7: A general snapshot of the proposed game.

As the game proceeds over time, the score of each empire

changes according to the relative positions of the individuals
controlled by each knowledge source (or empire), searching
for the resources that are placed on the landscape according
to a certain function. The score of each empire every year
(time step) causes some of the followers of the lower scoring
empires to move towards areas exploited by higher scoring
empires. An empire receives a score based on the average
fitness value of all the individuals or provinces under its
control as follows:

51,
)(

1 →==
�

= j
k

xf
avr

k

j
j

i (3)

Just as each of the Cultural Algorithm knowledge sources

vie to control a portion of individuals to direct their search,
the human players use their own strategy to direct players to

 Empire 1 follower

Empire 2 follower

Empire 3 follower

Empire 4 follower

Empire 5 follower

1-4244-0464-9/06/$20.00 2006 IEEE. 122 CIG'06 (May 22-24 2006)

different locations on the game board. If they are successful
then they can take players away from the computer
controlled sources (or empires). If not then their individuals
are recruited by the successful knowledge sources.

V. EXPERIMENTAL SETTINGS AND RESULTS

A representative constraint optimization problem from
engineering design is used here to demonstrate the proposed
game in problem solving. The proposed game, as illustrated
in section �IV, is a prey/predator game. Five predators
(knowledge sources) exist in the game. Each of these
predators controls an empire of individuals. Each predator
receives a score point that corresponds to its power in
controlling its individuals in the previous time step.
Individuals move from one predator’s control to another
during the game time according to the power of possible
predators. According this scoring scheme, the closer
individuals that a predator is able to place to the optimum
(the treasure), the more powerful this predator becomes.

From this scenario we can easily find that this game can be
viewed as an optimization problem where the optimal value
of the optimization problem is analogous to the treasure.
Predators try to move their individuals toward this optimal
value as do the human players.

In order to illustrate the game we considered an

engineering optimization problem for experimental purposes.
The problem is the Tension/Compression Spring Weight
minimization problem [16] which was also used to
demonstrate the applicability of the Cultural Algorithm
system on solving real world engineering problems in [17]-
[18] .

A. Problem Description
The problem consists of minimizing the weight of a

tension/compression spring subject to constraints on
minimum deflection, shear stress, surge frequency, limits on
outside diameter and on design variables. The problem is to
optimize equation 1 where the design variables are the mean
coil diameter (D) and takes the range [0.25, 1.3], the wire
diameter (d) takes the range [0.05, 2.0], and the number of
active coils (N) and takes the range [2.0, 15.0].

2)2()(DdNXf += (4)

The minimization process of function (f) is subject to

0
71785

1)(4

3

1 ≤−=
d

ND
Xg (5)

01
5108

1
)(12566

4
)(

243

2

2 ≤−+
−

−=
ddDd

dDD
Xg

 (6)

0
45.140

1)(23 ≤−=
ND

d
Xg (7)

01
5.1

)(4 ≤−+= dD
Xg (8)

B. Experimental Settings
For experimental purposes, a simulator [7] is used. In all

of the experiments, the population size is set to 200, which is
the total number of individuals available to be recruited by
the players. The maximum number of generations is 500. In
this simulator, individuals are marked according to their
corresponding knowledge source (predator) that influenced
them in the last step. All the five players (or emperors) here
in this experiment are AI-Controlled. In other words, the
update of each predator is done automatically using the
MVT. Fig. 8 shows the representation of individuals
currently recruited for each predator. This will allow us to
benchmark the play of the Cultural Algorithm system before
human strategies are factored in.

C. Results
In the engineering problem discussed here, there are three

dimensions: mean coil diameter (D), the wire diameter (d),
and the number of active coils (N). The experimental figures
are plotted two-dimensions at a time. The search space is
projected onto two of the three total dimensions.

Convergence to the optimal (treasure) occurs very quickly
here due to the automatic predators’ update function that is
based on the MVT. Table 1 shows a comparison with some
existing techniques on the same problem as an optimization
problem.

Fig. 8: Individual shapes for each corresponding predator (Normative,
Situational, Domain, Historical, and Topographical).

Table 1: A Comparison of Optimization Process between Our game
strategy model and Other Popular ones for Spring

Tension/Compression Problem.

Best Solution Found

Design
Variables Our

Simplified
model

(Hu et al,
2003)

(Coello,
2000) (Arora, 1989)

d 0.056205 0.051466369 0.051480 0.053396

D 0.474550 0.351383949 0.351661 0.399180

N 6.722800 11.608659200 11.632201 9.185400

f 0.013077000 0.0126661409 0.0127047834 0.0127302737

1-4244-0464-9/06/$20.00 2006 IEEE. 123 CIG'06 (May 22-24 2006)

Next Figures (fig. 9, fig. 10, fig. 11, and fig. 12) show
snapshots for the game where each of the five predators
distribute (influence) their recruited individuals over the
landscape to get an increased score. For each time step, the
average fitness value for each subset of controlled
individuals contributes to the score of their corresponding
predator in an additive fashion. The higher the average score
achieved by a knowledge source (predator), the better its
chance to attract individuals to investigate its patch (or
domain) in the next step. When the maximum number of
time steps is reached or when the treasure (best value) is
found the game is over and the player corresponding to the
knowledge source (predator) with the highest score is
announced as the winner of the game. The treasure for each
time step is shown as the (big x) mark and the predators are
shown in the legend (NN, SN, DN, HN, and TN). It is
obvious that each predator tries to push as many individuals
as possible towards the promising treasure hoping that it gets
more scores preparing for the next time step.

VI. CONCLUSION

This paper proposed a Prey/Predator game scenario and is
simulated by the framework of Cultural Algorithms. This
game can be played by as many as five human players. If less
than five; the complementary players are AI-Controlled
players. Basically, five predators exist; each player takes the
role of one predator. At each time step, a subset of
individuals is controlled by each predator. Individuals are
directed to move between patches by each predator
according to the power level of each predator. The more the
power (score) of a predator, the more its attraction for preys
to its own patch. Here, all five players are AI-controlled
using the Cultural Algorithm and their actions are controlled
by the MVT. The proposed game is viewed as an
optimization problem for finding a treasure and is measured
by an engineering optimization problem. Competitive
results are shown with some well-known optimization
techniques for the same problem.

In future work, we will gradually add in human players and
evaluate their strategies against the basic strategies produced
by the Cultural Algorithm.

Fig. 11: The Landscape in Time Step 30.

Fig. 13: The Landscape in Time Step 500.

Fig. 10: The Landscape in Time Step 100.

Fig. 9: The Landscape in Time Step 1.

1-4244-0464-9/06/$20.00 2006 IEEE. 124 CIG'06 (May 22-24 2006)

REFERENCES
[1] Eberhart, R. C., and Kennedy, J. (1995). A new optimizer using

particle swarm theory. Proceedings of the Sixth International
Symposium on Micro Machine and Human Science, Nagoya, Japan,
39-43. Piscataway, NJ: IEEE Service Center.

[2] Dorigo M., V. Maniezzo & A. Colorni (1996). The Ant System:
Optimization by a colony of cooperating agents. IEEE Transactions
on Systems, Man, and Cybernetics-Part B, 26, 1, 29-41

[3] Reynolds, R., (1994). An introduction to Cultural Algorithms.
Proceedings of the 3rd Annual Conference on Evolutionary
Programming, Sebald, A.V., Fogel, L. J. Ed. World Scientific
Publishing, River Edge, NJ, pp., 131-139.

[4] Reynolds, R. G. (1978). “On Modeling the Evolution of Hunter-
Gatherer Decision-Making Systems”, Geographical Analysis, 10(1),
31-46.

[5] Wynne C. D. (2001). Animal Cognition - The Mental Lives of
Animals. Palgrave Macmillan, Great Britain.

[6] Clayton, N. S., Griffiths, D. P., and Dickinson A. (2000). Declarative
and Episodic-like Memory in Animals: Personal Musings of a Scrub
Jay, in The Evolution of Cognition. Edited by Heyes, C. and Huber,
L. the MIT Press, Cambridge, Massachusetts.

[7] Peng, B., (2005). “Knowledge and population swarms in Cultural
Algorithms for dynamic environments,” PhD dissertation, Department
of Computer Science, Wayne State University, MI, US.

[8] Chung, C., and Reynolds, R., (1998). CAEP.an evolution-based tool
for real-valued function optimization using Cultural Algorithms.
International Journal on Artificial Intelligence Tools, vol. 7, no. 3,
pp. 239-291.

[9] Reynolds, R. G., "An Adaptive Computer Model for the Evolution of
Plant Collecting and Early Agriculture in the Eastern Valley of
Oaxaca", in Guila Naquitz: Archaic Foraging and Early Agriculture in
Oaxaca, Mexico, K. V. Flannery, Editor, Academic Press, 1986. pp.

[10] Jin, X., and Reynolds, R., (1999). Using knowledge-based
evolutionary computation to solve nonlinear constraint optimization
problems: a Cultural Algorithm approach. In Proceeding of the 1999
Congress on Evolutionary Computation, pp. 1672-1678, Washington
DC, US.

[11] Reynolds, R., and Saleem, S., (2005). The impact of environmental
dynamics on cultural emergence: Perspectives on Adaptations in
Natural and Artificial Systems. Oxford University Press, 253-280.

[12] Reynolds, R. G., and Ostrowski, D.*, “Using Cultural Algorithms to
Evolve Strategies for Recessionary Markets”, in Proceedings of IEEE
International Congress on Evolutionary Computation, Portland, OR,
June 19-24, 2004, pp: 1780-1785.

[13] Charnov, E. L. (1976). Optimal foraging: the marginal value theorem.
Theoretical Population Biology, 9, 129-136.

[14] Reynolds, R., Whallon, R., Ali, M., Zadegan, B., (2006). Agent-
Based Modeling of early Cultural Evolution. IEEE World Congress
on Computational Intelligence

[15] Stephens, D.W. and J.R. Krebs. (1986). Foraging theory Princeton,
NJ: Princeton University Press.

[16] Hansen, L., and Salamon P., (1990). Neural network ensembles. IEEE
Transactions on Pattern Analysis and Machine Intelligence, vol. 12,
no. 10, pp. 993-1001.

[17] Reynolds, R., Peng, B., (2004). Cultural Algorithms: modeling of how
cultures learn to solve problems. In 16th IEEE International
Conference Tools with Artificial Intelligence (ICTAI’04), pp.166 –
172.

[18] Reynolds R., Peng B., and Alomari, R., (2006). Cultural Evolution of
Ensemble Learning for Problem Solving. IEEE World Congress on
Computational Intelligence (WCCI’06), July, Canada.

[19] Reynolds R., Peng B., and Alomari, R., (2006). The Role of Culture
in the Emergence of Decision-Making Roles: An Example Using
Cultural Algorithms. IEEE Swarm Intelligence Symposium 2006
(SIS’06). May, Indiana, USA.

1-4244-0464-9/06/$20.00 2006 IEEE. 125 CIG'06 (May 22-24 2006)

Capturing The Information Conveyed By

Opponents’ Betting Behavior in Poker

Eric Saund
469 Clifton Avenue

San Carlos, CA 94070
saund@alum.mit.edu

Abstract— This paper develops an approach to the capture
and measurement of the information contained in opponents’
bet actions in seven card stud poker. We develop a causal model
linking downcards with hand strength, thence to bet actions.
The model can be inverted to infer probability distributions
over possible downcards from bet actions, given knowledge of
opponents’ bet policies. For experimental purposes, we propose
a simple yet plausible “default” bet policy including deceptive
plays. In simulated games, this apparatus is used to compare
the Kullback-Leibler information measure between inference
of players’ hand strength based on dealt cardsand players’
bet actions, versus inference of hand strength based on dealt
cards only. We experimentally associate the K-L divergences
with the win-lose rates for simulated players who either do or
do not exploit knowledge of opponents’ bet actions. Opponent
inference carries up to a 36% information advantage over a
cards-only player playing the same betting policy, and is worth
on the order of .15 bets/hand.

Keywords: poker, information, stud, hand type, opponent
model

I. I NTRODUCTION

Simply by virtue of compounding complexity, natural and
simulated mechanistic worlds present many unconquered
challenges for modeling and reasoning by artificially intelli-
gent systems. The challenges become vastly more difficult
with the introduction of other intentional agents. If you
think it’s a challenge to keep weeds and bugs out of your
garden, try fending off gophers, squirrels, and raccoons. A
major goal for Artificial Intelligence in games is to develop
ways to exploit the information conveyed by the behavior of
intentional opponents. Opponents’ actions are typically based
on knowledge, beliefs, goals, and plans the subject player is
not privy to. But with sufficient wisdom, these actions can
be “read” to gain information about the opponents’ hidden
states.

The game of poker deals a prototypical example. The
objective state of the game consists of possession of cards,
some of which are held privately, and some of which are
known to other players. Play decisions (bet/fold actions) are
made on the basis of perceived relative hand strength; knowl-
edge about opponents’ hands beyond that objectively visible
through displayed cards is of immense value. The structure of
betting in poker is designed such that player actions convey
information about their undisclosed cards. Stronger hands
are incented to bet more heavily, but to do so broadcasts this
information, so that opponents may exploit the telegraphed
knowledge to better decide on their own plays. Hence the

most famous aspect of poker is the use of deception in the
form of bluffing and slowplaying to mislead opponents about
one’s actual hand strength. Bluff and slowplay bet actions
run counter to actual hand value, however. This leads to
perplexing tradeoffs, efforts to outguess opponents, and all
manner of psychology.

Poker has therefore been recognized as a model for broader
classes of competitive situations involving uncertain belief
about objective states, intentional opponents whose plans,
goals, and belief states can only be inferred from partial
and uncertain evidence, and promotion ofinformation to the
status of an asset to be managed along with objective ones.
Examples include warfare [5], [6], and business [10].

This paper attempts to take one step toward the develop-
ment of a theoretically sound and computationally practical
framework for analyzing and exploiting information con-
veyed by intentional opponents in seven card stud poker. The
form of poker enjoying by far the greatest public visibility
and AI game interest is Texas Hold’em. We believe our
formulation and results to be broadly applicable, but we focus
on seven card stud because this game presents a particularly
rich texture of possible outcomes and knowledge disclo-
sure as players’ individual hands evolve through successive
rounds of dealing (known as “streets”), each accompanied
by rounds of betting.

Our initial objective is simply to measure the information
conveyed by bet actions, in comparison to the information
offered by the visible cards alone. To do so requires the
development of a great deal of apparatus modeling the
relationship between dealt cards and sensible betting actions,
and this necessarily involves modeling of rational players’
decision-making processes to some rudimentary degree. The
framework will accept more sophisticated opponent models
as they are developed.

The paper proceeds as follows. Through the imaginary
game of “face-up poker”, Section II reviews the logic of
correct betting in poker, and it develops a forward causal
model relating held cards to bet actions. The model extends
directly to true poker in which some cards are hidden.
Section III describes how the model can be inverted to infer
probability distributions over opponents’ possible downcards,
given opponent models of those players’ betting policies.
Section IV introduces a simple form of such betting policies,
and calls out two useful instances, the “honest player” who
bets only by value, and a simple default deceptive player who

1-4244-0464-9/06/$20.00 2006 IEEE. 126 CIG'06 (May 22-24 2006)

executes some degree of slowplaying and bluffing. Section
V introduces a measure of information gained by reading
opponents’ bet actions in comparison with only observing
dealt cards. Section VI presents experimental results of em-
pirical measurements of this information gain for a corpus of
simulated games. This section also ties this information gain
with net win/lose rates for players who do or do not exploit
knowledge of opponents’ bet actions. Section VII concludes
by discussing the results and their possible implications for
live games.

II. T HE LOGIC OFBETTING IN POKER

The logic of betting in poker is well described by Sklansky
[12]. It is best understood by imagining a game of poker
in which all cards are dealt face up, so that every player
sees all of their opponents’ cards as well as their own.
Then, in principle every player can calculate their chances
of having the best hand at showdown. Five-card hands are
ranked by hand type, e.g. “Two pair, Tens and Fours with a
Queen kicker.” Given a partial hand and knowledge of cards
remaining in the deck to be dealt, one may compute a proba-
bility distribution over the final hand achieved at showdown.
Call this a hand type probability distribution, or htpd for
short. This calculation can be performed or approximated
by various means, including sampling simulated deals of
the remaining cards, by enumeration[11], or by combinatoric
analysis extending the reasoning of [1].

Given a set ofhtpds possessed by active players (players
who have not folded their hands) the probability that player
i’s final showdown hand will beat all others is the conjunction
of events that his final hand typeht beats each other player
j, summed over all hand typesk, weighted by the probability
pi(htk) that playeri ends up with hand typehtk:

p(wini) =
∑

k

pi(htk)
∏

j 6=i

k∑

k′=0

pj(htk′) (1)

The final sum term in (1) assumes that hand types are rank
ordered from worst (htk′

0
= 2-3-4-5-7) to best (htk′

max
=

ROYAL-STRAIGHTFLUSH).
Figure 1 shows thehtpds for two stages of the sample

poker game whose game history is given in Figure 8.
Correct betting logic seems straightforward. Any player

whose probability of showing the winning hand is greater
than 1/N should bet or raise, whereN is the number of
active players. Any player whose probability of winning is
greater than their effective odds should not bet or raise, but
they should check or call. Effective oddse is the ratio of
the amount a player will have to contribute to the pot, to the
final pot. Money already in the pot justifies calls by players
who have lower probabilities of winning. The more money
already in the pot due to ante or previous betting rounds,
the worse probability of winning a player may have and it
still be worthwhile to call. Calculation of effective odds can
be tricky, however, because it depends on predicting whether
other players will bet, call, or fold as the game progresses.
In this paper we employ a very simple model of effective

Fig. 1. Hand type probability distributions (htpds) showing the probability
of achieving a final showdown hand, at stages 3B (following betting on 3rd
street) and 5D (following the deal at 5th street), for the sample game of
Figure 8. Only three htpds are shown at each stage because seats 1, 2,
4, and 6 folded at stage 3B. Possible hand types are ordered left to right
from worst to best. Major hand categories listed are HC (HighCard); PH
(Pair-Highcard); TP (Two-Pair); T (Trips); S (Straight); FL (Flush); FH
(FullHouse), Q (Quads). The numbers shown are the probabilities at these
stages that each hand will win, and the entropiesH at each stage.

odds which assumes that in addition to the current pot size,
all currently active players contribute to the pot one bet per
street, through successive streets to showdown.

Thus a model for the causal structure of betting in face-up
poker is shown in Figure 2. A player’s bet action depends
on the effective odds, number of active players, and on their
probability of winning at showdown. Probability of winning
depends on their and their opponents’htpds. Htpds depend
on cards held and cards available to be dealt.

This causal chain may be extended to true poker in which
some cards are held privately. In seven card stud, the first
two and the seventh street cards are dealt face-down. Figure
3 shows the extended model from the point of view of
player i who knows his own downcards but not those of
his opponents. Uncertainty about opponents’ downcards can
be represented in terms of a probability distribution over
all possible combinations of downcards that the opponent
may possess. For seven card stud this may be represented

1-4244-0464-9/06/$20.00 2006 IEEE. 127 CIG'06 (May 22-24 2006)

Fig. 2. Rational betting model for playeri in face-up poker.

Fig. 3. Causal betting model for playeri who knows his own downcards
but represents opponents’ downcards as the probability distributionspdd.

in a vector of length 52 x 51, indexed by the variable,l.
Call this apossible-downcard-distribution, or pdd for short.
The notation,ipddj refers to the distribution of playerj’s
possible downcards from the point of view of what is known
or believed by agenti, who may be a player or some other
observer.

Some entries in thepdd vector may be zeroed out imme-
diately, namely those downcard pairs that include any card
that has been dealt face up to any player. Additionally, every
player knows their own two downcards (or three at 7th street)
which rule out their inclusion in any opponent’spdd. The
goal of reading opponents’ cards through their bet actions
amounts to differentially weighing the remainingipdd entries
so as to reflect each opponent’s apparent hand strength.

Given player j’s possible downcard distributionpddj ,
htpdj is computed by integrating thehtpds over possible
downcard pairsl, weighted by each pair’s probabilitypddj,l:

htpdj =
∑

l

p(pddj,l)hptd(pddj,l, upcardsj) (2)

Obviously this operation can be computationally ex-
pensive so in practice it is important to have effi-
cient implementation of the downcard-to-hptd calculation,
htpd(pddj,l, upcardsj).

A second factor enters into the extension of Figure 2 to true
poker. This is the addition of players’ bet/call/fold policies.
A basic strategy is to bet/call/fold based on estimates of
probability of winning at showdown and effective odds, as
described above. This is known as betting for value. But
bet actions may be influenced by another reason, namely to
induce other players to miscalculate one’s own hand strength.
Therefore, a player’s bet strategy may incorporate deceptive
plays which contradict the player’s strictly value-based ra-
tionale for checking/betting or folding/calling/raising. Sklan-

sky’s Fundamental Theorem of Poker states that one is
advantaged to have one’s opponents bet differently from the
way they would bet if they knew one’s downcards.

Optimal betting behavior including deceptive betting re-
quires knowledge of how one’s opponents will respond to
the various bet actions one may take. These responses might
be dependent on the opponents’ beliefs about oneself. Even
if opponents’ beliefs and strategies were known precisely,
optimal betting would then require forward chaining through
many combinations of possible plays and responses. The
conduct of this reasoning lies beyond the scope of this paper
but is the topic of much of the poker AI literature [8], [2],
[7]. Here we focus on trying to puzzle out opponents’pdds
based on relatively simple models of their betting policies.

Summary of Notation: as subscripts, the variablesi andj
index players in a game; as superscript prefixes they index
agents who possess knowledge or belief, including players
and other observers. The variablek indexes hand types.
The variablel indexes possible downcard pairs (or triples
at seventh street).

III. I NVERTING THE CHAIN TO INFER DOWNCARDS

A key problem faced by a poker player is to make effective
use of the information conveyed by opponents’ betting be-
havior (check/bet and fold/call/raise actions). This amounts
to inverting the forward model of opponents’ betting in order
to adjust beliefs over the opponent’s possible downcards,
represented in thepdd. In doing so, we must account for the
possibility that opponent bet policies may include deceptive
bluffs and slowplays.

Suppose that we know the opponent intimately, such that
for any pair of downcards, plus observed upcards (both
showing and folded) and remaining active players (we refer
to this state information as thetable, t), we know the
probability that in this situation they will execute a particular
bet action bj : bj ∈ {check, bet} if bet-toj = 0; bj ∈
{fold, call, raise} if bet-toj > 0. In other words, if they
hold downcardsdcl and the bet to them is zero, we know
the probability that they will check versus bet, or, if an earlier
player has already opened betting, we know the probability
that they will fold vs. call vs. raise. Let us express this
knowledge as

pt(bj |dcl), (3)

the probability that opponentj will perform bet actionbj

given downcardsdcl, under the table circumstancest. We
treat both opponent bet actions and belief about unobserved
opponent downcards as random variables, while we treat
knowledge of their conditional probability relation as being a
known function which is contingent on the state of the table.
This representation reflects the fact that opponent players
may act nondeterministically, as is in fact recommended by
game theory [4] as well as poker textbooks [12], [13].

When the opponent executes a bet actionbj , we may in-
voke Bayes’ rule to perform inference about their downcards:

pt(dcl|bj) =
pt(bj |dcl)p(dcl)∑
l pt(bj |dcl)p(dcl)

(4)

1-4244-0464-9/06/$20.00 2006 IEEE. 128 CIG'06 (May 22-24 2006)

The prior p(dcl) is the belief held that the opponent has
downcardsdcl before we observed the bet action. This prior
serves the role of carrying information forward from one
street to the next. This calculation effectively performs a
re-weighting of the possible-downcard-distribution by the
likelihood of the bet action, followed by normalization.

Through implicit means, this mechanism achieves fairly
subtle and complex reasoning. Opponents’ actions of plac-
ing a bet (as opposed to checking or calling) tend to
reweigh more heavily the possible downcard pairs that would
offer that opponent a greater chance of winning given
their upcards. Moreover, raises and re-raises weigh stronger
downcards more heavily still, through an additional mecha-
nism. Because the model has every player re-estimating the
strength of every other players’ hand after every action, when
Player A bets, every other player will necessarily increase
their belief that Player A has strong cards, which in turn
decreases their beliefs in their own chances of winning. This
narrows the pool of possible downcards that any player must
hold to meet Player A’s strength. So if Player B then goes
on to raise or re-raise anyway, then for all of the players
trying to estimate what Player B must be holding, (modulo
bluffing) only the much stronger possible downcards for B
will gain significant probability mass through the application
of equation 4.

In a simpler game model and different network architec-
ture, a Bayesian view of uncertainty and opponent modeling
in poker was taken by Korb et. al. [9]. Following the tradition
of Bayesian networks where conditional probabilities are
straightforwardly represented by transition matrices, their
work was designed for the probabilities to be acquired and
modified by learning; a consequence however was a struggle
with the curse of dimensionality due to the combinatoric
complexity of the game.

For heads-up Hold’em games, Southey et. al. used
Bayesian inference to select opponent models from a plau-
sible prior distribution of models after relatively few ob-
servations [14]. Opponent hand strength was not modeled
directly, but, for a simplified version of Hold’em it could
be inferred from opponents’ bet behavior after sufficient
training. Because of the size of full heads-up Hold’em
poker, extension to the full game required simplification of
the model. Nonetheless, intelligent responses to differential
opponent play of their partially hidden hands could be
demonstrated.

IV. SIMPLE MODEL FORRATIONAL BETTING BEHAVIOR

The opponent knowledge function (3) may be quite com-
plex and difficult to discern. We propose to model it by
appealing to the forward causal model for betting expressed
in Figure 3. While the table situational factort can be quite
complex, significant elements will always be found in the
two key parameters, probability of winning and effective
odds. Generally, any halfway decent player will fold most
of their losing hands (i.e. hands whose chances of winning
are below the effective odds) (while perhaps bluffing with
a few), raise their winning hands (i.e. hands whose chances

of winning are greater than1/N)(while perhaps slowplaying
some of these) and call their intermediate hands. Under this
reasoning, the opponent model (3) may be factored into two
simpler components:

pt(bj |dcl) ≈ pe,N (bj |winj)p(winj |dcl), (5)

This factored opponent model employs the probability of
opponentj winning at showdown, given the downcards they
hold, as a random variablewinj that isolates their betting
policy from their estimate of the overall strength of their
hand. The complex situation embodied in the term, table,t in
(3) decomposes now into two simpler terms, one containing
effective odds and number of active players, and the other
relating to the player’s chances of winning at showdown
according to the cards remaining to be dealt from the deck,
and estimates of other players’ hand strengths.

The termp(win|dcl) was discussed in Section II; this is
the probability of winning under thehtpd computed from
the downcardsdcl, the upcards, and the remaining deck. All
that remains to express the factored opponent model is to
define the opponents’ betting policy as a function of their
probability of completing the winning showdown hand, the
effective oddse, and number of other active playersN . This
form of representation for player betting policy is shown
by example in Figure 4. The different regions of Figure 4a
represent probability of check vs. bet, while the different
regions of Figure 4b represent probability of fold vs. call
vs. raise. Different styles of play may be interpreted as
different shapes of these bet policy graphs. An interpretation
of tight play would be a shift of the fold/call boundary to
the right, corresponding to a requirement for a greater chance
of winning to stay in the hand; aggressive play would shift
the check/bet and call/raise boundaries to the left. “Honest”
players who bet only for value would shrink to zero the bluff
and slowplay probability regions, while very deceptive styles
of play would increase these.

Clearly, this is a vast simplification of the betting strategy
used by advanced players, and it is dumb in the AI sense
that it relies heavily on calculation while it lacks strategy.
Notably, this model fails to maintain a stance throughout a
hand (e.g. a sustained bluff), or to decide how to bet based
on anticipated responses of other players, such as planning
and execution of check-raise maneuvers.

Nonetheless, we assert that the proposed factored betting
policy model approximates a baseline default player model
that is suitable for the purposes of this study, which is to gain
insight into the quantity and value of information gained by
exploiting knowledge of opponents betting behavior. More
sophisticated modeling of betting behavior as representedby
(3) may be substituted cleanly into the framework devised
here, and is left for future work.

As a technical matter, it is useful to apply a simple
transformation in the definition of the policy graphs. Default
betting policy is expressed as a function of three variables,
probability of winning, effective oddse, and number of active
players,N . Instead of defining a separate pair of graphs

1-4244-0464-9/06/$20.00 2006 IEEE. 129 CIG'06 (May 22-24 2006)

Fig. 4. Plausible betting policies for a deceptive poker player.

a prob slowplay check .2
b prob bluff bet .05
c -log prob win offset check/bet .1
d prob slowplay call .2
e prob bluff raise .05
f -log prob win offset call/raise .3
g -log prob win offset call/raise .2
h -log prob win offset fold/call .1

TABLE I

PARAMETERS OF THE DEFAULT BETTING MODEL

USED TO SIMULATE DECEPTIVE PLAYERS.

for every N , we apply the transform,p′ = − logN (p), that
eliminatesN as a degree of freedom in the graphs. For the
experiments described in the following sections, we estab-
lished a default player model with piecewise constant regions
for each bet action, blended at their boundaries by linear
interpolation in thelogN transform space. Parameters for this
betting policy are shown in Table I, and the corresponding bet
policy graphs in Figure 5. These were chosen on an ad hoc
basis over approximately 100 simulated games by adjusting
parameters until the simulated players appeared to be making
sensible checking, betting, calling, folding, and raisingdeci-
sions.1 A sampling of games under these parameters can be
viewed at http://www.saund.org/poker/sample-games.html.

V. I NFORMATION GAINED BY INFERENCE FROMBET

ACTIONS

We are now in a position to experimentally measure the
information gain and value of exploiting opponents’ betting

1All seven card stud poker games discussed in this work used the
following fixed limit betting structure: Ante: .25; Bringin:.25; 3rd & 4th
streets: 1.0; 5th, 6th & 7th street: 2.0; maximum four raises per street. There
is no house rake.

Fig. 5. Bet policies defining the default player model used by simulated
players in determining their bet actions, and used to infer hand strength
from opponents’ bet actions. Note that probability of winning is expressed
in the− log

N
coordinate transform, whereN is number of active players.

behavior in addition to knowledge of dealt cards in seven
card stud. Let us considerN + 2 viewpoints on the dealt
cards. Each of theN players knows all of the cards that
have been dealt face up, plus their own two downcards (three
at seventh street). Thepublic knowledgeplayer is like an
observer on the sidelines; they know only what cards have
been dealt face-up so are no longer in the deck. At the other
extreme, theomniscientobserver knows all of the cards that
have been dealt to every player, whether face-up or face-
down. The omniscient player cannot predict cards yet to be
dealt at random from the remaining deck, but they are in the
best position to predict the outcome of the game, in terms
of eventual showdown hands.

We engineer simulated games in which each simulated
player i maintains the following information resources:
• ihtpd for his own hand, based on his current hand and

cards still possibly remaining the deck, according to that
player’s knowledge.

• ipdds for each of his opponents. Opponents’ possible
downcards are successively pared as cards are dealt
face up throughout the game. Additionally,pdds are
reweighed for opponents’ betting actions according to
equation (4).

• ihtpds for each of the opponents, generated from the
weightedipdds according to equation (2).

• estimated probability of each player winning at show-
down, calculated from theihtpds according to equation
(1).

In the simulation, each player bets randomly according to
the default betting model probabilities described in Section
IV, and each player has a perfect opponent model, used in
re-weighting thepdds, that every other player bets according
to this betting policy.

The experiment is instrumented with the omniscient view
of every player’s downcards, hence their truehtpds. The
experimental subject is the public knowledge observer. The
public knowledge observer maintains estimatedpdds, htpds,
and chances of winning for every player, but it lacks knowl-

1-4244-0464-9/06/$20.00 2006 IEEE. 130 CIG'06 (May 22-24 2006)

edge of any downcards. Each player possesses slightly more
information than the public knowledge observer (namely that
player’s two downcards), but the public knowledge observer
constitutes a universal standpoint that does not depend on
privileged information and is best suited to extending this
analysis to real poker games observed from the sidelines.

We measure the information gained by exploiting obser-
vations of bet actions by comparing the public knowledge
observer’s probability estimate of each player winning,q,
with that of the omniscient viewpoint,p. From omniscient
knowledge, at any stage of the game the entropyH of the
outcome probability distribution is

H = −
∑

i

pi log
2
pi. (6)

One way of interpreting the entropy is this. For any game
outcome, if the known probability of playeri winning is pi,
then the Shannon theoretical optimum amount of information
required to communicate that game’s eventual outcome is
− log

2
(pi). The entropy is the average of this, i.e. the aver-

age information required to communicate outcomes sampled
from the distributionp.

If instead one possesses an imperfect estimated probability
of winning distribution,q, then the average information cost
of transmitting the outcome of games is−

∑
i pi log

2
qi.

The difference between this quantity and the actual entropy
gauges the amount of information lost by the distributionq
as compared to the true distributionp; this is the Kullback-
Leibler divergence,

KL = p log(p/q). (7)

If q represents any agents’ imperfect estimates about the
uncertain outcome of the game, the K-L divergence tells how
far this estimate is from the optimal estimate reflected in the
true entropyH.

VI. EXPERIMENTAL RESULTS

In simulated games, we may compute the K-L divergence
between the omniscient probability for each player winning,
p, and the estimated distributionq under two conditions. The
cards-only condition updates public knowledgepdds only
by pruning possible downcards as they are dealt face up
and hence removed from the deck. This condition gives rise
to public knowledge probability of winning distributionsqc

that ignore bet actions. Thebet-inferencecondition prunes
pdds in this way, but additionally uses players’ bet actions
to reweigh the public knowledgepdds as described in Section
III giving rise to prob-win distributionsqb that are informed
by bet actions and perfect opponent models.

Results for 1827 simulated games are plotted in Figure
6. The horizontal axis represents ten distinct information
stages of a seven card stud game. Stages 3D, 4D, 5D, 6D,
7D measure information immediately following dealing of
cards, while stages 3B, 4B, 5B, 6B, 7B occur following a
round of betting. The thick solid green line (lower solid line)
is the entropy of the probability of winning distributionpi.

Fig. 6. Information gain results.

The thin solid red line is thelog
2

of the number of players,
which corresponds to the average information cost when all
active players are believed equally likely to win. The dashed
lines are information measures for the cards-only and bet-
inference conditions. These are simply the entropy added
to the K-L distance for these conditions. The information
advantage of exploiting players’ bet actions is reflected in
the lower positioning of the cards-plus-bet-inference curve
with respect to the cards-only curve.

Figure 6 averages these measures over the 1827 simulated
games. Game stages are included in the average only when
they include at least two active players. To give a sense
of the diversity of games over which the average is taken,
Figure 7 plots the entropies of a subsample of individual
games. In any individual game the entropy, or uncertainty
about which player will win if they stay through showdown,
tends to decrease. But by the luck of the cards, this can
increase if a player suddenly catches a very good card. On
average, however, the entropy decreases except at stage 6B.
By 6th street, in most games, most players have folded. The
simulated players are smart enough to fold if it appears clear
that they have little chance of winning, that is, if the entropy
for the game is probably low and they are on the losing
end. Therefore most low entropy games are concluded by
Stage 6B and the average entropy over remaining live games
increases.

The numbers below the graph of Figure 6 tabulate the
following quantities: the number of games still going at
that stage so included in the average; average log number
players; average entropy; average K-L distances under the
two conditions; and fractional information gain obtained by
exploiting opponents’ bet actions, as opposed to calculating
prob winning based only on dealt cards. The greatest percent-
age gain is at Stage 6B, immediately following the betting
at sixth street, when the bet-inference public knowledge

1-4244-0464-9/06/$20.00 2006 IEEE. 131 CIG'06 (May 22-24 2006)

Fig. 7. Entropies for a sampling of 80 games played by the default
simulated players. Circles identify two stages in the game whose history
is shown in Figure 8. Thehtpds at these stages are shown in Figure 1.

.

Fig. 8. Game history for a sample game whose entropy is plotted inred
in Figure 7. Notation: “.” denotes lead actor at each street;“B”: Bring-in
bet; “k”: check (no one checked in this particular game); “b”:bet; “f”: fold;
“c”: call; “r”: raise.

observer gains a 36% information advantage over the cards-
only observer. The percent advantage drops at Stages 7D and
7B simply because at this point all the cards have been dealt
and the omniscient observer knows the outcome of the game.
The optimal baseline entropy is zero here so the percentage
gain of the bet-inference condition is smaller even though
the magnitude of its information gain over the cards-only
condition increases. (A nonzero entropy at Stages 7D or 7D
indicate that a tie between two or more players occurred in
a few games.)

An interesting feature of Figure 6 is that the cards-only
condition for predicting game outcome actually performs
worse than chance at seventh street. This is an indication
that if a player remains in the game while their four upcards
show a weaker hand than opponents’, then this player must
have a strong hand hidden. The cards-only estimation of hand
strength has no way of accounting for this, while the bet-
inference condition successfully makes this inference in the
course of thepdd reestimation procedure described in Section
III.

It would be a mistake to read Figure 6 as suggesting that
estimation of opponents’ possible downcards is of little value

simply because the cards-only and cards-plus-bet-inference
curves look similar to the naivelog

2
N curve in comparison

to the true entropy. These curves were generated from
simulated games whose players followed tight-aggressive
deceptive bet policies dictated by Figure 5, and therefore the
active players at each street had undergone a severe, informed
self-selection procedure of folding perceived disadvantaged
hands. Note also that success in poker often hinges on
exploitation of relatively few big-pot hands; flat averages
of information gain such as Figure 6 may not reflect this
differential value of information.

How does this information advantage translate to win/loss
rates? We performed a second experiment in which three
players were constrained to be cards-only players by per-
mitting them to use only their visible card knowledge in
estimating their probability of winning, and hence in deciding
their bet actions. In other words, thepdd re-estimation
procedure exploiting opponents’ bet actions was omitted for
these players. The remaining four players were provided
this information; their opponent models used to infer hand
strength from bet actions accurately reflected that four play-
ers were making use of the bet-inference public knowledge
htpds in calculating their own chances of winning prior to
every bet decision. These four players used the cards-only
public knowledgehtpds as a best available approximation
to the beliefs held by the constrained, cards-only players,
who know but obviously do not share their own downcard
information.

It is well known that poker win/lose outcomes occur with
high variance. Over 8977 simulated games, the resulting
win/lose rates are shown in Figure 9. The four bet-inference
players won on average .14 bets/game, while the three cards-
only players lost on average .19 bets/game. This is clearly
attributable to the cards-only players not folding when they
should have. The bet-inference players bet an average of
1.57/hand and won pots at a average rate of 1.71/hand
(netting .14/hand). The cards only players won significantly
more pots, 2.50/hand, but at the cost of betting an average
of 2.69/hand.

VII. D ISCUSSION ANDCONCLUSION

It is by no means surprising that it is advantageous to
exploit information transmitted by opponents’ bet actionsin
poker. This paper has introduced a framework for doing so in
a way that delineates the roles of exposed cards, calculation
and comparison of possible hand outcomes, rational bet
strategy, styles of play, opponent models, and knowledge
and belief carried by players and observers. Using this
apparatus, we have obtained experimental results quantifying
information gain and its implications for win/lose rate by
simulated deceptive players who possess perfect models of
their opponents’ betting policies.

To extend these results to live poker games would raise
several major challenges.

First, unless studies could be conducted from behind the
House or game host’s omniscient viewpoint, in real games
we would lack information about players’ downcards except

1-4244-0464-9/06/$20.00 2006 IEEE. 132 CIG'06 (May 22-24 2006)

.

Fig. 9. Win/lose rates per hand for seven card stud players using the
default betting model for players who do infer information about opponents’
hand strengths (BI seats 1, 2, 5, 7) versus those who use only visible card
information (CO seats 2, 4, 6). Averages are over 8977 simulated games.

when they stayed in to showdown. This limitation would
prohibit accurate calculation of the omniscient probabilities
of winning through the game. In good seven card stud
games such disclosure happens relatively rarely. Moreover,
the omniscient prob-win distribution requires knowledge of
all dealt cards, not just those of players who reveal their
downcards at showdown. This information is virtually never
available. Conceivably, win/lose probabilities under differ-
ent situations can be estimated from actual outcomes and
extrapolated from whatever downcards do get exposed. It
seems however that the sample size needed to approximate
omniscient knowledge would be prohibitive. Therefore, it
appears likely that Kullback-Leibler information measures
based on omniscient knowledge can be pursued only under
laboratory conditions.

Second, real games do not afford ready access to players’
bet policies. Human players especially are likely to decide
their bets on complex, variable, and contextually contingent
criteria. Experienced poker players enjoy the process of
observing other players and getting a fix on their styles of
play. This translates to a very nice challenge for machine
learning investigations, first to attempt to model and map the
varieties of styles, and second to bring this knowledge to bear
to infer particular opponents’ habitation in the large space
of playing styles, from a small number of observations. For
example, Southey et. al. have experimented with sampling
over prior distributions of possible opponents to enhance
belief in those whose behaviors fit that of observed opponents
[14].

This paper’s experimentally observed benefits of oppo-
nent modeling are in a sense an upper bound because our
simulated players possess perfect models of their opponents’
betting policies. In more realistic scenarios, opponent mod-
els will be imperfect and players’ policies may shift over
time. The degradation in information advantage due to these
factors is subject to further experimental investigation.

Finally, the use of artificial intelligence to offer real-time
advice or automated play would require not only retrospec-
tive analysis of opponents’ likely hand strength, but also
forward reasoning about the expected value of potential bet
actions. This is the subject of much of the work in AI for
poker. One benefit of forward reasoning will be strengthening
of the estimate of effective odds by better estimating the
number of opponents to remain active through future rounds
of betting. The effective odds calculation in the present study
is quite rudimentary, although in the formulation presented
systematic overestimates or underestimates in effective odds
can be mitigated by adjustment of the parameters of the
fold/call betting policy.

Poker is an important member of the class of games
for which effective play lies not simply in out-calculating
one’s opponent with regard to the objective state of the
game. Instead, poker is in a fundamental sense a game
of minds against minds. This paper offers a glimpse of
how we may cast in formal mathematical and algorithmic
terms the processes of trying to figure out what intentional
opponents know, what they believe, what opponents believe
about what oneself believes, ad infinitum. Because of the
myriad complexity and subtleties involved, poker would
appear to offer a model system for investigations of the
most perplexing epistemological questions of computational
intelligence engaging intentional agents.

REFERENCES

[1] B. Alspach;“7-Card Poker Hands”,
“http://www.math.sfsu.ca/∼alspach/comp20/”, 2000.

[2] D. Billings, L Pena, J. Schaeffer, D. Szafron; “Using Probabilistic
Knowledge and Simulation to Play Poker,”Proc. AAAI-99, 1999.

[3] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron; “The
Challenge of Poker,”Artificial Intelligence Journal, Vol 134(1-2), pp
201-240, 2002.

[4] D. Billings, “The First International RoShamBo Programming
Competition,” http://www.cs.ualberta.ca/ darse/rsb-results1.html, 1999.

[5] K. Burns; “Heads-Up Face-Off: On Stytle and Still in the Game of
Poker,” AAAI Fall Symposium on Style and Meaning in Language,
Art, Music, and Design, AAAI Technical Report FS-04-07, 2004.

[6] K. Burns, “Pared-down Poker: Cutting to the Core of Commandand
Control,” Proceedings of the IEEE Symposium on Computational
Intelligence and Games (CIG05), Essex University, Colchester, Essex,
2005.

[7] T.S. Ferguson, C. Ferguson, and C. Gawargy, “Uniform(0,1)
Two-Person Poker Models”,
“http://www.math.ucla.edu/ tom/papers/poker2.pdf”, 2004.

[8] D. Koller and A. Pfeffer, “Representations and Solutions for
Game-Theoretic Problems,”Artificial Intelligence,94(1), pp. 167-215,
1997.

[9] K.B. Korb, A.E. Nicholson, and N. Jitnah, “Bayesian Poker,” Proc. of
Uncertainty in Artificial Intelligence, pp. 343-350, Stockholm,
Sweden, August, 1999.

[10] J. McDonald,Strategy in Poker, Business and War,Norton, New
York, 1950.

[11] A. Prock; Pokerstove.com “http://www.pokerstove.com”, 2004.
[12] D. Sklanasky;The Theory of Poker,Two Plus Two Publishing,

Henderson, NV, 1987.
[13] D. Sklanasky, M. Malmuth, R. Zee;Seven Card Stud For Advanced

Players,Two Plus Two Publishing, Henderson, NV, 1989.
[14] F. Southey, M. Bowling, B. Larson, C. Piccione, N. Burch, and D.

Billings; “Bayes’ Bluff: Opponent Modeling in Poker,”Proc. 21st
Conf. on Uncertainty in Artificial Intelligence (UAI ’05), 2005.

1-4244-0464-9/06/$20.00 2006 IEEE. 133 CIG'06 (May 22-24 2006)

Modeling Children’s Entertainment in the Playware Playground

Georgios N. Yannakakis∗, Henrik Hautop Lund† and John Hallam‡
Mærsk Mc-Kinney Møller Institute for Production Technology

University of Southern Denmark
Campusvej 55, DK-5230, Odense
{georgios∗;hhl†;john‡}@mip.sdu.dk

Abstract— This paper introduces quantitative measure-
ments/metrics of qualitative entertainment features within inter-
active playgrounds inspired by computer games and proposes
artificial intelligence (AI) techniques for optimizing entertain-
ment in such interactive systems. For this purpose the innovative
Playware playground is presented and a quantitative approach
to entertainment modeling based on psychological studies in the
field of computer games is introduced. Evolving artificial neural
networks (ANNs) are used to model player satisfaction (interest)
in real-time and investigate quantitatively how the qualitative
factors of challenge and curiosity contribute to human enter-
tainment according to player reaction time with the game.
The limitations of the methodology and the extensibility of the
proposed approach to other genres of digital entertainment are
discussed.

Keywords: Entertainment modeling, intelligent interactive
playgrounds, neuro-evolution.

I. INTRODUCTION

Cognitive modeling within human-computer interactive
systems is a prominent area of research. Computer games,
as examples of such systems, provide an ideal environment
for research in AI, because they are based on simulations
of highly complex and dynamic multi-agent worlds [1], [2],
[3], and cognitive modeling since they embed rich forms
of interactivity between humans and non-player characters
(NPCs). Being able to model the level of user (gamer)
engagement or satisfaction in real-time can provide insights
to the appropriate AI methodology for enhancing the quality
of playing experience [4] and furthermore be used to adjust
digital entertainment environments according to individual
user preferences.

Features of computer games that keep children (among
others) engaged more than other digital media include their
high degree of interactivity and the freedom for the child
to develop and play a role within a fantasy world which
is created during play [5]. On the other hand, traditional
playgrounds offer the advantage of physical play, which
furthermore improves the child’s health condition, augment
children’s ability to engage in social and fantasy play [6], [7]
and provide the freedom for children to generate their own
rules on their own developed games. The ‘Playware’ [8] in-
telligent interactive physical playground attempts to combine
the aforementioned features of both worlds: computer games
and traditional playgrounds. This innovative platform will be
described comprehensively and experiments with children on
developed Playware games will be introduced in this paper.

Motivated by the lack of quantitative cognitive models of

entertainment, an endeavor on capturing player satisfaction
during gameplay (i.e. entertainment modeling) and providing
quantitative measurements of entertainment in real-time is
introduced in the work presented here. This is achieved
by following the theoretical principles of Malone’s intrinsic
qualitative factors for engaging gameplay [5], namely chal-
lenge (i.e. ‘provide a goal whose attainment is uncertain’),
curiosity (i.e. ‘what will happen next in the game?’) and
fantasy (i.e. ‘show or evoke images of physical objects or
social situations not actually present’) and driven by the
basic concepts of the theory of flow (‘flow is the mental state
in which players are so involved in the game that nothing
else matters’) [9]. Quantitative measures for challenge and
curiosity are inspired by previous work on entertainment
metrics [10] and extracted from corresponding game features
that emerge through the opponent behavior. A mapping
between the aforementioned factors and humans notion of
entertainment is derived using a game developed on the
Playware playground as a test-bed. Personalization is added
to the model through the player’s reaction (response) time
with the game environment.

A feedforward ANN is trained through artificial evolution
on gameplay experimental data to approximate the function
between the examined entertainment factors and player sat-
isfaction with and without the presence of individual player
characteristics. Results demonstrate that the ANN maps
a function whose qualitative features are consistent with
Malone’s corresponding entertainment factors in that non-
extreme levels of challenge and curiosity generate highly en-
tertaining games. Moreover, we show that player’s response
time has a positive impact on providing a more accurate
model of player satisfaction where children (classified by
their response time) project different requirements on the
levels of the examined entertainment factors for the game to
be entertaining. The generality of the proposed methodology
and its extensibility to other genres of digital entertainment
are discussed as well as its applicability as an efficient AI
tool for enhancing entertainment in real-time is outlined.

II. ENTERTAINMENT MODELING

The current state-of-the-art in machine learning in com-
puter games is mainly focused on generating human-like [1]
and intelligent characters (see [3], [11], [12] among others).
Even though complex opponent behaviors emerge through
various learning techniques, there is no further analysis of
whether these behaviors contribute to the satisfaction of

1-4244-0464-9/06/$20.00 2006 IEEE. 134 CIG'06 (May 22-24 2006)

the player. In other words, researchers hypothesize that by
generating intelligent opponent behaviors they enable the
player to gain more satisfaction from the game. According
to Taatgen et al. [13], believability of computer game op-
ponents, which are generated through cognitive models, is
strongly correlated with enjoyable games. These hypotheses
may well be true; however, since no notion of interest or
enjoyment has been explicitly defined, there is no evidence
that a specific opponent behavior generates enjoyable games.
This statement is the core of Iida’s work on entertainment
metrics for variants of chess games [14].

Previous work in the field of entertainment modeling is
based on the hypothesis that the player-opponent interaction
— rather than the audiovisual features, the context or the
genre of the game — is the property that primarily con-
tributes the majority of the quality features of entertainment
in a computer game [10]. Based on this fundamental assump-
tion, a metric for measuring the real-time entertainment value
of predator/prey games was established as an efficient and
reliable entertainment (‘interest’) metric by validation against
human judgement [15], [16]. According to this approach, the
three qualitative criteria that collectively define entertainment
for any predator/prey game are: the appropriate level of chal-
lenge, the opponent behavior diversity and the opponents’
spatial diversity.

Currently there have been few attempts for adjusting the
game’s difficulty by reinforcement learning [17] in a fighting
game or by the use of genetic algorithms [18] in the ‘Snake’
game. However, these studies are based on the empirical
assumption that challenge is the only factor that contributes
to enjoyable gaming experiences.

Following the theoretical principles reported from Yan-
nakakis and Hallam [10], this paper is primarily focused on
the game opponents’ behavior contributions to the real-time
entertainment value of the game. However, instead of being
based on empirical observations on human entertainment,
the work presented here attempts to introduce quantitative
measures for Malone’s entertainment factors of challenge and
curiosity and extract the mapping between the two aforemen-
tioned factors and the human notion of entertainment based
on experimental data from a survey with children playing
with Playware playground (see Section III).

III. PLAYWARE PLAYGROUND

Children’s and youth’s play has seen major changes during
the last two decades. New emerging playing technologies,
such as computer games, have been more attractive to
children than traditional play partly because of the interac-
tivity and fantasy enhancement capabilities they offer. These
technologies have transformed the way children spend their
leisure time: from outdoor or street play to play sitting in
front of a screen [19]. This sedentary style of play may have
health implications.

A new generation of playgrounds that adopt technology
met in computer games may address this issue. More specif-
ically, intelligent interactive playgrounds with abilities of

Fig. 1. The tiles used in the Playware playground.

adapting the game according to each child’s personal pref-
erences provide properties that can keep children engaged
in entertaining physical activity. On that basis, adjusting the
game in order to increase a child’s entertainment can only
have positive effects on the child’s physical condition. The
Playware playground is built along these primary concepts.

A. Playware Technology

The Playware [8] prototype playground consists of several
building blocks (i.e. tangible tiles — see Fig. 1) that allow
for the game designer (e.g. the child) to develop a significant
number of different games within the same platform. For
instance, tiles can be placed on the floor or on the wall in
different topologies to create a new game [8]. The overall
technological concept of Playware is based on embodied AI
[20] where intelligent physical identities (tiles) incorporate
processing power, communication, input and output, focus-
ing on the role of the morphology-intelligence interplay in
developing game platforms.

1) Specifications: The Playware tile’s dimensions are
21 cm x 21 cm x 6 cm (width, height, depth) and each
incorporates a Atmel ATmega 128 microcontroller. To sup-
port a 4-way communication bus a Quad UART chip
(TL16C754BPN) is interfaced to the serial USART on the
microcontroller. The Quad UART is furthermore interfaced
to a multichannel line driver/receiver (MAX211) in order to
support RS-232 level connections between the tiles.

Visual interaction between the playground and children is
achieved through four light emitting diodes (LEDs) which
are connected to the microcontroller. In this prototype game
world, users are able to interact with the tiles through a
Force Sensing Resistor (FSR) sensor embedded in each tile.
A rubber shell is used to cover the hardware parts of the tile
and includes a “bump” indicating the location of the FSR
sensor (i.e. the interaction point) and a plexiglass window
for the LEDs (see Fig. 1).

1-4244-0464-9/06/$20.00 2006 IEEE. 135 CIG'06 (May 22-24 2006)

B. Systems Related to Playware

The Smart Floor [21] and the KidsRoom [22] are among
the few systems that are related primarily to the conceptual
level of the Playware tiles. The first is developed for trans-
parent user identification and tracking based on a person’s
footstep force features and the latter is a perceptually-
based, multi-person, fully automated, interactive, narrative
play room that adjusts its behavior (story-line) by analyzing
the children’s behavior through computer vision. As far as
the concept of intelligent floors consisting of several building
blocks is concerned, the Z-tiles [23] are closely related to
Playware. However, the Z-tiles are mainly used as input
devices only whereas Playware comprises building blocks
that offer interactivity by incorporating both input and output
devices.

C. Bug-Smasher Game

The test-bed game used for the experiments presented
here is called ‘Bug-Smasher’. The game is developed on a
6 x 6 square tile topology (see Fig. 2). During the game,
different ‘bugs’ (colored lights) appear on the game surface
and disappear sequentially after a short period of time by
turning a tile’s light on and off respectively. A bug’s position
is picked within a radius of three tiles from the previous bug
and according to the predefined level of the bugs’ spatial
diversity (see Section IV). Spatial diversity is measured by
the entropy of the bug-visited tiles which is calculated and
normalized into [0, 1] via (1)

H =

[
− 1

log36

∑

i

vi

V
log

(vi

V

)]
(1)

where vi is the number of bug-visits to tile i and V is the
total number of visits to all visited tiles (i.e. V =

∑
i vi). If

the bug visits all tiles equally then vi = V/36 for all 36 tiles
and H will be 1; if the bug visits exactly one tile, H is zero.

The child’s goal is to smash as many bugs as possible
by stepping on the lighted tiles. Different sounds and colors
represent different bugs when appearing and when smashed
in order to increase the fantasy entertainment factor [5].
Moreover, feedback to the player, which is essential for a
successful game design [5], is provided through different
characteristic sounds that represent good or bad performance.

IV. EXPERIMENTAL DATA

The Bug-Smasher game has been used to acquire data of
human judgement on entertainment. Two states (‘Low’ and
‘High’) are used for each of the three entertainment factors
of challenge, curiosity and fantasy summing up to 8 different
game states. While the fantasy factor is also investigated
through this survey, the focus of this paper is on the opponent
(bug) contribution on entertainment and, therefore, only the
relation between challenge, curiosity and entertainment is
reported here.

We consider the speed (S — in sec−1) that the bugs appear
and disappear from the game and their spatial diversity (H)
on the game’s plane as appropriate measures to represent the

Fig. 2. A child playing the Bug-Smasher game.

level of challenge and the level of curiosity (unpredictability)
respectively [5] during gameplay. The former provides a
notion for a goal whose attainment is uncertain — the higher
the S value, the higher the goal uncertainty and furthermore
the higher the challenge — and the latter effectively portrays
a notion of unpredictability in the subsequent events of
the game — the higher the H value the higher the bug
appearance unpredictability and therefore the higher the
curiosity.

To that end, 28 children — C8
2 = 28 being the required

number of all combinations of 2 out of 8 game states since,
by experimental design, each subject plays against two of the
selected game states in all permutations of pairs — whose
age covered a range between 8 and 10 years participated in
an experiment. In this experiment, each subject plays two
games (A and B) — differing in the levels of one or more
entertainment factors of challenge, curiosity and fantasy —
for 90 seconds each. Each time a pair of games is finished,
the child is asked whether the first game was more interesting
than the second game i.e. whether A or B generated a more
interesting game. The child’s answers are used to guide the
training of an ANN model of entertainment (see Section V).
In order to minimize any potential order effects we let each
subject play the aforementioned games in the inverse order
too. Statistical analysis of the subjects’ answers shows that
the order effect on children judgement on entertainment is not
statistically significant (rc = −0.0714, p-value= 0.3444).

Since at the current implementation of the Playware the
only input to the system is through the FSR sensor, quan-
titative individual playing characteristics can only be based
on three measurable features: the state (position and LEDs
color) of a pressed tile, the time that a tile-press event took
place and the pressure force on a pressed tile.

Pressed tile events are recorded in real-time and a selection
of personalized playing features are calculated for each child.
These include the total numbers of smashed bugs P and
interactions with the game environment NI ; the average
response time E{rt}; the average distance between the
pressed tile and the bugs appearing on the game E{Db};
the average pressure recorded from the FSR sensor E{p};
and the entropy of the tiles that the child visited HC .

1-4244-0464-9/06/$20.00 2006 IEEE. 136 CIG'06 (May 22-24 2006)

A. Statistical Analysis

The aim of the statistical analysis presented here is to
identify statistically significant correlations between human
notion of entertainment and any of the aforementioned indi-
vidual quantitative playing characteristics. For this purpose
the following null hypothesis is formed: The correlation
between observed human judgement of entertainment and
recorded individual playing characteristics, as far as the dif-
ferent game states are concerned, is a result of randomness.
The test statistic is obtained through c(−→z) =

∑N
i=1{zi/N},

where N is the total number of game pairs played and zi = 1,
if the subject chooses as the more entertaining game the
one with the larger value of the examined characteristic and
zi = −1, if the subject chooses the other game in the game
pair i.

Table I presents the c(−→z) values and their corresponding
p-values for all above-mentioned personal characteristics.
Average response time appears to be the only characteristic
examined that is significantly — significance equals 10%,
high significance equals 5% in this paper — correlated to
entertainment. The obtained effect of E{rt} appears to be
commonsensical since the Bug-Smasher game belongs to the
genre of action games where reaction time tends to have a
significant effect on the level of engagement of the user [24].

The first attempt to include subjectivity in entertainment
modeling, presented in this paper, will be through investi-
gating the impact of entertainment factors on entertainment
according to the average response time E{rt}. The choice
of this specific measure, instead of others examined, is
made due to its demonstrated statistically significant effect
to entertainment.

TABLE I
CORRELATION COEFFICIENTS BETWEEN ENTERTAINMENT AND

INDIVIDUAL GAMEPLAY QUANTITATIVE CHARACTERISTICS. P IS THE

TOTAL NUMBER OF SMASHED BUGS; NI IS THE TOTAL NUMBER OF

INTERACTIONS; E{rt} IS THE AVERAGE RESPONSE TIME; E{Db} IS

THE AVERAGE DISTANCE BETWEEN THE PRESSED TILE AND THE BUGS

APPEARING ON THE GAME; E{p} IS THE AVERAGE PRESSURE

RECORDED FROM THE FSR SENSOR AND HC IS THE ENTROPY OF THE

TILES THAT THE CHILD VISITED.

Characteristic c(−→z) p-value

P -0.0384 0.4449

NI 0.1923 0.1058

HC -0.1153 0.2442

E{rt} -0.2307 0.0631

E{p} 0.0769 0.3389

E{Db} -0.0384 0.4449

V. EVOLVING ANN

A fully-connected feedforward ANN for learning the rela-
tion between the challenge and curiosity factors, the average
response time of children and the entertainment value of a
game has been used and is presented here. The assumption is

that the entertainment value y of a given game is an unknown
function of S and H (and perhaps E{rt}), which the ANN
will learn. The children’s expressed preferences constrain but
do not specify the values of y for individual games. Since, the
output error function is not differentiable, ANN training al-
gorithms such as back-propagation are inapplicable. Learning
is achieved through artificial evolution [25] and is described
in Section V-A.

The sigmoid function is employed at each neuron, the
connection weights take values from -5 to 5 and all input
values are normalized into [0, 1] before they are entered
into the ANN. In an attempt to minimize the controller’s
size, it was determined that single hidden-layered ANN
architectures, containing 10 hidden neurons, are capable of
successfully obtaining solutions of high fitness.

A. Genetic Algorithm

A generational genetic algorithm (GA) [26] is imple-
mented, which uses an “exogenous” evaluation function that
promotes the minimization of the difference in matching
the human judgement of entertainment. The ANN is itself
evolved. In the algorithm presented here, the ANN topology
is fixed and the GA chromosome is a vector of ANN
connection weights.

The evolutionary procedure used can be described as
follows. A population of N (N is 1000 in this paper) networks
is initialized randomly. Initial real values that lie within [-5,
5] for their connection weights are picked randomly from a
uniform distribution. Then, at each generation:

Step 1 Each member (neural network) of the population
gets two triples of (S, H , E{rt}) values one for
A and one for B and returns two output values,
namely yj,A (output of the game against opponent
A) and yj,B (output of the game against opponent
B) for each pair j of games played in the survey
(Ns = 56). When the yj,A, yj,B values are consis-
tent with the judgement of subject j then we state
that: ‘the values agree with the subject’ or that
there is ‘agreement’ with the subject throughout
this paper. In the opposite case, we state that:
‘the values disagree with the subject’ or there is
‘disagreement.’

Step 2 Each member i of the population is evaluated via
the fitness function fi:

fi =
Ns∑

j=1

{
g(dj , 30), if agreement;
g(dj , 5), if disagreement. (2)

where dj = yj,A − yj,B and g(dj , p) = 1/(1 +
e−pdj) is the sigmoid function.

Step 3 A fitness-proportional scheme is used as the selec-
tion method.

Step 4 Selected parents clone an equal number of off-
spring so that the total population reaches N
members or reproduce offspring by crossover. The

1-4244-0464-9/06/$20.00 2006 IEEE. 137 CIG'06 (May 22-24 2006)

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0
0.1

0.2
0.3

0.4
0.5

0.6
0.7

0.8
0.9

1

0

0.5

1

Curiosity (H)Challenge (S)

E
nt

er
ta

in
m

en
t (

y)

Fig. 3. Fittest ANN (f = 22.82) trained on absence of individual playing
characteristics.

Montana and Davis [27] crossover operator is
applied with a probability 0.4.

Step 5 Gaussian mutation occurs in each gene (connec-
tion weight) of each offspring’s genome with a
small probability pm = 1/n, where n is the
number of genes.

The algorithm is terminated when either a good solution
(i.e. fi > 54) is found or a large number of generations g is
completed (g = 10000).

VI. RESULTS

Results obtained from the ANN evolutionary approaches
are presented in this section. In order to diminish the non-
deterministic effect of the GA initialization phase, we repeat
the learning procedure ten times — we believe that this
number is adequate to illustrate a clear picture of the behavior
of the mechanism — with different random initial conditions.

A. Objective Entertainment Value

The experiment presented here tests the hypothesis of the
existence of an objective notion of entertainment given the
level of challenge and curiosity in a game. Thus, the aim
here is to extract a mapping between challenge, curiosity
and entertainment independently of player individual char-
acteristics (E{rt} values are not included in the ANN input
vector). Given the 30 pairs of games, where the games
have different levels of S and/or H , an ANN is evolved
by following the approach presented in Section V-A. The
fittest ANN found was able to correctly match only 20 out
of 30 children answers on entertainment. Such a poor fitness
indicates the difficulty of adjusting values of challenge and
curiosity for inferring entertainment values in an objective
manner (without the presence of individual characteristics).
The relation between bug speed (S), bug spatial diversity
(H) and the game’s entertainment value (y) is illustrated in
Fig. 3.

Despite the best solution’s poor fitness, the correlation
between entertainment, challenge and curiosity generated
through the evolved ANN (see Fig. 3) appears to follow

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

E{r
t
}

E
m

te
rt

ai
nm

en
t (

y)

S = 0.2 (Low), H= 0.51 (Low)
S = 0.2 (Low), H= 0.99 (High)
S = 0.7 (High), H= 0.51 (Low)
S = 0.7 (High), H= 0.99 (High)

Fig. 4. Fittest ANN (f = 52.68): Entertainment over average response
time for both states (Low, High) of each entertainment factor S and H .

the qualitative principles of Malone’s work [5]. According
to these, a game should maintain an appropriate level of
challenge and curiosity in order to be entertaining. In other
words, too difficult and/or too easy and/or too unpredictable
and/or too predictable opponents to play against make the
game uninteresting. As seen from Fig. 3, average levels of
challenge (0.5 < S < 0.8) and curiosity (0.3 < H < 0.9)
generate high entertainment values objectively. Moreover, it
appears that games of the lowest challenge level (S ≈ 0)
combined with the highest curiosity level (H ≈ 1) may yield
high entertainment values.

B. Response time

As previously presented in Fig. 3, extreme values of
challenge and curiosity appear to generally generate low
values of player satisfaction. However, what it still needs
to be extracted are the appropriate levels of challenge and
unpredictability required by individual players for a game to
be entertaining.

This section presents experiments where individual charac-
teristics are present in the evaluation of entertainment. Thus,
the average response time of the child is included in the
input vector of the ANN which is evolved by following the
approach presented in Section V-A. For space considerations,
only the fittest solution is presented in this paper. Note that,
the qualitative features of the lines and surfaces plotted in
Fig. 4 and Fig. 5 appeared in all ten learning attempts.

More specifically, Fig. 4 illustrates that challenge has a
higher impact on children’s notion of entertainment than
curiosity. In fact, low levels of curiosity appear to entertain
children more. This could be explained through the fact
that for the game experiments presented in this paper the
High value for H is the highest possible value of entropy
(H ≈ 1.0). This level of bugs entropy appears to generate
too unpredictable games for the majority of children and,
therefore, confusion during play and furthermore less sat-
isfaction. Fig. 4 also shows that highly entertaining games
are generated when challenge is Low and children are fast

1-4244-0464-9/06/$20.00 2006 IEEE. 138 CIG'06 (May 22-24 2006)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.5

1

Curiosity (H)Challenge (S)

y

(a) E{rt} = 0.0

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.5

1

Curiosity (H)Challenge (S)

y

(b) E{rt} = 0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.5

1

Curiosity (H)Challenge (S)

y

(c) E{rt} = 0.356

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.5

1

Curiosity (H)Challenge (S)

y

(d) E{rt} = 0.6

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.5

1

Curiosity (H)Challenge (S)

y

(e) E{rt} = 1.0

Fig. 5. Fittest ANN (f = 52.68): ANN output y (entertainment) with
regards to S and H for 5 values of E{rt}. The shadowed area corresponds
to the surface within the Low and High states of the S and H values.

in their average response time (E{rt} < 0.3) and when
0.5 < E{rt} < 0.7. On the other hand, when children
are reacting slowly (0.7 < E{rt} < 1.0), high values of
entertainment y are generated when challenge is High in the
game. High challenge combined with Low curiosity has also
the most positive impact on entertainment in children whose
average response time lies between 0.3 and 0.4.

Fig. 5 illustrates the trained ANN output with regards to
challenge and curiosity for five characteristic E{rt} values:
the two boundaries (0 and 1), the median (0.356) and
two values (0.1 and 0.6) that determine the interval within
the 82.14% (92 values) of the average response times are
recorded. Values outside this interval correspond to a 8.93%
(10 values) of very fast (E{rt} ≤ 0.1) and a 8.93% (10
values) of very slow (E{rt} ≥ 0.6) children.

If we make the generic assumption that response time cor-

1-4244-0464-9/06/$20.00 2006 IEEE. 139 CIG'06 (May 22-24 2006)

relates with perception time then one would expect that the
faster the perception ability of a child the higher its demand
for faster (more challenging) and more unpredictable (higher
curiosity) games. However, Fig. 5 illustrates the inverse
case since it appears that faster children have a preference
for games of lower challenge and curiosity (see Fig. 5(a))
whereas slower children appear to prefer games of high
challenge (see Fig. 5(e)). Therefore, this assumption seems
to be ruled out for this case study or the aforementioned
correlation is insignificant.

In order to demonstrate a clearer image of the child’s
behavior with regards to its recorded response time, we
calculate the correlation coefficients between E{rt} and the
measurable individual child characteristics previously men-
tioned in Section IV-A. As seen from Table II, the correlation
coefficient rc between E{rt} values and their corresponding
sample size (total number of interactions NI) shows a statis-
tically high significant tendency for fast-reacting and slow-
reacting children to interact more and less frequently with
the game environment respectively. Moreover, E{rt} values
correlate significantly with the child’s spatial diversity on
the game surface (rc = 0.3305, p-value = 7.82·10−4) and the
average pressure on the tiles (rc = 0.2175, p-value = 0.0296)
as well as correlate inversely with the child’s performance
measure P (rc = −0.4058, p-value = 2.80·10−5). These
indicate that the faster the response time the less children
tend to move around on the game surface, the less their
pressure on the tiles and the higher their performance.

To summarize given the rc values on Table II, it can be
assumed that low E{rt} values correspond to a rather static
behavior of children pressing faster and more frequently
few tiles which results to higher performance, whereas high
E{rt} values correspond to children that move on larger and
decisive (and powerful) steps, covering much of the game
surface and taking their time for their next step which as a
strategy results to lower performance.

The aforementioned quantitative indications about chil-
dren behavior do also match the video-recorded playing
behavior. Thus, it can be derived that when E{rt} is low,
static children cannot easily cope with too challenging and
too unpredictable games. Therefore, it appears that such
games are not entertaining for children of this category (see
Fig. 5(a), Fig. 5(b)). On the other hand, when a child’s
E{rt} value is high, the child appears to prefer games of
low curiosity at a level of challenge higher than average (see
Fig. 5(e)). The reason for such a preference might be that too
unpredictable games require more motion from children in
the Bug-Smasher game and, therefore, these games become
very tiring for children that tend to cover uniformly the
game’s surface.

Finally, low levels of challenge combined with average
levels of curiosity or high levels of challenge combined with
low levels of curiosity appear to be the preferred game states
for children whose E{rt} values are between 0.1 and 0.6 (see
Fig. 5(c) and Fig. 5(d)).

TABLE II
CORRELATION COEFFICIENTS BETWEEN E{rt} AND OTHER

INDIVIDUAL GAMEPLAY QUANTITATIVE CHARACTERISTICS. P IS THE

TOTAL NUMBER OF SMASHED BUGS; NI IS THE TOTAL NUMBER OF

INTERACTIONS; E{rt} IS THE AVERAGE RESPONSE TIME; E{Db} IS

THE AVERAGE DISTANCE BETWEEN THE PRESSED TILE AND THE BUGS

APPEARING ON THE GAME; E{p} IS THE AVERAGE PRESSURE

RECORDED FROM THE FSR SENSOR AND HC IS THE ENTROPY OF THE

TILES THAT THE CHILD VISITED.

Characteristic rc p-value

P -0.4058 2.80·10−5

NI -0.4324 7.01·10−6

HC 0.3305 7.82·10−4

E{p} 0.2175 0.0296

E{Db} 0.0494 0.6249

VII. CONCLUSIONS & DISCUSSION

This paper introduced quantitative metrics for entertain-
ment primarily based on the qualitative principles of Mal-
one’s intrinsic factors for engaging gameplay [5] and individ-
ual game play features. More specifically, the quantitative im-
pact of the factors of challenge and curiosity and the average
response time on children’s entertainment were investigated
through the Bug-Smasher game played on the Playware
playground. Moreover, the advantages of play on interactive
intelligent playgrounds were stated and experiments within
the Playware platform were introduced in this paper.

The evolved ANN approach for modeling entertainment
in real-time examined demonstrates qualitative features that
share principles with Malone’s theory on efficient game
design [5]. The fittest ANN solution manages to map suc-
cessfully between the entertainment factors of challenge and
curiosity and the notion of human gameplay satisfaction on
the absence of individual player characteristics and demon-
strated that non-extreme values for the entertainment factors
generate highly entertaining games. In addition, the learned
mapping with regards to the children’s average response
times showed that fast responding children show a preference
for low challenge games of low curiosity whereas slow
responding children tend to prefer games of high challenge
and low curiosity.

The current work is limited by the number of participants
in the game survey we devised. Therefore, not all regions
of the challenge-curiosity search space were sampled by hu-
man play which therefore yielded poor ANN generalization
for these regions. Limited data also restricted the sensible
number of inputs to the learning system. More states for
the measurable metrics of challenge and curiosity need to
be obtained and other measures — e.g. average distance
between the bugs instead of speed for measuring challenge
— need to be investigated in a future study. The challenge
that arises here is that the number of subjects required
for experiments like the one reported here is factorial with
respect to the number of states chosen for the entertainment

1-4244-0464-9/06/$20.00 2006 IEEE. 140 CIG'06 (May 22-24 2006)

factors and the total number of entertainment factors under
investigation. Moreover, Malone’s entertainment factor of
fantasy is omitted from the results in this paper since the
focus is on the contribution of the opponent behaviors to
the generation of entertainment; however, fantasy’s impact
on entertainment is planned to be reported in a forthcoming
analysis.

The entertainment modeling approach presented here
demonstrates generality over the majority of action games
created with Playware since the quantitative means of chal-
lenge and curiosity are estimated through the generic features
of speed and spatial diversity of the opponent on the game’s
surface. Thus, these or similar measures could be used to
adjust player satisfaction in any future game development
on the Playware tiles. However, each game demonstrates
individual entertainment features that might need to be
extracted and added on the proposed measures and therefore,
more games of the same and/or other genres need to be tested
to cross-validate this hypothesis. The proposed approach can
be used for adaptation of the game opponents (e.g. bugs)
according to the player’s individual playing style (reaction
time) and as far as the challenge and curiosity factors of
entertainment are concerned. Given the real-time average
response time of a child, the partial derivatives of ϑy/ϑS and
ϑy/ϑH can be used to appropriately adjust the speed and the
entropy of the opponent respectively for the entertainment
value y to be augmented.

Such a direction constitutes an example of future work
on Playware, computer and educational games. The level of
engagement or motivation of the user/player/gamer of such
interactive environments can be identified and increased by
the use of the presented approaches. Apart from providing
systems of richer interaction and qualitative entertainment
[4], such approaches can generate augmented motivation of
the user for deep learning in learning environments that use
games (i.e. edutainment).

ACKNOWLEDGMENTS

The authors would like to thank Henrik Jørgensen and all
children of Henriette Hørlücks School, Odense, Denmark that
participated in the experiments. The tiles were designed by
C. Isaksen from Isaksen Design and parts of their hardware
and software implementation were collectively done by A.
Derakhshan, F. Hammer, T. Klitbo and J. Nielsen. KOMPAN,
Mads Clausen Institute, and Danfoss Universe also partici-
pated in the development of the tiles.

REFERENCES

[1] J. E. Laird and M. van Lent, “Human-level AI’s killer application:
Interactive computer games,” in Proceedings of the Seventh National
Conference on Artificial Intelligence (AAAI), 2000, pp. 1171–1178.

[2] J. D. Funge, Artificial Intelligence for Computer Games. A. K. Peters
Ltd, 2004.

[3] A. J. Champandard, AI Game Development. New Riders Publishing,
2004.

[4] G. N. Yannakakis and J. Hallam, “A scheme for creating digital
entertainment with substance,” in Proceedings of the Workshop on
Reasoning, Representation, and Learning in Computer Games, 19th
International Joint Conference on Artificial Intelligence (IJCAI), Au-
gust 2005, pp. 119–124.

[5] T. W. Malone, “What makes computer games fun?” Byte, vol. 6, pp.
258–277, 1981.

[6] N. Postman, The Disappearance of Childhood. London: Allen, 1983.
[7] S. Kline, Out of the Garden: Toys and Children’s Culture in the Age

of Marketing. Verso, 1993.
[8] H. H. Lund, T. Klitbo, and C. Jessen, “Playware technology for

physically activating play,” Artifical Life and Robotics Journal, vol. 9,
no. 4, pp. 165–174, 2005.

[9] M. Csikszentmihalyi, Flow: The Psychology of Optimal Experience.
New York: Harper & Row, 1990.

[10] G. N. Yannakakis and J. Hallam, “Evolving Opponents for Interesting
Interactive Computer Games,” in From Animals to Animats 8: Proceed-
ings of the 8th International Conference on Simulation of Adaptive
Behavior (SAB-04), S. Schaal, A. Ijspeert, A. Billard, S. Vijayakumar,
J. Hallam, and J.-A. Meyer, Eds. Santa Monica, LA, CA: The MIT
Press, July 2004, pp. 499–508.

[11] T. Graepel, R. Herbrich, and J. Gold, “Learning to fight,” in Proceed-
ings of the International Conference on Computer Games: Artificial
Intelligence, Design and Education, Microsoft Campus, Reading, UK,
November 2004, pp. 193–200.

[12] A. Nareyek, “Intelligent agents for computer games,” in Computers
and Games, Second International Conference, CG 2002, T. Marsland
and I. Frank, Eds., 2002, pp. 414–422.

[13] N. A. Taatgen, M. van Oploo, J. Braaksma, and J. Niemantsverdriet,
“How to construct a believable opponent using cognitive modeling in
the game of set,” in Proceedings of the fifth international conference
on cognitive modeling, 2003, pp. 201–206.

[14] H. Iida, N. Takeshita, and J. Yoshimura, “A metric for entertainment
of boardgames: its implication for evolution of chess variants,” in
IWEC2002 Proceedings, R. Nakatsu and J. Hoshino, Eds. Kluwer,
2003, pp. 65–72.

[15] G. N. Yannakakis, “AI in Computer Games: Generating Interesting
Interactive Opponents by the use of Evolutionary Computation,” Ph.D.
thesis, University of Edinburgh, November 2005.

[16] G. N. Yannakakis and J. Hallam, “A Generic Approach for Obtaining
Higher Entertainment in Predator/Prey Computer Games,” Journal of
Game Development, vol. 1, no. 3, pp. 23–50, December 2005.

[17] G. Andrade, G. Ramalho, H. Santana, and V. Corruble, “Extending
reinforcement learning to provide dynamic game balancing,” in Pro-
ceedings of the Workshop on Reasoning, Representation, and Learning
in Computer Games, 19th International Joint Conference on Artificial
Intelligence (IJCAI), August 2005, pp. 7–12.

[18] M. A. Verma and P. W. McOwan, “An adaptive methodology for syn-
thesising mobile phone games using genetic algorithms,” in Congress
on Evolutionary Computation (CEC-05), Edinburgh, UK, September
2005, pp. 528–535.

[19] M. Lindstrom and P. Seybold, BRANDchild: Insights into the Minds of
Today’s Global Kids: Understanding Their Relationship with Brands.
Kogan Page, 1994.

[20] R. Pfeifer and C. Scheier, Understanding Intelligence. Cambridge,
MIT Press, 1999.

[21] R. J. Orr and G. D. Abowd, “The smart floor: a mechanism for
natural user identification and tracking,” in CHI ’00: CHI ’00 extended
abstracts on Human factors in computing systems. NY, USA: ACM
Press, 2000, pp. 275–276.

[22] A. Bobick, S. Intille, J. Davis, F. Baird, C. Pinhanez, L. Campbell,
Y. Ivanov, A. Schutte, and A. Wilson, “The kidsroom: A perceptually-
based interactive and immersive story environment,” MIT Media
Laboratory, Technical Report 398, December 1996.

[23] B. Richardson, K. Leydon, M. Fernström, and J. A. Paradiso, “Z-
tiles: Building blocks for modular, pressure-sensing floorspaces,” in
Proceedings of CHI 2004. NY, USA: ACM Press, 2004, pp. 1529–
1532.

[24] C. Beal, J. Beck, D. Westbrook, M. Atkin, and P. Cohen, “Intelligent
modelling of the user in interactive entertainment,” in Proceedings of
the AAAI Spring Symposium on Artificial Intelligence and Interactive
Entertainment, Stanford, 2002, pp. 8–12.

[25] X. Yao, “Evolving artificial neural networks,” in Proceedings of the
IEEE, vol. 87, no. 9, 1999, pp. 1423–1447.

[26] J. H. Holland, Adaptation in Natural and Artificial Systems. Ann
Arbor, MI: University of Michigan Press, 1975.

[27] D. J. Montana and L. D. Davis, “Training feedforward neural networks
using genetic algorithms,” in Proceedings of the Eleventh International
Joint Conference on Artificial Intelligence (IJCAI-89). San Mateo,
CA: Morgan Kauffman, 1989, pp. 762–767.

1-4244-0464-9/06/$20.00 2006 IEEE. 141 CIG'06 (May 22-24 2006)

NPCs and Chatterbots with Personality and Emotional Response

Dana Vrajitoru
Intelligent Systems Laboratory, Computer and Information Sciences

Indiana University South Bend
danav@cs.iusb.edu

Abstract— Chatterbots are computer programs that simulate
intelligent conversation. They are situated between games and
toys, as their aim is mostly to be entertaining, but the user
doesn’t have to follow precise rules when playing with the
program. Currently business and educational applications have
started to emerge as a further development of the idea of
intelligent dialog. For the game industry, they come close to
the concept of NPC, or Non-Player Character, and they may
become part of making such virtual beings more believable
and life-like in the future. In this paper we present application
introducing an emotional component designed to enhance the
realism of the conversation.

Keywords: Intelligent NPCs

I. INTRODUCTION

NPCs or non-player characters are an important aspect
of games, especially in the role playing category. Their
functionality is to add to the game content by providing
access to the backstory, assigning and rewarding quests, and
generally, offering information about the game to the player.
Their conversation skills are relatively limited and are in
general scripted, and context-based.

There are several foreseeable developments for NPCs, and
one of them consists in expanding their dialog capabilities.
It is likely that in the future, NPCs will merge with some of
the functionality currently present in chatterbots.

Chatterbots are computer programs that simulate intelli-
gent conversation. The typical execution involves an input
from the user in natural language to which the program
provides an answer that should be a reasonable and possibly
intelligent response to the original sentence. The process is
repeated while the human keeps the conversation going.

The very first chatterbot, named Eliza [1], simulated a
Rogerian psychotherapist. The idea was simple and consisted
in a pattern matching algorithm and sentence reconstruction
following templates, with no in-depth knowledge or pro-
cessing of the natural language. The program proved to be
amazingly efficient in sustaining people’s attention during
the conversation and the success of the original program has
influenced the development of many others.

Using similar ideas, Colby from the Stanford AI Lab
developed Parry, the paranoid, in 1971. Parry is the opposite
of Eliza as it simulates a patient and has been intended as a
study of the nature of paranoia and is capable of expressing
beliefs, fears, and anxieties [2], [3]. Among the famous
chatterbots we can mention Racter, a story-teller, [4] by
W. Chamberlain and T. Etter, the stated author of the book
The Policeman’s Beard Was Half Constructed. However, the
authenticity of the book has been questioned since then [5].

Another chatterbot worth mentioning is A.L.I.C.E, Arti-
ficial Linguistic Internet Computer Entity (www.alice.org),
that has its own development language called AIML (artifi-
cial intelligence markup language) and earned the Loebner
Prize, based on the Turing Test [6], in 2000 and 2001.

Among recent developments are the virtual agents that can
provide online help and customer service by incorporating
knowledge about the company (www.egain.com). Some of
the recent research also focuses on a definition of config-
urable personality for virtual characters [7], [8]. Some studies
have also been conducted on the behavior of the human
participants in the interaction with the chatterbots [9], [10].

The goal of the chatterbots we implemented is to simulate
particular personalities, either fictional or real, mostly taken
from literature, film, or television shows. This mostly applies
to NPCs in adventure games inspired from an external
story source, like the Lord of the Rings. We typically start
from a database of sentences that can be attributed to the
personality to be simulated, as for example, the text of the
book or their lines from a script. The first prototypes can
be found online (http://www.cs.iusb.edu/˜danav/chatterbots/).
An integrated 3D environment for the chatterbot is currently
under development.

The current chatterbot model represents an extension of
[11]. In our primary model, we construct an answer to the
human’s input by a probabilistic choice between pattern
matching and templates, sentence keyword retrieval based
on automatic indexing, and database matching based on
a personality-specific database. Several of the chatterbot
construction operations have been automated, but a large
human contribution is still necessary. The newest aspect
of our program is represented by the emotional component
designed to enhance the credibility of the character.

The emotional response in an essential component of
any believable character [12], [13], [14]. The importance of
this aspect has been recognized in the artificial intelligence
community and several studies focused on it [15]. Among
the possible applications of emotional agents and virtual
characters we can cite teaching and tutoring [16], [17].

The paper is structured the following way. The second
section presents the outline of the chatterbot program. The
third section discusses the general chatterbot techniques we
implemented. The fourth section introduces the personal-
ity database and emotional component of the program. A
following section presents some experimental results and
compares them with out previous work. The paper ends with
conclusions.

1-4244-0464-9/06/$20.00 2006 IEEE. 142 CIG'06 (May 22-24 2006)

II. THE VIRTUAL CHARACTER

The chatterbot algorithm consists in a loop reading an
input from the user and generating an answer, until the user
ends the dialog by either closing the browser or typing in a
synonym of “bye”. The program will attempt to generate
an answer with a certain probability using the following
methods in this order:

1) personal features database, 90% probability,
2) pattern matching and templates, 90% probability,
3) first word question-matching, using a different set of

answers for inputs starting with “where” than for those
starting with “how” and so on, 80% probability,

4) keyword-matching in the database created by automatic
indexing, 90% probability.

5) random answer distinguishing between declarative sen-
tences and questions, 100% probability.

The probabilities expressed in the list above are condi-
tional. Thus, the pattern matching probability of 90% is
conditioned by the 10% probability that the personal feature
database will not be used, and by the event that this database
did not contain a valid answer to the user’s input. As the last
method always succeeds, a hopefully valid answer will be
returned in any case.

III. GENERAL PURPOSE CHATTERBOT TECHNIQUES

In this section we briefly introduce some of the techniques
used by chatterbots, which are pattern-matching, indexing,
and randomly matched answers. We classify these as general
purpose techniques because most chatterbots are using a
combination of them, but for the purposes of creating a
personality for the chatterbot they are insufficient.

A. Pattern Matching and Templates

The pattern matching technique consists in finding one
or several patterns that match the sentence entered by the
user. A pattern is generally defined as a sentence in natural
language in which certain parts have been replaced by wild
cards that can be matched by any group of words in a
matching sentence.

For each pattern defined in the database, a corresponding
template is utilized to generate the answer to the sentence.
The parts of the original sentence that are identified with the
wild cards are first subjected to a person transformation in
which words like “I, my, mine” become “you, your, yours”
and the other way around.

For example, a pattern in the original Eliza program can
be expressed as

I want *
in which the ’*’ character can be replaced by any sequence

of words. The corresponding template to generate the answer
can be expressed by

What would it mean to you if you got *
in which the ’*’ is replaced by the sequence of words that

was matched to the wild card in the pattern.
An application of this pattern could be the following

dialog:

User: I want to know how your program works.
Eliza: What would it mean to you if you got to know how

my program works?
Beside the list of patterns, the original Eliza program also

contained a list of sentences that can be given in answer to
sentences that cannot be matched to any of the patterns, like:

What does that suggest to you ?
Please go on.
For a virtual character, the patterns are built from the

database of character lines from the book or from the script.
They are based on the lines of any other character that
precedes the character we are developing in the dialog and
the response templates are generated from the character’s
answer in the original dialog.

Here are some examples of answers generated with the
pattern-template model. This method is still one of the best
options because it uses part of the sentence provided by the
user and thus the answer seems to have a strong connection
to it.

Input: “can you proceed without clearance?”
Answer: “we don’t need clearance. we need the 16-digit

code.”
We developed an automatic pattern-template generating

algorithm for this application that takes as input two sen-
tences, the first one belonging to any character in the original
script, and the second one belonging to the character that
the chatterbot emulates and representing an answer to the
first. Let q and a be the two sentences. The algorithm starts
by identifying a sequence of substrings of q such that each
of them is also a substring of a, but not necessarily in the
same order, as shown in Equation 2. The sequence may
not be the longest and its selection process is randomized.
The algorithm avoids selecting common substrings that are
composed of only words that are too common, like “the”.

q = q0 s0 q1 s1 . . . qn−1 sn−1 qn (1)
such that ∀i = 0, n − 1, si is a substring of a (2)

The program then generates a pattern by replacing each
si in q by a “*”, the wild card symbol that can be matched
by any substring, even empty. The corresponding template is
generated by replacing every occurrence of si in the sentence
a with a symbol representing the substring index in the
pattern, in our case denoted by ∗#i∗.

The algorithm is not yet sufficient to automatically gener-
ate the entire database of the chatterbot with no human inter-
vention. After the patterns were automatically generated, it
was necessary for a human indexer to verify their quality and
eliminate some of them. Even so, this represents a significant
improvement to the task of generating a chatterbot. Without
it, the human indexer must define all of the pattern-template
couples by hand. This process usually involves reading a
substantial amount of text looking for pieces of dialog that
can be used. The algorithm shortened the development time
for the chatterbot considerably.

1-4244-0464-9/06/$20.00 2006 IEEE. 143 CIG'06 (May 22-24 2006)

B. Automatic Indexing for Chatterbots

In the classical IR approach [18], we are given a collection
of documents (ASCII text in natural language) and a query
expressed by a human in natural language. The task of the
system is to find the documents in the collection that are the
closest match to the given query.

We extended this model to the chatterbot application by
considering that each document consists of one or two
sentences associated with the character in the original script,
usually one of the character’s lines. The user’s input to the
program can be seen as the query. In our case we want to
find one particular document (sentence) that can be seen as
a good answer to the query.

Thus, in the first step, we process all sentences available in
the database by eliminating the words that are too common,
such as “a”, “is”, “for”, and removing the unnecessary
suffixes and prefixes to retain only the root of each word. For
example, “program”, “programs” and “programming” will all
be indexed under “program”. We used the Porter stemming
algorithm for this step [18].

In the next step, we build an inverted index database,
where we store a reference to all the sentences in the
database that contain any given keyword. Sometimes words
that appear in the text before the sentence being processed
can also be significant to it, so our indexing also takes
into account the context of a document. Our model follows
a Boolean indexing [19] meaning that we record only the
presence or absence of a term in an indexed sentence, with
no assumption as to its importance.

In contrast to the IR approaches where the goal is to
provide the user with a reasonable number of documents
presented in an order corresponding to their relevance to the
query, in our case the program must return a single coherent
answer to the user’s input. The retrieval process starts by
applying the same transformation to the input to extract the
keywords. Based on these, we make a probabilistic choice
of one of the stored sentences that are indexed by any of
the terms present in the user’s input. Our database is small
enough that the program does not require a more refined
retrieval system.

This approach presents certain limitations in its use for
chatterbots. The first one is that the sentences it generates
come from a static database so even if the answer is proba-
bilistic, the limit of choice may cause repetition and decrease
the life-like impression of the program. Another limitation
is that having some keywords in common with the input is
often not sufficient for a good answer. For these reasons, this
method is given a lower priority than others. It is still useful
sometimes when the user is looking for very specific type of
information.

Here is an example of a good answer generated by
indexing:

Input: “Where is Michael?”
Answer: “nikita and michael just called. they’ve got the

antibiotic and they’re on their way in.”
This next example can be described as accidentally good.

It was indexed by the word “proceed”.
Input: “can you proceed without clearance?”
Answer: “no. insufficient personnel. how do we proceed?”
Here is another example that resulted from a match of two

keywords but that doesn’t sound like it had much to do with
the input:

Input: “I need an address for the conference.”
Answer: “david zacharoff’s attached to the canadian trade

commission. he was in brussels the night rudy said he saw
him addressing a conference. there’s about 5,000 witnesses.”

Sometimes this gives the impression that the chatterbot is
either trying to change the subject, or that the answers are
somewhat “off the wall”. This method seems to be working
better when the discussion focuses on subjects related to the
character’s backstory.

In the following example, the answer resulted from an
indexing method that took into consideration the preceding
sentence that the character was answering to. The result is
that the answer seems to have nothing to do with the input:

Input: “I need advise about changing my major.”
Answer: “that’s us.”
Of all the methods used by the chatterbot, the automatic

indexing seems to generate the least coherent answers. This
doesn’t mean that the method should be completely aban-
doned, but rather limited to questions related to the game
backstory, identifiable for example by keywords specific to
certain quests, like character names and quest items.

C. Randomly Generated Answers

While writing a chatterbot, the programmer must take into
account that there are many situations in which the sentence
entered by the user can be matched neither by a pattern,
nor by any of the indexed keywords. The database usually
contains a number of answers that can be provided in such
cases. For the original Eliza, they would be things like “This
is interesting, please continue” and “Can you elaborate on
this?”.

We refined this technique to distinguish first between input
expressed as a question or as a declarative sentence. The
questions are further classified by the word they start with.
Thus, a question starting with “where” can result in an an-
swer containing a random location, while a question starting
with “who” can result in the identification or description of a
random person. There are also a number of answers that can
be provided to questions that do not start with such special
keywords, as for example, “I don’t know – yet.”

Here are some examples of answers generated this way:
Input: “Where is Michael?”
Answer: “20 degrees to the left.”
Input: “I’m bored.”
Answer: “sad.”
Input: “what are the latest news?”
Answer: “a vapor trail. whatever it is, it’s getting closer.

could be a nato plane on maneuvers?”

1-4244-0464-9/06/$20.00 2006 IEEE. 144 CIG'06 (May 22-24 2006)

D. Short-Term Memory

A program generating answers to the player’s input pro-
cedurally is likely to generate the same answer for the same
question. This undermines the credibility of the chatterbot or
NPC as a live character. It is thus necessary to implement
a failsafe that prevents answer repetition, even if the player
keeps asking the same question.

In our latest model, the chatterbot keeps track of up to
5 of the answers it provides. The program stores a number
associated in the indexing with the answers and not the actual
text. This way we can prevent the chatterbot from using the
same pattern twice in a row, even if it is to generate different
sentences. Also, it prevents a sentence that was retrieved from
the keyword indexing from being returned after a pattern
has been used that was generated from the same original
sentence.

IV. CHATTERBOT PERSONALITY

In this section we present the two components of the
chatterbot personality, which are the database of personal
preferences and the emotional response.

Creating a character with personality involves several
components. In general, when it comes to an NPC with a
three dimensional body and with a face that can be seen in
detail in the program, these aspects are part of the personality,
mainly the facial expressions and body movement. The
character’s reactions are even more important, as well as
its level of friendliness, expressiveness, and the amount of
dialog provided during the communication. The emotional
aspect is also critical to a believable character and this feature
increased the realism of our chatterbot.

A big part of creating characters with specific personality
in our case if the fact that the database used for the dialog
is created from an original script or book in which that
character exists and has a distinguishable personality. One
question that can be asked is if the templates created from
the character’s original dialog will generate sentences that are
still consistent with the character. From the results presented
in the next chapter, this seems to be indeed the case.

Some studies related to authorship [20], [21] propose
statistical measures aimed to classify documents, establish
authorship, or compare two documents. Such features include
frequency of words or expressions, word ordering, use of
conjunctions, modality, comments, and so on, and can be
based on the syntax and on the semantics. Similar methods
can be used in the future to determine the consistency of the
chatterbot’s answers with the original personality it intends
to emulate.

A. Personality-Specific Database

We added a new component to the chatterbot presented
in [11] which consists in a database of personal preferences
specific to the personality represented by the chatterbot.

This database contains information ranging from the
eating and drinking preferences, to family relations
and friends. For example, our chatterbot Birky

(www.cs.iusb.edu/˜danav/chatterbots/ebirkoff) likes to
eat gummy bears and Oreo crackers, he has a brother named
Jason, and a friend called Walter.

The program is then able to detect substrings in the
user’s input like ”are you” and ”is your”, which could be
an indication that a question was asked about a personal
preference, as for example “What do you want to eat?”. The
program identifies a keyword in the sentence that indicates
the type of preference being asked for. In the example it
would be the word “eat”. A small database of synonyms is
then used to match “eat” with “food” which is the database
keyword of relevance to the question. The last step consists
in retrieving a random answer from all the entries stored
for this keyword in the database, as for example, “gummy
bears”.

The database is constructed based on the personal infer-
ence of the author on what constitutes appropriate descrip-
tions of the chatterbot’s preferences. The implementation of
this component can be extended in the future such that the
personal preferences are automatically extracted from the
original text if the chatterbot is constructed from an existing
character from literature. This constitutes a direction for
future research.

The personality-specific database also contains informa-
tion about the character’s occupation and hobbies, about all
of the persons that this character considers as friends or not,
and precise information like age and location. Some of the
question in the Loebner Prize of the past year have addressed
such issues. As part of our evaluation was based on these
questions, this part of the database generated many of the
answered that were evaluated as “good”.

As a direction of future development of this part of the
program, we would like to incorporate in an NPC knowledge
about other characters he might know from the same frame-
work, story, or game. More generally, a similar algorithm
can be used to retrieve specific information about the world
of the game or about current events, if that is considered
relevant to the NPC.

V. EMOTIONAL COMPONENT OF THE CHATTERBOT

This part of the project focuses on integrating an emotional
component in the chatterbot program to partially match the
program’s answers and enhance the user’s experience of the
dialog.

This component of the program was generated in three
steps: organizing variations of the chatterbot’s avatar, gener-
ating and organizing a list of moods that could apply to the
chatterbot, and attaching an emotional description to some
of the sentences in the chatterbot database.

We organized the tree components, avatars, moods, and
emotional descriptions, in five basic categories described
by the set {fear, anger, sadness, happiness, other}.
The fifth category includes everything that cannot be de-
scribed by one of the four emotions. These categories
were inspired from [22], where the emotions are identified
by facial expressions and are classified in six categories,
{surprise, fear, anger, sadness, disgust, happiness}.

1-4244-0464-9/06/$20.00 2006 IEEE. 145 CIG'06 (May 22-24 2006)

While the original classification is more complete, we did not
find any images of the character Birky showing disgust, and
the distinction between the images showing fear and surprise
was not clear enough to create separate categories.

We selected a number of expressive images of the charac-
ter emulated by the chatterbot and organized them in the five
categories described above. The images in each class except
for the fifth one were then sorted by intensity.

For the second step we generated a list of about 100
different moods collected from mood descriptors commonly
used in online communication like blogs, message boards,
emoticons, and synonyms of the four basic categories. About
a fifth of the moods couldn’t be classified as any of the
four basic emotions and constitute the fifth category. The
moods in each class were then also sorted by intensity.
For example, the “fear” class contains moods ranging from
“uncomfortable” and “confused” to “shaken” or “terrified”.
Many of these moods reflect a combination of fear and
surprise in various degrees.

In the last step we identified the sentences in the chatter-
bot’s indexed database for which one of the four emotion
categories could apply. These sentences are identified by a
number and are used by the patterns, by the keyword-based
indexing, and to generate random answers.

The mood-generation process for any answer provided by
the chatterbot consists in three steps. First, we identify one
of the five categories that applies to the answer, either as one
of the four emotions if such an emotion could be identified
for the sentence, or the category “other” if not. Second, a
random avatar is selected from the identified category. And
last, the avatar’s index in the set of pictures is projected onto
the range of moods for the same category, and a mood is
selected within a range of 20% around the projected index.
This way we approximately match the mood with the avatar’s
expression without providing the same avatar every time for
any particular mood.

The selected avatar image is displayed, and a
caption above the picture identifies the mood of
the chatterbot. The program can be seen online at
www.cs.iusb.edu/˜danav/chatterbots/ebirkoff/.

VI. EXPERIMENTAL RESULTS

In this section we present some experimental results of our
chatterbot.

A. Previous Work

We compare the current chatterbot with and without the
emotional component with the previous work we presented
in [11]. The chatterbots discussed in that paper can be seen
online at www.cs.iusb.edu/˜danav/chatterbots/.

In the former state, our chatterbots were using pattern
matching and templates that were entirely constructed by
hand. The random answers used a distinction between
declarative inputs and question-type inputs, with no further
classification of the questions. From the various discussions
conducted with the chatterbots, the refinement of this random

component seems to represent an improvement to the quality
of the answers.

The first chatterbots were using a very limited version
of keyword indexing. We expanded this component by im-
plementing an automatic indexing process. This component
expanded the diversity of the answers, but also proved to
provide the least quality in the answers. We foresee little use
of this technique for the future, and the need for a much
more selective indexing process.

The previous paper presented an evolutionary algorithm
that allowed us to generate new sentences based on the ones
retrieved from the database and enhance the diversity of
response of the chatterbot. We did not include this component
in the latest chatterbot, but it is a possible direction for future
research. However, the automatic pattern generation and
indexing, as well as the personal preference database seem
to be better methods for expanding the space of possible
answers for the chatterbot.

B. Chatterbot Evaluation

To evaluate the new chatterbot program with and without
the emotional component, an experiment was conducted
consisting in a dialog with the chatterbot with and without
the emotional component. The discussion consisted of 50
inputs and answers for each version of the chatterbot. One
subject participated in the experiments. A different set of
input sentences was used with each version of the chatterbot,
following the thread of the discussion. The answers were
evaluated based on the following categories: reasonable an-
swers, good answers, and off topic answers, that seem to have
little or nothing to do with the input sentence. The judgments
of the chatterbot answers were made by the subject of the
experiment. Additionally, sentences that were syntactically
incorrect were also counted, as well as the answers that were
consistent with the character simulated by the chatterbot.
Similar categories were used in [11] to evaluate the answers.

Table I shows the results of this experiment and compares
the percentages in each categories with those reported in
[11]. We computed the average from the previous paper
of the percentages in each category, with and without the
contribution of the evolutionary algorithm which is denoted
by EA in the last column. From this table we remark a
substantial improvement of the quality of responses provided
by the latest chatterbot. The difference between the versions
of the program with and without the emotional component is
very small. This is due to the fact that the mood is added to
the response after the response is generated, and the answer
generation algorithm is identical in the two cases.

The results in last column, denoted by LB, were based
on the Loebner Prize (http://www.loebner.net/Prizef/loebner-
prize.html). We selected 150 questions that the referees asked
the chatterbots and the humans in 2005. Birky’s answers
to these questions were then judged based on the same
criteria as the other experiments. These results show a lower
percentage of reasonable and good answers because they
were not asked during a sustained conversation, nor were
any of them specific to this particular chatterbot.

1-4244-0464-9/06/$20.00 2006 IEEE. 146 CIG'06 (May 22-24 2006)

TABLE I
EVALUATION OF THE CHATTERBOTS WITH AND WITHOUT THE

EMOTIONAL COMPONENT

plain emotional previous EA LB
Reasonable 32% 30% 40% 42.5% 31.3%
Good 48% 50% 18% 15.5% 32.7%
Off topic 20% 20% 42% 42% 32%
In character 90% 84% 75% 79% 92%
Syntactically 2% 4% 4.5% 6.5% 4%
incorrect

These experiments also provided an intuitive idea of what
the emotional component adds to the program. In general, the
chatterbot’s expressed mood enhances the dialog experience
and the impression of realism of the chatterbot. In several
cases the mood also added to the significance of the answer.
A few answers that would have been classified as “reason-
able” without the mood were classified as “good” based on
this additional information.

For example, when asked “would you like to talk about
gail?”, who is supposedly a female character in the story
that the character had a romantic connection to in the past,
Birky answered “i don’t know.” This answer can make sense
without being especially to the point in the absence of infor-
mation about the mood, which qualifies it as “reasonable”.
The mood expressed in this case was “rejected” which added
a new significance to the answer and qualified it as “good”.

The correspondence between the avatars and the mood ex-
pressed by the chatterbot was appropriate without being too
repetitive. In most cases, the expressed mood was reasonable
for the answer provided by the program.

VII. CONCLUSION

In this paper we presented a chatterbot application with an
emotional component and personality-specific database. We
are currently developing a game integrating this chatterbot
in a 3D environment as an intelligent NPC.

In the paper we first introduced the decision making
process to generate an answer. We followed with the basic
techniques used by the chatterbot, pattern matching, au-
tomatic indexing, and random sentence matching, as well
as the short term memory. The next section presented the
personality database describing personal features like food
preferences and family links, and the emotional component
that associates a mood and a corresponding avatar to every
answer returned by the chatterbot.

The results presented in the previous section are encourag-
ing. The quality of response of the chatterbot has improved
as compared to the previous models we implemented, as well
as the space of possible answers for the chatterbot. Moreover,
the emotional component adds another dimension of realism
to the program and enhances the dialog experience. The
capacity of emotional response is thus an important aspect
in creating believable virtual characters.

REFERENCES

[1] J. Weizenbaum, “Eliza - a computer program for the study of natural
language communication between man and machine,” Communica-
tions of the ACM, vol. 1, no. 9, 1966.

[2] B. Raphael, The Thinking Computer. New York: Freeman, 1976.
[3] G. Güzeldere and S. Franchi, “Dialogues with colorful personalities

of early AI,” Stanford Humanities Review, vol. 4, no. 2, 1995.
[4] W. Chamberlain, The Policeman’s Beard is Half Constructed. Warner

Books, 1984.
[5] J. Barger, “”The Policeman’s Beard” was largely prefab!” The Journal

of Computer Game Design, vol. 6, 1993.
[6] A. Turing, “Computing machinery and intelligence,” Mind, vol. 59,

no. 236, pp. 433–460, 1950.
[7] F. Barthelemy, B. Dosquet, S. Gries, and X. Magnant, “Believable

synthetic characters in a virtual emarket,” in IASTED Artificial Intel-
ligence and Applications, Innsbruck, Austria, 2004.

[8] A. Galvo, F. Barros, A. Neves, and G. Ramalho, “Persona-AIML: An
architecture for developing chatterbots with personality,” in Proceeding
of Autonomous Agents and Multi Agent Systems, Columbia University,
NY, USA, 2004.

[9] L. Saarine, Chatterbots: Crash Test Dummies of Communication.
Master Thesis, University of Arts and Design Helsinki UIAH, 2001.

[10] A. De Angeli, G. I. Johnson, and L. Coventry, “The unfriendly
user: Exploring social reactions to chatterbots,” in Proc. Int. Conf.
Affective Human Factor Design, M. G. Helander, H. M. Kalid, and
T. M. Po, Eds. Asean Academic Press, 2001, pp. 467–474. [Online].
Available: citeseer.ist.psu.edu/557029.html

[11] D. Vrajitoru and J. Ratkiewicz, “Evolutionary sentence combination
for chatterbots,” in The IASTED International Conference on Artificial
Intelligence and Applications (AIA 2004). Innsbruck, Austria: ACTA
Press, February 16-18 2004, pp. 287–292.

[12] J. Bates, “The role of emotion in believable agents,” Communications
of the ACM, vol. 37, no. 7, pp. 122–125, 1994.

[13] S. Brave and C. Nass, “Emotion in human-computer interaction,” in
The human-computer interaction handbook: fundamentals, evolving
technologies and emerging applications. Lawrence Erlbaum Asso-
ciates, Inc, 2002, pp. 81–96.

[14] N. Magnenat-Thalmann, “Creating a smart virtual personality,” Lecture
Notes in Computer Science, vol. 2773, no. 2, pp. 15 – 16, 1993.

[15] E. Oliveira and L. Sarmento, “Emotional valence-based mechanisms
and agent personality,” in Lecture Notes on Artificial Intelligence, ser.
2507, G. Bittencourt and G. Ramalho, Eds. Springer, 2002, pp. 152–
162.

[16] C. Okonkwo and J. Vassileva, “Affective pedagogical agents and user
persuasion,” in Proceedings of the 9th International Conference on
Human- Computer Interaction, C. Stephanidis, Ed., New Orleans,
2001, pp. 397–401.

[17] N. Person, A. Graesser, R. Kreuz, V. Pomeroy, and TRG, “Simulating
human tutor dialog moves in AutoTutor,” International Journal of
Artificial Intelligence in Education, vol. 12, pp. 23–39, 2001.

[18] G. Salton, Ed., The SMART Retrieval System - Experiments in Auto-
matic Document Processing. Englewood Cliffs (NJ): Prentice-Hall,
1971.

[19] G. Salton, E. Fox, and U. Wu, “Extended Boolean information
retrieval,” Communications of the ACM, vol. 26, no. 12, pp. 1022–
1036, 1983.

[20] H. v. Halteren, “Linguistic profiling for authorship recognition and
verification,” in Proceedings of the 42th Meeting of the Association
for COmputational Linguistics (ACL’04), Barcelona, Spain, 2004, pp.
199–206.

[21] C. Whitelaw and J. Patrick, “Selecting systemic features for text classi-
fication,” in Australasian Language Technology Workshop, Macquarie
University, NSW Australia, 2004, pp. 93–100.

[22] P. Eckman and V. F. Wallace, Unmasking the Face: A Guide to
Recognizing Emotions from Facial Clues. Englewood Cliffs N.J.:
Prentice-Hall, 1975.

1-4244-0464-9/06/$20.00 2006 IEEE. 147 CIG'06 (May 22-24 2006)

A Behavior-Based Architecture

for Realistic Autonomous Ship Control

Adam Olenderski and Monica Nicolescu
Robotics Research Laboratory

Dept. of Computer Science and Engineering
University of Nevada, Reno

olenders,monica@cse.unr.edu

Sushil J. Louis
Evolutionary Computing Systems Lab

Dept. of Computer Science and Engineering
University of Nevada, Reno

sushil@cse.unr.edu

Abstract— Game environments provide a good domain for
serious simulations such as those used in training Navy conning
officers. Currently, a typical training scenario requires multiple
personnel to play each of the boats and thus is expensive. We
propose an approach to addressing this issue by developing
intelligent, autonomous controllers for each boat. Significant
challenges toward achieving these goals are the realism of
behavior exhibited by the automated boats and their real-
time response to change. In this paper we describe a control
architecture that enables the real-time response of boats and
the repertoire of realistic behaviors we developed for this
application. We demonstrate the capabilities of our system with
experimental results.

Keywords: Training Games

I. INTRODUCTION

Virtual/game environments provide a good application area
both for entertainment and for serious simulations such
as those used in training. In this paper we focus on an
application for training conning officers and we describe
our approach to creating a robust and effective training
system. The goal for such systems is to teach conning
officers to drive big ships in the context of high-traffic,
potentially dangerous situations. Developing such a system
poses significant challenges and in this paper we will present
an integrated solution to three of the major requirements for
a successful training simulator.

A first challenge is the efficiency of the training system, in
terms of the personnel required for running the system, and
thus its cost. Currently, a typical training scenario requires
multiple personnel to play the part of each of the traffic
boats and is thus expensive and difficult to coordinate. In this
paper we propose an approach to reducing the time and effort
required for this training by automating the behavior of the
boats in the simulation (other than the ship driven by the stu-
dent officer). Taking inspiration from the field of autonomous
robotics and we developed an authoring tool that enables
the development of intelligent, autonomous controllers that
drive the behavior of a large number of boats. We assume
that a set of primitive behaviors (e.g., avoidance, maintain
station, etc.) are available as basic navigation capabilities,
and the authoring tool allows the construction of controllers
for complex tasks from these underlying behaviors. With this,
our system eliminates the necessity of having large number
of personnel for a single student’s training, significantly
reducing the costs involved.

A second challenge is the readiness of response of the
automated boats when facing changing situations as a result
of a trainee’s or other boats’ actions. This requires that the
controllers be able to act in real-time, while continuing the
execution of the assigned tasks. To achieve this goal we
will use Behavior-Based Control (BBC) [1], a paradigm
that has been successfully used in robotics. BBC is an
effective approach to robot and autonomous agent control
due to its modularity and robust real-time properties. While
BBC constitutes an excellent basis for our chosen domain,
developing behavior-based systems requires significant effort
on the part of the designer. Thus, automating the process of
controller design, as our authoring mechanism will allow,
becomes of key importance. In our work, the instructor uses
the authoring tool to create challenging scenarios for the
student conning officers, allowing for a fast and efficient
transfer of knowledge from the expert to our automated
system.

The third challenge is the realism of the behavior exhibited
by the autonomous boats involved in the simulation, due to
the fact that any behavior that departs from standard boat
navigation techniques would have a detrimental impact on the
students’ training experience. Thus, this requirement imposes
new constraints on how the boats’ underlying behaviors are
implemented, in contrast with typical behavior-based systems
in which almost any behavior that achieves the desired goals
is good. To implement these realistic capabilities we acquired
expert knowledge of ship navigation [2] and we encoded this
information within a behavior-based framework.

The implementation of the game engine and the graphics
display are also main components of the entire system, but
they are outside the scope of this paper. The work presented
here, a part of a larger scale project, focuses on the aspects
related to autonomous boat control, as previously described.

The remainder of the paper is structured as follows:
Section II describes related approaches to our work and
Section III describes our simulation environment. Section IV
presents our behavior and controller representation and Sec-
tion V presents our behavior repertoire. Sections VI and VII
describe the details of our authoring tool. We present our
experimental results in Section VIII and conclude with a
summary of the proposed approach in Section IX.

1-4244-0464-9/06/$20.00 2006 IEEE. 148 CIG'06 (May 22-24 2006)

II. RELATED WORK

Simulation systems for training have received significant
interest in recent years. Representative examples include
flight simulators [3] and battlefield simulators [4]. In con-
trast with the above approaches, the system we propose
in this paper provides an authoring mechanism to facilitate
the development of autonomous controllers for the agents
involved in the simulation. Our approach is inspired by the
programming by demonstration paradigm, which has been
employed in a wide range of domains, from intelligent
software systems [5] , to agent-based architectures [6], to
robotics [7]

In the mobile robotics domain, which is the inspiration for
our system, successful approaches that rely on this method-
ology have demonstrated learning of reactive policies [8],
trajectories [9], or high-level representations of sequential
tasks [10]. These approaches employ a teacher following
strategy, in which the robot learner follows a human or a
robot teacher. Our work is similar to that of [11] , who per-
form the demonstration in a simulated, virtual environment.
Furthermore, our work relates to teleoperation, a very direct
approach for teaching a robot by demonstration. Teleoper-
ation can be performed using data gloves [12] or multiple
DOFs trackballs [13]. These techniques enable robots to
learn motion trajectories [14] or manipulation tasks (e.g.,
[15]). Using such “lead-through” teaching approaches [16]
requires that the demonstration be performed by a skilled
teacher, as the performance of the teacher in demonstrating
the task has a great influence on the learned capabilities.
Another difficulty that may arise is that the teleoperation
may be performed through instruments that are different
than what the human operator would use in accomplishing
the task. Also, the actual manipulation of the robot may
influence the accuracy of the demonstration. In contrast with
these approaches, our work uses an interface, which allows
the transfer of expert knowledge through standard computer
input devices.

III. SIMULATION ENVIRONMENT

We use a 3D simulation environment, called Lagoon (Fig-
ure 1), that was developed by a larger team at the University
of Nevada, Reno. This environment allows for simulating a
wide range of boats, from small cigarette boats to medium
ships, such as sailboats, to large ships, such as destroyers
and aircraft carriers. All boats have realistic physics, which
the controllers take into account when autonomously driving
the ships.

Within this architecture, each boat can be controlled via
the Authoring panel (Figure 1, right side of screen). When an
entity is selected the panel and its associated behaviors refer
to that entity. Whenever a new entity is selected, the behavior
information for that new entity is displayed. There are 7
primitive behaviors, as described in Section V: approach,
maintain station, ram, move to, avoid entity, avoid land and
fire. The top level of the Authoring panel displays information
about the selected entity: name, current speed and course,

Fig. 1. Lagoon Simulation Environment

desired speed and course, and position. The lower section
displays information about the target ship (when applicable
- Section V): name, speed, heading, position, range and
bearing to target. The bottom section of the Authoring panel
provides manual controls for actuating the selected entity, as
an alternative to behaviors.

IV. BEHAVIOR-BASED CONTROL ARCHITECTURE

Behavior-based control (BBC) [1] has become one of
the most popular approaches to embedded system control
both in research and in practical applications. Behavior-
based systems (BBS) employ a collection of concurrently
executing processes, which take input from the sensors or
other behaviors, and send commands to the actuators. The
inputs determine the activation level of a process: whether
it is on or not, and in some systems by how much. These
processes, called behaviors, represent time-extended actions
that aim to achieve or maintain certain goals, and are the key
building blocks for intelligent, more complex behavior.

In this paper we use a schema-based representation of
behaviors, similar to that described in [17]. This choice is
essential for the purpose of our work, since it provides a
continuous encoding of behavioral responses and a uniform
output in the form of vectors generated using a potential
fields approach.

For the controller representation we use an extension of
the standard Behavior-Based Systems we developed, which
provides a simple and natural way of representing complex
tasks and sequences of behaviors in the form of networks
of abstract behaviors. In a behavior network, the links
between behaviors represent precondition-postcondition de-
pendencies, which can have three different types: permanent,
enabling and ordering. Thus, the activation of a behavior
is dependent not only on its own preconditions (particular
environmental states), but also on the postconditions of
its relevant predecessors (sequential preconditions). More
details on this architecture can be found in [18].

1-4244-0464-9/06/$20.00 2006 IEEE. 149 CIG'06 (May 22-24 2006)

The abstract behaviors embed representations of a behav-
ior’s goals in the form of abstracted environmental states,
which are continuously computed from the sensory data. This
is a key feature of our architecture, and a critical aspect for
learning from experience. In order to learn a task the robot
has to create a link between perception (observations) and
the robot’s behaviors that would achieve the same observed
effects.

In our system, a controller could potentially have mul-
tiple concurrently running behaviors. For such situations,
our system uses the following action selection mechanism.
Each behavior, including the avoid entity and avoid land
behaviors, computes a speed and a heading for the actuators.
If more than one non-avoidance behavior is active at one
time, the speed and heading returned by each active behavior,
represented as a vectors, are added by vector addition. The
resulting speed and heading are passed to the actuators. How-
ever, if one of the avoidance behaviors is active along with
other non-avoidance behaviors, the vector from the avoidance
behavior is not fused with the other behaviors’ output. In
such a case, the other behaviors’ vectors are summed and sent
to the avoidance behavior as a “suggestion”. If the avoidance
behavior finds that the suggested heading and speed do not
create a risk of collision, then the behavior will simply pass
the suggested values directly to the actuators. If, on the
other hand, the avoidance behavior finds that the suggested
heading and speed will cause a collision, the avoid behavior
will find an alternative heading and speed that is as close to
the suggested values as possible without causing a collision.
These alternative values will then be passed directly to the
actuators.

If both avoidance behaviors are active at the same time
as other behaviors, then each avoidance behavior (land and
entities) will find an appropriate set of alternative values
based on the same set of suggested values from the other
behaviors. However, instead of passing these values directly
to the actuators, the outputs of the two avoid behaviors will
be fused as described above. The result will then be passed
to the actuators.

V. BEHAVIOR REPERTOIRE

A. Description

The most important skill necessary for our behavior reper-
toire relates to vessel navigation, particularly where realistic
navigation is concerned. In the agents/robotics domain, what
is most important is to design behaviors or skills that achieve
certain desired goals for the task, irrespective of how those
goals are reached. However, ship handling and navigation
have to obey the “rules of the road”’ [2], thus imposing
significant constraints on how the ship’s basic capabilities
need to be designed. An additional constraint is that the
level of granularity for these skills has to be appropriate to
allow for the types of tasks that the boats would perform.
As a result of these requirements, the main behaviors that
we identified as necessary are the following:

Fig. 2. Behavior Panels: Approach, Maintain Station, Move To, Ram

• Maintain Station: The goal of this behavior is to make
a maneuvering ship (such as a destroyer) maintain a certain
station (distance and bearing) with respect to a reference ship
(such as an aircraft carrier). There are five main parameters to
this behavior: 1) the reference ship, 2) the way in which the
maneuver is to be performed: constant speed, constant course
or in a given amount of time; 3) the value for the maneuver
(i.e., speed, course or time), 4) the new stationing position in
terms of distance and bearing, and 5) the type of station, i.e.,
if the location is relative or absolute. When executing this
behavior, the maneuvering ship gets into station, after which
it continues to track the reference ship’s course and speed.
If the reference ship changes course or speed, the behavior
re-computes the necessary actions for the maneuvering ship,
in order to maintain the desired station.
• Approach: The goal of this behavior is to get a maneu-

vering ship to reach a certain station (distance and bearing)
with respect to a reference ship. This is similar to the
Maintain Station behavior and has the same input parameters,
the only difference being that in approach the maneuvering
ship will not maintain the station after reaching it.
• Move To: The goal of this behavior is to get a maneu-

vering ship to a specific location, in (X, Y) coordinates, in
the world. This behavior takes three main parameters: 1)
the way in which the maneuver is to be performed: with
a constant speed or in a given amount of time; 2) the value
for the maneuver (i.e., speed or time), and 3) the new (X,
Y) position.
• Ram: The goal of this behavior is to have a maneuvering

ship hit a target ship. This behavior takes three main param-
eters: 1) the target ship, 2) the way in which the maneuver
is to be performed: constant speed, constant course or in a
given amount of time, and 3) the value for the maneuver
(i.e., speed, course or time).
• Fire: The goal of this behavior is to direct the weapon fire

from a maneuvering ship to a target ship. The sole parameter

1-4244-0464-9/06/$20.00 2006 IEEE. 150 CIG'06 (May 22-24 2006)

of this behavior is the ship toward which to direct the fire.
• Avoid Entity: The goal of this behavior is to navigate a

boat such that all collisions with other boats are avoided, in
a manner consistent with the standard navigation rules.
• Avoid Land: The goal of this behavior is to avoid

collisions with land, in a manner consistent with the standard
navigation rules.

As previously mentioned, simply achieving the goals of
these behaviors is insufficient if the boats do not obey
the ship navigation rules. In addition, the large number of
rules in the navigation domain makes very challenging the
task of implementing them in a simple, modular manner.
The following subsections describe the approach we took to
implementing the main navigation rules into our behavior-
based system.

B. Navigation

In the ship navigation domain, the course and speed of a
ship is computed using a maneuvering board, or moboard.
This allows the crew to obtain the course and/or speed that
the ship should take to get into the desired position with
respect to another boat.

Fig. 3. Maneuvering Board

The maneuvering ship is placed at the center of the board,
and the location, course and speed of the reference ship are
plotted with respect to the center. With this diagram, the three
modes of maneuvering can be performed: 1) constant speed
(course and time to completion are computed), 2) constant
course (speed and time to completion are computed) and 3)
given time (course and speed are computed). The moboard is
very useful for manual computation, such as that performed
on the ship. For our purpose, we represent the problem as
the relative motion of two objects in Cartesian coordinates,
assuming that both ships maintain the same speed and course
during the maneuver, as shown in Figure 3, where:
• S0, S1 - position of the reference ship at the beginning

and end of the maneuver
• M0, M1 - position of the maneuvering ship at the

beginning and end of the maneuver
• R0, R1 - displacement between the two ships at the

beginning and end of the maneuver
• dr - displacement of the reference ship over the course

of the maneuver
• dm - displacement of the maneuvering ship over the

course of the maneuver
• im - unit vector representing the direction of the maneu-

vering ship

• vm - velocity vector of the maneuvering ship
• ir- unit vector representing the direction of the reference

ship
• vr - velocity vector of the reference ship
• t - time to complete the maneuver

The equation of motion for the maneuvering and reference
ships is:

ir ||vr|| t = D + im ||vm|| t (1)

where D is the relative motion vector (R0 − R1). From
Equation 1 we can find the solutions to the three types of
maneuvers, as follows:
1) Constant speed. Keeping ||vm|| constant, we compute
the course (im) and the time to completion (t), by solving
the system of two equations that results from projecting
Equation 1 onto the (X, Y) coordinates.
2) Constant course. Keeping the course (im) constant, we
compute the speed (||vm|| and the time to completion (t),
by solving the system of two equations that results from
projecting Equation 1 onto the (X, Y) coordinates.
3) Constant time. Keeping t constant, we compute the
course (im) and speed (||vm||), by solving the system of
two equations that results from projecting Equation 1 onto
the (X, Y) coordinates.

Due to the fact that the simulated ships have realistic
physics, we use a PD (proportional derivative) controller to
slow down the ships as they approach their goal destination.
The speed sent to the actuators is computed with the formula:

vrF inal = vr + KpDiffSpeed + Kd ∗ DiffAccel (2)

where vr is the speed computed from Equation 1, Kp and
Kd are proportional and respectively derivative constants and
DiffSpeed and DiffAccel are the difference in speed and
acceleration between the maneuvering ship and the reference
ship.

All four navigation behaviors, approach, maintain station,
move to and ram, use the above equations, parameterized to
fit their requirements.

C. Entity Avoidance

In typical robot/agent-based controllers, the role of the
obstacle avoidance behavior is simply to avoid all obstacles.
In most cases this is achieved by turning left when there is
an obstacle to the right or by turning right when there is
an obstacle to the left. To accurately mimic the actions of a
human driving a ship, several important constraints apply.

The most important navigation rule for avoidance is that a
human looks ahead in time to determine whether he will hit
an obstacle, which cannot be achieved by a purely reactive
controller. We implement such looking ahead capabilities into
our avoidance behavior, as explained next.

For the obstacle avoidance behavior, each ship in the world
(other than the avoiding ship) is represented by an ellipse that
is centered about that ship’s center of mass, rotated such
that the major axis of the ellipse is parallel to that ship’s

1-4244-0464-9/06/$20.00 2006 IEEE. 151 CIG'06 (May 22-24 2006)

Fig. 4. Obstacle Avoidance

heading, and whose major and minor radii are proportional
to the length and width of the ship, respectively (Figure 4).
The avoiding ship is represented simply as a point. Since the
speed and heading of the avoidance ship as well as the speeds
and headings of all other ships are known (in real life, this
information can be obtained through passive sensing), we can
look forward in time to find the positions of the ships at some
point in the future, assuming that their speed or direction
does not change. Along with this information, we can also
obtain the equations of the ships’ corresponding ellipses. A
collision is predicted to occur when the point representing
the own ship falls onto the ellipse representing another ship,
or, to put it another way, when the (x,y) point representing
the own ship satisfies the equation of one of the avoidance
ellipses. Based on this information, the avoidance behavior
finds whether a collision is imminent, the time to collision,
and a revised speed or heading for the own ship that will
avoid collisions with other ships.

The (x, y) position of any ship in time can be expressed
as a pair of parametric equations, with time as a parameter.
An ellipse can be uniquely described by its center point, its
minor and major radii, and its orientation. For any given ship,
we can safely assume that the radii will remain constant, as
they are proportional to the dimensions of the ship, which
are constant. Furthermore, we assume that the orientation of
an avoidance ellipse will remain constant in the future, since
ships usually do not change heading without reason. If one
of these assumptions turns out to be false, such as when a
ship is turning, the avoidance ellipse is recalculated based
on the most recent values. The center point of the ellipse,
like the point representing the own ship, can be calculated
for some point in the future using the ship’s current heading,
position, and speed as in Equation 3:

h = vt ∗ t ∗ cosθt + x0t

k = vt ∗ t ∗ sinθt + y0t

(3)

where h is the x coordinate of the ellipse’s center, k is
the y coordinate of the ellipse’s center, vt is target ship’s
velocity, t is the amount of time to look into the future, θt

is the target’s heading, x0t is the x coordinate of the target’s
current position (x coordinate of current ellipse center), and
y0t is the y coordinate of the target’s current position (y
coordinate of current ellipse center).

The equation of a boat’s avoidance ellipse (centered at
(h, k) and rotated by θt) is given by equation 4 below:

((xm−h)∗cosθt+(ym−k)∗sinθt)
2

a
2 +

((ym−k)∗cosθt−(xm−h)∗sinθt)
2

b
2 = 1

(4)

where xm, ym, h, k, and θt are the same as above, a is

the major radius of the ellipse, and b is the minor radius of
the ellipse.

We can find out if a point will fall on an ellipse by setting
the xm and ym values representing the position of the points
on the ellipse to the equations for the (x, y) position of the
own ship and solving for time. The result is a quadratic
equation in t:

g(t, x0m, y0m, vm, vt, θt, h, k, a, b) = 0 (5)

Based on the two solutions of Equation 5, the following
cases occur:
1) If both solutions are imaginary (negative discriminant),
then there will be no intersection at any time between the
point and the ellipse, indicating no risk of collision.
2) If both solutions are equal (discriminant equal to 0),
then there is only one point of intersection with the ellipse,
meaning that the own ship is traveling tangentially to the
avoidance ellipse of the ship to be avoided. In this case,
there is no danger of the ships themselves colliding, as the
own ship never makes its way inside the avoidance ellipse
of the other ship.
3) If the discriminant is positive, there are three possible
cases: i) If both solutions are positive, the own ship will
intersect the avoidance ellipse twice: once to enter the ellipse
and once more to exit it (in this case, some evasive action
must be taken to avoid a collision); ii) if both solutions are
negative, there is no risk of a collision (intuitively, this would
mean that there was an intersection at some point in the past,
but there is no danger in the future); and iii) if one solution
is negative and one solution is positive, then the own ship
has intersected the avoidance ellipse once in the past, and
will intersect it once more in the future (this indicates that
the own ship is within the avoidance ellipse of the other ship,
and must take immediate and drastic evasive maneuvers to
avoid a collision and leave the avoidance ellipse.)

If evasive action must be taken, the following options are
considered. If the own ship is within the avoidance ellipse
of another ship, this is seen as an emergency situation and
the own ship will try to move behind and away from the
other ship as quickly as possible. If, however, the danger of
collision is sufficiently far away in the future, the obstacle
avoidance behavior can make smaller adjustments to the
heading or speed of the own ship to eliminate the danger
of colliding with the other ship. To achieve this, the obstacle
avoidance behavior computes a heading and/or speed that
results in a zero discriminant for Equation 5, (case 2 above).
Navigation rules favor a change speed rather than heading,
thus the behavior first attempts to find a new speed that
satisfies the constraint:

f(x0m, y0m, x0t, y0t, vm, vt, θt, a, b) = 0 (6)

This is a quadratic equation with respect to speed, with
two solutions. If both solutions are valid speeds (positive
and less than or equal to the maximum speed of the ship),
the behavior returns the highest speed. If only one solution is

1-4244-0464-9/06/$20.00 2006 IEEE. 152 CIG'06 (May 22-24 2006)

a valid speed, that speed is used. If neither solution is valid,
then the heading must be changed to avoid a collision. To find
a valid heading, the behavior first finds whether the collision
would still be imminent if the own ship turned five degrees
to the left. If not, then the behavior continues to test potential
headings, in increments of five degrees, until it finds one that
avoids a collision, at which point it uses the same process
to find a corresponding heading to the right of the current
heading. This results in two headings (one to the right, and
one to the left) that avoid a collision. The heading closest to
the current heading is the one passed to the actuators.

The solution to avoid one ship could potentially generate
collisions with others. Our approach uses a mechanism to
deal with avoiding multiple ships, as follows: for every
ship on a collision course with the own ship, the avoidance
behavior puts in a list all the valid speeds and headings that
will avoid that ship. After all the ships have been analyzed
and the list is built, the behavior iterates through the list and
eliminates the routes that collide with other ships. The only
elements remaining in the list will be the speeds or headings
that avoid collisions with all the other ships in the simulation.
Since speed changes take priority over heading changes, if
there is at least one speed remaining in the list, that speed
will be passed to the actuator with the current heading. If
there is more than one potential speed in the list, the highest
speed is passed to the actuators. If no speed changes remain
in the list, then the potential heading that is closest to the
current heading is passed to the actuators along with the
current speed.

D. Land Avoidance

To determine whether or not a ship is in danger of
grounding itself, the avoid land behavior uses the speed of
the ship, as indicated in [2]. The behavior uses this speed to
determine the approximate distance that the ship can travel in
four minutes. Next, it checks if there is any land within that
distance, in all directions from the ship. If no land is present
in that area, there is no land to avoid. However, if there is land
in front of the own ship, the behavior computes a heading
that will take the ship away from land and a speed that makes
the nearest land be outside of the four minute range. To
achieve this, the behavior uses the distance and bearing to
the nearest land in the front 180-degree field of view. The
new speed is calculated to be that distance divided by four
minutes, to ensure that the nearest land will lie outside of
the four minute range. The new heading is calculated to be
that bearing plus or minus 90 degrees, whichever is closer to
the current heading. This ensures that instead of continuing
to head toward land, getting slower and slower until the
ship grounds itself, the ship will turn parallel to the land,
following its contour until there is no more land to avoid or
until the land avoidance behavior is turned off.

VI. TRIGGERS

Triggers are a mechanism that allows the user to indicate
important situations in the simulation, typically with the
purpose of changing a boat’s behavior when that situation

occurs. A trigger is created through the triggers panel of
our interface (Figure 5). We provide the following types of
triggers: distance between entities, entities within a certain
range, hull strength of a particular ship, or an arbitrary flag.
The panel allows the user to specify the parameters for each
trigger, such as, for example, the entities in the simulation
between which the distance is to be monitored. The name
and current value (updated every tick) of all created triggers
is displayed on the triggers panel main window. Triggers can
be created, monitored, or deleted at any time during either
authoring or execution.

Fig. 5. Trigger types and panel

The distance between entities trigger is included for conve-
nience, as it does not require user input during authoring and
many maritime maneuvers depend on the distances between
particular ships. However, for a more general event that
cannot be described in terms of the distance between two
entities or the damage taken by a particular ship, there are
arbitrary flag triggers as well. These work similarly to the
other triggers, in that they are user created and indicate when
a controller should change behavior. However, these triggers
are binary flags, meaning that they can only hold one of two
values: true or false. Also, these triggers require user input
not only during authoring, but also during execution. A flag
trigger usually represents an event that the user will have to
specify himself, such as the start of a scenario. For example,
to add a flag trigger to start a scenario, the user would create
a trigger named ”Start Scenario” before authoring. While
recording, when the user is ready to begin the scenario,
he would navigate to the triggers panel, click the check-
box next to the ”Start Scenario” trigger, click the Critical
Juncture button, and change the behavior of the ship he/she
is controlling. This informs the system that that behavior
should only be activated after the ”Start Scenario” flag has
been set. Then, when the controller is executed, it will wait
until the user explicitly activates that flag before continuing.
This is done by navigating to the triggers panel, clicking the
check-box next to the desired flag trigger, and clicking the
Critical Juncture button.

1-4244-0464-9/06/$20.00 2006 IEEE. 153 CIG'06 (May 22-24 2006)

VII. AUTHORING

During authoring, the instructor starts or stops the relevant
behaviors using the Control Panel interface. While these
behaviors are executed, the authoring tool continuously mon-
itors the status of the behaviors’ postconditions. To build the
task representation (controller) we add to the network task
representation an instance of all behaviors whose postcondi-
tions have been detected as true during the demonstration,
in the order of their occurrence (on-line stage). At the end
of the teaching experience, the intervals of time when the
effects of each of the behaviors were true are known, and are
used to determine if these effects were active in overlapping
intervals or in sequence. Based on the above information,
the algorithm generates proper dependency links between
behaviors (i.e., permanent, enabling or ordering) (off-line
stage). This one-shot learning process is described in more
detail in [19]. The only difference in the work presented here
is that the construction of the task representations was done
off-line.

While authoring a controller, if triggers are needed, the
user first creates all the triggers to be used during that session.
While a scenario is being recorded, if the user wishes to
indicate changes in behavior based on some particular event
in the world, he/she navigates to the triggers panel, clicks
on the check-box next to the appropriate trigger to indicate
its relevance, clicks the Critical Juncture button, and then
changes to the desired behavior. During playback of the same
scenario, the system will monitor the state of this trigger.
When the state of the execution trigger approaches that of the
user-created trigger, the system switches the boat’s behavior
according to the demonstration.

VIII. EXPERIMENTAL RESULTS

In this section we describe the performance of our system
during behavior performance testing and during controller
authoring. This experimental validation demonstrates the
main capabilities of our system: autonomous control of mul-
tiple boats, compliance to navigation standards and authoring
of complex controllers.

A. Behavior Performance

The behaviors that involved the underlying navigation ca-
pability (approach, maintain station, ram, and move to have
been thoroughly tested throughout the experiments listed be-
low. Their performance correctly and faithfully demonstrated
compliance to the rules of ship navigation.

We successfully tested avoid entities in numerous situa-
tions, including the following: 1) moving own-ship from one
side of stationary/moving target ship to the other side, 2)
moving own-ship from one end of stationary/moving target
ship to other end, 3) moving own-ship from one side of two
stationary/moving ships whose ellipses overlap to the other
side and 4) moving own-ship from one side of a crowded
group of moving and stationary ships to the other side. These
represent the most probable situations to be encountered by
a boat in high-traffic areas.

Fig. 6. Behavior performance evaluation: Destroyer maintains station with
respect to aircraft carrier; V-formation avoids big ships while moving west.

We successfully tested the avoid land behavior in the
following representative situations: 1) moving own-ship from
point far away from land to point near land, 2) moving own-
ship from point near land to point farther away from land,
3) moving own-ship to a point within a land mass (triggered
avoidance and did not move onto land), 4) moving own-ship
to a point on the other side of a land mass.

By attaching Maintain station behaviors to several boats,
in a layout such as required by a formation, we enabled
autonomous group behavior, for large number of boats.
Currently, we can organize any number of boats (as allowed
by the computational power of the computer) in the following
formations: line, row, and V-formation. The boats involved in
a group maintain their assigned formation while performing
other tasks, such as moving to a new location, or approaching
a target. While performing these maneuvers, the group avoids
obstacles, keeping the formation together. Figure 6 shows
a group of 5 boats in V-formation, moving to the left of
a destroyer and aircraft carrier, while performing obstacle
avoidance. The bottom figure shows the formation regrouped
after avoidance. The boats can dynamically switch between
formations.

1-4244-0464-9/06/$20.00 2006 IEEE. 154 CIG'06 (May 22-24 2006)

B. Controller Authoring

We have performed a large number of authoring experi-
ments (more than 10 different scenarios), with all scenarios
being learned correctly. Below we list a few examples, which
are most relevant for the training of conning officers.

1. ZigZag Attack: A small boat moves into position with
respect to a big ship, then approaches a group that maintains
distant station of that ship. The group moves in V-formation.
On a flag trigger the small boat approaches the big boat and
maintains station until a second trigger goes off. Next, the
small boat rejoins the boat group in the distance. When a
third flag trigger goes off, the small boat re-approaches the
big boat and maintains close station to it. When getting with
a given range (distance trigger), the small boat moves into
position behind the big ship and rams it.

2. Defend: A destroyer (escort) maintains station with respect
to an aircraft carrier to be defended. A small cigarette boat
approaches the destroyer. When the cigarette boat comes
within a buffer range of the aircraft carrier (e.g., 1000
yards) a distance trigger is activated, after which the escort’s
behavior changes from maintain station on carrier to ram
cigarette boat.

3. Attack-Distract Two boats take turns distracting so one
or both can ram a target. Boat A maintains a position in front
and slightly to the side of the Target at a long range, as if it
wants to be seen but not considered a threat. Boat B starts to
the side of the target and slowly begins to collide with the
Target. Once B is with in a certain range hopefully gaining
the attention of the Target, A starts a full-speed ram. Once
A starts the ram, B stops its approach and backs off.

IX. CONCLUSION

In this paper we presented an approach to efficient and
realistic design of serious game simulators, with application
to ship navigation. The goal of this system is to provide
the infrastructure needed to train conning officers to drive
big ships in the context of high-traffic, potentially dangerous
situations. Developing such a system poses significant chal-
lenges and in this paper we presented an integrated solution
to three of the major requirements for a successful training
simulator: 1) the efficiency of the training system, 2) the
readiness of response of the boats and 3) the realism of
the behavior of the automated boat controllers. To address
these challenges we developed an authoring tool that enables
the development of intelligent, autonomous controllers that
drive the behavior of a large number of boats.This eliminates
the necessity of having large number of personnel for a
single student’s training, significantly reducing the costs
involved. We developed a Behavior-Based Control architec-
ture that provides responsive automated controllers, and we
incorporated expert ship navigation knowledge to provide
realistic behavior for the automated boats. To demonstrate
our approach, we presented experimental results describing
the main capabilities of our system.

X. ACKNOWLEDGMENTS

The authors would like to acknowledge the significant
contribution of Sergiu Dascalu, Chris Miles, Ryan Leigh,
and Juan Quiroz, from the University of Nevada, Reno. This
work was supported by the Office of Naval Research under
grant number N00014-05-1-0709.

REFERENCES

[1] R. C. Arkin, Behavior-Based Robotics. CA: MIT Press, 1998.
[Online]. Available: http://www.usc.edu

[2] J. John V. Noel, Ed., Knight’s Modern Seamanship. John Wiley and
Sons, 1988.

[3] M. Tambe, L. W. Johnson, R. M. Jones, F. V. Koss, J. E. Laird,
P. S. Rosenbloom, and K. Schwamb, “Intelligent agents for interactive
simulation environments,” AI Magazine, vol. 16, no. 1, pp. 15–39,
1995.

[4] R. B. Calder, J. E. Smith, A. J. Courtemarche, J. M. F. Mar, and
A. Z. Ceranowicz, “Modsaf behavior simulation and control,” in
Proceedings of the Second Conference on Computer Generated Forces
and Behavioral Representation, July 1993.

[5] H. Lieberman, Human-Computer Interaction for the New Millenium.
ACM Press/Addison-Wesley, 2001, ch. Interfaces that Give and Take
Advice, pp. 475–485.

[6] R. H. Angros, “Learning what to instruct: Acquiring knowledge from
demonstrations and foccused experimentation,” Ph.D. dissertation,
University of Southern California, May 2000.

[7] S. Schaal, “Learning from demonstration,” in Advances in Neural In-
formation Processing Systems 9, M. Mozer, M. Jordan, and T. Petsche,
Eds. MIT Press, Cambridge, 1997, pp. 1040–1046.

[8] G. Hayes and J. Demiris, “A robot controller using learning by
imitation,” in Proc. of the Intl. Symp. on Intelligent Robotic Systems,
Grenoble, France, 1994, pp. 198–204.

[9] P. Gaussier, S. Moga, J. Banquet, and M. Quoy, “From perception-
action loops to imitation processes: A bottom-up approach of learning
by imitation,” Applied Artificial Intelligence Journal, vol. 12(78), pp.
701–729, 1998.

[10] M. N. Nicolescu and M. J. Matarić, “Natural methods for robot task
learning: Instructive demonstration, generalization and practice,” in
Proc., Second Intl. Joint Conf. on Autonomous Agents and Multi-Agent
Systems, Melbourne, Australia, July 2003.

[11] J. Aleotti, S. Caselli, and M. Reggiani, “Leveraging on a virtual
environment for robot programming by demonstration,” Robotics and
Autonomous Systems, vol. 47, pp. 153–161, 2004.

[12] R. Voyles and P. Khosla, “A multi-agent system for programming
robots by human demonstration,” Integrated Computer-Aided Engi-
neering, vol. 8, no. 1, pp. 59–67, 2001.

[13] M. Kaiser and R. Dillmann, “Building elementary robot skills from
human demonstration,” in Proc., IEEE Intl. Conf. on Robotics and
Automation, Minneapolis, Minnesota, apr 1996, pp. 2700–2705.

[14] N. Delson and H. West, “Robot programming by human demonstra-
tion: Adaptation and inconsistency in constrained motion,” in Proc.,
IEEE Intl. Conf. on Robotics and Automation, Minneapolis, MN, apr
1996, pp. 30–36.

[15] J. Yang, Y. Xu, and C. S. Chen, “Hidden markov model approach to
skill learning and its application in telerobotics,” in Proc., Intl. Conf.
on Intelligent Robots and Systems, Yokohama, Japan, 1993, pp. 396–
402.

[16] D. J. Todd, Fundamentals of Robot Technology. John Wiley and Sons,
1986.

[17] R. C. Arkin, “Motor schema based navigation for a mobile robot:
An approach to programming by behavior,” in IEEE Conference on
Robotics and Automation, 1987, 1987, pp. 264–271.

[18] M. N. Nicolescu and M. J. Matarić, “A hierarchical architecture for
behavior-based robots,” in Proc., First Intl. Joint Conf. on Autonomous
Agents and Multi-Agent Systems, Bologna, Italy, July 2002, pp. 227–
233.

[19] ——, “Learning and interacting in human-robot domain,” IEEE Trans-
actions on Systems, Man, and Cybernetics, Part A: Systems and
Humans, Special Issue on Socially Intelligent Agents - The Human
in the Loop, vol. 31, no. 5, pp. 419–430, 2001.

1-4244-0464-9/06/$20.00 2006 IEEE. 155 CIG'06 (May 22-24 2006)

Modelling and Simulation of Combat ID – the INCIDER Model
D. Dean, P. Syms, K. Hynd, B. Mistry, A. Vincent

Abstract—This paper explores a method of incorporating
the human decision making process and human factors
(such as fatigue, experience and confirmatory bias) into
a one-on-one combat model, the INCIDER model. It
discusses some of the theory behind the decision making
cycle and explains the sensor fusion techniques used to
combine information from several distinct sources. It
then explains how the INCIDER model incorporates
these processes to represent the manner in which an
individual decision maker identifies an unknown
battlespace object (a process often referred to as
“combat ID”). The paper goes on to discuss ongoing
work validating the parameters used within the model,
involving a series of experiments using a synthetic
environment. It also explores possible uses of the model,
both as a standalone tool and as an information feed to
higher level constructive simulations and wargames.

I. INTRODUCTION

The use of modelling and simulation in the UK Ministry of
Defence (MoD) is becoming more and more widespread.
As the Defence budget becomes more constrained,
expensive mistakes are becoming less and less acceptable to
the public. Among other things, modelling and simulation
provides:

• A proven method of reducing risk before investing
in new equipment;

• Cheap and effective ways of providing training;
• A mechanism to investigate the root causes of

battlefield incidents and identify lessons learned.
However, although many of the models used by the UK

contain very high-fidelity physical representations (i.e. of
aspects like ballistics, fluid flow etc.) the “human” aspects
of the battle have been modelled with a great deal less
fidelity (and in some cases largely ignored). These “human
factors” include areas like fatigue, stress, attitude to risk,
individual personality, level of training, level of experience
and so on. These parameters can have a massive effect on

Manuscript received January 30th, 2006. This work was funded by the

U.K. Ministry of Defence.
D. Dean and A. Vincent are with the Land Battlespace Systems

Department of the Defence Science and Technology Laboratory (Dstl),
Portsdown West, PO17 6AD, UK. Email: dfdean@dstl.gov.uk,
avincent@dstl.gov.uk

P. Syms is with the Land Battlespace Systems Department of the
Defence Science and Technology Laboratory (Dstl), Fort Halstead, TN14
7BP, UK. Email: prsyms@dstl.gov.uk

K. Hynd and B. Mistry are with the Information Management
Department of the Defence Science and Technology Laboratory (Dstl),
Portsdown West, PO17 6AD, UK. Email: kshynd@dstl.gov.uk,
bmistry@dstl.gov.uk

the outcome of a battle; for example, the effects of sleep
deprivation have been proven to significantly reduce both
the ability to make complex decisions and to perform
straightforward tasks (Harrison and Horne, [1]), but still
factors like this are often considered too complex to
represent within a model.

One area where the effects of human factors cannot be
overstated is in the identification of entities in the
battlespace (often referred to as combat identification). The
physical environment can contribute significantly to the
problem (e.g. constrained line of sight to a target, poor
weather conditions limiting sensor utility etc.), but analysis
of historical incidents has shown that often the factors that
will have the most telling contribution are far less cut and
dried; psychological factors such as confirmatory bias and
the personality of the individual attempting to make the
identification, for example, have had a very significant
effect in many cases.

Combat identification is also an important example
because one of the possible repercussions of a combat
identification failure is fratricide. Historically, fratricide
(sometimes known as Blue-on-Blue or friendly fire) has
been a feature of warfare since the beginning of recorded
history. During WW1 and WW2 it is believed to have
accounted for between 10% and 20% of all casualties. In
the more recent Gulf conflicts the mismatch between forces
led to low overall numbers of UK and US casualties,
bringing into focus the significance of own-force casualties.
The public are becoming more and more reluctant to accept
casualties in war, but when casualties arise through
identification errors and result in friendly fire incidents the
political impact is dramatically increased.

Effective combat identification (CID) of entities
encountered in the battlespace is critical in reducing
fratricide. CID is defined by the British Army [2] as:

‘The process of combining situational awareness,
target identification, specific tactics, techniques and
procedures to increase operational effectiveness of
weapon systems and reduce the incidence of
casualties caused by friendly fire’

Good combat identification can improve the tempo of
operations, and increase the effectiveness of manoeuvre and
engagement. Conversely, poor CID can:

• lower tempo (wasting time as unknown forces are
positively identified);

• introduce Blue fratricide casualties, lowering
morale and effectiveness;

1-4244-0464-9/06/$20.00 2006 IEEE. 156 CIG'06 (May 22-24 2006)

mailto:dfdean@dstl.gov.uk
mailto:avincent@dstl.gov.uk
mailto:prsyms@dstl.gov.uk
mailto:kshynd@dstl.gov.uk
mailto:bmistry@dstl.gov.uk

• cause civilians to be targeted;

• waste resources that could be used to engage or
guard against non-existent threats;

• expose own forces to danger from incorrectly
identified hostiles;

• lead to political repercussions, both nationally and
internationally.

Assessment of CID is not easy. It involves elements of the
physical domain, such as military equipments (e.g. vehicles,
uniforms, sensors etc.) and the environment (e.g. terrain and
weather), together with elements of the informational (plans,
briefings and communications), cognitive (e.g. training,
resolving conflicting information) and psychological (e.g.
character, expectation, stress, fatigue) domains.

Traditionally, the physical domain has been studied using
wargames and combat simulations, the informational using
process models (sometimes in alliance with combat models),
whereas the cognitive domain was studied separately, and
approached much more qualitatively using ‘soft Operational
Research (OR)’ techniques. But if the MoD were to assess
quantitatively the cost-effectiveness of solutions to the CID
problem that span all these domains, it was necessary to
develop a single quantitative method.

The approach most favoured for a study of this nature
would involve a modelling/simulation approach, often by
inviting military “players” to participate in a wargame. As
mentioned above, very few wargames or combat models
contain an explicit, detailed representation of human factors
and decision-making, instead choosing to concentrate on the
physical aspects of the battle (such as ballistics, weapon
effectiveness, platform performance and so on). This is
because of the complexities inherent in attempting to
represent these complex cognitive processes.

However, when considering the Combat ID problem it is
apparent that the human elements are often the most
significant and lead to the majority of Combat ID failures.
For this reason, any modelling undertaken to investigate
possible solutions must contain a strong human element
within it.

Moreover, the MoD requirement was for a model that
could represent decision-makers (DMs) in the sea, land and
air environments, on joint (bi- and tri-service) and combined
(coalition) operations. In 2004 the Defence Science and
Technology Laboratory (Dstl) judged that the problem
across these domains was understood sufficiently well for
quantitative modelling to be attempted, and that sufficient
data existed or could feasibly be gathered to support it.

II. THE INCIDER MODEL
To meet this need, Dstl have developed an holistic and
consistent set of parameters across all these domains, and
used them to create a generic iterative, stochastic decision-
making assessment tool called the Integrative Combat

Identification Entity Relationship (INCIDER) model.
INCIDER integrates physical representations of sensors and
Identification, Friend or Foe (IFF) systems with human
cognitive and behavioural characteristics, and can represent
simplified detection and classification processes within an
instantiated representation of an encounter set within an
operational context. It also considers how operational
characteristics will impact upon the implementation of the
human and physical factors (for a complete list of the
parameters that can be changed in INCIDER, see Fig. 1).

Figure 1: Inputs to the INCIDER model

The model is based around a decision-making framework
developed within Dstl. The framework draws on concepts
established in psychology and adapts them to be useful
within a warfighting situation.

INCIDER represents a single decision-maker observing a
single ‘target’ entity on a flat battlespace, through a number
of channels. The DM can also refer to third party
information sources, such as a HQ higher up the chain of
command, for more information on the identity of the target.
The process is generic and can represent any type of DM or
target entity within any environment. A diagram illustrating
the overall identification process used in INCIDER is shown
in Fig. 2.

After initial detection, the decision maker will undertake
an iterative process to gain more information about the
target by using the available information sources, and
moving closer to the entity to improve the performance of
his sensors. Eventually a confidence threshold level will be
reached, at which time an assumed identity (correct or
incorrect) will be assigned, or he will be ‘timed-out’. At the
end of each set of runs the model will record the outcome
(i.e. the decision taken), the time taken to reach the decision
and the events that led up to the decision being taken.

The model requires data on the sensors available to the
DM, and look-up tables of their performances, based on

1-4244-0464-9/06/$20.00 2006 IEEE. 157 CIG'06 (May 22-24 2006)

existing physical and experimental models. It requires the
ground truth target identity (Red1, Blue, neutral or non-
target2), and initial detection range. It also needs a wide
variety of parameters that describe the human aspects of the
decision making process, such as data on the observer’s
expectations, personality (currently described using the
Myers-Briggs system, which influences the propensities for
different actions), training (e.g. skill in physical
identification), stress and fatigue.

Preconception: A decision maker will enter an encounter
with a preconception about the identity of the target. This
will be based on previous history and the pre-mission
briefing. Values relating to the relative belief in each of the
identity options (Red, Blue, etc.) are key inputs to the
process.

Decision threshold: The decision-maker will have a level
of evidence that will need to be reached in order for them to
make a decision. This level will be determined by a mixture
of the Rules of Engagement (RoE), experience, fear or threat
and the tactical situation, and personality. The decision
threshold will tend to lower as the encounter develops, and
potentially decrease rapidly with distance if the DM feels
under threat from the target.

Confirmatory bias: All individuals will tend to see what
they expect to see. This is why preconceptions are so
important in the decision making process. Moreover,
individuals will tend to seek out information that supports
their preconception, and reject information that contradicts
it. This phenomenon is well recorded, but very hard to
represent. Within INCIDER, the stronger the preconception
belief, the higher the level of confidence in new information
must be in order to be believed; lower grade information is
ignored. This has been represented using a filter on the
incoming information.

Pre-set human characteristics: These characteristics
consider aspect of the DM’s experience and character type.
Currently this includes:
Myers-Briggs personality indicators are used to determine
sensory preferences, and the likelihood of using different
types of information source (i.e. a bias towards human
sources, technology or SA pictures).
Level of recognition training represents the degree of
proficiency that an individual has in identifying a target,
used to moderate the information provided by imaging
sensors.

1 Conventionally, enemy forces are designated as ‘Red’ and own forces are
given the designation ‘Blue’. In a similar manner, civilians are often
referred to as ‘White’ entities.
2 Non-targets have been included because it is possible for wildlife, rock
formations, broken down vehicles and derelict structures to be mistaken for
military targets. In one example from the 1991 Gulf War, two hawks sitting
on a water tank were mistaken for an enemy observation post, and indirectly
led to a fratricide incident.

Level of Joint/Coalition training represents the amount of
time that an individual has worked alongside colleagues, and
hence will be more aware of their location through
familiarity. This parameter is also used to modify the level
of preconceptions, so that a higher level of Joint/Coalition
training will lead to more accurate preconceptions.

Variable characteristics: These characteristics consider
aspects of the DM’s mental state that will vary depending on
the scenario that he is placed in.
Stress indicates the degree to which cognitive resources are
limited by other activities. The consequence in INCIDER is
to alter the limit at which confirmatory bias effects are
overridden.
Fatigue indicates the degree to which cognitive resources
are limited by physical tiredness and lack of sleep. It is
implemented in INCIDER by introducing a decrease in the
ability of the decision-maker to use the resources available
to him. Both stress and fatigue will also tend to either cause
people to polarise their thoughts, i.e. become more biased
(going with their preconceptions, because it is easy) or
refuse to make a decision (raising their decision threshold).

The encounter model: A ‘fusion engine’ uses a Bayesian-
derived technique, the Dempster-Shafer method, to combine
inputs from different sensors and SA tools to derive overall
‘confidence masses’ describing the DM’s belief in the
target’s identity.

This level of confidence is fed into a ‘decision engine’ that
compares the history (expectation) confidence masses with
the newly derived observation mass. The effect of
confirmatory bias filters out weak inputs, and a modified set
of beliefs results.

The decision engine also determines by a stochastic
process the next action that the DM will take (e.g. to move
closer, use a different sensor or SA tool, contact HQ, etc.).
This is an iterative cycle where the DM closes range with
the target. The belief from the previous iteration becomes
the new expectation, and the DM uses a mixture of
information sources to raise confidence.

Eventually, when a particular confidence mass exceeds the
decision threshold, a decision is made. INCIDER records
the result of the decision, ant the time taken to reach it. It
does not attempt to model the consequences of the action
taken on this decision (e.g. an engagement and possible
return fire).

Because INCIDER is stochastic and outputs only one
decision per run, the runs are replicated many times –
typically 1000 times – so that the results across a range of
treatments can be analysed statistically using the Analysis of
Variance.

1-4244-0464-9/06/$20.00 2006 IEEE. 158 CIG'06 (May 22-24 2006)

Figure 2: The structure of the INCIDER model

I. HUMAN DECISION MAKING IN INCIDER
The decision-making framework used in the INCIDER
model is based on a body of work undertaken by
psychologists, in particular the Recognition-Primed
Decision model developed by Klein [3]. This work
indicates the importance of situation assessment, experience
and familiarity in naturalistic decision making. The
framework (figure 3) also includes a representation of the
manner in which a decision maker considers information
that will contribute to their situational awareness, based on
the work of Endsley [4].

The terms Perception, Comprehension and Projection on
the left-hand side of the diagram refer to different aspects of
the process involved in assimilating information
contributing to situational awareness. The three aspects are
hierarchical phases, described as the three levels of SA.

Perception (or Level 1 SA) is the perception of attributes
and status of elements in the environment that are important
to the actor. Comprehension (Level 2 SA) is the
comprehension of perceived elements in the environment;
i.e. an understanding of the significance of the elements in
light of their own goals. Projection (Level 3 SA) is the
projection of the future action of the elements.

The phases on the right-hand side of the diagram supply
the framework for human decision-making. These represent
the manner in which a decision maker selects a course of
action from several options.

The Recognition Primed Decision Making shortcut
represents the effects of experience and training. In some

situations, experienced decision makers reported that they
did not assess and compare options, instead reacting based
on prior experience (Klein, [3]). A similar shortcut can also
provide a link between Projection and Implement Option.

Figure 3: The INCIDER decision making cycle

II. SENSOR FUSION
Within the INCIDER model, information feeds are taken
from several different sources, from electro-optic sensors
and GPS positional information to situation and contact
reports from other units. When new information is received
from any of these sources it must be fused with the
information previously provided by the other sources to give
an overall picture of the nature of the unknown entity.
However this fusion is not performed by a computer, rather
it is a cognitive process performed by the decision maker.

1-4244-0464-9/06/$20.00 2006 IEEE. 159 CIG'06 (May 22-24 2006)

In order to represent this, it is necessary to use a sensor
fusion algorithm.

Many algorithms exist for fusing the information from
several sources into a single combined picture (Klein, [7]).
Some of the more commonly used are Bayesian sensor
fusion methods, fuzzy logic methods and various similar
approaches. However, these methods are designed for
fusing sensor information automatically and presenting the
fused picture to the decision maker. The process used by a
human to fuse data is very different and other methods must
be explored.

One of the main problems with many of the methods used
by automated systems is that they assume that the
appropriate data exist to use the model. For example, in the
Bayesian sensor fusion method it would be necessary to
possess a complete probabilistic model; impossible when
some of the information sources are so subjective.
However, there is a method that addresses this problem and
others like it. The Dempster-Shafer Theory of Evidence is
based on Bayesian Inference methods, but instead of using
probabilities it uses analogous quantities called masses.
These masses possess many of the same properties as
probabilities (e.g. they must fall within the range [0,1], must
sum to 1 and so on) but are subtly different in terms of what
they represent. Whereas probabilities represent the
likelihood of events occurring, masses show the extent to
which the evidence provided supports a hypothesis. For this
reason, the Dempster-Shafer method seems particularly
appropriate for representing the data fusion process
performed by the decision maker.
The method itself is based on set theory and has several
useful characteristics associated with it. For example, it is
possible to group sets together (where each set represents an
option) to create supersets (i.e. groups of options). This is a
potentially useful feature, as it allows the decision maker to
construct supersets like “non-combatant” (a superset
excluding all military entities) or “friendly military” (a
superset including only own and coalition forces). This last
example is particularly useful, as some military systems are
capable of distinguishing between such forces and
everything else (i.e they can return a positive ID of
“friendly”), but cannot distinguish between opposing forces
and civilians (both of which would provide a return of
“unknown” if interrogated by such sensors).

For more information on Dempster-Shafer Evidential
Theory in a Defence environment, see Koks & Challa [6].

III. SYNTHETIC ENVIRONMENT EXPERIMENTATION
The first iteration of the INCIDER model was intended to be
a “proof of principle” rather than a final solution, and
although the model shows the potential to provide a high
level of utility a great deal of work will be required before
this can be realised.

One of the main areas that should be addressed is the
validation of the data used within the model, particularly
that used to support the human factors represented within

the model. Currently much of the data used in these areas of
the model has been taken from experiments that provide
similar behaviours to that exhibited in battle situations.
Initial runs of the model show close agreement with data
obtained from trials, but although this data is acceptable for
use in the context of an initial version of the model more
detailed validation will be required before the results can be
trusted.

To support the validation of the model, a series of
experiments are being undertaken to examine the impact of
some of the human factors on the ability to identify a
battlespace object. These experiments will be conducted
using a synthetic environment (developed by defence
contractors QinetiQ) and involve military personnel acting
as players in a series of scenarios.

The synthetic environment (SE) chosen is particularly
appropriate for this study as it was designed specifically to
investigate the causes of friendly fire and to help limit
incidences of it.

The SE consists of several components. The OneSAF Test
Bed component is a set of software modules used to
construct Computer Generated Force (CGF) applications,
and is used within the SE to govern the behaviour of all non-
player entities. Figure 4 shows one of the views provided
by OneSAF. The circles indicate the positions of Blue
forces within the environment.

In addition to the OneSAF CGF application the SE also
contains a virtual environment that provides a 3D view of
terrain and other battlespace objects (as shown in Figure 3).
The SE also contains an experimental Situational Awareness
application to mirror the Battle Management Systems due to
be deployed on UK armoured vehicles, an interactive radio
simulation and voice recorder (to capture simulated radio
communications) and a data-logging tool to capture all
traffic generated during an experiment (radio traffic,
platform movements etc). This last feature is vital for the
after-action review and in establishing the causes behind a
friendly-fire incident3.

3 All of these applications are commercially-developed tools, with the

majority designed by QinetiQ.

1-4244-0464-9/06/$20.00 2006 IEEE. 160 CIG'06 (May 22-24 2006)

Figure 4: Screenshot of the OneSAF Test Bed virtual
environment used in the Friendly Fires SE

Figure 5: Virtual environment player interface for the
Friendly Fires SE

As can be seen from figure 5, the synthetic environment
itself is visually very similar to many games. However,
there are some significant differences here. First of all, the
SE is played using a dual-screen system with one terminal
providing the view for the driver of the platform and the
second providing the view for the gunner/commander. The
visual representation is at a lower level of resolution than
that in commercial games, but the physical representation is
of a high standard. The SE offers an accurate representation
of several types of weather conditions (including normal

daylight, twilight, night, fog etc) and excellent
representations of the various platform sensors (e.g. thermal
imaging) and weaponry.

The experimentation phase is designed to assess the effects
of a variety of parameters on the ability of the decision-
maker to correctly identify battlespace entities. The
parameters being examined fall into two broad groups; those
that are characteristic to the decision-maker and those that
are sources of information to the decision-maker. The
characteristic variables include the level of experience of the
decision-maker and their personality type, whereas
information sources will include parameters like briefing
quality and scenario complexity.

IV. INCORPORATION INTO CONSTRUCTIVE SIMULATIONS
Ultimately, it is hoped that it will be possible to integrate the
INCIDER process into large-scale constructive simulations
or wargames. As mentioned earlier many models used by the
UK contain only a simple representation of human factors
(at best) and incorporating the INCIDER process into such
models has the potential to make the identification process
within these models more realistic in some circumstances.

One model where the possible integration of INCIDER has
been explored in some detail is the Close Action
Environment (CAEn) wargame.

CAEn was originally developed by the UK Centre for
Defence Analysis (CDA) in 1995. It is a stochastic, multi-
sided, close combat interactive wargame and simulation,
representing the all-arms battle at up to the company group
level. When used as a simulation, the players give orders
before the model is run and these are executed at the
appropriate moment during the game. In wargame mode the
players interact with the game directly, giving orders to the
entities under his control4. The model has recently been
extended from 10 players and 4 sides to allow 15 players
and up to 15 sides. This allows more scope for representing
the confusion caused by the many factions involved in Peace
Support Operations.

It can be played at two resolutions; a 10m resolution and a
1m resolution (used primarily for urban scenarios). The
model is usually operated via the 2D display (Fig. 6),
although the true 3D environment, as experienced by any
individual entity, can be displayed at will (Fig. 7).

4 An entity in this context can be an individual soldier, a civilian, a

vehicle or a remote system.

1-4244-0464-9/06/$20.00 2006 IEEE. 161 CIG'06 (May 22-24 2006)

Figure 6: CAEn birds-eye view

Figure 7: CAEn sensor view

It is suggested that the INCIDER identification process
could be amalgamated into CAEn, potentially allowing more
human factors to be integrated into the model. This could be
done by incorporating the INCIDER decision-making
process into the identification process currently employed by
CAEn.

For example, the current CAEn representation already
possesses sophisticated line of sight and sensor algorithms.
Using the information from the sensor models as an input
when line of sight is open would allow INCIDER to be used
directly as the identification mechanism for the soldier
entities within CAEn, potentially providing a more realistic
representation of the human factors involved.

Alternatively it would be possible to perform multiple runs
of INCIDER in advance of running a CAEn wargame and
using these runs to create a probability distribution giving
the likelihood of a correct identification within a particular
scenario. This approach would allow an easier
implementation into CAEn, but would probably also lose
some of the fidelity of the INCIDER representation.

V. CONCLUSIONS AND FUTURE WORK
This paper has introduced a method of incorporating the
effects of human decision making and human factors into a
one-on-one combat model, the INCIDER model. This is
intended largely as an aid to understanding the difficulties

involved in identifying entities in battle, currently
considered a high-profile problem within the UK MoD.

At this stage the model is intended purely as a proof of
principle, but it is envisaged that in future it could be used to
help advise procurement in Balance of Investment studies
(in its standalone form) and could also act as a feed to higher
level combat models and wargames.

The INCIDER model is unusual in that it concentrates less
on the physical aspects than most combat models
(containing a fairly cursory representation of the various
sensor systems available to the platforms), placing these at
the same level of importance as the human elements. This
helps to quantify the effects of factors such as confirmatory
bias, fatigue, training etc. on the ability of the decision
maker to identify unknown objects. This in turn will help
the MoD to compare the potential gains in investing in new
equipment compared with investing in improved training
(for example).

The INCIDER model is still at an early stage in its
development and although the results from the model so far
show close agreement with those obtained from a recently
conducted live exercise, more work will be required before
it can be fully trusted. Work has begun on validating some
of the parameters used via a series of experiments using a
synthetic environment and more work will be conducted to
investigate other parameters.

In addition work has begun on adapting INCIDER to
represent combat ID in the Maritime and Air domains. The
current model concentrates largely on Land engagements
(with some representation of the Air environment) because
this historically this has been the main area where combat
ID failures occur. However the model was designed to be
generic enough to be able to represent identification between
platforms in any domain and the current work is
investigating how the identification procedure in these
domains differs from that in the Land Domain.

Finally, as mentioned earlier the representation of the
sensors and situational information tools is currently
constrained to a fairly simplistic one. Although the main
strength of INCIDER is its representation of human factors
and the decision making process, this should not be
improved at the expense of the sensor representation and so
a further strand of work will involve improving these
system-level models to provide more overall fidelity.

VI. ACKNOWLEDGEMENTS
We would like to thank Dr. Nick Stanbridge of Dstl Land
Battlespace Systems for his input regarding the Close Action
Environment wargame. All pictures of the Friendly Fires
Synthetic Environment appear with the kind permission of
QinetiQ Ltd.

REFERENCES
[1] Y. Harrison and J. A. Horne, “The Impact of Sleep Deprivation on

Decision Making: A Review”, Journal of Experimental Psychology:
Applied, Vol. 6, 2000

1-4244-0464-9/06/$20.00 2006 IEEE. 162 CIG'06 (May 22-24 2006)

[2] “UK Policy for Combat Identification”; Annex A to D/DJW/183/21,
2nd July 2001

[3] G.A. Klein, “Recognition Primed Decisions”, Advances in Man-
machine System Research, Vol 5, 1989

[4] M. R. Endsley, “SAGAT: A methodology for the Measurement of
Situation Awareness”, NOR DOC 87-83 Hawthorne, CA: Northrop
Corps, 1987

[5] G. Shafer, A Mathematical Theory of Evidence, Princeton University
Press, 1976

[6] D. Koks and S. Challa, An Introduction to Bayesian and Dempster-
Shafer Data Fusion, DSTO Systems Sciences Laboratory, July 2003

[7] L.A. Klein, Data and Sensor Fusion; A Tool for Information
Assessment and Decision Making, Bellingham SPIE Press, 2004

1-4244-0464-9/06/$20.00 2006 IEEE. 163 CIG'06 (May 22-24 2006)

Evolving Adaptive Play for

the Game of Spoof Using Genetic Programming

Mark Wittkamp and Luigi Barone
School of Computer Science & Software Engineering

The University of Western Australia
{wittkm01,luigi}@csse.uwa.edu.au

Abstract— Many games require opponent modelling for op-
timal performance. The implicit learning and adaptive nature
of evolutionary computation techniques offer a natural way to
develop and explore models of an opponent’s strategy without
significant overhead. In this paper, we propose the use of genetic
programming to play the game of Spoof, a simple guessing
game of imperfect information. We discuss the technical details
needed to equip a computer to play the game and report on
experiments using this approach that demonstrate emergent
adaptive behaviour. We further show that specialisation via
adaptation is crucial to maximise winnings and that no general
strategy will suffice against all opponents.

Keywords: Imperfect Information Games, Spoof, Genetic
Programming, Opponent Modelling

I. INTRODUCTION

In certain types of games like Poker, players do not
have complete knowledge about the state of the game and
must make value decisions about their relative strength using
only the public information available to them. Such games
are called games of imperfect information because some
information is unknown or must be inferred by the player
(e.g. hidden opponent cards in Poker). Indeed, correctly
handling this incomplete information is essential for optimal
performance. Due to their non-deterministic nature, the task
of programming satisfactory artificial opponents for these
types of games is extremely difficult. The large branching
factors result in significant combinatoric explosion in their
corresponding game trees, rendering standard search tech-
niques (e.g. minimax) less useful.

Spoof is a simple guessing game requiring players to
determine an unknown number using only partial knowledge
about the number and publicly announced guesses of the
number by other players. Like the games of Roshambo (rock-
paper-scissors) and IPD, opponent modelling (construction
of a model of an opponent’s playing style, typically in
order to exploit inherent weaknesses in their play) in the
game of Spoof is crucial. Given a model of an opponent’s
strategy, the model can be analysed to discover weaknesses
and predictabilities in the opponent’s strategy and a counter-
strategy determined. But how can an opponent’s strategy be
explored in order to determine weaknesses?

One such technique that has gained recent popularity is
the field of evolutionary computation [1]. Evolutionary com-
putation is the term used to describe the different computa-
tional techniques that employ the principle of neo-Darwinian
natural selection as an optimisation tool to solve problems

in computers. Using a population of candidate solutions, a
means of assessing the quality of a particular solution (the
fitness function), and Darwinian selection pressure to drive
individuals towards better solutions, evolutionary computa-
tion techniques search through the space of possible solutions
in an attempt to find “satisfactory” solutions to a problem.
However, a careful balance between exploitation of the best
“fit” solutions (local optimisation) and global exploration of
the search space must be constantly maintained to ensure
optimal progress of the algorithm.

Evolutionary computation is more than simple function
optimisation — by utilising the inherent learning capabilities
of natural selection, programs capable of learning and adapt-
ing in dynamic and noisy environments are possible. For
these reasons, evolutionary approaches are well-suited to the
application of developing strong strategies for play against
differing, potentially adapting, opponents in games. Indeed,
the application of evolutionary computation techniques to
the task of opponent modelling for games of imperfect
information has led to some notable successes [2], [3], [4],
including the game of IPD [5], [6].

Genetic programming is one such form of evolutionary
computation. Introduced by Koza [7], this paradigm defines
genetic operators (crossover, mutation, and fitness propor-
tionate selection) directly over tree-like computer programs,
thus offering practitioners the opportunity to evolve complex
programs without having to define the structure or size of
the genetic material in advance. Nodes in the tree represent
functions in the evolving computer program, and terminals
(leaves of the tree) represent either variables, constants,
or zero argument functions with side-effects. Operators to
reduce the size of the tree, reducing “bloat” and redundant
genetic material (itrons), may also be useful to speed up
the evolutionary process [8]. Genetic programming has been
used for a myriad of problems [9], [10], [11], including
strategy development in games [12], [13], [14].

In this paper, we use genetic programming techniques to
create a Spoof player capable of learning and exploiting
weaknesses in different opponent playing styles in order to
develop successful strategies for play. Through the implicit
learning process of evolution, we hope to develop strategies
for the game of Spoof for a variety of playing styles.

The rest of the paper is structured as follows. Section II
introduces the game of Spoof in more detail, explaining the
mechanics of how the game is played. In Section III, we

1-4244-0464-9/06/$20.00 2006 IEEE. 164 CIG'06 (May 22-24 2006)

introduce our approach for building an automated computer
Spoof player and in Section IV, we describe experiments
that demonstrate the adaptive behaviour of our approach. In
particular, we demonstrate that our approach is able to evolve
different strategies capable of winning against vastly different
playing styles — the specialisation crucial for them to win
more than any generalised strategy. Section V concludes the
work and discusses future ideas.

II. THE GAME OF SPOOF

Spoof is a game of imperfect information played by two
or more players. The game begins by each player selecting
a number of tokens (typically coins) from 0 to 3 (called
the player’s selection), which remain hidden from all other
players. In turn, each player attempts to guess the total
number of coins held by all players (called the player’s guess)
with the constraint that no player may repeat a previous
player’s total. The winner of the game is the player who
correctly guesses the total number of coins. In the event that
no player guesses the correct total, the game is deemed a
draw and is typically repeated.

At first thought, the game may seem purely random and
little can be done other than to guess the maximum of
the probability distribution of possible totals. However, as
players announce their guesses, they may well be providing
information about the number of coins they have selected.
For example, consider a two player game where the first
player guesses a total of 5. Assuming rational play, this
player must have selected either 2 or 3 coins, otherwise
a total of 5 would be impossible. The second player can
now use this information in making their guess, and should
announce a total of 2 or 3 plus their own selection. Using this
approach, the player improves their chances of immediately
winning the game (without replay) from 25% (with no
information about the first player’s selection) to 50% (with
knowledge that the first player’s selection is one of two
possiblities). Similar analysis is possible for other game
states in Spoof [15], but the analysis becomes exceedingly
more complex as the number of players increases.

Observe that the position in the game a player is forced
to act (announce a guess) induces a trade-off between what
information is available and opportunity to guess a total.
Being first to act means all possible totals are available to be
guessed, but no information about the number of coins each
player has selected is available to be used. Being last to
act provides maximal information about the selections of the
other players (and, assuming rational play, may well mean
the total can be determined with a high degree of certainty),
but the correct total may well have already been announced
by another player. A clear trade-off arises — acting first pro-
vides minimal information, but maximal opportunity; acting
last provides maximal information, but minimal opportunity
to guess the correct total.

Opponent modelling in the game of Spoof is crucial for
optimal performance. For example, consider the problem
of acting first in three player Spoof. A general strategy
for acting in this position is to guess the number of coins

one is holding plus 3 (as 3 is probabilistically the most
likely outcome for the total of the remaining players’ coins).
However, this strategy is only sound if both opponents choose
their hidden coins uniformly randomly. Consider instead, if
both opponents tend never to hold 2 or 3 coins. The previous
strategy now performs poorly, and a better opponent-specific
strategy should be used instead (a better strategy will be to
guess 1 or 2 more than the number of coins being held).
Indeed, experience shows that human players often do not
select their coins randomly (preferring certain coin choices or
patterns over others), and more typically, provide information
about their selection in the way they guess (it is especially
the case that human players use the same guessing algorithm
time and time again).

In this paper, we examine the question of whether we can
use genetic programming to build models of an opponent’s
strategy in order to create a strong artificial Spoof player.
Note that this work will not follow a traditional opponent
modelling approach where a direct model of the opponent’s
strategy is built from experience and then analysed for
weaknesses. Instead, we use a more indirect approach where
evolution will implicitly build the model by evolving the best
countering strategy over time. Our aim remains the same
however — exploit weaknesses in an individual’s strategy in
order to maximise performance of our automated player.

As we are interested in examining whether we are able
to use genetic programming to learn opponent strategies, we
will focus this work on investigations where our adaptive
Spoof player is last to act (recall, being last to act provides
maximal information). This is not to say acting in an early
position is more trivial (indeed, acting in an earlier position
opens up the possibility of bluffing should you know how
your opponents will interpret your guess), just that we are
interested in determining how well an evolutionary approach
is able to learn from the public information provided to it.
Indeed, we plan to investigate how well an evolutionary
approach is able to handle the task of playing in earlier
positions in future work. For simplicity in analysis, we will
restrict our experiments to three player Spoof.

III. BUILDING AN ADAPTIVE SPOOF PLAYER

Recall that to play the game of Spoof, a player must do
two things:

1) select a hidden number of coins between 0 and 3 (the
selection), and

2) when asked to do so, announce a guess of the total
number of coins held by all players (the guess).

Our automated Spoof player will obviously need to do both.
For coin selection, we force our player to always choose

uniformly randomly from the range 0 to 3. This of course
may be a poor choice (being able to alter the probability
distribution of totals may well be advantageous), but since
our test players will be non-responsive and will assume ratio-
nal coin selection by our player, allowing our player to select
non-randomly would provide it with an unfair advantage. We
instead force our player to select uniformly randomly, and

1-4244-0464-9/06/$20.00 2006 IEEE. 165 CIG'06 (May 22-24 2006)

require it use its evolutionary intelligence to learn countering
strategies in order to maximise performance instead of simply
exploiting the non-intelligence of its opponents.

For guess determination, we use the genetic programming
paradigm to evolve an algorithm to determine the guess.
We use a population of candidate “genetic programs” and
evaluate them to determine how well they play the game.
Over time, evolutionary selection pressure will drive the
population towards good solutions. We use version 2b of
Qureshi’s GPsys [16] as our genetic programming engine.

Each candidate solution in the population consists of
a program tree that determines the guess for the player.
Program trees are mixed-type, using float and boolean types,
with the root node constrained to evaluate to a float. When
required to announce a guess, the program tree is evaluated
and the resultant float value is cast down to an integer to
form the guess for the player. Should the integer value be
invalid (the guess may have already been made by an earlier
player), the Spoof game engine automatically adjusts the
guess to the next closest valid guess by checking above
and below the desired value by an incrementally increasing
amount (one more is tried before one less). So, for example,
if our evolving player wanted to make a guess of 3, but 3
was already taken, a guess of 4 would be tried before 2. This
allows for less complex program trees, as they need not be
burdened with the additional task of ensuring unique guesses.

As detailed in Table I, we use a number of game specific
terminals in our genetic programming system to equip our
evolving player with the ability to make an informed guess.

TABLE I
GAME SPECIFIC TERMINALS USED IN THIS STUDY

Terminal Explanation
p1Guess The first player’s publicly announced guess.
p2Guess The second player’s publicly announced guess.
CoinsHeld The number of coins selected by the player.
NumPlayers The number of players in the game. For this

study, this terminal is constant (3).

We also allow the genetic programming system use of
four numerical constants, 0, 1, 2, and 3 to represent the
four possible coin-held values, standard arithmetic operator
nodes (addition, subtraction, multiplication, and division)
to combine numerical values together, standard comparison
operators (greater-than, less-than, and equal-to) to compare
numerical values, standard boolean operator nodes (negation,
conjunction, and disjunction), and a conditional selection
mechanism (the if function) to select between sub-programs
based on a boolean condition. The depth of a candidate
program tree is limited to 10.

A steady-state population of size 50 is used throughout
the evolution. The initial population is constructed using the
ramped half and half scheme for all depths 1 through 10.
Reproduction is performed sexually — two parents produce
two offspring by swapping compatible subtrees. Parents are
chosen using tournament-based selection, using a tournament
size of 7.

A generational engine is used for reproduction — each
generation the existing parent population is discarded and
replaced with an entirely new set of individuals. Note that
this approach is non-elitist and hence does not ensure the best
individual of one generation will be present in the next. We
instead archive the best individual discovered during a run
and use this player as the “answer” Spoof player regardless
of whether or not that individual remains in the population.

Mutation occurs after reproduction with a fixed probability
of 10%. In the event of a mutation occurring, a terminal
node is selected at random from the program tree and is
changed into some other terminal of the same type. GPsys
restricts reproduction and mutation of program trees to only
allow valid swaps and alterations based on type. This is
a workaround solution of Koza’s closure requirement [7]
and ensures only valid program trees are created. Unless
otherwise stated, evolution proceeds for 5000 generations.

Naturally, we would like our resulting guessing strategy to
be perfect — that is, always return the correct total number of
coins. However, such a strategy can still not guarantee a win
because the correct guess may have already been announced
by a previous player. To reduce the effects of this “noise” in
the game, we use a fitness function based on the accuracy
of the player’s desired guess, not the actual number of wins
scored by the strategy (note that this not cheating — all
players must necessarily reveal their secret selections at the
end of game in order to determine the winner). This means
fitness is not a direct measure of success in the game, but
instead measures how well the implicit internal model of the
opponent (via a countering strategy) fits.

IV. EXPERIMENTAL RESULTS

In this section, we present a series of experiments aimed at
examining how well a genetic programming approach can be
used to learn models of opponent strategies for the game of
Spoof. We evolve guessing strategies for a simplified game
of Spoof, considering a restricted form of the three player
game where our evolving player guesses third. Neither new
games nor the occurrence of a draw will alter the guessing
order of the players.

A. Computer Opponents

To test how well our approach is able to learn different
opponent strategies, we designed several fixed (non-adaptive)
Spoof players for our evolving player to play against. The
selection and guessing strategies for these players is detailed
in Table II. Note the use of the following terminology in
this table: c denotes the selected number of coins held by
the player and n denotes the number of players in the game.
The Spoof game engine ensures all guesses are valid, casting
down and adjusting a guess to the closest valid integer should
a desired value already be taken (checking above and then
below by increasing amounts until a unique value is found).

We define the term table to represent a three player Spoof
game consisting of two identical non-adaptive opponents
taken from Table II (in first and second position) and

1-4244-0464-9/06/$20.00 2006 IEEE. 166 CIG'06 (May 22-24 2006)

TABLE II
NON-ADAPTIVE SPOOF OPPONENTS USED IN THIS STUDY

Opponent Selection Guessing Strategy
1 Random (R) Randomly from

[0 .. 3]
Uniform random guess in the feasible range of totals, factoring in its own number of coins (i.e.
[c .. 3(n − 1)]).

2 Peak (P) Randomly from
[0 .. 3]

The maximum of the probabilistic distribution of possible totals assuming all players have
selected uniformly randomly (i.e. 1.5n).

3 Better Peak (BP) Randomly from
[0 .. 3]

The maximum of the probabilistic distribution of possible totals assuming all players have
selected uniformly randomly, factoring in its own number of coins (i.e. c + 1.5(n − 1)).

4 Low Peak (LP) Randomly from
[0 .. 3]

The same as BP except it assumes the lower average of 1 for each player rather than 1.5 (i.e.
c + 1(n − 1)).

5 High Peak (HP) Randomly from
[0 .. 3]

The same as BP except it assumes the higher average of 2 for each player rather than 1.5 (i.e.
c + 2(n − 1)).

6 Inside (I) 1 or 2 The same as BP.
7 Outside (O) 0 or 3 The same as BP.
8 Responsive (S) Randomly from

[0 .. 3]
Assumes previous opponents have guessed the maximum of the probabilistic distribution of
possible totals after factoring in their own coins (i.e. like BP and its derivatives) and “reverse
engineers” their guess in order to infer the number of coins held by the player (cx), using 1.5
if the inference suggests an infeasible amount. Assumes also that the total for all the remaining
players will be the maximum of the probabilistic distribution of possible totals. Final guess is
then:

P

x−1

1
cx + c + 1.5(n − x), where x is integer position of the player. Behaves like BP

when first to act.

some other player acting last. Numbering of these tables
correspond to those listed in column 1 of Table II.

Most of the strategies listed in Table II have some form of
weakness encoded into them, some more easily exploitable
than others. BP and S represent decent Spoof players, adopt-
ing similar strategies to those most humans employ. However,
note that the intelligence used by BP and its derivatives in
making its guess (factoring in its own coin selection) offers
the opportunity for shrewd players to exploit this information
by learning the internal guessing algorithm used by these
players in order to infer the number of coins held.

We hope our evolving player will be able to learn the
weaknesses in these opponents and formulate countering
strategies that exploit them. Against the less intelligent play-
ers (like R and P), as there is no internal guessing algorithm
to learn, we expect our evolving player will evolve simple
countering strategies similar to the better fixed strategies.
Against the more intelligent players, we expect our evolving
player will discover the fixed guessing algorithms employed
by these opponents, and via evolutionary selection pressure,
evolve countering strategies that maximise its performance
in the game.

B. Performance Results

In our first series of experiments, we use our genetic
programming system to evolve guessing strategies for each
of the eight tables defined previously. We report summary
results for all tables, but for brevity, we only examine
resulting strategies for a few opponents in detail. We focus
our analysis on the strategies evolved against BP and S
(tables 3 and 8 respectively), as these opponents employ
strategies similar to strong human players.

To minimise the effects of noise, a total of 1000 games
are run for each fitness measurement. Recall that candidate
solutions are assessed not on how many wins their guessing
strategy produces, but how many times the guessing strategy
would have been correct (if the guess had not already been

taken). Fitness is hence defined as the number of times the
guessing strategy returns an incorrect total for a game. Note
that under this definition, fitness is to be minimised.

Fig. 1 plots the evolution of our genetic programming
system for play at table 3. We denote the best individual
found during this run as G3.

 300

 400

 500

 600

 700

 800

 900

 1000

 0 1000 2000 3000 4000 5000

F
itn

es
s

Generation

Fig. 1. Fitness profile for the evolution of G3

Fig. 1 plots fitness statistics for each generation of the
evolution of G3. The top thin solid line plots the average
fitness of the population, the middle dashed line plots the
fitness of the best individual in that generation, while the
bottom thick solid line plots the fitness of the best individual
found so far. The high variance in the average and best-in-
generation plots is a result of the non-elitist selection scheme
employed by our genetic programming system. However,
as the selection criteria for reproduction favours individuals
with better (lower) fitness, we expect and observe all three
plots tending to decrease over time.

The average fitness starts at a little over 800, which
is the resultant fitness of our randomly generated initial
strategies. The general trend of the average fitness plot is
a slow downward decrease with three distinct evolutionary

1-4244-0464-9/06/$20.00 2006 IEEE. 167 CIG'06 (May 22-24 2006)

“breakthroughs” evident at approximately generations 900,
3200, and 4600. The final average fitness score of 480
corresponds to a >30% increase in the number of games
guessed correctly. The best-of-generation plot is similar,
although obviously lower and less erratic. The best-of-run
plot has the same general trend, but monotonically decreases
over time (the archived best solution can never get worse).

We performed similar experiments at the other tables,
naming the best individual found during each run Gx, where
x is the corresponding table number from Table II. Table III
summarises the performance of each of these resulting strate-
gies and the eight fixed strategies at each table.

TABLE III
PERFORMANCE OF DIFFERENT STRATEGIES AT EACH TABLE

R P BP LP HP I O S Gx

1 32 40 45 41 38 45 45 41 45
2 25 30 37 33 33 30 28 33 37
3 18 24 31 28 25 30 32 33 41
4 23 31 39 36 29 30 50 39 58
5 26 36 36 36 30 32 43 34 58
6 17 33 43 33 33 13 83 47 47
7 20 22 27 22 0 80 0 22 56
8 18 24 31 28 24 30 32 47 47

Avg 22 30 36 32 26 36 39 37 49

Each column of Table III reports the percentage of games
won by each strategy when played at each of the eight tables
(the strategy taking the place of third player). The final
column reports the percentage of games won by the best-of-
run strategy discovered during the evolution of our genetic
programming system at each table. Each percentage is the
result of 1 million games, rounded to the nearest percent.
Drawn games were replayed until a winner was determined.

Inspection of Table III confirms our initial beliefs about
the fixed players. Of little surprise, R performs the worst on
average as it guesses uniformly randomly instead of towards
the maximum of the probabilistic distribution of possible
totals. P performs better than R (it selects the maximum
of the probabilistic distribution), but worse than BP as BP
uses knowledge of its own selection when making its guess
(P does not). BP, I, and O do reasonably well on average
because their guessing strategy selects the maximum of the
probability distribution of possible totals after factoring in
their own selection. O in particular is able to do well guessing
with this strategy because its extremum coin selections have a
tendency to skew the probability distribution, which of course
it then takes into account. Note that even though LP and
HP are symmetric in behaviour, LP on average outperforms
HP due to the non-symmetric adjustment algorithm used by
the Spoof game engine to correct taken guesses, somewhat
correcting LP’s under-estimation while further exaggerated
HP’s over-estimation of the total.

Examining the variance in the results, we conclude that BP
and S are indeed reasonably good all-round players. Both BP
and S obtain good overall average performance, with lower
variance in their percentage of winning games than the other
fixed players. Both factor in their own number of coins when

making a guess. S behaves even a little more intelligently,
inferring where possible the coin selections of earlier players
based on the guesses they made. This offers S an advantage
in certain situations, most notably when playing against other
S-like players.

Table III also shows the strength of the resulting strategies
produced by our genetic programming approach. For all
tables except 6 and 7, the evolved strategy produced by
our genetic programming system obtained the highest (or
equally high) percentage of games won. This confirms that
the genetic programming system was able to discover strate-
gies that exploit the weaknesses of each different opponent
strategy at least as well as (and often better than) any of
the fixed strategies. The two exceptions on tables 6 and 7
occur as a result of players O and I being able to alter the
probability distribution of possible totals by selecting non-
uniformly, artificially increasing their percentage of games
won (recall we deliberately forced our evolving player to
select uniformly randomly to ensure it could not exploit non-
intelligent players in this way). We do note however that
our genetic programming approach obtains the best (or equal
best) results of the “non-skewing” players.

Note that G3 obtains a higher percentage of wins than
G2, even though BP is considered a “better” player than P
(recall BP factors in its own coins into its guess while P
does not). As P’s guess does not depend on its own number
of coins held, no information about its coin selection can be
inferred from the public guess it announces. However, when
BP announces its guess, it inevitably reveals information
about its selection (its selection will be 3 less than its guess).
Over time, our genetic programming system is able to learn
the algorithm employed by BP and evolves a countering
strategy that factors this information into its own guessing
algorithm, thus exploiting the information provided by BP.
As there is no equivalent information provided by P, the
genetic programming is unable to exploit it in the same way,
thus explaining why it is able to obtain a higher percentage
of wins against BP than against P.

Table III also demonstrates the importance of specialisa-
tion in order to maximise winnings. As we indicated above,
the evolved strategies produced by our genetic programming
system obtained the highest (or equally high) percentage of
games won at each table. Table III further shows that the
average performance of these evolved strategies far exceeds
the average of any of the fixed strategies (the evolved
strategies on average won 49% of games compared to 39%
for player O or 37% for the best “non-cheating” player). That
none of the fixed strategies performed as well on average as
our genetic programming system suggests that in order to
maximise winnings against a variety of different opponents,
a Spoof player can not simply adopt one of these fixed
strategies and must instead vary their strategy depending on
the particular opponents at hand.

C. Strategy Analysis

In this section, we analyse a few of the resulting strategies
produced by our genetic programming system in order to un-

1-4244-0464-9/06/$20.00 2006 IEEE. 168 CIG'06 (May 22-24 2006)

derstand their behaviour. Fig. 2 lists the best-of-run strategy
discovered during the evolution of G8.

(If (EQ p2Guess (Sub p2Guess CoinsHeld)) (If
(EQ p2Guess p2Guess) (Div (Mul (Sub p2Guess
CoinsHeld) (Add 2.0 (Sub p2Guess CoinsHeld)))
(Add 2.0 (Add 1.0 p2Guess))) (If (EQ (Div
CoinsHeld (If (EQ (Sub p2Guess CoinsHeld)
p2Guess) CoinsHeld (Add 3.0 2.0))) (Add
(Mul (Sub p2Guess CoinsHeld) (Add 2.0 (Sub
p2Guess CoinsHeld))) (Mul CoinsHeld p2Guess)))
CoinsHeld 1.0)) (If (EQ CoinsHeld 2.0) (Add
p2Guess 1.0) (If (EQ 3.0 CoinsHeld) (Add 2.0
p2Guess) (If (EQ (Div 2.0 (If (EQ NumPlayers
p2Guess) p2Guess (Add 3.0 3.0))) (Add CoinsHeld
p2Guess)) p2Guess p2Guess))))

(a) Evolved

(If (EQ (CoinsHeld 0)) (Div (Mul p2Guess
(Add 2 p2Guess)) (Add 3 p2Guess))
(Add p2Guess (Sub CoinsHeld 1)))

(b) Simplified

Fig. 2. Strategy G8

Fig. 2(a) lists the exact LISP expression evolved by
our genetic programming system for G8. Fig. 2(b) lists an
equivalent expression obtained by removing redundant or
unused sections of the program tree, applying a number of
arithmetic and boolean simplifications by evaluating constant
expressions, and substituting the NumPlayers terminal
with a value of 3 (since the genetic programming system
only played three player games of Spoof, evolution could not
possibly distinguish between the constant 3 and a terminal
representing the number of players).

Inspection of Fig. 2(b) quickly reveals an interesting point
about G8 — the strategy does not depend on the announced
guess of the first player (p1Guess) and instead only depends
on the announced guess of the second player (p2Guess).
This is due to the genetic programming system’s ability
to exploit the “intelligence” encoded into S. Recall that S
uses both its own coin selection and its inferences about the
number of coins held by previous players when making its
guess. Consequently, when the second S player announces
its guess at table 8, it provides information not only about
its own coin selection, but also the coin selection of the
first player, thus making the announcement made by the
first player redundant. The evolved strategy G8 exploits this,
choosing the easier route of learning a strategy that depends
on one variable instead of two.

Further inspection of Fig. 2(b) reveals that G8 consists of
two distinct sub-programs — one (the non-underlined sub-
program) handles the case when the player selected zero
coins, and the other (the underlined sub-program) handles all
other selections. The underlined sub-program is very easy to
interpret — subtract 1 from the coins held by the player and
add this value to the announced guess of the second player.
The non-underlined part is somewhat harder to decipher,

but effectively returns the announced guess of the second
player reduced by some small factor (the division of a smaller
number by a larger number). Indeed, the non-underlined part
behaves similarly to the underlined part, adding the player’s
selection (0 in case of the non-underlined part) to a reduction
of the announced guess made by the second player.

Play at table 8 proceeds as follows: the first S player
announces a guess (g1) that is 3 plus its number of coins
(c1). The second S player then “reverse engineers” this guess
to decipher the number of coins held by the first player,
announcing a guess (g2) that factors in this inference, its
own coin selection (c2), and a “guess” of the third player’s
selection (1 1

2
). G8, using the underlined expression, is then

able to approximate the correct total number of coins:

g1 = c1 + 3

g2 = g1 − 3 + c2 + 1
1

2

= c1 + c2 + 1
1

2
G′

8
s guess = g2 + (c3 − 1)

= c1 + c2 + c3 +
1

2

With casting down to the closest integer (as performed by
the Spoof game engine), the guess made by G8 will indeed
be correct. Similar analysis shows the non-underlined part
of Fig. 2(b) behaves similarly for the range of guesses made
by S. What is evident from this analysis is that our genetic
programming system is able to learn the internal guessing
strategy used by S in order to deduce the correct total
number of coins from just the second player’s announcement.
Interestingly, the strategy employed by G8 is indirectly acting
like S (after factoring in rounding), thus explaining why G8

and S both obtained the same win percentage at table 8.
It is often quite difficult to understand the evolved LISP

expressions produced by the genetic programming system by
inspection alone. Simplification helps, however some evolved
strategies still remain quite complex even after redundant
sub-expressions are removed. As an alternative, we can
instead choose to analyse a strategy by examining the guesses
made by the strategy for every possible game state (every
combination of the variables potentially making up a player’s
strategy — player 1’s guess, player 2’s guess, and the number
of coins held). Fig. 3 presents this approach in graphical form
for G3.

The four plots depict the guessing strategy employed by
G3 for each possible coin selection. The z values of each plot
indicate the desired guess (and hence may still be adjusted
by the Spoof game engine) for each possible announcement
made by the first and second player. Note that while these
plots define a guessing strategy for every combination of
coins and players’ guesses, not all points on these plots
need be used in actual play (indeed, against certain players
very few points will be used). As a result, the evolutionary
pressure on certain regions of the strategy will be weak (or
even non-existence), allowing for a form of “genetic drift”
to occur in the unused regions of the strategy.

1-4244-0464-9/06/$20.00 2006 IEEE. 169 CIG'06 (May 22-24 2006)

 0 1 2 3 4 5 6 7 8 9
g1 0 1 2 3 4 5 6 7 8 9

g2
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

G3’s Desired Guess

(a) Selection = 0

 0 1 2 3 4 5 6 7 8 9
g1 0 1 2 3 4 5 6 7 8 9

g2
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

G3’s Desired Guess

(b) Selection = 1

 0 1 2 3 4 5 6 7 8 9
g1 0 1 2 3 4 5 6 7 8 9

g2
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

G3’s Desired Guess

(c) Selection = 2

 0 1 2 3 4 5 6 7 8 9
g1 0 1 2 3 4 5 6 7 8 9

g2
 0
 1
 2
 3
 4
 5
 6
 7
 8
 9

G3’s Desired Guess

(d) Selection = 3

Fig. 3. Visual representation of strategy G3

The shape of G3’s strategy shows that G3 will guess a
relatively low number when both opponent guesses are low,
monotonically increasing as either opponent’s guess becomes
larger. The odd shape of G3 reflects the complexity needed
to reverse engineer BP’s strategy. Indeed, both opponent
guesses need to be considered in order to determine the
number of coins held by each. We also observe that each
plot in Fig. 3 are identical in shape, albeit offset by different
amounts depending on the coin selection of the player. This
confirms that the player’s selection is being considered in
making a guess, but only in an additive manner. Inspection
of all other evolved strategies shows the same trend — all
strategies consider their own coin selection in making a
guess, but only by adding it to some other expression.

D. Optimality of Evolved Strategies

We saw in Table III that our genetic programming system
was able to evolve strategies that achieved the highest (or
equally high) percentage of games won at each of the pre-
defined tables. In this section, we further analyse these
strategies to determine just how good they are.

In Section III we defined the term perfect strategy to be
one that returns the correct total number of coins for all game
states. Note that a perfect strategy need not win 100% of
games, just that it must always choose the correct total if that
number is available (i.e. it always calculates the correct total).
As this is exactly how we assess the fitness of a candidate
solution, a perfect strategy necessarily must obtain a fitness
score of zero (indeed, fitness in our evolutionary setting is a
measure of how close to perfect a strategy is).

To be perfect, a strategy must encode for all game states
the correct subtotal for the first two player’s coin selec-
tions (denoted 2-player subtotal) given only the publicly
announced guesses for these players. For a prefect strategy
to exist, all game states that contain the same permutation
of opponent guesses (e.g. guesses of 4 and 5 by the first
and second players respectively) must also have the same
2-player subtotal. In other words, the relationship between
guess permutation and 2-player subtotal must be a function.
If the relationship is not a function (i.e. there are multiple
game states with the same guess permutation but different
2-player subtotals), the strategy can not infer with certainty
the correct overall total and hence can not be perfect.

If a perfect strategy is not obtainable, the best that can
be achieved by a strategy for the “conflicting” game states
is to choose the conversion from guess permutation to 2-
player subtotal the yields the maximum number of wins (i.e.
choose the maximal sized subset of the relationship that is
a function). We call a strategy that achieves this an optimal
strategy. Note that a perfect solution is necessarily optimal.

Fig. 4 lists the evolved strategy for G7, simplified to aid
understandability.

(Add (If (LT p2Guess 5) (If (LT p2Guess 4) 3 0)
p1Guess) CoinsHeld)

Fig. 4. Strategy G7 (Simplified)

Inspection of G7’s strategy reveals that it consists of three
distinct sub-parts. Depending on the guess announced by
the second player, G7’s strategy adds either 3, 0, or the
first player’s guess (p1Guess) to its selection to form its
guess. Interpreting Fig. 4, we see that if the second player’s
guess is less than 4, 3 is added to its own selection. If the
second player’s guess is equal to 4, 0 is added to its own
selection, otherwise, the first player’s guess is added to its
own selection.

Table IV details all possible game states for table 7, listing
the guess made by G7 in each case.

TABLE IV
STRATEGY G7 IS PERFECT

c1 c2 g1 g2 c3 Total Coins G7’s Desired
(c1 + c2 + c3) Guess

0 0 3 3 → 4 0 0 0 + c3 = 0

0 0 3 3 → 4 1 1 0 + c3 = 1

0 0 3 3 → 4 2 2 0 + c3 = 2

0 0 3 3 → 4 3 3 0 + c3 = 3

0 3 3 6 0 3 g1 + c3 = 3

0 3 3 6 1 4 g1 + c3 = 4

0 3 3 6 2 5 g1 + c3 = 5

0 3 3 6 3 6 g1 + c3 = 6

3 0 6 3 0 3 3 + c3 = 3

3 0 6 3 1 4 3 + c3 = 4

3 0 6 3 2 5 3 + c3 = 5

3 0 6 3 3 6 3 + c3 = 6

3 3 6 6 → 7 0 6 g1 + c3 = 6

3 3 6 6 → 7 1 7 g1 + c3 = 7

3 3 6 6 → 7 2 8 g1 + c3 = 8

3 3 6 6 → 7 3 9 g1 + c3 = 9

1-4244-0464-9/06/$20.00 2006 IEEE. 170 CIG'06 (May 22-24 2006)

As all game states with the same permutation of the first
two player’s guesses (3/4, 3/6, 6/3, and 6/7) map to the
same 2-player subtotal (3/4 → 0, 3/6 → 3, 6/3 → 3, and
6/7 → 6), a perfect solution is possible at this table. We
see from G7’s guesses that the genetic programming system
was able to learn and exploit this mapping by evolving a
countering strategy that always returns the correct total for
each game state, indeed making G7 perfect.

Table 7 is the only table where a perfect solution is
possible. At all other tables, no guess permutation to 2-player
subtotal function exists, and hence our genetic programming
system is unable to evolve perfect solutions in these cases.
Table V details all possible game states for table 6, demon-
strating why a perfect solution is unobtainable at this table.

TABLE V
STRATEGY G6 CAN NEVER BE PERFECT

c1 c2 g1 g2 c3 Total Total G6’s Result
Coins Avail? Guess

1 1 4 4 → 5 0 2 Yes 3 Replay
1 1 4 4 → 5 1 3 Yes 4 → 3 Win
1 1 4 4 → 5 2 4 No 5 → 6 Loss
1 1 4 4 → 5 3 5 No 6 Loss
1 2 4 5 0 3 Yes 3 Win
1 2 4 5 1 4 No 4 → 3 Loss
1 2 4 5 2 5 No 5 → 6 Loss
1 2 4 5 3 6 Yes 6 Win
2 1 5 4 0 3 Yes 3 Win
2 1 5 4 1 4 No 4 → 3 Loss
2 1 5 4 2 5 No 5 → 6 Loss
2 1 5 4 3 6 Yes 6 Win
2 2 5 5 → 6 0 4 Yes 4 Win
2 2 5 5 → 6 1 5 No 5 → 4 Loss
2 2 5 5 → 6 2 6 No 6 → 7 Loss
2 2 5 5 → 6 3 7 Yes 7 Win

While the first and second sets of four rows in Table V are
identical in terms of the public information revealed (both
sets represent guesses of 4 and 5 by the first and second
players respectively), the 2-player subtotals differ for both
sets (the first has a 2-player subtotal of 2, while the second set
has a 2-player subtotal of 3). As there is no unique conversion
from the 4/5 guess permutation to 2-player subtotal, there is
no way to ascertain the difference between these situations
and be assured of the correct overall total. Hence, G6 can
never be perfect.

To be optimal, G6 must behave perfectly where possible,
and when faced with ambiguous choices, select the conver-
sion which leads to most wins. We see from Table V that G6

behaves perfectly for the 5/4 and 5/5 guess permutations and
correctly learns the second conversion for the 4/5 guess per-
mutation (4/5 → 3). As both alternate 4/5 guess permutation
conversions lead to the same number of wins, G6 is indeed
optimal. Note the special case that arises on the second row
of Table V (c1 = 1, c2 = 1, and c3 = 1). Here, G6 wins the
game even though its desired guess was incorrect (its desired
total was already taken by a previous player so the Spoof
game engine corrected it, adjusting it to a winning total).

Further analysis of Table V allows us to calculate the
optimal win percentage at this table. Out of the 16 possible

game states, the availability of the correct total (column
seven of Table V) immediately eliminates half from being
winnable. Of the remaining 8, the maximum size of the
relationship that constitutes a function is 6, and 1 additional
game state can be won due to the guess adjustment algorithm
of the Spoof game engine. Hence, an optimal strategy can
win 7 of the 16 possible game states. One game state will be
replayed, so the optimal win percentage is 7/15 = 46.7%.

Using the same approach, we can determine the optimal
win percentage for each table consisting of deterministic
players. Table VI reports this data.

TABLE VI
MAXIMUM ATTAINABLE PERFORMANCE AT EACH TABLE

Table Win Percentage Gx

Upper Bound Max Possible
2 62.5 36.8 36.8
3 51.6 47.5 41.5
4 60.9 58.3 58.3
5 64.1 60.3 58.2
6 50.0 46.7 46.7
7 56.2 56.2 56.2
8 50.0 46.7 46.7

For each table, column 2 of Table VI lists the percentage of
game states where the correct total was not guessed by either
of the first two players (i.e. the percentage of game states
not immediately lost). These values represent upper bounds
of the maximum attainable win percentage, as many of the
tables will have a non-functional relationship between guess
permutation and 2-player subtotal. For each table, column 3
lists the maximum percentage of wins possible by the third
player, compensating for these game states where insufficient
information is available to determine the correct 2-player
subtotal.

Only table 7 has identical values for columns 2 and 3
in Table VI, confirming it as the only table where a perfect
strategy can be obtained. At all other tables, the best that our
genetic programming system can do is evolve strategies that
achieve the maximum attainable win percentage reported in
column 3.

Listed in column 4 of Table VI are the win percentages
(from 10 million games, rounded to one decimal place)
obtained by each of the evolved strategies produced by
our genetic programming system. We see in comparing the
results of column 4 to column 3 that our genetic program-
ming system was able to evolve optimal strategies for five
of the seven tables. Only G3 and G5 are non-optimal, but
only by small amounts. We conclude from these results that
our genetic programming approach is very effective, readily
discovering optimal, or near optimal, countering strategies
for a number of different opponent strategies.

Perhaps the reason our genetic programming system does
not always evolve optimal solutions is due to the mismatch
between the fitness metric we chose and how we assess
optimality. Recall, fitness is not a measure of the number
of wins (as optimality is), but instead approximates this
value by counting errors in the guessing algorithm (the

1-4244-0464-9/06/$20.00 2006 IEEE. 171 CIG'06 (May 22-24 2006)

difference between the desired guess and the actual total).
As a result, there is no evolutionary selection pressure to
seek solutions that take advantage of “exploits” like we
witnessed in Table V (winning additional games due to the
guess adjustment algorithm of the game engine). While this
approach reduces noise, it is not a true measure of success in
the game and hence ultimately, not what we truly care about.
Future work will examine the trade-off induced by using this
pseudo-measure of success for this type of problem.

E. The Importance of Specialisation

Our final experiment further examines the importance of
specialisation for the game of Spoof. Recall that Table III
demonstrated that no fixed strategy was able to perform as
well as our genetic programming system across all tables.
In this experiment, we test the performance of each of our
evolved strategies at each of the different tables. Table VII
compares the win percentage of each evolved strategy.

TABLE VII
PERFORMANCE OF THE EVOLVED STRATEGIES AT EACH TABLE

G1 G2 G3 G4 G5 G6 G7 G8

1 45 42 40 26 30 39 37 33
2 37 37 33 33 20 37 33 33
3 31 31 41 3 11 28 33 33
4 39 39 42 58 0 30 38 39
5 36 28 41 0 58 36 48 36
6 43 43 20 11 11 47 20 33
7 36 36 50 0 30 0 56 40
8 29 29 35 26 18 33 24 47

Avg 37 36 38 20 25 31 36 37

Inspecting the results of Table VII, we see that in all but
one case the evolved strategy for a particular table greatly
outperforms all the other evolved strategies when played at
the same table (only at table 2 is the specialised strategy
matched in performance by other evolved strategies). Com-
paring the averages of each evolved strategy across all tables,
we see that most evolved strategies obtain approximately
the same win percentage (about 36%), although some show
greater variance in performance than others. Recalling that
the average of the specialised strategies was 49%, these
results further support our claim that no general strategy will
maxmise winnings and that specialisation instead is needed
to exploit weaknesses in different opponent strategies.

V. CONCLUSIONS

In this paper, we proposed and introduced the use of
genetic programming for opponent modelling in the game
of Spoof. Using the genetic programming paradigm, we
constructed an automated computer Spoof player that evolved
guessing strategies that consistently outperformed all of our
hand-coded, non-adaptive players. We demonstrated through
experiments that this approach produced different strate-
gies for different opponents, each specialised to exploit
weaknesses in the opponent’s strategy in order maximise
winnings. Indeed, the guessing strategies evolved were found
to be very effective, obtaining theoretically optimal strategies
in most test cases, and near optimal strategies otherwise.

While this work has produced an automated Spoof player
capable of near optimal play, there is still more we would like
to do this domain. It would be interesting to see how well
this approach extends to larger sized games and determine
whether the same methodology can be used to evolve strong
strategies for earlier position play. We would also like to
experiment with more non-deterministic players in order to
determine the effects of a more noisy evaluation on the
evolutionary learning process and investigate the effective-
ness of this approach against adaptive opponents in a real-
time setting. Additionally, comparisons with other paradigms
(e.g. neuroevolution) may yield interesting conclusions about
the efficiency of a genetic programming approach for this
type of problem. Further work examining the implications of
using a pseudo-success measure (as discussed in the previous
section) will also be undertaken.

ACKNOWLEDGMENTS

The authors would like to thank Dr. Lyndon While from
The University of Western Australia for his helpful sugges-
tions during the preliminary stages of this work.

REFERENCES

[1] T. Bäck, U. Hammel, and H.-P. Schwefel, “Evolutionary computation:
comments on the history and current state,” IEEE Transactions on
Evolutionary Computation, vol. 1, no. 1, pp. 3–17, April 1997.

[2] L. Barone and L. While, “Adaptive learning for poker,” in GECCO
2000: Proceedings of the Genetic and Evolutionary Computation
Conference. Morgan Kaufmann Publishers, 2000, pp. 566–573.

[3] Y. Azaria and M. Sipper, “Using GP-gammon: using genetic pro-
gramming to evolve backgammon players,” in Proceedings of the 8th
European Conference on Genetic Programming. Springer, 2005, pp.
132–142.

[4] D. Fogel, “Evolving strategies in blackjack,” in Proceedings of the
2004 Congress on Evolutionary Computation (CEC ’04). IEEE
Publications, 2004, pp. 1427–1432.

[5] ——, “Evolving behaviors in the iterated prisoner’s dilemma,” Evolu-
tionary Computation, vol. 1, no. 1, pp. 77–97, 1993.

[6] P. Hingston and G. Kendall, “Learning versus evolution in iterated pris-
oner’s dilemma,” in Proceedings of the 2004 Congress on Evolutionary
Computation (CEC ’04). IEEE Publications, 2004, pp. 364–372.

[7] J. R. Koza, Genetic Programming: On the Programming of Computers
By Means of Natural Selection. Cambridge, MA: MIT Press, 1992.

[8] K. Kinnear, Jr., “Evolving a sort: Lessons in genetic programming,” in
Proceedings of the 1993 International Conference on Neural Networks.
New York, NY: IEEE Press, 1993.

[9] J. Lohn, G. Hornby, and D. Linden, “Evolutionary antenna design for
a NASA spacecraft,” in Genetic Programming Theory and Practice II.
Springer, 2004, pp. 301–315.

[10] A. D. Parkins and A. K. Nandi, “Genetic programming techniques for
hand written digit recognition,” Signal Processing, vol. 84, no. 12, pp.
2345–2365, 2004.

[11] J.-Y. Potvin, P. Soriano, and M. Vallee, “Generating trading rules
on the stock markets with genetic programming,” Computers &
Operations Research, vol. 31, no. 7, pp. 1033–1047, 2004.

[12] S. Luke, C. Hohn, J. Farris, G. Jackson, and J. Hendler, “Co-
evolving soccer softbot team coordination with genetic programming,”
in RoboCup-97: Robot Soccer World Cup I. Springer-Verlag, 1998.

[13] E. Burke, S. Gustafson, and G. Kendall, “A puzzle to challenge genetic
programming,” in Proceedings of the 5th European Conference on
Genetic Programming. Springer-Verlag, 2002, pp. 238–247.

[14] D. Jackson, “Evolving defence strategies by genetic programming,” in
Proceedings of the 8th European Conference on Genetic Programming.
Springer, 2005, pp. 281–290.

[15] “Spoof strategy,” Wikipedia — The Free Encyclopedia, October 2005,
URL: http://en.wikipedia.org/wiki/Spoof_Strategy.

[16] A. Qureshi, “GPsys 2b,” July 2000, URL: http://
www.cs.ucl.ac.uk/external/A.Qureshi/gpsys.html.

1-4244-0464-9/06/$20.00 2006 IEEE. 172 CIG'06 (May 22-24 2006)

A Comparison of Different Adaptive Learning Techniques

for Opponent Modelling in the Game of Guess It

Anthony Di Pietro, Luigi Barone, and Lyndon While
School of Computer Science & Software Engineering

The University of Western Australia
{anthony,luigi,lyndon}@csse.uwa.edu.au

Abstract— Guess It is a simple card game of bluffing and
opponent modelling designed by Rufus Isaacs of the Rand
Corporation. In this paper, we discuss the technical details
needed to equip an adaptive learning algorithm with the ability
to play the game and report a series of experiments that
compare the performance of different learning techniques.
Our results show that in most cases the different techniques
produce perfect countering strategies against a number of
fixed opponents, although there are differences in the speed
of learning and robustness to change between the different
algorithms. We further report experiments where the learning
techniques compete against each other in a coadaptive setting.

Keywords: Adaptive Learning, Opponent Modelling,
Guess It

I. INTRODUCTION

In certain games, playing well depends primarily on de-
termining which actions are objectively the best based on
analysis of the game state. This is especially true for perfect
information games such as Chess [1] and Draughts [2]. In
many other games, however, playing well depends primarily
on predicting opponents’ actions. This is especially true for
games that prominently feature bluffing, such as Poker [3].

The ability to play the former category of games well
was once widely regarded as evidence of intelligence, but
nowadays the idea that machines can compete with the best
humans at such games is generally seen as a consequence
of the computational power of machines, and instead game-
playing agents are derided for their inability to understand
the psychological aspects of games.

In this paper, we study a bluffing game called Guess It,
a game where optimal performance depends primarily on
predicting opponents’ actions. This means that when adaptive
learning techniques learn to play it, they are not only learning
domain knowledge of the game, but moreso forming a model
of the behaviour of specific opponents (opponent modelling).

The primary contribution that this paper makes is a com-
parison of some common adaptive learning techniques for the
task of opponent modelling. Specifically, we examine hill
climbing, evolutionary algorithms, genetic algorithms, and
particle swarm optimisation. We also present and examine
a variant of particle swarm optimisation that we designed
specifically to adapt to dynamic environments or opponents.

The rest of this paper is structured as follows: section II
introduces and analyses the game of Guess It; section III
defines a generalised structure for a Guess It player from
which our adaptive players are built; section IV describes the

learning techniques that we examine in this paper; section VI
explains how we implemented our learning players; sec-
tion VII presents and analyses our results; and section VIII
draws conclusions from the results and analysis.

II. THE GAME OF GUESS IT

In the early 1950s, Rufus Isaacs of the Rand Corporation
conducted his pioneer research on differential game theory.
During this period, he invented a card game called Guess
It [4]. His original version of the game used 11 cards, but
we study an extended version of the game that uses 13 cards.

A. Rules

Guess It is a card game for two players. One suit is taken
from a standard deck of cards and six cards are dealt face-
down to each player. The remaining card is placed face-down
in the centre. Players look at their own cards, but not at their
opponent’s cards or the centre card. The objective of the
game is to identify the centre card, or to fool one’s opponent
into incorrectly identifying the centre card.

Players alternate turns. Let A denote the current player and
B the opponent. On its turn, A can do one of three things:

1) attempt to name the centre card — if A is correct, A
wins; otherwise, A loses;

2) ask whether B has a card that is not in A’s hand — if
B has the card, B discards it; or

3) bluff by “asking” whether B has a card that is in A’s
hand in an attempt to fool B into incorrectly identifying
the centre card. If a player bluffs, they must discard the
card in question on their next turn.

B. Terminology

For convenience, we define the following terms for dis-
cussing elements of the game:

Ask: To query whether one’s opponent has
a card that is not in one’s own hand.

Bluff: To query whether one’s opponent has
a card that is in one’s own hand.

Potential Bluff: When a player either bluffs or asks for
the centre card.

Bluff Card: The card referred to in a potential bluff.
Name: To attempt to identify the centre card.
Call: To name the bluff card as the centre

card.

1-4244-0464-9/06/$20.00 2006 IEEE. 173 CIG'06 (May 22-24 2006)

Guess: To name a card that has never been
referred to as the centre card.

Revealed Cards: The cards that have been discarded.
Hidden Cards: The cards that are neither in one’s hand

nor discarded.

C. Introductory Strategy

Guess It appears to be a trivial game, but it is not. While
opponent modelling is far more important than strategy
against a predictable opponent, a game typically lasts several
turns, and therefore has long-term strategy.

On each turn, A must name, ask, or bluff. If A names,
the game ends immediately; if A asks for the centre card,
the game ends within two turns (either B calls or A names
next turn); if A asks for a card in B’s hand, B discards it,
eliminating a card from B’s hand; and if A bluffs, the bluff
card will be revealed from A’s hand unless B calls (ending
the game). The net effect is that each turn that does not
terminate the game reveals one card from one player’s hand.
If A bluffed, a card from A’s hand is revealed; otherwise, a
card from B’s hand is revealed.

Since much of the game is concerned with deducing the
centre card before one’s opponent, it is advantageous to
have more cards in hand than one’s opponent (there is more
uncertainty for the opponent). Similarly, it is disadvantageous
to have fewer cards in hand. For example, if B has no
cards, B necessarily loses as A must know the centre card.
Alternatively, if A has no cards, A is forced to guess the
centre card, making A’s probability of winning inversely
proportional to the number of cards in B’s hand. This means
that not only is having more cards than one’s opponent an
advantage, but also that the advantage increases with the
number of extra cards. Note that A has a slight advantage
even if the numbers of cards in each player’s hand are equal.

The objective of bluffing is to fool one’s opponent into
believing that the bluff card is the centre card. Thus, A should
bluff less often when B has more cards in hand (as there are
more hidden cards, from B’s point-of-view, A is less likely
to have asked for the centre card if not bluffing), and more
often when A has more cards in hand (as having less cards
than B is less significant if A still has a large number of
cards in hand).

D. Rand Analysis

Isaacs [4] mathematically analyses the game in order to
find the optimal mixed strategy and the value of the game.
We summarise the results of his analysis here and refer to
his resultant strategy as the Rand strategy.

Let m be the number of cards in A’s hand and n be the
number of cards in B’s hand. Denote the probability of A
winning as P (m,n).

If n = 0, then A knows the centre card, and hence,

P (m, 0) = 1 (1)

If n > 0, but m = 0, then A must guess. Hence,

P (0, n) =
1

n + 1
(2)

Finally, if n > 0 and m > 0, then if both players play
according to the Rand strategy,

P (m,n) =
1 + nP (n,m − 1)[1 − P (n − 1,m)]

1 + (n + 1)P (n,m − 1)
(3)

Table I shows the probability of the current player winning
for all possible values of m and n and confirms the intuitive
strategies described in section II-C.

The Rand strategy specifies the probability of bluffing and
the probability of calling for each possible game state. In
this strategy, the decision-making process begins by deciding
whether to call (if a potential bluff occurred) with probability

c(m,n) =
(m + 1)P (m,n − 1) − mP (m − 1, n)

1 + (m + 1)P (m,n − 1)
(4)

If not calling, the next decision is whether to bluff. The
probability of bluffing is given by

b(m,n) =
1

1 + (n + 1)P (n,m − 1)
(5)

Note that if B bluffed, n is reduced by one in equation 5
because we assume that one of B’s cards is the bluff card
(otherwise we have already lost by not calling) and therefore
effectively revealed. When bluffing, the bluff card is chosen
randomly.

Finally, if neither calling nor bluffing, a random hidden
card is asked for. Exceptions are made to this procedure in
cases where the centre card is known, or a player has no
cards left (see section III).

E. The Need for Opponent Modelling

Note that in Guess It, the value of bluffing depends on
how likely the opponent is to call, and similarly, the value
of calling depends on how likely an opponent is to bluff.
If a player bluffs too often, it is vulnerable to an opponent
that rarely calls; and if a player does not bluff enough, it
is vulnerable to an opponent that would call too much. For
example, against an opponent who never bluffs, the optimal
countering strategy is to always call a potential bluff (the
bluff card will certainly be the centre card), while against an
opponent who always bluffs, calling is erroneous (the bluff
card will certainly not be the centre card), and some other
non-calling countering strategy should be used instead.

While the Rand strategy is the optimal mixed strategy for
playing against all opponents, against a particular opponent,
it is generally not the best strategy. The Rand strategy bal-
ances the probability of bluffing and calling such that it per-
forms equally well regardless of how often its opponent calls
and bluffs (it maximises the minimum probability of winning
against any opponent), thus ensuring it is not vulnerable to
any particular opponent. This comes at a cost — sacrificing
performance against specific opponents (observe that the
Rand strategy wins less than each optimal countering strategy
in the examples above). Indeed, to maximise performance
against a specific opponent, a countering strategy specific to
the opponent is needed; a general strategy (like the Rand
strategy) will not generally perform as well.

1-4244-0464-9/06/$20.00 2006 IEEE. 174 CIG'06 (May 22-24 2006)

TABLE I
THE PROBABILITY OF THE CURRENT PLAYER WINNING WITH THE RAND STRATEGY.

Cards in A’s hand (m)
0 1 2 3 4 5 6

0 1 1 1 1 1 1 1
Cards 1 0.5 0.5 0.666667 0.6875 0.733333 0.75 0.771429
in 2 0.333333 0.5 0.555556 0.625 0.64693 0.680851 0.697201
B’s 3 0.25 0.4 0.511111 0.547619 0.596642 0.61894 0.648174
Hand 4 0.2 0.375 0.45 0.512589 0.54309 0.580968 0.602375
(n) 5 0.166667 0.333333 0.422548 0.466683 0.512131 0.538851 0.570444

6 0.142857 0.3125 0.387063 0.441135 0.474902 0.511194 0.535342

III. GENERALISED GUESS IT PLAYER

Following the observations made by Isaacs [4], we note
the following about how a Guess It player should play.

Regarding naming and guessing, we specify that
• if A knows the centre card (due to a previous ask), A

should name it because this guarantees A will win;
• if there is only one hidden card (i.e., B has no cards),

A should name it because this guarantees A will win;
• if A has no cards, A should guess because B will

certainly win on B’s next turn;
• if B has one card and potentially bluffed, then B will

certainly name on B’s next turn, therefore A should
name on A’s turn because this denies B the opportunity
to guess if B bluffed; and

• unless one of the above scenarios occurs, A should never
guess.

Regarding calling, we specify that
• if B potentially bluffed, and A chooses not to call, then

A can assume that the bluff card is revealed because
this assumption will only ever be false if A has already
lost by not calling; and

• if B has one card and potentially bluffed, and A chooses
not to call, then A should name the only hidden card.

Regarding calling and bluffing, we specify that
• if A does not call, and A does not bluff, then A should

ask for a hidden card (other than the bluff card, if any);
• if A bluffs, the bluff card may be chosen randomly from

A’s hand because from B’s point-of-view, all hidden
cards are equally likely to be the centre card; and

• if A asks, the card should be chosen randomly from the
set of hidden cards (minus the bluff card, if any), as all
such cards are equally likely to be the centre card.

These specifications form the basis of a generalised model
for decision-making in the game. A flowchart of the decision-
making process is shown pictorially in Fig. 1.

Using this model, at most two decisions need to be made
on each turn: whether to call, and whether to bluff. As
these decisions can be made probabilistically, a strategy
must encode both a probability of bluffing and a probability
of calling for each game state. Hence, a complete strategy
consists of n = 2m probabilities for the m possible game
states in the game.

Centre
known?

Start

Name
Centre End

Yes

Hand
empty?

No

Guess End

Opponent
potentially
bluffed?

Shall I
bluff?

Yes

No

No
EndBluff

Yes

Ask

End

No

Shall I
call?

Yes

from hidden
bluff card
Remove

cards

No

Only one
hidden?

No

Name
hidden

Yes End

Call
Yes

End

Fig. 1. The generalised decision-making process for Guess It players.

IV. ADAPTIVE LEARNING TECHNIQUES

Finding the correct countering strategy for a particular
opponent is in essence an optimisation problem. The n-
dimensional array of numbers that make a strategy constitutes
an n-dimensional search space in which the adaptive learning
techniques search for a solution. Better strategies win more
frequently than inferior strategies, so we use the proportion of
games won as the fitness function for the learning algorithms.

The following subsections describe the adaptive learning
techniques that we examine in this paper.

A. Hill Climbing

We consider a basic hill climber that maintains a single so-
lution, generates a single test solution, and keeps whichever
is better. The initial solution is generated using a uniform
random distribution. The test solutions are generated by
adding a Gaussian random variable with mean zero and
standard deviation 0.001 to each dimension of the solution.

1-4244-0464-9/06/$20.00 2006 IEEE. 175 CIG'06 (May 22-24 2006)

We used 0.001 as the standard deviation because we found
that this produced good solutions in a tolerable time.

B. Evolutionary and Genetic Algorithms

Evolutionary computation [5] is a broad term that encom-
passes all methods to solve problems on a computer that
are inspired by biological evolution [6]. A population of
candidate solutions is maintained with solutions encoded into
their genotype. The notion of biological fitness serves as a
model for fitness in evolutionary computation, implemented
via the fitness function. Mutation and genetic crossover are
modelled via the mutation and crossover operators.

For our evolutionary and genetic algorithms, we used a
population size of 10. We set the mutation probability to
0.5. Our mutation operator added a Gaussian random variable
with mean zero and standard deviation 0.1 to each dimension
of the solution. We kept parents in the population after they
reproduced (their children replace the weakest candidates),
and replaced their fitness each time that they were evaluated.
In our evolutionary algorithm, each child had one parent.
In our genetic algorithm, each child had two parents. Our
crossover operator used one dimension of the solution from
each of the parents.

C. Particle Swarm Optimisation

Particle swarm optimisation is a learning technique mod-
elled on the flocking patterns birds use to search for food [7].
It maintains a swarm of particles, and regularly updates
each of their velocities by adjusting them towards the best
solution found by that particle so far (its personal best), while
also adjusting them towards the best solution found by any
particle so far (the global best). These velocity adjustments
are proportional to the particle’s distance from its personal
best and the global best respectively, and also incorporate an
element of randomness:

ṽi = w ∗ ṽi + c1 ∗ R1 ∗ (p̃i − x̃i) + c2 ∗ R2 ∗ (p̃g − x̃i) (6)

where x̃i is the position vector of particle i, ṽi is the velocity
vector of particle i, p̃i is the personal best position vector
of particle i, p̃g is the global best position vector (g is the
particle whose personal best is the global best), R1 and R2

are uniformly random variables from the range [0, 1] sampled
anew for each dimension of each vector, and c1, c2, and w

are constants that determine the weights of the personal best,
the global best, and inertia respectively [8], [9].

According to Kennedy and Eberhart [7], c1 and c2 should
both be set to 2. Our implementation follows this advice,
but similar to Clerc’s constriction coefficient scheme [9],
we multiply the entire velocity by a manually specified
scaling factor (VELOCITY SCALE, set to 0.75) to prevent
the velocities of the particles from increasing out of control.

Table II lists the constants that we used for our particle
swarm optimisation. We used a swarm size of 10 particles.

D. Dynamic Particle Swarm Optimisation

Particle swarm optimisation is not well-suited to dynamic
environments because the personal bests (and hence the

TABLE II
THE CONSTANTS USED FOR PARTICLE SWARM OPTIMISATION.
Constant Meaning Value

w Inertia weight VELOCITY SCALE
c1 Personal best weight 2 * VELOCITY SCALE
c2 Global best weight 2 * VELOCITY SCALE

global best) are never changed unless a better solution is
found. If the environment suddenly changes, the global and
personal bests may no longer be good solutions, but the
particles will still be attracted to them. The result is that
the particles will circle a solution that is no longer good.

We developed a variant of particle swarm optimisation,
which we call dynamic particle swarm optimisation, that
addresses this problem to give better performance in dynamic
environments. The way that this algorithm works is that in
each generation there is a fixed probability (called the forget
probability) that the algorithm will “forget” the global best.
When this happens, the personal best utility of the global best
particle, g, is set to −∞, and the particle with the second-
best personal best becomes g.

The effect of this is that if the global best is no longer
applicable (e.g., due to a change in the environment), the
system forgets it, allowing it to search for the new optimum.
However, if the global best is still applicable, then because
the second-best personal best takes its place and is probably
very close to the global best, the overall effect on the
algorithm is small. Furthermore, the position and velocity
of the global best particle, g, are not modified, and so g

itself is not significantly affected. For our experiments, we
used a forget probability of 0.1.

Carlisle and Dozier [10] use a similar technique to adapt
particle swarm optimisation to dynamic environments, but
their algorithm differs on when and how forgetting occurs. In
their algorithm, when forgetting occurs, every particle resets
its personal best to its current position. They consider two
ways to manage when forgetting occurs: periodic (based on
the number of iterations) and triggered (based on how much
the fitness of a particular point has changed).

V. EXPERIMENTAL FRAMEWORK

We implemented an experimental framework within which
the adaptive learning algorithms learn to play Guess It. This
framework defines the players, a test suite of basic opponents
that play predictably, and a way of testing the performance
of one player against another.

A. Basic Players

We implemented four basic players as test subjects:
AlwaysAsk: Never calls; always asks.
AlwaysBluff: Never calls; always bluffs.
CallThenAsk: Always calls if possible; otherwise, al-

ways asks.
CallThenBluff: Always calls if possible; otherwise, al-

ways bluffs.

1-4244-0464-9/06/$20.00 2006 IEEE. 176 CIG'06 (May 22-24 2006)

These players are instances of the generalised Guess It
player described in section III with each of their bluff and
call probabilities set to either zero or one.

B. Comparison of Basic Players

The basic players are deterministic and easy to beat. Using
the correct strategy, each of them can be beaten in every
game (except for AlwaysAsk, which can only be beaten
98% of the time), regardless of whether playing first or
second. However, the correct strategy against each of the
basic players is different. Indeed, no fixed strategy exists that
can consistently win even half the time against every basic
player when playing second. This means that adaptation is
required to perform well against even the basic players.

Table III shows the probability of the first player winning
for each possible pairing of the basic players. Matching the
Rand player against any basic player gives the first player
a win probability of 0.535 (regardless of whether the Rand
player plays first or second).

C. Fitness Evaluation

Guess It does not have any concept of scoring, so the
performance of a player against a particular opponent is
judged by how often it wins — i.e., its probability of
winning. To estimate this by playing games, we would
need to play many games, which would be time consuming.
Furthermore, the estimate would be noisy, meaning that we
would be dealing with a noisy fitness function [11], requiring
some form of noise compensation technique.

To avoid noisy evaluations, we implemented a framework
whereby fully-specified strategies are received from each
of the players and used to calculate each player’s exact
probability of winning by expanding the game tree. Each
player then receives its probability as feedback. Using this
technique, players are provided with faster, more accurate
feedback, allowing them to learn more quickly and accurately
than would be possible by playing games.

Recall from section III that a fully-specified bluff strategy
consists of a probability of bluffing and a probability of
calling for each possible game state. Due to parity, only some
states will be possible, so the players are only queried for
specific probabilities as required.

VI. LEARNING GUESS IT PLAYERS

Each learning player extends the generalised Guess It
player by using an adaptive learning technique to determine
the best countering strategy for a particular opponent.

Since cards are equal in the sense that their identity serves
only as a means of referring to them (i.e., there is no concept
of rank or value in Guess It as there is in most card games),
a Guess It player can represent the state of the game as an
object containing the following information: the number of
cards in each player’s hand, whether a potential bluff just
occurred, and the current player.

As a game of Guess It may last several turns, there are
many possible game states. Fitness evaluation requires that a
player provides a response (bluff and call probabilities) for

each possible state, and since the correct probabilities may
differ for each state, the learning algorithm must maintain
separate probabilities for each. One way to do so is to have
the learning algorithm store in each candidate solution a
response for all states. However, this necessarily makes the
dimensionality of the search space very high.

We instead use an alternative approach: we associate a
unique instance of the learning algorithm with each game
state. When a learning player is required to return a response,
it consults the instance of the learning algorithm associated
with the current game state and uses the response suggested
by that instance. That is, for each different state, a learning
player uses a different instance of the learning algorithm
specific to that game state. In essence, each instance of the
learning algorithm is responsible for learning the correct re-
sponse for its particular game state — the learning instances
coming together to form a non-persistent “team” of responses
that form the overall strategy for a player.

When feedback is provided to a learning player, the player
returns this feedback to all instances of the learning algorithm
that were used in the evaluation of the performance of the
player (i.e., the success of individuals in the team directly
depends on the success of the team). Over time, the learning
algorithms are able to cooperatively learn a good strategy.

Note however, that this approach fails to consider which
states and probabilities had the most effect on the result.
Indeed, the success of individual responses in a team may
be inflated or deflated depending on the performance of
its fellow team members. A poor response in one state
may receive inappropriately good feedback because it was
teamed with a good response in another state, and vice-
versa. Consequently, while the feedback provided to the
player is its exact probability of winning with its fully-
specified strategy, the feedback provided to each instance
of the learning algorithm is potentially misleading.

This often leads to situations where a suboptimal response
is favoured in a particular state because it previously received
good feedback, and no subsequently tested responses have
received better feedback (even though they may have been
superior). To recover from such a situation, a learning
algorithm must have some way of replacing old feedback
that is no longer applicable with new feedback that applies to
the current search domain (e.g. overwriting old results in the
evolutionary based approaches, or the forgetting mechanism
of dynamic particle swarm optimisation). It can then learn
that the suboptimal response is not as good as it believes,
and it can then recognise and learn a better one.

This team-based approach for constructing a strategy
would be infeasible if there were a large number of possible
states, but when the number of possible states is small
enough, experience shows that this technique works well [3].

We allow the learning algorithms to search outside the
[0, 1] range allowed for probabilities. If this occurs, the learn-
ing player returns the nearest allowed value (either 0 or 1)
to the player evaluation system as its probability, but returns
−∞ as the feedback to the learning algorithm instance.

1-4244-0464-9/06/$20.00 2006 IEEE. 177 CIG'06 (May 22-24 2006)

TABLE III
THE PROBABILITY OF THE FIRST PLAYER WINNING FOR EACH PAIRING OF THE BASIC GUESS IT PLAYERS AGAINST EACH OTHER.

First Player Second Player
AlwaysAsk AlwaysBluff CallThenBluff CallThenAsk

AlwaysAsk 0.571 1.0 0.457 0.020
AlwaysBluff 0.045 0.0 1.0 1.0

CallThenBluff 0.732 0.0 1.0 1.0
CallThenAsk 0.980 0.143 0.0 0.429

This encourages the learning algorithm to produce a solution
within the allowed range, while minimising interference to
the feedback of other states.

VII. RESULTS

We conducted three types of experiments: we tested the
learning players against the basic players; we tested the
learning players against a player that switches from one basic
strategy to another; and we tested the learning players against
each other.

A. Learning Players Versus Basic Players

Figs. 2, 3, 4 and 5 report example runs that show the
performance of each of our learning players in play against
each basic player. These graphs report experiments with the
basic players playing first. The results with the basic players
playing second are similar and have been omitted for brevity.
We used a 100-moving average to smooth the lines.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

P
ro

ba
bi

lit
y

of
 B

ea
tin

g
A

lw
ay

sA
sk

Number of Iterations

CallThenAsk
Rand

HillClimbing
EA
GA

PSO
DPSO

Fig. 2. Performance of the learning players, the Rand strategy, and
CallThenAsk against AlwaysAsk, with AlwaysAsk playing first.

Playing against AlwaysAsk produced the most interesting
results. Hill climbing was the only algorithm that was unable
to find the correct solution. The evolutionary algorithm had
the fastest initial learning rate, but temporarily settled on a
suboptimal strategy and did not converge properly on the cor-
rect countering strategy. The genetic algorithm learnt nearly
as quickly, but did not suffer these shortcomings. The particle
swarm optimisation algorithms learnt more slowly than the
evolutionary and genetic algorithms, but converged better
on the optimal strategy. Particle swarm optimisation initially
learnt faster than dynamic particle swarm optimisation, but
settled on a suboptimal solution for a short time, during
which dynamic particle swarm optimisation overtook it.

The learning players exhibited similar performance against
AlwaysBluff (Fig. 3), but some were slow to realise a

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000

P
ro

ba
bi

lit
y

of
 B

ea
tin

g
A

lw
ay

sB
lu

ff

Number of Iterations

AlwaysAsk
Rand

HillClimbing
EA
GA

PSO
DPSO

Fig. 3. Performance of the learning players, the Rand strategy, and
AlwaysAsk against AlwaysBluff, with AlwaysBluff playing first.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000

P
ro

ba
bi

lit
y

of
 B

ea
tin

g
C

al
lT

he
nB

lu
ff

Number of Iterations

Rand
HillClimbing

EA
GA

PSO
DPSO

Fig. 4. Performance of the learning players and the Rand strategy against
CallThenAsk, with CallThenAsk playing first.

particular endgame trick that allows better performance than
AlwaysAsk. Against AlwaysBluff, it is usually best never
to call and always to ask (i.e., to play according to the
AlwaysAsk strategy); however, doing so will sometimes
leave the AlwaysBluff player with no cards in hand on its
turn, meaning that it will attempt to guess the centre card,
giving it a small chance of winning. The optimal strategy
against AlwaysBluff is instead to play according to the
AlwaysAsk strategy until AlwaysBluff bluffs with two cards
in hand, and then to switch to the AlwaysBluff strategy. This
causes the AlwaysBluff opponent to bluff with one card in
hand, revealing the identity of the centre card.

Note that this only works if the strategy in the subsequent
state is never to call; otherwise, the learning player may call
its opponent’s final bluff (with one card in hand). Before this
is learnt, the best response when AlwaysBluff bluffs with
two cards in hand is to ask. Thus, playing second against
AlwaysBluff requires the learning players to change their

1-4244-0464-9/06/$20.00 2006 IEEE. 178 CIG'06 (May 22-24 2006)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 500 1000 1500 2000 2500

P
ro

ba
bi

lit
y

of
 B

ea
tin

g
C

al
lT

he
nB

lu
ff

Number of Iterations

Rand
HillClimbing

EA
GA

PSO
DPSO

Fig. 5. Performance of the learning players and the Rand strategy against
CallThenBluff, with CallThenBluff playing first.

strategy during the learning process.
Fig. 3 shows a failed run of the genetic algorithm: the

genetic algorithm has learnt the AlwaysAsk strategy, but
does not realise that it can be further adapted to improve
performance. Additional testing of the genetic algorithm
player against AlwaysBluff showed that this phenomenon
sometimes occurs, but that the genetic algorithm usually
discovers the endgame trick if given enough time.

The dynamic particle swarm optimisation player was the
only algorithm that completely ignored the irregularity that
occurs near the AlwaysAsk strategy, suggesting that it is the
most reliable algorithm for learning complex strategies.

Figs. 4 and 5 show that the learning algorithms easily
learn how to beat calling strategies. This is probably because
bluffing on any turn, including the first, is almost sufficient to
win against them, and hence the algorithms need only learn
the correct probability for one parameter (bluffing) on one
turn (the first), to achieve near-optimal performance.

B. Learning Players Versus a Changing Basic Player

We tested each of the learning players against a player that
plays the AlwaysAsk strategy for the first 2,000 iterations,
and thereafter plays the AlwaysBluff strategy. The learning
players always played second. Results are shown graphically
in Fig. 6. We used a 100-moving average to smooth the lines.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
ro

ba
bi

lit
y

of
 W

in
ni

ng

Number of Iterations

HillClimbing
EA
GA

PSO
DynamicPSO

Fig. 6. Performance of the learning players and the Rand strategy against
AlwaysAsk then AlwaysBluff, with AlwaysAsk/AlwaysBluff playing first.

After the opponent switched strategies (after 2,000 itera-
tions), hill climbing and particle swarm optimisation stopped

learning. This was because the strategy that they had learnt
(CallThenAsk) was no longer good, but they still believed
that it was, and since they could not find any nearby strategies
that were better, they were unable to improve. Dynamic
particle swarm optimisation did not have this problem be-
cause it was able to forget the strategy that it had learnt
that was no longer good, enabling it to learn a new strategy
to beat its opponent’s new strategy. However, forgetting the
old strategy took some time (approximately 500 iterations).
In contrast, the evolutionary and genetic algorithms began
learning a new strategy immediately after the switch, because
they replace candidates’ fitnesses each time that they are
evaluated, meaning that they immediately forget what they
have learnt if it is no longer good. However, they ultimately
settled on suboptimal strategies.

C. Learning Players Versus Learning Players

Fig. 7 shows the performance of the evolutionary algo-
rithm against particle swarm optimisation, with the evolution-
ary algorithm playing first. We used a 100-moving average
to smooth the line. After approximately 3,000 iterations,
particle swarm optimisation stopped learning. This was be-
cause the evolutionary algorithm changed its strategy, and so,
as against the basic player that changes its strategy above,
particle swarm optimisation was unable to improve. The
strategy that it learnt was exploitable, so the evolutionary
algorithm was able to adapt to consistently beat it.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

P
ro

ba
bi

lit
y

of
 E

A
 W

in
ni

ng

Number of Iterations

Fig. 7. Performance of the evolutionary algorithm against particle swarm
optimisation, with the evolutionary algorithm playing first.

Fig. 8 shows the performance of dynamic particle swarm
optimisation against particle swarm optimisation, with dy-
namic particle swarm optimisation playing first. We used a
100-moving average to smooth the line. Dynamic particle
swarm optimisation beats particle swarm optimisation in
similar fashion to the evolutionary algorithm.

Fig. 9 shows the performance of dynamic particle swarm
optimisation against the evolutionary algorithm, with dy-
namic particle swarm optimisation always playing first. We
used a 100-moving average to smooth the line.

Integrating over the graph gives the average probability
of dynamic particle swarm optimisation winning as approx-
imately 0.45. This means that the evolutionary algorithm
wins slightly more often despite the disadvantage of always
playing second (recall that the first player can win 53.5%

1-4244-0464-9/06/$20.00 2006 IEEE. 179 CIG'06 (May 22-24 2006)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

P
ro

ba
bi

lit
y

of
 D

P
S

O
 W

in
ni

ng

Number of Iterations

Fig. 8. Performance of dynamic particle swarm optimisation against particle
swarm optimisation, with dynamic particle swarm optimisation playing first.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

P
ro

ba
bi

lit
y

of
 D

P
S

O
 W

in
ni

ng

Number of Iterations

Fig. 9. Performance of dynamic particle swarm optimisation against the
evolutionary algorithm, with dynamic particle swarm optimisation playing
first.

of games using the Rand strategy). This is because the evo-
lutionary algorithm responds immediately to changes in its
opponent’s strategy, but dynamic particle swarm optimisation
does not: it takes some time to forget what it has learnt (as
against the basic player above).

In a coadaptive setting, both learning algorithms are con-
stantly trying to develop strategies to exploit the weaknesses
in its opponent’s strategy. As feedback drives each algorithm
towards a countering strategy, its opponent’s strategy is also
changing due to pressure to adapt to changes in the first
player. A coadaptive “arms race” results: each player is
constantly modifying its strategy in an effort to counter
each other effectively. Since the evolutionary algorithm both
learns faster than dynamic particle swarm optimisation and
responds faster than it to changes in an opponent’s strategy,
it handles these frequent changes better, giving it an edge
over dynamic particle swarm optimisation.

Note that, if dynamic particle swarm optimisation learnt
and maintained the Rand strategy, it would consistently beat
the evolutionary algorithm (because it plays first). However,
it does not do this because there is always a (temporarily)
better way to counter whatever strategy the evolutionary
algorithm is using at the time.

VIII. CONCLUSIONS

Based on the above results, we can make some general
statements about how each of the adaptive learning tech-

niques performed in this setting:
• Hill climbing was the worst algorithm. It did not always

work, and it performed poorly even when it did.
• The evolutionary and genetic algorithms were the best

algorithms with regard to learning speed, and responded
fastest to an opponent changing its strategy. However,
this speed and response came at the expense of often
settling on suboptimal solutions, at least temporarily.
Overall, the evolutionary and genetic algorithms per-
formed similarly to each other — i.e., neither seemed
clearly better than the other.

• The particle swarm optimisation algorithms were the
best algorithms with regard to solution quality. Indeed,
dynamic particle swarm optimisation was the best algo-
rithm in this regard because it always learnt the optimal
strategy and never settled on a suboptimal solution.
However, the particle swarm optimisation algorithms
did not learn as quickly as the evolutionary and genetic
algorithms, and dynamic particle swarm optimisation
did not respond as quickly to an opponent changing
its strategy (and particle swarm optimisation did not
respond at all).

We can also state some conclusions about which algo-
rithms would have been best from different point-of-views:

• If learning speed was most important, the evolutionary
and genetic algorithms would have been best.

• If solution quality was most important, dynamic particle
swarm optimisation would have been best.

• If the opponent occasionally changes its strategy, the
above points still apply.

• In a coadaptive environment, the evolutionary and ge-
netic algorithms would have been best.

REFERENCES

[1] C. E. Shannon, “Programming a computer for playing chess,” Philo-
sophical Magazine, vol. 41, no. 314, pp. 265–275, March 1950.

[2] J. Schaeffer, J. Culberson, N. Treloar, B. Knight, P. Lu, and D. Szafron,
“A world championship caliber checkers program,” Artificial Intelli-
gence, vol. 53, no. 2–3, pp. 273–290, 1992.

[3] L. Barone and L. While, “Adaptive learning for poker,” in Proc. of the
2000 Genetic and Evolutionary Computation Conference (GECCO-
2000). Morgan Kaufmann Publications, 2000.

[4] R. Isaacs, “A card game with bluffing,” The American Mathematical
Monthly, vol. 62, pp. 99–108, 1955.

[5] A. S. Fraser, “Simulation of genetic systems by automatic digital
computers,” Australian Journal of Biological Sciences, vol. 10, pp.
484–491, 1957.

[6] C. Darwin, The Origin of Species. Penguin Classics, London, 1859.
[7] J. Kennedy and R. Eberhart, “Particle swarm optimization,” Proc. of

the 1995 IEEE International Conference on Neural Networks, vol. IV,
pp. 1942–1948, 1995.

[8] Y. Shi and R. Eberhart, “Parameter selection in particle swarm opti-
mization,” in Proc. of the 7th International Conference on Evolutionary
Programming, March 1998, pp. 591–600.

[9] M. Clerc, “Some math about particle swarm optimization,”
November 1998. [Online]. Available: http://clerc.maurice.free.fr/pso/
PSO math stuff/PSO math stuff.pdf

[10] A. Carlisle and G. Dozier, “Adapting particle swarm optimization to
dynamic environments,” in Proc. of the International Conference on
Artificial Intelligence (IC-AI ’00), vol. 1. CSREA Press, June 2000.

[11] A. Di Pietro, L. While, and L. Barone, “Applying evolutionary
algorithms to problems with noisy, time-consuming fitness functions,”
in Proc. of the 2004 IEEE Congress on Evolutionary Computation
(CEC ’04). IEEE Press, June 2004, pp. 1254–1261.

1-4244-0464-9/06/$20.00 2006 IEEE. 180 CIG'06 (May 22-24 2006)

Improving Artificial Intelligence

In a Motocross Game

Benoit Chaperot
School of Computing
University of Paisley

Scotland
benoit.chaperot@paisley.ac.uk

Colin Fyfe
School of Computing
University of Paisley

Scotland
colin.fyfe@paisley.ac.uk

Abstract— We have previously investigated the use of artificial
neural networks to ride simulated motorbikes in a new com-
puter game. These artificial neural networks were trained using
two different training techniques, the Evolutionary Algorithms
and the Backpropagation Algorithm. In this paper, we detail
some of the investigations to improve the training, with a view
to having the computer controlled bikes performing as well or
better than a human player at playing the game. Techniques
investigated here to improve backpropagation are bagging and
boosting, while alternative crossover techniques have also been
investigated to improve Evolution.

Keywords: Motorbikes, Computational Intelligence, Ar-
tificial Neural Networks, Back Propagation, Evolutionary
Algorithm, Genetic Algorithm, Driving Game.

I. INTRODUCTION

We [1] have previously investigated the use of artificial
neural networks to ride simulated motorbikes in a new
computer game. In this paper, we investigate techniques for
improving the training of artificial neural networks to ride
simulated motorbikes in a new computer game. The use
of such methods in control is not new (see e.g.[2], [3]),
but it is one of the first time these methods are applied
to a video game (see e.g.[4]). Two training techniques
are used, Evolutionary Algorithms and the Backpropagation
Algorithm. To improve the Backpropagation Algorithm in
this paper, two optimisation techniques for augmenting the
training are used: bagging [5] and boosting [6]. There are
various interesting aspects in using artificial neural networks
(ANN’s) in a motocross game. The main reason is that,
although the control of the bike is assisted by the game
engine, turning the bike, accelerating, braking and jumping
on the bumps involve behaviours which are difficult to
express as a set of procedural rules, and make the use of
ANN’s very appropriate. Our main aim is then to have the
ANN’s to perform as well as possible at riding the motorbike.
We suspect that we can train the network to play better than
any living player; however, an ANN can always be penalised
at a later stage if it becomes so good that it decreases the
enjoyment of human competitors.

II. THE GAME

There are various interesting aspects in using artificial
neural network methods in a motocross game. Because the
design of an ANN’s is motivated by analogy with the brain,
and the rationale for their use in the current context is that

entities controlled by ANN’s are expected to behave in a
human or animal manner, these behaviours can add some
life and content to the game. The human player has also the
possibility to create new tracks. ANN’s have the capability
to perform well and extrapolate when presented with new
and different sets of inputs from the sets that were used to
train them; hence an ANN trained to ride a motorbike on a
track should be able to ride the same motorbike on another
similar track. ANN’s are adaptible in that their parameters
can be trained or evolved. ANN’s may be able to perform
with good lap times on any given track while still retaining
elements of human behaviour.

Motocross The Force is a motocross game featuring terrain
rendering and rigid body simulation applied to bikes and
characters. An example of it in use can be seen at

http://cis.paisley.ac.uk/chap-ci1

and a screen shot from the game is shown in Figure 1.
The game has been developed and is still being developed
in conjunction with Eric Breistroffer (2D and 3D artist). A
track has been created in a virtual environment and the game
involves riding a motorbike as quickly as possible round the
track while competing with other riders who are software-
controlled.

There is one position known as a way point which marks
the position and orientation of the centre of the track, every
metre along the track. These way points are used to ensure
bikes follow the track and we will discuss positions in way
point space when giving positions with respect to the way
points.

For example, for the evolutionary algorithms, the score is
calculated as follows:

• vPassWayPointBonus is a bonus for passing
through a way point.

• vMissedWayPointBonus is a bonus/penalty (i.e.
normally negative) for missing a way point.

• vCrashBonus is a bonus/penalty (i.e. normally neg-
ative) for crashing the bike.

• vFinalDistFromWayPointBonusMultiplier is a
bonus/penalty (i.e. normally negative) for every metre
away from the centre of the next way point.

The inputs to the ANN are:

• Position of the bike in way point space.

1-4244-0464-9/06/$20.00 2006 IEEE. 181 CIG'06 (May 22-24 2006)

Fig. 1. Screen shot taken from the game; the white crosses represent the
position of the track centre lane; there are 13 samples which are used as
inputs to the ANN.

• Front and right directions of the bike in way point space.
• Velocity of the bike in way point space.
• Height of the ground, for b (typically 1) ground sam-

ples, in front of the bike, relative to bike height.
• Position of track centre lane, for c (typically 13) track

centre lane samples, in front of the bike, in bike space.

The outputs of the ANN are the same as the controls for
a human player:

• Accelerate, decelerate.
• Turn left, right.
• Lean forward, backward

III. ARTIFICIAL NEURAL NETWORKS

Artificial neural networks are usually software simulations
which are models at some level of real brains. We will, in
this paper, use multilayered perceptrons (MLP) though other
types of neural networks [7] may be equally useful for the
task in this paper.

The MLP consists of an input layer, x, whose neurons are
passive in that they merely hold the activation corresponding
to the information to which the network must respond. In our
case this will be local information about the terrain which the
artificial rider is currently meeting. There is also an output
layer, y, which in our case will correspond to the actions
(turn left/right, accelerate/decelerate, lean forward/backward)
which are required to ride the bike. Between these two
layers is the hidden layer of neurons which is so-called as
it cannot directly communicate in any way with the external
environment; it may only be reached via the input neurons
and only affects the environment via the output neurons.

The MLP is used in two phases: activation passing and
learning. Activation is passed from inputs to hidden neurons
through a set of weights, W . At the hidden neurons, a
nonlinear activation function is calculated; this is typically a
sigmoid function, e.g. 1

1+exp(−act) which mimics the satura-
tion effects on real neurons. Let us have N input neurons, H
hidden neurons, and O output neurons. Then the calculation

at the hidden neurons is:

acti =
N∑

j=1

Wijxj ,∀i ∈ 1, ..., H

hi =
1

1 + exp(−acti)

where hi is the firing of the ith hidden neuron. This is then
transmitted to the output neurons through a second set of
weights, V , so that:

acti =
H∑

j=1

Vijhj , ∀i ∈ 1, ..., O

oi =
1

1 + exp(−acti)

Thus activation is passed from inputs to outputs. The whole
machine tries to learn an appropriate mapping so that some
function is being optimally performed. Such networks use
supervised learning to change the parameters, W and V
i.e. we must have a set of training data which has the
correct answers associated with a set of input data. The most
common method is the backpropagation algorithm.

In the experiments discussed in this paper, we used the
same activation function at the outputs as at the hidden
neurons.

IV. THE BACKPROPAGATION ALGORITHM

Let the P th input pattern be xP , which after passing
through the network evokes a response oP at the output
neurons. Let the target value associated with input pattern
xP be tP . Then the error at the ith output is EP

i = tPi − oP
i

which is then propagated backwards (hence the name) to
determine what proportion of this error is associated with
each hidden neuron. The algorithm is:

1) Initialise the weights to small random numbers
2) Choose an input pattern, xP , and apply it to the input

layer
3) Propagate the activation forward through the weights

till the activation reaches the output neurons
4) Calculate the δs for the output layer δP

i = (tPi −
oP

i)f ′(ActPi) using the desired target values for the
selected input pattern.

5) Calculate the δs for the hidden layer using
δP
i =

∑N
j=1 δP

j wji.f
′(ActPi)

6) Update all weights according to ∆P wij = γ.δP
i .oP

j

7) Repeat steps 2 to 6 for all patterns.
An alternative technique for computing the error in the

output layer while performing backpropagation has been
investigated. Instead of computing the error as (tPi − oP

i),
the error has been computed as (tPi −oP

i)|tPi −oP
i |. This has

for effect to train the ANN more when the error is large, and
allow the ANN to make more decisive decisions, with regard
to turning left or right, accelerating or braking and leaning
forward/back.

The backpropagation algorithm in the context of this
motocross game requires the creation of training data made

1-4244-0464-9/06/$20.00 2006 IEEE. 182 CIG'06 (May 22-24 2006)

from a recording of the game played by a good human
player. The targets are the data from the human player i.e.
how much acceleration/deceleration, left/right turning and
front/back leaning was done by the human player at that point
in the track. The aim is to have the ANN reproduce what a
good human player is doing. The human player’s responses
need not be the optimal solution but a good enough solution
and, of course, the ANN will learn any errors which the
human makes.

We investigated two techniques to improve the training,
bagging and boosting.

V. ENSEMBLE METHODS

Recently a number of ways of combining predictors have
been developed e.g. [8], [9], [6], [10]. Perhaps the simplest
is bagging predictors. The term “bagging” was coined by
joining bootstrapping and aggregating- we are going to
aggregate predictors and in doing so we are bootstrapping
a system. We note that the term “bootstrapping” was derived
from the somewhat magical possibilities of “pulling oneself
up by one’s bootstraps” and the process of aggregating
predictors in this way does give a rather magical result -
the aggregated predictor is much more powerful than any
individual predictor trained on the same data. It is no wonder
that statisticians have become very convincing advocates of
these methods.

A. Using Bagging

In ([1]), the ANN was trained using training data made
from a recording of the game being played by a good human
player. The data was made from the recording of the first
author playing the game on many different motocross tracks
(here 10). Bootstrapping [8] is a simple and effective way of
estimating a statistic of a data set. Let us suppose we have
a data set, D = {xi, i = 1, . . . , N}. The method consists of
creating a number of pseudo data sets, Di, by sampling from
D with uniform probability with replacement of each sample.
Thus each data point has a probability of (N−1

N)N ≈ 0.368
of not appearing in each bootstrap sample, Di. Each predictor
is then trained separately on its respective data set and the
bootstrap estimate is some aggregation (almost always a
simple averaging) of the estimate of the statistic from the
individual predictors. Because the predictors are trained on
slightly different data sets, they will disagree in some places
and this disagreement can be shown to be beneficial in
smoothing the combined predictor. Typically, the algorithm
can be explained as follows:

1) Create N bags by randomly sampling from the data set
with replacement.

2) The probability for a piece of data to be in the bag is
approximately 0.63.

3) ANN’s are trained on the bags separately.
4) The trained ANN’s are then presented with an input

and the outputs of the ANN’s are combined.

TABLE I

BAGGING RESULTS

NN Trained Training Data Lap Time
On Track Length (sec) Track m16

0 Expert 234.41 1’58”
1 hat 144.42 6’43”
2 hillclimb 35.36 4’01”
3 jat 339.69 4’24”
4 L 261.51 2’22”
5 m1 247.32 4’45”
6 m10 131.72 NA
7 m11 187.47 14’25”
8 m12 100.62 4’08”
9 m13 112.06 6’21”
Average (0,9) ALL ALL 1’38”
11 ALL 1794.58 1’31”
Good Human ALL NA 1’23”

The combination operator, in spirit similar to [10], used
was as below:

OANN = OAV E ∗ (1− w) + OWIN ∗ w; (1)

With OAV E , the average of all ANN’s outputs, OWIN , the
output of the most confident ANN, which is the output with
the largest magnitude, and w a parameter varying from 0
to 1. Experiments were done using ten ANN’s. Experiments
have shown that:

1) With w = 0, the combined output was a smooth output,
and the computer controlled bikes tended to ride in a
slow but safe manner.

2) With w = 1 (similar to “bumping” [10]) , the combined
output was a decisive output and the computer con-
trolled bikes tended to ride in a fast but risky manner.

This w parameter can allow to change the computer
controlled bike behaviour, and could be used to have the
artificial intelligence performance match that of the player.
However, experiments proved that whatever the value for
w, the performance was still a lot less than that of a good
human player, and similar to or less than that of a single
ANN trained using the entire training set.

Better results were achieve by, instead of creating bags by
randomly sampling from data set, creating bags by sampling
data according to data origin i.e. from data from a single
track. The data set was made from the recording of the first
author playing the game on ten motocross tracks. Now each
bag contained data for one separate motocross track. The
results are given in Table I.

(1) was used for combination with w equal to zero (pure
averaging which is exactly bagging) and Table I shows that
the combination of ten ANN’s is better than every single
ANN taken separately, but still not as good as another ANN
trained using the full data set.

B. Using Boosting

There has been recent work identifying the most important
data samples [11]; and presenting the ANN more with the

1-4244-0464-9/06/$20.00 2006 IEEE. 183 CIG'06 (May 22-24 2006)

most important data samples (boosting [6]). We investigated
the effect of different types of training data. For example,
some parts of the track are relatively easy and the rider can
accelerate quickly over these while other parts are far more
difficult and so more care must be taken. The latter parts are
also those where most accidents happen. Our first conjecture
was that training the neural network on these more difficult
parts might enable it to concentrate its efforts on the difficult
sections of the track and so a training routine was developed
in which each training sample has a probability to be selected
for training the ANN proportional to the error produced the
last time the sample was presented to the ANN. This allows
us to train the ANN with more difficult situations.

The first algorithm was not efficient; it was storing an
average error value for each of the training samples, which
is not memory efficient, and made use of a roulette to select
the samples according to the average error, which is not
processing efficient. There was a time during which the
average error was computed, and then the average error was
reset. The algorithm was complicated, was making use of
many parameters and was hard to tune.

Then, it appeared that because the learning rate is low,
the ANN does not change very much with time, and it is
possible to use the instantaneous error, and not the average
error. Instead of selecting samples according to the error the
sample produces, it is possible to select samples randomly,
evaluate the error, and modify the instantaneous learning rate
according to this instantaneous error.

The training routine had a negative effect on the training.
Without the routine, the average lap time was 2 minutes and
40 seconds. With the routine, the average lap time was 3
minutes. On the other hand, when the routine was inverted
(so that the backpropagation was performed with a learning
rate proportional to the inverse of the error produced by the
sample) this had a positive effect. The ANN performed better
when being trained more with the easy samples.

Finally, the learning rate multiplier (to compute the ef-
fective learning rate from the original learning rate) was
evaluated as:

m = MIN(0.1, 1− Error); (2)

Using this technique, after 24 hours of training, or
34560000 iterations, the ANN average lap time can go down
from 2 minutes 30 seconds on track L, to only 2 minutes 18
seconds. Training can take a long time, because the ANN
has to train and select the right set of training samples at the
same time.

Our alternative technique for computing the error in the
output layer while performing backpropagation as (tPi −
oP

i)|tPi − oP
i | was originally considered as having a positive

effect on the training because it allowed more decisive
decisions from the ANN, and proved to improve trained ANN
performance. Since the time this alternative technique was
implemented, the first author worked on the physics side of
the game and the handling of the motorbike has improved;

this alternative technique does not any more have a positive
effect on the final performance of the ANN. Worse, it can
have a negative effect.

It finally appeared that with the new physics, reverting to
the classic technique for computing the error in the output
layer, and removing the anti-boosting as described above
allowed the ANN to train faster and produced equally good
performances.

VI. EVOLUTIONARY ALGORITHMS

We can identify the problem of finding appropriate weights
for the MLP as an optimisation problem and have this
problem solved using the GA ([12]): we must code the
weights as floating point numbers and use the algorithm on
them with a score function.

The algorithm is:

1) Initialise a population of chromosomes randomly.
2) Evaluate the fitness of each chromosome (string) in the

population.
3) For each new child chromosome:

a) Select two members from the current population.
The chance of being selected is proportional to
the chromosomes’ fitness.

b) With probability, Cr, the crossover rate, cross
over the numbers from each chosen parent chro-
mosome at a randomly chosen point to create the
child chromosomes.

c) With probability, Mr, the mutation rate, modify
the chosen child chromosomes’ numbers by a
perturbation amount.

d) Insert the new child chromosome into the new
population.

4) Repeat steps 2-3 till convergence of the population.

An alternative technique for crossover has also been
investigated: instead of crossing over the numbers (corre-
sponding to the ANN’s weights) from each chosen parent
chromosome at a randomly chosen point to create the child
chromosomes, numbers from parents are averaged to create
the child chromosomes. This seems appropriate because we
are working with floating point numbers and not binary digits
and is a method which is sometimes used with the Evolution
Strategies [13] which are designed for use with floating point
numbers. Initial experimentation revealed that a blend of
these two techniques worked best. The particular crossover
technique was chosen randomly, with each technique being
given equal chance, for each new child chromosome and then
applied as usual.

Other techniques have also been tested: if starting the evo-
lution from a randomly initialised chromosome population,
we showed ([1]) that the ANN’s do not perform as well
as other ANN’s trained using backpropagation. Some tests
have been made starting the evolution from a population
of different ANN’s already trained using BP. One major
problem with doing crossover with ANN’s is that each
neuron has a functionality or part of the behaviour (for
example turning right), and while doing crossover, the child

1-4244-0464-9/06/$20.00 2006 IEEE. 184 CIG'06 (May 22-24 2006)

chromosome may end up having twice the required number
of neurons for a given functionality (turning right) and no
neurons for another functionality (turning left). An attempt
has been made, to reorder neurons in the parent ANN’s,
according to similarities and apparent functionalities, just
before performing crossover, in order to reduce the problem.
This proved not to be successful, and ANN’s generated by
the crossover of two very different ANN’s still produced
bad random behaviours. Eventually, because of elitism, and
because crossover is not always performed, the population
converges towards one individual ANN, which is not always
the best one, and diversity in the population is lost. The best
way to solve the problem was to start with one individual
already trained ANN’s, and mutate it to generate a starting
population of differently mutated individuals. This proved
very successful.

Our ANN’s have 50 inputs, one hidden layer, 80 neurons
in this hidden layer and 3 outputs. The number of weights
to optimise is therefore 80*50+3*80=4240. Evolution can
take a very long time to optimise all those weights. One
optimisation technique was to discard in a early stage indi-
viduals which evaluate to be unfit, for example if the bike is
in an unrecoverable situation. This considerably reduces the
training time. However this optimisation can also sometimes
evaluate fit individual as not being fit. This optimisation has
therefore been removed and all ANN’s have been given the
same fixed evaluation time.

The number of cuts for crossover has been increased
from one to ten; this means up to 11 different parts of the
chromosomes can be swapped between parents to create the
child chromosomes. This allows after only one generation
combinations of chromosomes that would not have been
possible with only one cut. The cuts are also made on the
neurons’ boundaries.

Six bikes are racing along track L, and therefore six ANN’s
are evaluated at any given time. The evaluation time has been
set to 10 minutes, which means 30 minutes per generation.
Currently computer controlled bikes don’t see each other,
and collision between bikes has been disabled in order not
to have bikes interfere with one another.

The number of generations has been set to 100, with
a population of 18 ANN’s, elitism of 0 (number of the
fittest chromosomes being passed directly from the parent
population to the child population), a mutation rate of 0.001,
a crossover rate of 0.8, a perturbation rate of 0.5, probability
to select average crossover over 10 cuts crossover set to 0.2.

The training can take a long time to perform; however
there are big advantages in the evolutionary algorithm ap-
proach. The artificial intelligence can adapt to new tracks
and improve lap times with time; it is also possible that it
can eventually perform better than a good human player.

Using this technique, after 24 hours of training, ANN’s
average lap time can go down from 2 minutes 45 seconds
on the long track, to approximately 2 minutes 16 seconds.
Not all individuals in the population are performing equally
well. For comparison a good human player lap time is 2

minutes 10 seconds.

VII. MORE IMPROVEMENTS

The bike is moving and rotating a lot along the track.
It appeared that instead of expressing the position of track
centre lane in bike space, it was better to express it in forward
space; with forward being the direction of the velocity vector.
There are two main advantages in using the forward space
instead of the bike space to transform ground samples:

1) It does not rotate in time in relation to the ground as
much as the bike transform, so it allows the ANN to
more easily identify input patterns for ground samples.

2) Because the velocity direction is now contained in the
forward space used to transform ground samples, it is
now possible to express the velocity as a scalar and
not a vector and save two inputs for the ANN.

The bike maximum velocity was set slightly less for
computer bikes than for the human player bike (30m/s against
32m/s). This reduction in maximum velocity proved to have
a positive effect on the performance of computer bikes,
because it prevented many accidents, at a time where ANN’s
were not performing well. Now the ANN’s are performing
better; this reduction is considered to have a negative effect
and is removed.

Some new training data is created by having the first author
playing the game on the long track for 23 minutes (138000
samples), with average lap times of approximately 2 minutes
8 seconds. The first author could have tried to optimise the
training set, for example he could have ride in a safe manner,
taking extra care in the difficult portions of the track, and
avoiding obstacles using extra safe distance, in order for the
ANN to learn behaviours that would prevent them accidents;
instead, the first author played the game in a fast but risky
manner.

The Backpropagation propagation algorithm is used to
train an ANN on the training data. The number of iterations
is set to 2000000. The learning rate is set to decrease
logarithmically from 1 ∗ 10−2 to 1 ∗ 10−5. The training is
done online at a rate of 2500 iterations a second; this allows
the user to observe the ANN as it trains. After training, the
average lap time on track L for a computer controlled bike
is found to be 2 minutes 30 seconds.

Genetic algorithms are then used to improve the ANN.
The trained ANN is mutated to create a population of 20
ANN’s. The number of generations has been set to 100, with
a population of 20, elitism of 0, a mutation rate of 0.001,
a crossover rate of 0.8, a perturbation rate decreasing loga-
rithmically from 0.5 to 0.005, probability to select average
crossover over 10 cuts crossover set to 0.2.

The results can be found in the graph below:
From the graph one can see that the lap time is slowly

decreasing, but the average lap time in one generation is
not always better than the average lap time in the previous
generation. This is what was expected with GA. Note that
because the perturbation is decreasing logarithmically from
0.5 to a small value, 0.005, and because of the crossover

1-4244-0464-9/06/$20.00 2006 IEEE. 185 CIG'06 (May 22-24 2006)

Fig. 2. The average lap time is slowly decreasing with respect to
generations, .

Fig. 3. On the left, track L used to train the ANN. On the right, track O,
used to test ANN generalisation property.

techniques used, the individuals in the final generation, at
the end of training, are expected to be very similar, and
weights between all ANN’s can easily be averaged over
all individuals to create one ANN representative of all a
population.

Finally, we want to check the generalisation property of
our ANN’s, we present the originally trained ANN (trained
using BP), and the optimised ANN (trained using BP and
then GA), with track O.

Track O is very different from track L. For example track
O features large hills and bumps, not present in track L.

The ANN’s are able to generalise. Lap times are 4 minutes
42 seconds for the originally trained ANN, and 4 minutes 34
seconds for the optimised ANN. The ANN’s simply seem
not to be familiar with the long straight and bumpy portions
of track O and are subject to time penalties every time the
game engine respawns the bike in the middle of the track.
The game engine respawns bikes in the middle of the track
if the bikes have been off the track for too long. The velocity
of the bikes at respawn is set to be generally less than the
velocity of the bikes before respawn; hence a time penalty.
For comparison a good human player lap time on this track
is 4 minutes 05 seconds.

VIII. CONCLUSIONS

Bagging required a lot of processing and memory re-
sources (it was using 10 ANN’s per bike instead of only 1),

Fig. 4. One large hill in track O.

and still did not prove to give good results. Two techniques,
investigated here to improve ANN’s training, have proved
to give good results; one is boosting, the other one is GA
with alternative crossover methods and a population made of
mutated already trained ANN’s. With evolutionary algorithm,
the artificial intelligence can adapt to new track and improve
lap times with time; possibly it can eventually perform
better than a good human player. Performance so far is
nearly as good as that of a good human player. Future work
may include optimising the techniques, or investigating new
techniques, to reduce training and adaptation time.

REFERENCES

[1] B. Chaperot and C. Fyfe, “Motocross and artificial neural networks,”
in Game Design And Technology Workshop 2005, 2005.

[2] S. Haykin, Neural Networks- A Comprehensive Foundation. Macmil-
lan, 1994.

[3] M. Buckland, “http://www.ai-junkie.com/,” Tech. Rep., 2005.
[4] Various, “http://research.microsoft.com/mlp/forza/,” Microsoft, Tech.

Rep., 2005.
[5] L. Breimen, “Bagging predictors,” Machine Learning, no. 24, pp. 123–

140, 1996.
[6] J. Friedman, T. Hastie, and R. Tibshirani, “Additive logistic regression:

a statistical view of boosting,” Statistics Dept, Stanford University,
Tech. Rep., 1998.

[7] C. Fyfe, “Local vs global models in pong,” in International Conference
on Artificial Neural Networks, ICANN2005, 2005.

[8] L. Breimen, “Using adaptive bagging to debias regressions,” Statistics
Dept, University of California, Berkeley, Tech. Rep. 547, February
1999.

[9] ——, “Arcing the edge,” Statistics Dept, University of California,
Berkeley, Tech. Rep. 486, June 1997.

[10] T. Heskes, “Balancing between bagging and bumping,” in Neural
Information Processing Sytems, NIPS7, 1997.

[11] V. Vapnik, The nature of statistical learning theory. New York:
Springer Verlag, 1995.

[12] D. E. Goldberg, Genetic Algorithms in Search, Optimization, and
Machine Learning. Addison-Wesley Professional, 1989.

[13] I. Rechenberg, “Evolutionsstrategie,” University of Stuttgart, Tech.
Rep., 1994.

1-4244-0464-9/06/$20.00 2006 IEEE. 186 CIG'06 (May 22-24 2006)

Monte-Carlo Go Reinforcement Learning Experiments
Bruno Bouzy

Université René Descartes
UFR de mathématiques et d’informatique

C.R.I.P.5
45, rue des Saints-Pères

75270 Paris Cedex 06, France
bouzy@math-info.univ-paris5.fr

Guillaume Chaslot
MICC/IKAT University of Maastricht

Faculty of General Sciences
Department of Computer Science

P.O. Box 616, 6200 MD Maastricht
The Netherlands

g.chaslot@cs.unimaas.nl

Abstract— This paper describes experiments using reinforce-
ment learning techniques to compute pattern urgencies used
during simulations performed in a Monte-Carlo Go archi-
tecture. Currently, Monte-Carlo is a popular technique for
computer Go. In a previous study, Monte-Carlo was associated
with domain-dependent knowledge in the Go-playing program
Indigo. In 2003, a 3x3 pattern database was built manually.
This paper explores the possibility of using reinforcement
learning to automatically tune the 3x3 pattern urgencies. On
9x9 boards, within the Monte-Carlo architecture of Indigo, the
result obtained by our automatic learning experiments is better
than the manual method by a 3-point margin on average, which
is satisfactory. Although the current results are promising on
19x19 boards, obtaining strictly positive results with such a
large size remains to be done.

Keywords: Computer Go, Monte-Carlo, Reinforcement
Learning

I. INTRODUCTION

This paper presents a study using Reinforcement Learning
(RL) to automatically compute urgencies of moves played
within random games in a Monte-Carlo (MC) Go framework.
This study has three important features. First, although based
on the RL theory [1], [2], [3], [4], it is mainly empirical: it is
made up of three experiments, each of them being performed
in the light brought by the previous one. Second, the last
experiment presented here still broadened our understanding
of the problem. Consequently, this work is not completed:
the results achieved are promising but still below our initial
ambitions. Third, this work is based on a particular archi-
tecture: the MC Go architecture of our Go playing program
Indigo [5]: the performed experiments aim at improving the
playing level of this program. Nevertheless, based on these
three features, the goal of this paper is to show how RL
contributes to the improvement of a MC Go playing program.

To this end, setting up the background of this work is
necessary: section II briefly presents the state of the art of
computer Go, and the point reached by Indigo project, then
section III presents the MC Go architecture which can be
either pure or extended with domain-dependent knowledge.
Then, section IV presents the core of this study: the au-
tomatic computing of this domain-dependent knowledge. It
underlines the experimental vocabulary used by section V
that describes the experiments. Finally, section VI sums up
the results and describes the future work.

II. BACKGROUND

A. Computer games
Computer games have witnessed the enhancements done

in AI for the past decade [6], and future improvements are
bound to go on in the next decade [7]. For instance, in 1994,
Chinook beat Marion Tinsley, the Checkers world champion
[8], and Logistello beat the Othello world champion. In
1997, Deep Blue [9] beat Garry Kasparov, the Chess world
champion. In 2006, solving Checkers is nearly achieved [10].
In Othello, Logistello’s playing level is clearly supra-human
[11]. In Chess, the best programs rank on a par with the best
human players. Moreover, the combinatorial complexity of a
game can be estimated with the game tree size that, in turn,
can be estimated by BL, where B is the average branching
factor of the game, and L is the average game length. Table I
provides the values of BL for these games, and for Go.

Game Checkers Othello Chess Go
B

L 1032 1058 10123 10360

TABLE I
B

L ESTIMATION.

By observing that the best Go programs are ranked
medium on the human scale, at least far below the level
of the best human players, a correlation between the size
of the game tree and the playing level of the best programs
on the human scale can be noticed. The game tree search
paradigm accounts for this correlation. A classical game-tree-
based playing program uses a tree-search and an evaluation
function. On current computers, this approach works well
for Checkers, Othello, and Chess. In these games, the search
is sufficiently deep, and the evaluation function easily com-
puted to yield a good result. On the contrary, the Go tree is
too huge to yield a good result. Furthermore, the evaluation
function on non-terminal positions is not well-known, and
position evaluations are often very slow to compute on
nowadays’ computers.

B. Computer Go
Since 1990, an important effort has been made in computer

Go. The main obstacle remains to find out a good evaluation
function [12]. Given the distributed nature of this game,

1-4244-0464-9/06/$20.00 2006 IEEE. 187 CIG'06 (May 22-24 2006)

it was natural to study the breakdown of a position into
sub-parts, and to perform local tree searches using intensive
pattern-matching and knowledge bases [13], [14]. The best
programs are sold on the market: Many Faces of Go [15],
Goemate, Handtalk, Go++ [16], Haruka, KCC Igo. Conse-
quently, the sources of these programs are not available.
In 2002, GNU Go [17], an open source program, became
almost as strong as these programs. Since then, this program
has been used as an example to launch new computer Go
projects. Various academic programs exists : Go Intellect,
Indigo, NeuroGo [18], Explorer [19], GoLois [20], Magog.
Some aspects of these programs are described in scientific
papers: [21] for Go Intellect, [22] for NeuroGo, [23] for
Explorer, [24] for Golois, and [25] for Magog.

C. Indigo project
The Indigo project was launched in 1991 as a PhD

research. Indigo is a Go playing program which has regularly
attended international competitions since 1998. Its main
results are listed below.

• 9th KGS, 19x19, Dec 2005 (Formal: 3rd/7, Open: 1st/9)
• 8th KGS, 9x9, Formal, Nov 2005 (4th/11)
• 7th KGS, 19x19, Open, Oct 2005 (2th/7)
• 2005 WCGC, Tainan, Taiwan, Sept 2005 (6th/7)
• 10th CO, Taipei, Sept 2005 (19x19: 4th/7, 9x9: 3rd/9)
• 9th CO, Ramat-Gan, Jul 2004 (19x19: 3rd/5, 9x9: 4th/9)
• 8th CO, Graz, Nov 2003 (19x19: 5th/11, 9x9: 4th/10)
• Comp. Go Festival, Guyang, China, Oct 2002 (6th/10)
• 21st Century Cup, 2002, Edmonton, Canada (10th/14)
• Mind Sport Olymp. 2000, London, England (5th/6)
• Ing Cup 1999 Shanghai, China (13th/16)
• Ing Cup 1998 London, England (10th/17)
Participating in these events has allowed Indigo to be as-

sessed against various opponents, which brings about keeping
good and efficient methods, and eliminating bad or inefficient
ones. Until 2002, Indigo was a classical Go program: it
used the breakdown approach, and local tree searches with a
large knowledge base. The results improved in 2003, which
corresponds to the integration of MC techniques into Indigo.
The historical vision of the Indigo development shows the
relevance of the MC approach in computer Go. However, the
effect of the knowledge approach must not be overlooked.
Without knowledge, Indigo would be less strong than it is.

III. MONTE-CARLO GO

This section presents the MC technique [26] for computer
games, then MC Go as such, without specific knowledge,
lastly MC Go associated with specific knowledge.

A. Monte-Carlo games
Monte-Carlo is appropriate for games containing random-

ness, for example for Backgammon in which the players
throw dice. In Backgammon, although the best program used
tree search instead simulations during its games, simulations
are used after the games or at learning time [27] to find out
new policies. MC is also adapted to games including hidden
information such as Poker or Scrabble. Poki, one of the best

Poker programs [28], and Maven, the best Scrabble program
[29], perform simulations during their games in order to rep-
resent hidden information. For complete information games,
simulations can be appropriate as well. Abramson proposed
a Monte-Carlo model for such games [30]. To obtain the
evaluation of a given position, the basic idea consists in
launching a given number N of random games starting on
this position, scoring the terminal positions, and averaging
all the scores. To choose a move on a given position, the
corresponding idea is the greedy algorithm at depth one. For
each move on the given position, launch a given number N of
random games starting on this position, score the terminal po-
sitions, and average all the scores, and finally play the move
with the best mean. The obvious upside of MC is its low
complexity when B and L are high: O(BL) for tree search,
and O(NBL) for Monte-Carlo. For complete information
games, when the tree is too large for a successful tree search,
simulations allow the program to sample tree sequences
that reach terminal positions meaningful for evaluating the
given position. By averaging the scores, evaluations on non-
terminal positions are robust, which is hard to obtain with
classical evalution functions based on knowledge extracted
from human expertise.

B. Basic Monte-Carlo Go
In the early 1990’s, the general MC model by Abramson

was used on games with low complexity such as 6x6 Othello.
However, in 1993, Bernd Brügmann succeeded in devel-
opping the first 9x9 MC Go program, Gobble [31]. More
precisely, Gobble was based on simulated annealing [32].
In addition, to make the program work on the computers
available at that time, Brügmann used a heuristic later
called the all-moves-as-first heuristic [33]. Theoretically, this
heuristic enables the process to divide the response time by
the size of the board. In practice on 9x9, it enables the
program to divide the response time by a few dozens, which
is a huge speed-up, and worth considering. After a random
game with a score, instead of updating the mean of the first
move of the random game, the all-moves-as-first heuristic
updates with the score the means of all moves played first
on their intersections with the same color as the first move.
Symmetrically, the all-moves-as-first heuristic updates with
the opposite score the means of all moves played first on their
intersections with a different color from the first move. All in
all, this heuristic updates the mean of almost all the moves as
if they were played first in the random game. Unfortunately,
this heuristic is not completely correct because it may update
with the same score two moves that have different effects
depending on when they are played: before or after a capture
(capture being the basic concept in Go). However, this Go-
specific heuristic had to be mentioned.

Since 2002, the MC approach has gained popularity in
the computer Go community, which can be explained bythe
speed of current computers. The standard deviation of ran-
dom games played on 9x9 boards is roughly 35. If we look
for a one-point precision evaluation, 1,000 games give 68%
of statistical confidence, and 4,000 games 95%. Given that

1-4244-0464-9/06/$20.00 2006 IEEE. 188 CIG'06 (May 22-24 2006)

10,000 9x9 random games are possible to complete on a
2 GHz computer, then from 2 up to 5 MC evaluations per
second with a sufficient statistical confidence are possible,
and the method actually works in a reasonable time.

Several strategies exist to speed up the MC process. One
of them is progressive pruning [28], [33]. For each move, the
process updates not only the mean of a move but also the
confidence interval around the mean. As soon as the superior
value of the confidence interval of a move is situated below
the inferior value of the confidence interval of the current
best move, the move is pruned. This reduces the response
time significantly. However, this technique is not optimal.
Figure 1 shows how progressive pruning works while time
is running. Another simple strategy to select the first move
of a game consists in choosing the move that has the highest
confidence interval superior value [34]. This move is the most
promising. By updating its mean and its confidence interval,
the confidence interval superior value is generally lowered.
This move can either be confirmed as the best move or
replaced by another promising move. Hence, the best moves
are often updated, and moves are not updated as soon as they
are estimated as not promising. Moreover, the bad moves are
never definitely eliminated from the process.

1

2

3 4

Fig. 1. Progressive pruning: the root is expanded (1). Random games start
on children (2). After several random games, some moves are pruned (3).
After other random games, one move is left, and the process stops (4).

In 2002, our experiments carried out with Bernard Helm-
stetter, a doctoral student under Tristan Cazenave’s supervi-
sion at Paris 8 University, showed that, on 9x9 boards, pure
MC programs ranked on a par with heavily knowledge based
programs such as Indigo2002 [35]. Given the architectural
difference between these programs, that result was amazing.
In fact, MC programs share many good properties. The
first good property is the increasing playing level in the
time used. The more random games, the better the precision
on the means. Nowadays, MC method starts to work for
a quantitative reason mentioned above. In the near future,
with ten times faster computers, the playing strength of
MC programs will increase significantly. For knowledge
based programs, the knowledge either exists or not whatever
the time calculations. For tree search based programs, the
timescale is of importance. Considering the ratio by which
the speed of computers is multiplied, a ratio of ten only
enables tree search programs to look ahead one ply further,
which will not improve their playing level significantly in
the next few years.

The second good property of MC approach is its robust-

ness of evaluation. Whatever the position, the MC evaluation,
far from being totally correct, provides a “good” value.
This property is not shared with human-expertise-extracted-
knowledge-based programs that can give wrong results on
positions where knowledge is erroneous or missing. Fur-
thermore, the variation between the MC evaluation of a
position and the MC evaluation of one of the child positions
is smooth, which is different in human-expertize-extracted-
knowledge-based evaluations.

The third good property of MC Go is its global view. The
MC approach does not break down the whole position into
sub-positions, which is a risky approach used in classical Go
programs. When breaking down a position into sub-positions,
the risk is to destroy the problem, and perform local tree
searches on irrelevant sub-problems. In such an approach,
even if the local tree searches are perfect, the global result
is bad as soon as the decomposition is badly performed. MC
avoids such risk because it does not break down the position
into parts. The move selected by MC is globally good in
most cases. Unfortunately, MC programs are tactically bad
because they generally perform global tree search at a very
shallow depth, even on small boards [36].

Lastly, a MC Go program is easy to develop. This feature
may appear unsignificant but it actually brought about the
birth of numerous MC programs over the last three years:
Vegos [37], DumbGo [38], Crazy Stone [39], Go81 [40],
and other programs.

C. Monte-Carlo Go with specific knowledge
In 2003, with both a pure MC program and a knowledge-

based program, the association between MC and knowledge
provided a tempting perspective. We associated Go knowl-
edge with MC in two different ways: the easy one, and the
hard one. The easy one consisted in pre-selecting moves
with knowledge, and the hard one consisted in inserting
little knowledge into the random games [41]. Indigo2002
was the perfect candidate to become the pre-selector: instead
of generating the best move, it was specified to generate the
Nselect best moves, that in turn were input of the MC module
as shown in Figure 2.

Nselect
moves

legal
moves

 chosen
move

Pre-selection
module

MC
module

Fig. 2. The two modules of Indigo2003: the pre-selection module selects
N

select
moves by the mean of lot of knowledge, and local tree searches,

additionnally yielding a conceptual evaluation of the position. Then, among
the N

select
moves, the MC module selects the move to play by the mean

of random simulations.

This simple addition shortened the response time and
enabled a MC program to play on 19x19. Moreover, the
move pre-selector performing local tree searches could prune
tactically bad moves.

The second way to associate specific knowledge and MC
is, by far, much more interesting because it introduces the
RL experiments described in this paper. Instead of using

1-4244-0464-9/06/$20.00 2006 IEEE. 189 CIG'06 (May 22-24 2006)

the uniform probability, it consists in using a non-uniform
probability for (pseudo-)random game move generation. This
approach results from the use of domain-dependent knowl-
edge. At this point, a few words have to be defined. While
the term pseudo-random refers to numbers actually generated
by computers, and while the term random refers to the
mathematical property of random variables, we use these
two terms, pseudo-random and random, in a slightly different
meaning: we call random the moves, or the numbers, gen-
erated by the rand() function of the computer (intended to
be generated with a probability as uniform as possible), and
we call pseudo-random, the moves generated by our domain-
dependent approach which uses a non-uniform probability.

The MC idea lies in performing a huge number of times
a simple random episode to deduce a complex behaviour. In
pure MC, the episode was a move sequence respecting the
rules of the game, and the complex behaviour, to some extent,
was a program playing on a par with Indigo2002. What is the
complex behaviour brought about by the episode composed
by a sequence of moves respecting the rules and following
some basic Go principles such as string capture-escape and
cut-connect ?

Concerning the string capture-escape concept, the urgency
of the move filling the last liberty of the one-liberty string is
linear in the string size. Concerning the cut-connect concept,
a pattern representation is adapted. In practice, the question
is to determine the adequate pattern size: large enough to
contain most concept instances, and small enough not to
slow down the random games. The cut-connect concept is not
well described by 2x2 patterns nor by the cross patterns (one
intersection plus its four neighbours), but it is described quite
well by 3x3 patterns (one intersection plus its 8 neighbours).
Larger patterns would give better results, but, concerning the
cut-connect concept, the most urgent patterns are the smallest
ones. Therefore, 3x3 is the proper size to enclose the cut-
connect concept. A 3x3 pattern has an empty intersection in
its center, and the 8 neighbouring intersections are arbitrary.
The urgency of a pattern corresponds to the urgency of
playing in its center when this pattern matches the position.

To decide stochastically which move to play during a
random game, each matched pattern and each one-liberty
string bring their urgency to a given intersection. For each
intersection, the urgency to play on it amounts to the sum
of the urgencies brought by patterns and strings. Then, the
probability of playing on a given intersection is linear in its
urgency. From now on, the episodes look like Go games, and
they keep their exploratory property. With a probability based
on domain-dependent knowledge, the means obtained are
more significant than the means using uniform probability.
We are now able to provide the features of a Pseudo-Random
(PR) player :

• 3x3 pattern urgency table
• 38 3x3 pattern (center is empty)
• 25 dispositions to the edge
• #patterns = 250,000
• one-liberty urgency

In the following, we call Zero the PR player that uses
a uniform probability. Zero has its urgencies set to zero. It
corresponds to the pure MC Go approach. We call Manual

the PR program based on domain-dependent concepts that
was built in 2003 by a translation of a small 3x3 pattern
database manually filled by a Go expert. We call MC(p) the
MC program that uses the architecture of Figure 2, and that
uses the PR program p in order to carry out its simulations.
In 2003, we made the match between MC(Manual) and
MC(Zero) on 9x9, 13x13 and 19x19 boards [41]. Table II
gives the results.

board size 9x9 13x13 19x19
mean +8 +40 +100

% wins 68% 93% 97%

TABLE II
RESULTS OF MC(Manual) VS MC(Zero) FOR THE USUAL BOARD

SIZES.

The results clearly show that using a domain-dependent
probability is superior to using a uniform probability. The
larger the board, the clearer the result. On 19x19 boards,
the difference equals 100 points on average, which is huge
by Go standards. At this stage, it is normal to look for
automatic methods and see whether they can do better than
MC(Manual). This leads us to the core elements of this
paper: how to use RL in an MC Go architecture.

IV. REINFORCEMENT LEARNING AND MONTE-CARLO
GO

The general goal is to automatically build a PR player p for
MC(p) as strong as possible. In this paper we explore the use
of RL deeply influenced by Richard Sutton’s work. Sutton is
the author of Temporal Difference (TD) method [3], and with
Barto co-author of a book describing the state of the art [1]
(also described by [2]). RL is also known for the success of
Q-learning [42]. RL often uses the Markov Decision Process
(MDP) formalism: an agent evolves in a non-deterministic
environment. He performs actions according to his own
policy. His actions make him change from state to state, and
result in returns. The aim of the agent is to maximize his
cumulated return in the long term. To this purpose, every
state has a value determined by the state value function V ,
and each action associated to a state has an action value
determined by the action value function Q. The learning
agent either updates action values and state values according
to his policy, or greedily improves his policy depending on
action values and/or state values. RL inherits from Dynamic
Programming (DP) [43] the updating rule for state values
and action values. But RL is different from DP because
sweeping of the state space is replaced by the experience of
the agent. In our work, if RL did not provide better results
than MC(Manual), we would plan to use Evolutionary
Computation (EC) principles [44] in a following stage.

Before the RL experiments, the PR player is Manual.
It uses 3x3 patterns manually built by an expert and by

1-4244-0464-9/06/$20.00 2006 IEEE. 190 CIG'06 (May 22-24 2006)

means of an automatic translation from a database to a
table. The expert was not be able to build a larger database
easily containing larger patterns and adequate urgencies. If
we wish to enlarge this knowledge, we must use an automatic
method. The playing level of MC(Manual) is quite good,
and it is not easy to find p such as MC(p) be better than
MC(Manual). But if we succeed with 3x3 patterns, we will
be certain that the automatic method produces better results
that the manual method on larger patterns, even if the expert
manually tunes the large database.

Subsequently, we can say that p1 is better than p2 at
the low level, or random level, when p1 beats p2 by a
positive score on average after a sufficient number of games.
We can say that p1 is better than p2 at the high level, or
MC level, when MC(p1) beat MC(p2) by a positive score
on average after a sufficient number of games. We aim at
seeing the PR players improving at the MC level, and not
necessarily at the low level. Improving a PR player at the
low level can be a red herring. For instance, a PR player
p that is quite good (because he beats Zero at the low
level by a given score) can be improved at the low level
only by making him less exploratory. This determinisation
results in a better score for the PR player p against Zero

but, his exploratory capacity being low, MC(p) may be
weak, and even be beaten by MC(Zero). When considering
the balance between exploration and exploitation [1], we
may draw Figure 3 showing the programs on a randomness
dimension. On the left, there are deterministic and greedy
programs, then, on their right, ε-greedy programs that play
randomly in an ε proportion, and that play deterministically
in a 1−ε proportion. On the right of Figure 3, there is Zero,
the random program based on the uniform probability, and on
its left the PR programs used in our MC architecture. Those
programs are constrained to keep their exploratory capacity
and to stay on the right of the figure.

Deterministic

Greedy

Exploitation

 �-greedy

low
temperatures

Pseudo-
random

RLPR
Manual

high
temperatures

Random

 Zero

Exploration

Fig. 3. The randomness dimension: the completely deterministic programs
are situated on the left. Zero is situated on the right. On the left of Zero,
there are the PR programs and Manual. On the right of deterministic
programs, there are ε-greedy programs [1]. The temperature indicates a
randomisation degree: 0 for deterministic programs, and infinite for Zero,
the uniform probability player.

In the following, we call RLPR, a PR player whose table
is built with RL techniques. We may perform experiments at
the low level, or at the MC level. The upside of the low
level is the high speed of games. Its downside is to favour
exploitation against exploration. Despite of its slowness, MC
level remains in keeping with our aim..

V. EXPERIMENTS

This section describes two experiments: one experiment
(experiment 1a) performed at the low level, with one pro-
gram. This experiment uncovers the obstacle of determini-
sation during learning. Experiment 1b attempts to solve this
obstacle by replacing the sole program by a population of
programs. Experiment 2 is performed at the MC level with
one single player, and explicitly manages the obstacle of
determinisation.

A. Experiment 1: low level, one program or a population of
programs

This subsection describes an experiment made at the low
level, with one program in self-play or with a population
of programs. The result of a game is either its outcome
(+1 for a win and −1 for loss) or a score. This subsection
assumes that the result used is the outcome. A pattern has an
associated action: playing the advised move when the pattern
is matching. A pattern has an action value Q that is the mean
of the games’ results when the pattern has been matched and
played. Q belongs to]−1, +1[. In our experiment, a pattern
has an urgency U linked to Q by:

U =
(

1+Q

1−Q

)

k

During a pseudo-random game, the probability of playing
a move advised by a pattern is linear in U . k is a parameter
corresponding to the determinisation degree of the program.
When k = 0, then U = 1 for every patterns, and the
probability of playing a move is uniform. When k is high,
the highest urgency dominates all the other urgencies and the
program is almost deterministic. The nth update of Q for a
pattern is given by:

Qn = Qn−1 + α(R − Qn−1)
R is the result of the random game, and α = 1/(1 + n).

Thus, Qn converges to the mean value of the results of the
random games.

More precisely, two tables are used: one for playing, one
for learning. This is an off-line learning. After a block of
games, the values of the learnt table Qlearn update the values
of the table used for playing Qplay by:

Qplay = Qplay + λbQlearn

λ is a parameter set in]0, 1[. Its actual value is set by the
experiments. b is the number of the block. In the updating
formula, the addition is used to keep track of good patterns.
During the first block of games, all Qplay values equal
zero, and the games follow a uniform probability. At the
end of the first block of games, a good pattern has a high
Qlearn value because it generates good moves among a set
of games played badly. This value corresponds to the mean
value of results of games given that the policy follows the
uniform probability. Qlearn is copied into Qplay to be used
for playing in the next block of games. A good pattern
quickly increases its Qplay value. At the end of a block of
games, Qlearn corresponds to the mean value of results of
games given that the policy uses the Qplay table. Because λ

is strictly inferior to 1, Qplay converges to a limit when b

increases.

1-4244-0464-9/06/$20.00 2006 IEEE. 191 CIG'06 (May 22-24 2006)

1) Experiment 1a: one unique learning program: This
first experiment contains results on 9x9 boards only :

• RLPR >> Zero

• RLPR < Manual

• MC(RLPR) << MC(Manual)

RLPR >> Zero shows a learning at the low level.
This is the minimal result expected. However, RLPR <

Manual shows that learning is not completely satisfactory.
MC(RLPR) << MC(Manual) lets us think that RLPR

is too deterministic. As soon as the learner has learnt Q
values for relevant patterns, instead of learning new Q
values for new patterns, the learner prefers to increase the
existing Q values. This results in a player becoming too
deterministic to be used as a basis of the MC player. We call
this phenomenon determinisation. Experiment 2 will show a
different update rule that avoids determinisation in self-play.
However, experiment 1b will use the same update rule as
experiment 1a but it will prevent determinisation by using a
population of learners.

We may comment upon the off-line learning used in this
experiment. λ is strictly inferior to 1 to garantee convergence
of Qplay. However, in practice, we set λ = 1 because we
observed that, for good patterns, Qlearn converges to 0.
Furthermore, we observed that, even though λ = 1, Qplay

practically stays in] − 1, +1[. We do not have theoretical
proof of this phenomenon, but we may provide an intuitive
explanation: when b is sufficiently high, at the end of a block
of games, Qlearn corresponds to the mean value of results
of games given that the policy is good as well. Thus, when
a good pattern is chosen during a game using a good policy,
this is not a surprise, and the mean value of results of games
given that this good pattern is chosen, roughly equals zero.
Finally, with this comment, we observe that what happens in
the first block of random games is crucial to the actual final
value of Qplay . Launching several executions of the process
leads to players that roughly share the same playing level
but may have quite different tables. Using a population of
learners intends to lower the importance of the first block of
games.

2) Experiment 1b: a population of learning programs: To
avoid determinisation of a program, and inspired by the rule:
“when RL does not work, try EC principles”, we performed
an experiment similar to experiment 1a by replacing one
RLPR program by a population of RLPR programs. The
size of the population is N = 64. The underlying idea
is that each individual program learns in its own manner
(increases Q values of specific patterns only). If a program
learns by determinisation, he cannot survive the next gen-
eration against other programs having learnt differently. A
generation includes three phases: reinforcement learning, test
and selection. During the reinforcement learning phase, the
RLPR programs play against each other while learning with
the update rule of experiment 1a. Then, for each learner, the
learnt table is added into the playing table. During the test
phase, the RLPR programs play against fixed opponents
(Zero and Manual) without learning. This phase yields a

ranking. The selection phase follows the code below:

Delete the N/2 worst RLPR players
For (D=N/4; D>0; D=D/2)
copy the best D RLPR players

Add Zero player

(The best RLPR program of the generation is copied
five times). This experiment does not use other classical
EC concepts: mutation or cross-over. We obtained results on
19x19:

• Starting population = Zero

– RLPR = Zero + 180
– RLPR = Manual − 50
– MC(RLPR) << MC(Manual)

• Starting population = Manual

– RLPR = Zero + 180
– RLPR = Manual + 50
– MC(RLPR) = MC(Manual)− 20

With a population of programs, learning is possible on
19x19, which was not possible with one unique program.
In the whole set of programs, some of them learn with-
out determinisation, which is right. The convergence de-
pends on the starting program. When starting with Zero,
the population goes toward a local maximum (RLPR =
Manual − 50) inferior to the maximum reached when
starting from Manual (RLPR = Manual + 50). Besides,
MC(RLPR) = MC(Manual)− 20 is a better result than
MC(RLPR) << MC(Manual) obtained in the previous
experiment. In this perspective, this result is good (20 points
can be considered as a reasonable difference on 19x19).
However, the two results MC(RLPR) = MC(Manual)−
20 and RLPR = Manual+50 underlines that learning still
corresponds to determinisation.

Our conclusion on experiment 1 is that, at the low level,
the RLPR programs have a tendency to determinisation that
hides true learning. Replacing one program by a population
lowers the determinisation problem without removing it
completely. Therefore, in the following experiment, we leave
the low level to perform games at the MC level, even if this
costs computing time.

B. Experiment 2: relative difference at MC level
In this experiment, a MC(RLPR) player plays against

itself again. There is no population. We need a mechanism
that prevents determinisation of experiment 1a. Therefore,
the update rule of experiment 2 is different from the update
rule of experiment 1a. Instead of updating pattern urgencies
one by one, our idea is to consider pairs of patterns, and a
relative differences between variables associated to the pairs
of patterns. Thus, the player uses a relative difference formula
to learn. a and b being two patterns with two MC evaluations,
Va and Vb, and two urgencies, ua and ub, on average we aim
at:

exp(C(Va − Vb)) = ua/ub

This is the basic formula underlying this experiment. It
establishes a correlation between a difference of evaluations

1-4244-0464-9/06/$20.00 2006 IEEE. 192 CIG'06 (May 22-24 2006)

on average, and a ratio between the two urgencies that we
seek. This way, the over-determinisation of pattern urgencies
should not occur. For pattern i, we define Qi :

Qi = log(ui)
Thus, for two patterns a and b, we look for:
Qa − Qb = C(Va − Vb)
C is assumed to be constant. On a given position with a

and b matching, the observed relative difference is actually:
delta = Qa − Qb − C(Va − Vb)
The updating rules are:
Qa = Qa − αdelta

Qb = Qb + αdelta

When comparing two patterns, a et b, these rules update
the ratio ua/ub according to delta avoiding exagerated
determinisation. We performed learning on 9x9. We have
used a small number of random games to compute Va and
Vb: 20 random games only. C = 0.7, 0.8, 0.9, 1.0 were rather
good values. If Ni is the number of times that pattern i

matches, we set α proportional to the inverse of
√

N
i
. We

have tested our 9x9 learner on 9x9 and 19x19 boards.
• on 9x9:

– MC(RLPR) = MC(Manual) + 3

• on 19x19:
– MC(RLPR) = MC(Manual)− 30

An investigation on aspects in which MC(RLPR) plays
different, better or worse than MC(Manual) player can be
performed along the way of playing or along the achieved
result. Concerning the achieved result, and assessing on
19x19 boards a MC(RLPR) player that learnt on 9x9
boards, the achieved result (-30) is similar to the result of
experiment 1b (-20). In other terms, the results obtained
on 19x19 are promising. On 19x19, the results could have
been better if we performed learning on 19x19 as well,
but we did not have enough time to do it. Additionally,
MC(RLPR) = MC(Manual) + 3 shows that the method
works better on 9x9 at the MC level than the manual method
(this result was what we aimed at). The determinisation
problem seems to be solved partially. The way we used
relative difference looks like advantage updating [45]. We
may hardly investigate on the way of playing, and on the
style of MC(RLPR) against MC(Manual), because both
programs share the same design, and their playing style
is almost identical. However, we may give some remarks
concerning the inside of the urgency tables. Because the
patterns used by Manual were created by a human expert,
the patterns always correspond to go concepts such as cut and
connect. Thus, the urgency table of Manual contains non-
zero-and-very-high values very sparsely, and the intersection
urgency computing process is optimized to this respect. A
drawback of RLPR players, is that the urgency table is
almost completely filled with non-zero values with a smooth
continuum of values. The intersection urgency computing
process during random games cannot be optimized in this
respect, which slows down RLPR players. Thus, to be
efficiently used, the tables of RLPR players should be
adequately post-processed after learning.

VI. CONCLUSION

This paper has presented the Monte-Carlo Go architecture
using domain-dependent knowledge, and has described RL
experiments to enhance 3x3 pattern urgencies used during
simulations. In experiment 1a, we identified the determin-
isation obstacle that negated a good learning. Experiment
1b, a copy of experiment 1a at the low level and replacing
one RL learner by a population of RL learners, avoided
determinisation. Experiment 2 using relative difference and
using Q values instead of raw urgencies, explicitly managed
the determinisation. Consequently, experiment 2 worked well
at the MC level with one learner only, instead of a population
of learners. Quantitatively, the results obtained by experiment
1b and 2 are very promising: after learning on 9x9, the
automatic method is 3 points better than the manual method.
On 19x19, the automatic method is (only) 20 points below
the manual method. But in experiment 2, learning was
performed on 9x9 and tested on 19x19. Thus, the perspective
is to perform learning of experiment 2 on 19x19 and test
on 19x19. Nevertheless, the results of the automatic method
must be reinforced to be certain that the automatic method
is really better than the manual one for 3x3 patterns. With
such certainty, we may replace 3x3 patterns by larger patterns
that a Go expert would have too difficulties to qualify with
adequate urgencies, whereas the automatic method would
easily tackle them.

Discussing ideas linked to EC might be enlightening.
Experiments has been carried out on Go with EC [46]. The
size of the board, although small in these experiments played
a key role: a preliminary learning on a small board speeds up
the following learning performed on a larger board. In our
work, learning urgencies of 3x3 patterns on 9x9 boards yields
a playing level well-tuned for 9x9 boards, but less adapted
to 19x19 boards. To play well on 19x19 boards, learning on
19x19 boards is advisable. However, it is possible to play
or learn on 19x19 boards with a player that learnt on 9x9
boards.

Besides, in experiment 1b, we observed that the result
depended on the initial conditions, and the optimum reached
was only local. This experimental result confirmed the the-
oretical result known on partially observable MDP [47].

Within the current debate between RL and EC, RL alone
seems to be able to tackle our problem almost entirely
(experiment 2). But, instead of using one unique RL learner,
using a population of learners and a selection mechanism
without mutation or cross-over (experiment 1b) unwound
the situation (experiment 1a). In this view, experiment 1
demonstrates the success of the cooperation of principles
borrowed from both sides, RL and EC. The training method
can be viewed as a memetic algorithm in which randomness
replaces the role of genetic variation. Furthermore, this
conclusion enriches previous results concerning the RL-vs-
EC debate using Go as a testbed [48].

Lastly, if we have a closer look at the results on 19x19
boards, how to account for the slightly worse results obtained
by the automatic method compared to the manual method ?

1-4244-0464-9/06/$20.00 2006 IEEE. 193 CIG'06 (May 22-24 2006)

The MC environment may be too exploratory, and the deter-
minisation is actually too tempting and easy a solution for
RL learners whose goal is to learn by winning. Giving up the
MC environment for a while, performing classical Q-learning
experiments [42], [49] on ε-greedy programs might constitute
the first steps to the solution: the ε-greedy programs being
almost deterministic (see Figure 3), determinisation might be
minimized. Then, randomizing such programs, and testing
them within the MC environment would be the final steps.

VII. AKNOWLEDGEMENTS

This work was started in 2004 by Bruno Bouzy, and was
continued during spring 2005 by Guillaume Chaslot for his
last year placement at Ecole Centrale de Lille, in cooperation
with Rémi Coulom we warmly thank for the discussions and
the clever ideas he suggested.

REFERENCES

[1] R. Sutton and A. Barto, Reinforcement Learning: an introduction,
T. Dietterich, Ed. MIT Press, 1998.

[2] L. P. Kaelbling, M. Littman, and A. Moore, “Reinforcement
learning: A survey,” Journal of Artificial Intelligence
Research, vol. 4, pp. 237–285, 1996. [Online]. Available:
citeseer.ist.psu.edu/kaelbling96reinforcement.html

[3] R. Sutton, “Learning to predict by the method of temporal differences,”
Machine Learning, vol. 3, pp. 9–44, 1988.

[4] C. Watkins, “Learning from delayed rewards,” Ph.D. dissertation,
Cambridge University, 1989.

[5] B. Bouzy, “Indigo home page,” www.math-info.univ-
paris5.fr/∼bouzy/INDIGO.html, 2005.

[6] J. Schaeffer and J. van den Herik, “Games, Computers, and Artificial
Intelligence,” Artificial Intelligence, vol. 134, pp. 1–7, 2002.

[7] H. van den Herik, J. Uiterwijk, and J. van Rijswijck, “Games solved:
Now and in the future,” Artificial Intelligence, vol. 134, pp. 277–311,
2002.

[8] J. Schaeffer, One Jump Ahead: Clallenging Human Supremacy in
Checkers. Springer-Verlag, 1997.

[9] M. Campbell, A. Hoane, and F.-H. Hsu, “Deep blue,” Artificial
Intelligence, vol. 134, pp. 57–83, 2002.

[10] J. Schaeffer, Y. Björnsson, N. Burch, A. Kishimoto, M. Müller,
R. Lake, P. Lu, and S. Sutphen, “Solving checkers,” in IJCAI, 2005,
pp. 292–297.

[11] M. Buro, “Improving heuristic mini-max search by supervised learn-
ing,” Artificial Intelligence Journal, vol. 134, pp. 85–99, 2002.

[12] M. Müller, “Position evaluation in computer go,” ICGA Journal,
vol. 25, no. 4, pp. 219–228, December 2002.

[13] ——, “Computer go,” Artificial Intelligence, vol. 134, pp. 145–179,
2002.

[14] B. Bouzy and T. Cazenave, “Computer go: an AI oriented survey,”
Artificial Intelligence, vol. 132, pp. 39–103, 2001.

[15] D. Fotland, “The many faces of go,” www.smart-
games.com/manyfaces.html.

[16] M. Reiss, “Go++,” www.goplusplus.com/.
[17] D. Bump, “Gnugo home page,”

www.gnu.org/software/gnugo/devel.html, 2006.
[18] M. Enzenberger, “Neurogo,” www.markus-

enzenberger.de/neurogo.html.
[19] M. Müller, “Explorer,” web.cs.ualberta.ca/∼mmueller/cgo/explorer.html,

2005.
[20] T. Cazenave, “Golois,” www.ai.univ-paris8.fr/∼cazenave/Golois.html.
[21] K. Chen, “Some practical techniques for global search in go,” ICGA

Journal, vol. 23, no. 2, pp. 67–74, 2000.
[22] M. Enzenberger, “Evaluation in go by a neural network using soft

segmentation,” in 10th Advances in Computer Games, E. A. H. H. Jaap
van den Herik, Hiroyuki Iida, Ed. Graz: Kluwer Academic Publishers,
2003, pp. 97–108.

[23] M. Müller, “Decomposition search: A combinatorial games approach
to game tree search, with applications to solving go endgame,” in
IJCAI, 1999, pp. 578–583.

[24] T. Cazenave, “Abstract proof search,” in Computers and Games, ser.
Lecture Notes in Computer Science, I. F. T. Marsland, Ed., no. 2063.
Springer, 2000, pp. 39–54.

[25] E. van der Werf, J. Uiterwijk, and J. van den Herik, “Learning to score
final positions in the game of go,” in Advances in Computer Games,
Many Games, Many Challenges, H. J. van den Herik, H. Iida, and
E. A. Heinz, Eds., vol. 10. Kluwer Academic Publishers, 2003, pp.
143–158.

[26] Fishman, Monte-Carlo : Concepts, Algorithms, Applications.
Springer, 1996.

[27] G. Tesauro and G. Galperin, “On-line policy improvement using Monte
Carlo search,” in Advances in Neural Information Processing Systems.
Cambridge MA: MIT Press, 1996, pp. 1068–1074.

[28] D. Billings, A. Davidson, J. Schaeffer, and D. Szafron, “The challenge
of poker,” Artificial Intelligence, vol. 134, pp. 201–240, 2002.

[29] B. Sheppard, “World-championship-caliber scrabble,” Artificial Intel-
ligence, vol. 134, pp. 241–275, 2002.

[30] B. Abramson, “Expected-outcome : a general model of static evalua-
tion,” IEEE Transactions on PAMI, vol. 12, pp. 182–193, 1990.

[31] B. Brügmann, “Monte Carlo go,” 1993,
www.joy.ne.jp/welcome/igs/Go/computer/mcgo.tex.Z.

[32] S. Kirkpatrick, C. Gelatt, and M. Vecchi, “Optimization by simulated
annealing,” Science, May 1983.

[33] B. Bouzy and B. Helmstetter, “Monte Carlo go developments,” in
10th Advances in Computer Games, E. A. H. H. Jaap van den Herik,
Hiroyuki Iida, Ed. Graz: Kluwer Academic Publishers, 2003, pp.
159–174.

[34] L. P. Kaelbling, “Learning in embedded systems,” Ph.D. dissertation,
MIT, 1993.

[35] B. Bouzy, “The move decision process of Indigo,” International
Computer Game Association Journal, vol. 26, no. 1, pp. 14–27, March
2003.

[36] ——, “Associating shallow and selective global tree search with
Monte Carlo for 9x9 go,” in Computers and Games: 4th International
Conference, CG 2004, ser. Lecture Notes in Computer Science, N. N.
J. van den Herik, Y. Björnsson, Ed., vol. 3846 / 2006. Ramat-Gan,
Israel: Springer Verlag, July 2004, pp. 67–80.

[37] P. Kaminski, “Vegos home page,” www.ideanest.com/vegos/, 2003.
[38] J. Hamlen, “Seven year itch,” ICGA Journal, vol. 27, no. 4, pp. 255–

258, 2004.
[39] R. Coulom, “Efficient selectivity and back-up operators in monte-

carlo tree search,” in Computers and Games, Torino, Italy, 2006, paper
currently submitted.

[40] T. Raiko, “The go-playing program called go81,” in Finnish Artificial
Intelligence Conference, Helsinki, Finland, September 2004, pp. 197–
206.

[41] B. Bouzy, “Associating knowledge and Monte Carlo approaches within
a go program,” Information Sciences, vol. 175, no. 4, pp. 247–257,
November 2005.

[42] C. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, pp.
279–292, 1992.

[43] D. P. Bertsekas, Dynamic Programming and Optimal Control. Athena
Scientific, 1995.

[44] D. Goldberg, Genetic Algorithms in Search, Optimization, and Ma-
chine Learning. Addison-Wesley Publishing Co, 1989.

[45] L. Baird, “Advantage updating,” 1993. [Online]. Available:
citeseer.ist.psu.edu/baird93advantage.html

[46] K. Stanley and R. Miikkulainen, “Evolving a roving eye for go,” in
Genetic and Evolutionary Computation Conference, New-York, 2004.

[47] T. Jaakkola, S. P. Singh, and M. I. Jordan, “Reinforcement
learning algorithm for partially observable Markov decision
problems,” in Advances in Neural Information Processing
Systems, G. Tesauro, D. Touretzky, and T. Leen, Eds., vol. 7.
The MIT Press, 1995, pp. 345–352. [Online]. Available:
citeseer.ist.psu.edu/jaakkola95reinforcement.html

[48] T. P. Runarsson and S. Lucas, “Co-evolution versus self-play temporal
difference learning for acquiring position evaluation in small-board
go,” IEEE Transactions on Evolutionary Computation, vol. 9, no. 6,
pp. 628–640, December 2005.

[49] M. L. Littman, “Markov games as a framework for multi-agent
reinforcement learning,” in Proceedings of the 11th International
Conference on Machine Learning (ML-94). New Brunswick,
NJ: Morgan Kaufmann, 1994, pp. 157–163. [Online]. Available:
citeseer.ist.psu.edu/littman94markov.html

1-4244-0464-9/06/$20.00 2006 IEEE. 194 CIG'06 (May 22-24 2006)

Poster Presentations

1-4244-0464-9/06/$20.00 2006 IEEE. 195 CIG'06 (May 22-24 2006)

1-4244-0464-9/06/$20.00 2006 IEEE. 196 CIG'06 (May 22-24 2006)

Optimal Strategies of the Iterated Prisoner’s Dilemma Problem for

Multiple Conflicting Objectives

Shashi Mittal
Dept. of Computer Science and Engineering
Indian Institute of Technology, Kanpur, India

mshashi@iitk.ac.in

Kalyanmoy Deb
Dept. of Mechanical Engineering

Indian Institute of Technology, Kanpur, India
deb@iitk.ac.in

Abstract— In this paper, we present a new paradigm of
searching optimal strategies in the game of Iterated Prisoner’s
Dilemma using multiple objective evolutionary algorithms. This
method is better than the existing approaches, because it not
only gives strategies which perform better in the iterated game,
but also gives a family of non-dominated strategies, which can
be analyzed to see what properties a strategy should have to
win in the game. We present the results obtained with this new
method, and also the common pattern emerging from the set of
non-dominated strategies so obtained.

Keywords: Games, Prisoner’s dilemma, Strategies, Evolu-
tionary algorithms

I. INTRODUCTION

The prisoner’s dilemma is a well known game that has been
extensively studied in economics, political science, machine
learning [1], [2] and evolutionary biology [3]. In this game,
there are two players, each of whom can make one of the two
moves available to them Cooperate (C) or Defect (D). Both
players choose their moves simultaneously and independent
to each other. Depending upon the moves chosen by either
player, each of them gets some payoff. The payoff matrix is
shown in Figure1.

Player 2

Defect

Cooperate R=3 R=3 S=0 T=5

T=5 S=0 P=1 P=1Defect

Decision Cooperate

P

l

a
y
e
r

1

R: REWARD S: SUCKER T: TEMPTATION P: PENALTY

Fig. 1. The classical choice for payoff in Prisoner’s Dilemma (Player 1’s
payoffs are given first).

When both players cooperate, they are awarded at an
equal but intermediate level (the reward, R). When only one
player defects, he receives the highest possible payoff (the
temptation, T) while the other player gets the sucker’s payoff
(the sucker, S). When both the players defect, they receive
and intermediate penalty (the penalty, P).

Several interesting properties of the game can be imme-
diately observed. It can be seen that this is a non-zero sum

game (that is, the sum of the payoffs of the two players is
not always a constant), and hence there is no single universal
strategy which will work for all game plays for a player. In a
one-shot game, both the players will choose to Defect (D,D),
because this move is guaranteed to maximize the payoff of the
player no matter what his opponent chooses. However, it can
be seen that both players would have been better off choosing
to cooperate with each other (hence the dilemma).

In game theory, the move (D,D) of the players is termed
as a Nash Equilibrium [4], which is a steady state of the
game in which no player has an incentive to shift from its
strategy. Nash [5] proved that any n-player game has a Nash
Equilibrium, when randomization in choosing the moves is
permitted. However, as it is clear from the prisoner’s dilemma
game, a Nash Equilibrium may not necessarily be the social
optimum.

The situation becomes more interesting when the play-
ers play this game iteratively (called the Iterated Prisoner’s
Dilemma or IPD) and the payoffs are accumulated over each
iteration. If both the players have no idea about the number of
iterations beforehand, then it is possible to have an equilibrium
which is better than (D,D). The equilibrium outcomes in
iterated games are defined by folk theorems [6]. For prisoner’s
dilemma, there are infinitely many equilibrium outcomes, in
particular it is possible to have an equilibrium outcome in
which both the players always cooperate.

Suppose that there are a number of players, and each player
players the iterated game with other players in a round robin
fashion, the scores being cumulated over all the games. The
winner of the game is the player with the maximum payoff at
the end of the round robin tournament. The problem that we
consider in this paper is to find optimal strategies which will
ensure victory in such a tournament. This has been a widely
studied problem by game theorists and artificial intelligence
experts alike. Axelrod was the first to study this problem
in detail [7], [1], [8]. He used single-objective evolutionary
algorithm for finding the optimal strategies. This is discussed
in section 2. Since Axelrod, there have been several studies
on this problem [9], [10], [11], [12], [13].

However, in all these studies, the problem of finding optimal
strategies has been viewed as a single-objective problem. That
is, the objective is to find strategies which maximize their own
score in a round robin tournament. In this paper, we present
a new approach of finding optimal strategies by considering

1-4244-0464-9/06/$20.00 2006 IEEE. 197 CIG'06 (May 22-24 2006)

the problem as a multiple objective optimization problem:
maximizing self-score and minimizing opponent score. Such
an approach has not been previously investigated in literature
before. We discuss this approach in detail in section 3, the
details of the simulations performed in section 4 and the results
obtained in section 5.

II. AXELROD’S STUDY

Axelrod organized two tournaments in the year 1985 and
invited strategies from a number of experts and game theo-
rists. To his surprise, he found that the winner in both the
tournaments was a very simple strategy, namely ‘Tit for Tat’.
This strategy cooperates on the first move, and then simply
copies the opponent’s last move in it’s subsequent move. That
such a simple strategy turned out to be the winner was quite
surprising, and Axelrod set out to find other simple strategies
with the same or greater power. Axelrod adopted a simple but
elegant way for encoding strategies [1], and then used single-
objective evolutionary algorithm to obtain optimal strategies.
The encoding scheme is described in detail here.

For each move in the game, there are four possibilities: both
the players can cooperate (CC or R for reward), the other
player can defect (CD or S for sucker), the first player can
defect (DC or T for temptation), or both the players can defect
(DD or P for penalty). To code the particular strategy, the
particular behavioral sequence is coded as a three letter string.
For example, RRR would represent the sequence where both
the players cooperated over the previous three moves and SSP

would represent the sequence where the first player was played
for a sucker twice, and then finally defected. This three letter
sequence is then used to generate a number between 0 and 63,
by interpreting it as a number in base 4. One such possible way
is to assign a digit value to each of the characters in following
way: CC = R = 0, DC = T = 1, CD = S = 2 and
DD = P = 3. In this way, RRR would decode to 0, and SSP

will decode to 43. Using this scheme, a particular strategy can
be defined as a 64-bit binary string of C’s (cooperate) and D’s
(defect) where the ith C or D corresponds to the ith behavioral
sequence. Figure 2 shows such an example GA string. For the
example string in the figure, the three-letter code comes to
be RTR for the previous moves (given in the figure). This
decodes to 4, thereby meaning that player 1 should play the
(4+1) or 5-th move specified in the first 64-bit GA string. In
this case, the fifth bit is C, meaning that the player 1 will
cooperate.

Since a particular move depends on the previous three
moves, so the first three moves in a game are undefined in
the above scheme. To account for these six bits (C’s and D’s,
initially assigned at random) are appended to the above 64 bit
string to specify a strategy’s premises, or assumption about the
pre-game behavior. Together, each of the 70 bit strings thus
represent a particular strategy, the first 64 for rules and the
next 6 for the premises.

Axelrod used the above encoding scheme to find optimal
strategies using a single-objective genetic algorithm. He found
that from a random start, the genetic algorithm discovered

(for initial move)

Say, previous three moves are:

Move 3

Move 2

Move 1
Player 1 Player2

C

C

CC

D

C
Code

R

T

R

CDDCC...........CDC CCDDCC

An example EA Solution:

64 positions 6 pos.

RTR=(010) = 4
4

Outcome: (C) or Cooperate

Player 1 chooses 5−th position

Fig. 2. Encoding a strategy for IPD.

strategies that not only performed quite well, but also beat the
overall performance of ‘Tit for Tat’ strategy, mentioned earlier.

In this work, the encoding scheme is the same as that
mentioned above. However, in addition to a single-objective
EA, we use a Multiple Objective Evolutionary Algorithm
(MOEA) to optimize the strategy. The two objectives cho-
sen are: (i) maximizing the self-score and (ii) minimizing
the opponent’s score. Here the opponent’s score means the
cumulative score the opponents scored when playing against
a particular strategy.

III. USING MULTIPLE OBJECTIVE EVOLUTIONARY
ALGORITHMS

Most studies of IPD considered a single-objective of max-
imizing a player’s own score. In this paper, for the first time,
we treat the problem as a bi-objective optimization problem
of maximizing the player’s own score and simultaneously
minimize opponent’s score.

A. Why multiple objective evolutionary algorithm?

The original formulation of the prisoner’s dilemma game
looks like a single-objective problem, that is, to find a strategy
which maximizes a player’s self-score. However, this problem
can also be looked as a multiple objective optimization prob-
lem. It is possible to win the game by not only maximizing the
self-score, but also by minimizing the opponent’s score. Since
the prisoner’s dilemma game is a non-zero sum game, it is
possible that there is a trade-off between these two objectives
(we will later show that this is actually the case), and therefore
using a multiple objective evolutionary algorithm may actually
give a better insight to the optimal strategies of playing the
game as compared to a single-objective formulation. This is
because using multiple conflicting objectives, not one but a
number of trade-off optimal solutions can be found. These
non-dominated trade-off solutions so obtained can then be
analyzed to look for any pattern or insights about optimal
strategies for the IPD. If any such patterns are discovered, they

1-4244-0464-9/06/$20.00 2006 IEEE. 198 CIG'06 (May 22-24 2006)

would provide a blue-print in formulating optimal strategies
for the game.

B. The NSGA-II algorithm

For multiple objective optimization, we use the NSGA-II
algorithm given by Deb et al. [14]. NSGA-II has been suc-
cessfully applied to many other multiple objective optimization
problems [15] as well.

IV. SIMULATIONS AND TEST CASES

Both single-objective EA and MOEA were used for getting
optimal strategies. The simulation for both the algorithms
followed these steps. In each generation, a certain number of
strategies were generated, and each strategy was made to play
against 16 other players. Each game consisted of 150 moves.
Then the strategies were sorted in the decreasing order of their
cumulative scores, and the next generation was created using
a recombination operator. The payoff matrix was the same as
shown in Figure 1. The details of 16 other players in the fray
have been given in the appendix. These strategies have been
used extensively in previous studies on IPD.

Clearly, in one particular game, a player can score a max-
imum of 750 (if he always defects, and the opponent always
cooperates), and a minimum of 0 (if he always cooperates,
while the opponent always cooperates). None of these two
extremes are achieved in practice. According to Dawkins [3],
a more useful measure of a strategy is how close it comes to
the benchmark score, which is the score a player will have if
both the players always cooperate. In this case, the benchmark
score is 450. For example if the score of a player, averaged
over all the players he played, is 400, then he has scored 89%
of the benchmark score. This is a more useful way of denoting
the score of a player, since it is independent of the particular
payoff matrix used, as well as the number of players against
which the player played. In all the results presented in the next
section, we will refer only to the average score of a player in
a game, or the score as a percentage of the benchmark score.

V. SIMULATION RESULTS

Now, we present and analyze the results obtained by NSGA-
II. Since solutions are represented using a bit-string, we
have used a single-point crossover operator and a bit-wise
mutation operator. In all simulations, we have used a crossover
probability of 1/70 and mutation probability of 1/140.

A. Results obtained using single-objective EA

The single-objective EA used is the same as used by
Axelrod [1]. Two runs of single-objective EA were done. One,
in which the self-score of the player was maximized, and the
other in which the opponent’s score was minimized. For each
of the runs, the population size was fixed at 40. The results
obtained when the EA is run for 200 generations are shown
in Figure 3 and 4.

For maximizing the self-score, the fitness measure of a sam-
ple is its self-score, hence the fitness score is to be maximized,
while in the second score the fitness is the opponent score

 320

 340

 360

 380

 400

 420

 440

 0 50 100 150 200

F
itn

es
s

Generation

 320

 340

 360

 380

 400

 420

 440

 0 50 100 150 200

F
itn

es
s

Generation

Fig. 3. Plot of the mean fitness (shown in solid line) and maximum fitness
(shown in dotted line) of population when self-score is maximized.

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200

F
itn

es
s

Generation

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200

F
itn

es
s

Generation

Fig. 4. Plot of the mean fitness (shown in solid line) and minimum fitness
(shown in dotted line line) of population when opponent score is minimized.

(score the opponent had when playing against this player),
which is minimized.

As is clear from the graphs, in the first case the mean fitness
increases steadily, and after 200 generations the maximum
self-score of all of a sample in the population is 441, which is
97% of the benchmark score. When the EA is run for longer
generations, the maximum fitness converges at 442 and does
not increase further. When these optimal strategies are fielded
in a round robin tournament, these strategies win with a big
margin. Tables 1 and 2 show the outcome (average of 20
runs) of two tournaments. In the first tournament, there are 16
strategies and ‘Tit for Tat’ is the winner with an average score
of 387. In the second tournament, when the single-objective
optimal strategy is fielded, it wins by a huge margin, scoring
as high as upto 97% of the benchmark score. This is in line
with the results obtained by Axelrod. We refer to the strategy
obtained by maximizing the self-score as “Strategy SO”.

When the opponent score is minimized, the minimum fitness
stabilizes at 112. The strategies so obtained perform poorly in
a round robin tournament (their performance is quite similar

1-4244-0464-9/06/$20.00 2006 IEEE. 199 CIG'06 (May 22-24 2006)

to that of the Always Defect strategy). We refer to this strategy
as “Strategy SO-min”. Table 3 shows the average score of the
players when this strategy is included in the tournament. It
can be seen that this strategy performs as bad as the Always
Defect strategy. As such, it seems that there is little incentive
in minimizing the opponent score. However, this is not the
case, as the results of the next subsection will show.

TABLE I
TOURNAMENT 1 WITH THE 16 PLAYERS.

Player Average score
Tit for Tat 387
Soft Majority 379
Tit for two tats 379
Spiteful 376
Hard Tit For Tat 370
Always Cooperate 359
Periodic Player CCD 354
Naive Prober 353
Pavlov 351
Periodic Player CD 351
Remorseful Prober 351
Random Player 323
Hard Majority 317
Suspicious Tit for Tat 310
Periodic Player DDC 309
Always Defect 305

TABLE II
TOURNAMENT 2 WITH THE SINGLE OBJECTIVE OPTIMUM STRATEGY

INCLUDED.

Player Average score
Strategy SO 438
Tit for Tat 390
Soft Majority 384
Tit for two tats 384
Spiteful 381
Hard Tit For Tat 374
Always Cooperate 364
Naive Prober 359
Remorseful Prober 357
Pavlov 357
Periodic Player CCD 336
Periodic Player CD 335
Suspicious Tit for Tat 319
Hard Majority 312
Random Player 310
Periodic Player DDC 296
Always Defect 296

B. Results of MOEA

The parameters used in MOEA are as follows: size of
the population = 200, and the algorithm was run for 200
generations. NSGA-II algorithm [14] was used. In all cases,
we have performed more than one simulations using different
initial populations, and obtained similar results. Here, we only
show the results of a typical simulation run.

1) Evolution of optimal strategies: Starting from a purely
random distribution, the strategies ultimately converged to the
Pareto-optimal front. This is shown in Figure 5. It shows that
the MOEA is indeed successfully able to search the solution

TABLE III
TOURNAMENT 3 WITH THE SO-MIN STRATEGY INCLUDED.

Player Average score
Tit for Tat 372
Soft Majority 375
Tit for two tats 365
Spiteful 363
Hard Tit For Tat 356
Naive Prober 341
Always Cooperate 337
Remorseful Prober 336
Periodic Player CCD 335
Periodic Player CD 334
Pavlov 344
Random Player 309
Hard Majority 306
Suspicious Tit for Tat 300
Always Defect 296
Strategy SO-min 296
Periodic Player DDC 296

space for optimal results. It also shows that there is a trade-
off between maximizing the self-score and minimizing the
opponent’s score. In Figure 6, the Pareto-optimal fronts with
a single-objective EA and a few other strategies are shown,
when both the single-objective EA as well as the MOEA is
run for 20,000 generations. After using NSGA-II to obtain
the non-dominated front, a local search was performed from
each of the member of this front, and it was found that there
was little or no improvement in the solution. Therefore, the
non-dominated front obtained using NSGA-II is indeed very
close to the actual Pareto-optimal front. The use of local search
from MOEA solutions ensures that the final solution is at least
locally optimal.

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400 450 500

O
pp

on
en

t S
co

re

Self Score

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400 450 500

O
pp

on
en

t S
co

re

Self Score

Fig. 5. The initial random solution (shown with ’+’) and the non-dominated
front(shown in ’x’), when NSGA-II is run for 20000 generations.

The most significant outcome of the MOEA, is however,
evolution of strategies which perform much better that those

1-4244-0464-9/06/$20.00 2006 IEEE. 200 CIG'06 (May 22-24 2006)

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400 450 500

op
po

ne
nt

 s
co

re

Player score

Pareto optimal front and other solutions

Always defect

Always cooperate

Tit for tat

Strategy SO

Strategy MO

Always defect

Always cooperate

Tit for tat

Strategy SO

Strategy MO

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400 450 500

op
po

ne
nt

 s
co

re

Player score

Pareto optimal front and other solutions

Always defect

Always cooperate

Tit for tat

Strategy SO

Strategy MO

Always defect

Always cooperate

Tit for tat

Strategy SO

Strategy MO

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400 450 500

op
po

ne
nt

 s
co

re

Player score

Pareto optimal front and other solutions

Always defect

Always cooperate

Tit for tat

Strategy SO

Strategy MO

Always defect

Always cooperate

Tit for tat

Strategy SO

Strategy MO

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400 450 500

op
po

ne
nt

 s
co

re

Player score

Pareto optimal front and other solutions

Always defect

Always cooperate

Tit for tat

Strategy SO

Strategy MO

Always defect

Always cooperate

Tit for tat

Strategy SO

Strategy MO

Fig. 6. The non-dominated solutions, together with the single objective
EA results (the upper and the left vertexes of the triangle) and a few other
strategies.

obtained using earlier methods. The strategy with the max-
imum self-score (the maximum score, 451 is slightly better
than that for the optimal strategy obtained using single-
objective EA, 442) had a mean opponent score (214) that was
significantly lower than that for the single-objective optimal
strategy (244). Figure 6 shows the single-objective optimum
strategy (Strategy SO) and the multiple objective optimum
strategy (Strategy MO). Strategy MO so obtained not only
outperformed other strategies in a round robin tournament
(see Table 4 and Table 5), but also defeated the Strategy
SO (Table 5). This clearly shows that MOEA is able to find
better strategies as compared to the single-objective EA. Since
an MOEA maintains a good diverse population due to the
consideration of two conflicting objectives, the search power
of MOEA is usually better than that in a single-objective EA.
In complex optimization problems in which the search of the
individual optimal solution is difficult using a single-objective
optimization algorithm, a two or more objective consideration
may lead to a better optimum.

The other extreme solution on the Pareto-optimal front is
the same as obtained by minimizing the opponent’s score, and
has the same performance as the Always Defect strategy. Even
though a many of the bit-positions in the strategy string for
this strategy are C, it behaves almost like the Always Defect
strategy, as is discussed later.

2) Relationship among the Pareto-optimal strategies: The
fact that a non-dominated front is obtained by using MOEA
indicates that the strategies lying on this front must have some-
thing in common. As such, different Pareto-optimal strategies
look quite different from each other. To have a closer look at
these strategies, during the game, the number of times each bit
position in the string was used in a round-robin tournament
was recorded, and plotted for different strategies. Figure 7

TABLE IV
TOURNAMENT 4 WITH STRATEGY MO INCLUDED.

Player Average score
Strategy MO 448
Tit for Tat 391
Hard Tit For Tat 375
Soft Majority 370
Tit for two tats 370
Spiteful 363
Naive Prober 358
Remorseful Prober 344
Always Cooperate 337
Periodic Player CCD 336
Periodic Player CD 334
Pavlov 334
Suspicious Tit for Tat 319
Hard Majority 312
Random Player 310
Periodic Player DDC 296
Always Defect 296

TABLE V
TOURNAMENT 5 WITH BOTH STRATEGY MO AND STRATEGY SO

INCLUDED.

Player Average score
Strategy MO 431
Strategy SO 421
Tit for Tat 394
Hard Tit For Tat 379
Soft Majority 375
Tit for two tats 374
Spiteful 368
Naive Prober 362
Remorseful Prober 351
Always Cooperate 343
Pavlov 341
Suspicious Tit for Tat 327
Periodic Player CD 320
Periodic Player CCD 320
Hard Majority 307
Random Player 296
Always Defect 288
Periodic Player DDC 286

shows the combined plot for six Pareto-optimal strategies
(chosen from Figure 6), and for six random strategies (for
comparison).

In the plot, the frequency distribution for six Pareto-optimal
strategies are given in the lower half (with self-score decreas-
ing along the y-axis), and for six randomly chosen random
strings in the upper half. The cooperative moves are shown
in white boxes, and the defecting moves are shown in black
boxes. Only those bit positions which were used more than
20 times in the round-robin tournament are shown. The plot
reveals that only a few of the bit positions of a strategy are
used more than 20 times. Also, the Pareto-optimal strategies
show some interesting similarities with respect to the usage
of a particular bit position. For example, positions 0, 1, 4,
5, 17, 18, 21, and 55 turn out to be ‘Defecting’ in all of
the six Pareto-optimal solutions. There are also some trends
in ‘Cooperating’, coming out as common strategies of these
high-performing solutions. We discuss a few of them in the

1-4244-0464-9/06/$20.00 2006 IEEE. 201 CIG'06 (May 22-24 2006)

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70

S
tr

at
eg

y

Bit position

Plot for the most frequently used bit positions in the strategy string

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 10 20 30 40 50 60 70

S
tr

at
eg

y

Bit position

Plot for the most frequently used bit positions in the strategy string

Fig. 7. Plot of the frequently used bit positions in the strategy strings. The cooperative moves are shown with white boxes, while the defecting moves are
shown in black boxes. The upper half of the plot corresponds to frequently used bit positions for players with randomly chosen strategies, whereas the bottom
half corresponds to those of the Pareto optimal strategies.

following:

• 0 : This decodes to PPP, i.e. both the players have
been defecting with each other over the previous three
moves. Since both players are defecting, it is expected
that the player 1 should also defect as a good strategy
for preventing the opponent’s score to be high in the
subsequent moves.

• 1 : This decodes to PPT. The opponent defected on the
first two moves, but did not do so in the third move, while
player 1 defected in all the three moves. In this case,
the strategy is to defect, so as to “exploit” the foolish
opponent.

• 4 and 5 : decodes to PTP and PTT, which are similar to
the previous case, and again the moves are to defect to
exploit the opponent.

• 17 : This implies TPT, i.e. player 1 defected on all
the previous three moves, but the opponent was foolish
enough to cooperate, clearly in this case, player 1 will
defect, to exploit the opponent.

• 29 : 29 decodes to STR. This represents “reconciliation”,
that is, both the players initially defected, but cooperated
on the last move. So the two players are trying to ensure
cooperation, and hence the next move in a good game-
playing strategy would be to cooperate.

• 55 : 55 stands for RTR. This again a case of exploitation,
since the opponent cooperated on all the previous three

moves even though I defected once. Hence the move in
this situation is to defect.

• 63 : 63 is RRR, that is the players cooperated on all
the previous three moves. Since both the players are
cooperating, so the best move in this case is to continue
cooperating.

The eighth solution in the figure is for the single-objective op-
timum strategy of maximizing self-score alone. Interestingly,
the frequently used moves in this strategy is similar to the
1st strategy of the bi-objective Pareto-optimal solutions (with
the highest self-score). Thus, a recipe for maximizing self-
score by minimizing the opponent’s score is to learn to defect
when the opponent is either defecting or foolishly trying to
cooperate when player 1 is continuously defecting. Another
recipe to follow is to cooperate with the opponent when the
opponent has indicated its willingness to cooperate in the past
moves.

Another matter to note is that as the self-score decreases (as
solutions go up on the y axis), the strategies become more and
more defecting and the frequency of cooperation reduces. To
minimize the opponent’s score, the payoff matrix indicates that
player 1 should defect more often. When this happens, self-
score is also expected to be low against intelligent players,
because both players will engage in defecting more often.

For random strategies, no such pattern is observed. It can
be seen that for the Pareto-optimal strategies, most of the

1-4244-0464-9/06/$20.00 2006 IEEE. 202 CIG'06 (May 22-24 2006)

bit positions are either sparingly used, or are not used at
all. For example, the strategy with the least self-score always
makes defecting moves, even though there are many C’s in its
strategy string, showing that it behaves almost like the Always
Defect strategy.

VI. SIGNIFICANCE OF THE RESULTS

The above results demonstrate the power of MOEAs in
searching better strategies for the IPD problem. The optimal
strategies obtained using this method outperforms all other
strategies. In particular, it performs better than the strategies
obtained using single-objective optimization procedure. This
shows that MOEAs are a more useful methods for finding
optimal strategies, as compared to single-objective EAs.

The fact that a non-dominated front (which is quite close
to the actual Pareto-optimal front) shows that there is indeed
a trade-off between maximizing self-score and minimizing
opponent score. Therefore, to be successful in a round robin
tournament, a player should not only try to maximize its own
score, but also minimize the opponent score.

We further observe that the strategies lying on the non-
dominated front share some common properties. This can give
us valuable insight about the optimal strategies for a round
robin tournament. It will be interesting to make some prototype
strategies using these common features and observing their
performance in a tournament; we leave this for a future
research work.

We had also carried out another simulation in which we
used NSGA-II to minimize two other objectives: Maximize
self-score, and minimize the maximum of the opponent scores
(in previous case, we had minimized the average score of
the opponents). The Pareto-optimal front obtained is shown
in Figure 8 by marking the obtained strategies (maximum
opponent score) with ‘X’. When the average score (marked
with diamonds) over all opponent players are computed and
plotted for these strategies, they are found to be dominated by
the previous Pareto-optimal solutions. The second objective
value of Pareto-optimal solutions using this method is worse
than before, as the maximum of the opponents’ scores is
going to be always more than average of opponents’ scores.
A good spread in solutions is still obtained, but since this new
objective is non-differentiable, the obtained front in this case
is not as smooth as before. As discussed above, the solutions
obtained are also inferior from the earlier solutions. Based on
this study, we may conclude that minimizing the average score
of opponents is a better optimization strategy than minimizing
the maximum score of opponents.

VII. CONCLUSIONS

We have presented a new paradigm for searching optimal
strategies in Iterated Prisoner’s Dilemma (IPD) using a multi-
objective optimization procedure. Such a method has not been
used before in the literature for this problem. It has been
revealed that such a solution strategy has several advantages
over the existing single-objective methods for finding useful
optimal game-playing strategies. Hopefully, such an approach

min−
avg

min−max

 100

 150

 200

 250

 300

 350

 400

 450

 500

 100 150 200 250 300 350 400 450 500
Self Score

O
p
p
o
n
e
n
t

S
c
o
r
e

Fig. 8. Pareto-optimal front obtained when maximum of the opponent score is
minimized (maximum opponent score is represented by ’X’ and corresponding
average score is represented by diamonds) against the Pareto-optimal front
obtained earlier (shown in circles).

will find further application in related game-playing problems
in the near future.

ACKNOWLEDGMENTS

We thank three anonymous reviewers whose comments have
been very useful in improving the quality of the paper.

REFERENCES

[1] R. Axelrod, “The evolution of strategies in the iterated prisoner’s
dilemma,” in Genetic Algorithms and Simulated Annealing, L. Davis,
Ed. Los Altos, CA: Morgan Kaufmann, 1987.

[2] D. E. Goldberg, Genetic Algorithms for Search, Optimization and
Machine Learning. Reading: Addison-Wesley, 1989.

[3] R. Dawkins, The Selfish Gene. New York: Oxford University Press,
1989.

[4] M. Rubenstein and M. Osborne, A Course in Game Theory. MIT Press,
1994.

[5] J. F. Nash, “Equilibrium points in n-person games,” in Proceedings of
the National Academy of Sciences, vol. 36, 1950, pp. 48–49.

[6] D. Fudenberg and E. Maskin, “The folk theorem in repeated games with
discounting or incomplete information,” Econometrica, vol. 54, no. 3,
1986.

[7] R. Axelrod and W. Hamilton, “The evolution of coperation,” Science,
vol. 211, pp. 1390–6, 1981.

[8] R. Axelrod, The Evolution of Cooperation. New York: Basic Books,
1989.

[9] D. Fogel, “Evolving behaviors in the iterated prisoner’s dilemma,”
Evolutionary Computation, vol. 1, pp. 77–97, 1983.

[10] M. Nowak and K. Sigmund, “A strategy of win-stay, lose-shift that
outperforms tit-for-tat in the prisoner’s dilemma game,” Nature, vol.
364, pp. 56–58, 1993.

[11] B. Beaufils, J. P. Delahaye, and P. Mathieu, “Our meeting with gradual,
a good strategy for the iterated prisoner’s dilemma,” in Artificial Life
V: Proceedings of the Fifth International Workshop on the Synthesis
and Simulation of Living Systems, C. Langton and K. Shimohara, Eds.
Cambridge, MA, USA: The MIT Press, 1996, pp. 202–209.

[12] D. Bragt, C. Kemenade, and H. Poutr, “The influence of evolutionary
selection schemes on the iterated prisoner’ s dilemma,” Computational
Economics, vol. 17, pp. 253–263, 2001.

1-4244-0464-9/06/$20.00 2006 IEEE. 203 CIG'06 (May 22-24 2006)

[13] D. Jang, P. Whigham, and G. Dick, “On evolving fixed pattern strategies
for iterated prisoner’s dilemma,” in Proceedings of the 27th conference
on Australasian computer science, Dunedin, New Zealand, 2004, pp.
241–247.

[14] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, “A fast and elitist
multiobjective algorithm: NSGA-II,” IEEE Transactions on Evolutionary
Computation, vol. 6, no. 2, pp. 182–197, 2002.

[15] K. Deb, Multiobjective Optimisation Using Evolutionary Algorithms.
Chichester, U.K.: Wiley, 2001.

APPENDIX I
Details about the different strategies used in the round-robin

tournament:
1) Always Cooperate : Cooperates on every move
2) Always Defect : Defects on every move
3) Tit for Tat : Cooperates on the first move, then simply

copies the opponent’s last move.
4) Suspicious Tit for Tat : Same as Tit for Tat, except that

it defects on the first move
5) Pavlov : Cooperates on the first move, and defects only

if both the players did not agree on the previous move.
6) Spiteful : Cooperates, until the opponent defects, and

thereafter always defects.
7) Random Player : Makes a random move.
8) Periodic player CD : Plays C, D periodically.
9) Periodic player DDC : Plays D, D, C periodically.

10) Periodic player CCD : Plays C, C, D periodically.
11) Tit for Two Tats : Cooperates on the first move, and

defects only when the opponent defects two times.
12) Soft Majority : Begins by cooperating, and cooperates

as long as the number of times the opponent has
cooperated is greater than or equal to the number of
times it has defected, else it defects.

13) Hard Majority : Defects on the first move, and defects
if the number of defections of the opponent is greater
than or equal to the number of times it has cooperated,
else cooperates.

14) Hard Tit for Tat : Cooperates on the first move, and
defects if the opponent has defects on any of the previous
three moves, else cooperates.

15) Naive Prober : Like Tit for Tat, but occasionally defects
with a probability of 0.01.

16) Remorseful Prober : Like Naive Prober, but it tries to
break the series of mutual defections after defecting.

1-4244-0464-9/06/$20.00 2006 IEEE. 204 CIG'06 (May 22-24 2006)

Trappy Minimax - using Iterative Deepening to

Identify and Set Traps in Two-Player Games

 V. Scott Gordon Ahmed Reda
 CSU, Sacramento CSU, Sacramento
 gordonvs@ecs.csus.edu ahmedcsus@yahoo.com

Abstract

Trappy minimax is a game-independent extension of
the minimax adversarial search algorithm that attempts
to take advantage of human frailty. Whereas minimax
assumes best play by the opponent, trappy minimax tries
to predict when an opponent might make a mistake by
comparing the various scores returned through iterative-
deepening. Sometimes it chooses a slightly inferior move,
if there is an indication that the opponent may fall into a
trap, and if the potential profit is high. The algorithm
was implemented in an Othello program named
Desdemona, and tested against both computer and
human opponents. Desdemona achieved a higher rating
against human opposition on Yahoo! Games when using
the trappy algorithm than when it used standard
minimax.

1. Introduction

 Minimax is a well-known algorithm for performing
adversarial search in two-player strategy games.
Although it is known to work very well in practice, it
also has its shortcomings. One of these is that it assumes
best play by the opponent. Often, a human (or even a
computer) may be fallible, and may be tricked into
playing an inferior move. Minimax never takes this into
account, and thus it never purposefully tries to set traps.
 This paper introduces trappy minimax, a variation of
minimax that utilizes iterative deepening to identify
possible traps, and under the right conditions, set them.
Traps are defined in a game-independent manner, based
only on the generic search tree and the backed up values
from its associated terminal evaluation function. Alpha-
beta pruning still works without modification. Thus,
trappy minimax can be used wherever standard minimax
can be used. At times, trappy minimax chooses different
moves than standard minimax. Depending on the type of
opponent, the trappy version may be more effective.

 Section 2 gives a brief historical background and
related work; Section 3 defines the concept of a trap;
Section 4 presents the trappy minimax algorithm; Section
5 gives experimental results for two board games, and
Section 6 offers a summary and conclusions.

2. Background

 The minimax algorithm was first proposed by
Claude Shannon in 1950 [Shannon50], as suitable for
programming a computer to play the game of chess. An
improvement called alpha-beta pruning was described in
1962 by Kotok [Kotok62]. Alpha-beta pruning allows
the algorithm to eliminate certain branches from
consideration, speeding up the search without changing
the result. Minimax with alpha-beta pruning has been
used in most computer implementations of popular board
games such as chess and checkers, and forms the basis of
the search algorithms used in successful competitive
programs such as Deep Blue (for chess) [HCH02] and
Logistello (for Othello) [Buro97].
 When minimax considers every possible move at
each level, it is performing a full-width search. When it
only considers a subset of the allowable moves, it is
performing a selective search. A minimax algorithm is
shown in Figure 1.

Negamax(board,depth)
If (game over) then return(result)
If (max depth) then return EVAL(board)
best = -∞
For each move
{
 make move on board
 score = -Negamax(board, depth+1)
 if score > best then best=score
 retract move from board
}
return (best)

Figure 1 — Minimax

1-4244-0464-9/06/$20.00 2006 IEEE. 205 CIG'06 (May 22-24 2006)

Various improvements to minimax have been
developed. Most attempt to alter the ordering of
generated moves in order to accelerate alpha-beta
pruning [Schaeffer89]. Others use game-dependent
knowledge to determine whether certain branches of the
tree should be ignored, allowing for deeper search.

Iterative Deepening is when a minimax search of
depth N is preceded by separate searches at depths 1, 2,
etc., up to depth N. That is, N separate searches are
performed, and the results of the shallower searches are
used to help alpha-beta pruning work more effectively.

Carmel and Markovitch [CM95] examined a
variation of minimax called M*, in which an opponent
model is incorporated into the search algorithm. M*
allows minimax to consider whether an opponent is
likely to make an inferior move, and to take better
advantage of it. They also examined using M* to take
advantage of opponents that search to a shallower depth,
and thus linking search depth with setting traps.

In this paper, the notion of a trap specifically as a
function of search depth is explored in greater detail.
Whereas M* utilizes an opponent model, trappy
minimax does not require it. It also does not need to
know what algorithm the opponent is using or to what
depth he/she/it is searching. Traps are defined as a
function of search depth, and can be set at many levels.
The only assumption is that certain opponents may be
vulnerable to these sorts of traps - particularly humans.

3. Definition and evaluation of Traps

3.1 Definition of a Trap
A trap is a move that looks good in the short term

but has bad consequences in the long term. Thus, in the
minimax algorithm, it is a move with high evaluations at
shallow depths and a low evaluation at the maximum
depth. Traps have the significance that a non-optimal
opponent might be tricked into thinking that they are
good moves when in fact they are not.

Although our definition of a trap does not require
opponent modeling, it is useful to consider the sort of
opponent that would fall for a trap. An opponent that
performs a full-width minimax search to a depth greater
than the trappy minimax player, would not fall for a trap.
Humans, however, are always susceptible to traps, since
they in general do not perform full-width search, and do
not consider every variation to a uniform depth.

Setting a trap is only of practical benefit if the result
of an opponent not falling for the trap is not much worse
than the evaluation of the move recommended by
standard minimax. In other words, if the opponent does
not fall for the trap, setting the trap which didn’t
materialize should not yield a significant negative cost.

3.2 Trap Evaluation

A trap is evaluated using two factors: (1) how likely
the opponent will fall into the trap, (2) how profitable
the trap is if the opponent falls into it. A trap could be
very deceiving to a human opponent yet not profitable,
and similarly, a trap could be highly profitable but easy
to avoid. A good trap is hard to spot, and profitable.

Since most minimax implementations utilize
iterative deepening, it is relatively easy to accumulate
evaluations at various search depths. Thus, accumulating
the data needed for evaluating traps is very inexpensive,
and alpha-beta pruning can still be employed at each
search depth.

To assess how deceiving a trap is, evaluations are
made using depths other than just at the maximum depth.
When the opponent is a human, looking at all the depths
other than the maximum depth is useful, while for an
opponent using a shallower minimax search, looking at
just that depth would be sufficient. We examined three
different methods for assessing evaluations at shallow
tree depths:

1. The median method: calculates the median of the

evaluations at all but the maximum depth,
2. The best value method: uses the best evaluation for

the opponent among the shallower evaluations,
3. The last level method: uses only the evaluation at

MaxDepth-1 (MaxDepth is the deepest level of
search examined by the program).

The first two methods are directed towards human

opponents, while the third method is targetted at
opponents who use the minimax algorithm either at a
shallower depth (up to MaxDepth-2), or selective search.

4. Trappy Minimax
Depending on which assessment method is being

used, the resulting aggregate shallow evaluation is
compared to the evaluation at the maximum depth. Two
factors are then determined: trappiness, and profitability.

Trappiness is based on the distance between a high
positive score and an actual negative score, and is
calculated from the point of view of the opponent. That
is, it attempts to measure the likelihood that the opponent
could miss the trap.

Profitability is the gain to the program if the
opponent falls for the trap. It is calculated from the point
of view of the algorithm.

Trappiness and profitability are both factored into
the evaluation of each possible computer move, along
with the standard minimax evaluation. The resulting
trappy minimax algorithm is shown in Figure 2.

1-4244-0464-9/06/$20.00 2006 IEEE. 206 CIG'06 (May 22-24 2006)

7
7
7
6
7
8
7
7

10
15
10
15
15
10
10
10

7
5
4
8
9
6
4
6

-6
-7
-8
-5
-5
-4
-7
12

-10
-11
-12
-14
-13
-12
-11
 4

1
1
2
3
4
5
3
-4

TrappyMinimax(board,maxdepth)
best, rawEval, bestTrapQuality = -∞
{ For each move
 { make move on board
 for each opponent response
 { scores[maxdepth] :=
 -Negamax(board,maxdepth)
 if (scores[maxdepth] > rawEval)
 rawEval := scores[maxdepth]
 }
 for each opponent response
 for d := 2 to maxdepth-1
 scores[d] := -Negamax(board,d)
 Tfactor := Trappiness(scores[])
 profit := scores[maxdepth]-rawEval
 trapQuality := profit * Tfactor
 if (trapQuality > bestTrapQuality)
 bestTrapQuality := trapQuality
 adjEval :=
 rawEval + scale(bestTrapQuality)
 if (adjEval > best) best:=adjEval
 retract move from board
 }
 return(best)
}

Figure 2 — Trappy Minimax

The trappiness factor has a range from [0,1], and is

calculated according the formulas shown in Figure 3,
which apply regardless of which trap assessment
(median, best, or last) was chosen. The calculations are
slightly different depending on whether the backed-up
score is for a minimizing or a maximizing level (i.e., odd
or even depth).

Assessments Maximizing Trappiness

U <= M 0

M < U < M+aM .75(U-M)/aM

M+aM <= U < M+4aM .75+.25(U-M-aM)/(3aM)

U >= M+4aM 1

Assessments Minimizing Trappiness

U >= M 0

M > U > M-aM .75(M-U)/aM

M-aM >= U > M-4aM .75+.25(M-U-aM)/(3aM)

U >= M-4aM 1

Figure 3 - Trappiness Formulas
U = Upper levels assessment (median, best or max-1)
M = Maxdepth assessment
aM = abs(M)

After the trappiness factor is calculated, profitability
is determined by calculating the difference between the
evaluation at the maximum depth for the trap and that for
the best guaranteed evaluation. The higher the evaluation
the trap has over the best guaranteed evaluation, the
better the profitability the trap has.

The trappiness factor of a move along with the
profitability can then be combined to give an estimate of
how good a trap is, and then whether the potential profit
should be factored into the final evaluation of a move.

In our implementation, the quality of a trap is the
product of trappiness and profitability. Consider the
sample game tree shown in Figure 4, for a 10-ply search.
The top two plies are shown, plus backed-up values for
searches of depths 3 through 10. The lists of values at the
leaves are for search results of various depths, with the
bottommost values representing standard minimax values
at maxdepth. Evaluation proceeds thusly:

In Figure 4, the computer has three moves from
which to choose. Suppose the second move (marked with
an asterisk) is chosen. In that case, a score of at least 6 is
guaranteed, presuming the opponent plays the best
response (marked with a “+”). However, the alternative
for the opponent (marked with a “$”) looks very
appealing when evaluated at depths 3 through 9.
However, when evaluated at depth 10, the node has an
evaluation that is considerably worse than even the
correct move, despite all the good evaluations using the
upper levels.

 *

 + $

Figure 4 - example Search Tree

1-4244-0464-9/06/$20.00 2006 IEEE. 207 CIG'06 (May 22-24 2006)

Assuming we are using the median method, the
assessment for the evaluations of node “$” is equal to 6.
And, using the appropriate formula from Figure 3, the
trappiness will be 0.792. The profitability of the trap will
be 12-6=6, which indicates that if the opponent falls for
the trap, there will be an extra 6 evaluation points scored
for the computer beyond the guaranteed 6. The trap
quality is therefore the product of these values, or 4.75.

After evaluating all possible traps for the opponent,
the algorithm accounts for the traps in the move
evaluation so that moves with higher potential of tricking
the opponent are favored over moves that have lower or
no potential. This is done by first picking the trap that is
most likely to trick the opponent, that is the one with the
highest trap evaluation. In the current implementation,
the trap evaluation is first scaled so that it never exceeds
25% of the best guaranteed evaluation, then each of the
scaled trap evaluations are added to their associated final
move scores.

Scaling is done according to the formulas shown in
Figure 5. Note that any trap values better than twice the
move evaluation are adjusted to 25% of the move
evaluation.

Trap evaluation Final adjustment

T < 0 0

0 >= T > .25M .2M/.25

.25M >= T > 2M .2+.05(T-M)/1.75

T >= 2M .25M

Figure 5 - Final move evaluation adjustment
T = trap evaluation
M = abs(best move evaluation)

5. Experimental Results
We implemented and tested trappy minimax using

the game of Othello. We tested our implementation
against both standard minimax and against humans.

5.1 Othello - Desdemona
Our Othello implementation, named Desdemona,

utilizes the full trappy Algorithm described previously in
Section 4. Desdemona can be set to use either standard
minimax or trappy minimax (both with alpha-beta
pruning), for various search depths. This enabled us to
test the two algorithms against each other, and to
evaluate both the efficacy of setting traps against weaker
opposition, and the possible danger in trying to set traps
against equal or stronger opposition.

Trappy minimax sometimes risks making non-
optimal moves in the hope of gaining more advantage if
the opponent makes the wrong response. An opponent
who uses standard minimax to search the same depth
would not be expected to fall for any traps set by the
trappy algorithm. An opponent searching to a shallower
depth would, however, be susceptible to the traps.

Thus we tested Desdemona by playing it against
itself with a variety of combinations of configurations.
Some of the games involved the two algorithms using the
same search depth, to determine if the trappy moves tend
to be sufficiently less accurate to lead to inferior play
against strong opposition. Some of the games involved
setting the trappy version to a deeper search level, and
comparing its margin of victory against how well
standard minimax would have done in the same
circumstances. In each case, games were played with
each algorithm having the chance to be white and black
(i.e., move first or second -- black always moves first).

Match Black Depth White Depth Result

1 original 8 original 8 43:21
2 trappy 8 original 8 13:51
3 original 8 trappy 8 49:15
4 original 8 original 6 40:24
5 trappy 8 original 6 41:23
6 original 6 original 8 8:56
7 original 6 trappy 8 10:54
8 original 9 original 9 26:38
9 trappy 9 original 9 36:28

10 original 9 trappy 9 39:25
11 original 9 original 7 55:9
12 trappy 9 original 7 56:8
13 original 7 original 9 34:30
14 original 7 trappy 9 39:25
15 original 10 original 10 3:61
16 trappy 10 original 10 49:15
17 original 10 trappy 10 30:34
18 original 10 original 8 53:11
19 trappy 10 original 8 58:6
20 original 8 original 10 27:37
21 original 8 trappy 10 21:43

Figure 6 - Trappy and Standard Minimax
match results

When pitting trappy minimax against standard
minimax at the same search depth, four games (2, 3, 10,
and 17) were won by standard minimax and two games
(9 and 16) were won by trappy minimax. That is,
standard minimax performed slightly better at the same
search depth, as expected.

1-4244-0464-9/06/$20.00 2006 IEEE. 208 CIG'06 (May 22-24 2006)

For matches with different search depths, in four
cases (5, 12, 19, and 21) trappy minimax outperformed
standard minimax against the weaker opponent. In two
cases (7 and 14), standard minimax outperformed trappy
minimax against the weaker opponent. That is, trappy
minimax performed slightly better overall than standard
minimax when faced with weaker opposition, as was also
expected.

Examining particular moves played is instructive.
Consider the log files of games 6 and 7. As can be seen
in Figure 7, the trappy and standard versions both made
similar decisions for the first 6 moves:

Move
Black

Standard
6-ply

White
Standard

8-ply

White
Trappy
8-ply

1 D3 C3 C3
2 C4 E3 E3
3 F2 C5 C5
4 B3 F2 F2
5 C1 D1 D1
6 E1 F3 F3
7 F6 F5 E6

Figure 7 - First seven moves of games 6 and 7

Closer examination of each program’s alternatives

for the 7th move show that playing at square F5 will
guarantee an evaluation of 400. Since that was the
highest possible evaluation, that move was the choice of
the standard minimax algorithm. The trappy version
found that playing at E6 also has a guaranteed evaluation
of 400 in addition to a potential trap - if the opponent
misses the correct move B4 and instead chooses to play
to square F7, which has a better upper evaluation (that is,
appears better at lower plies) than the correct B4. The
weight of the move was adjusted accordingly and E6 was
selected over F5 because of the trappiness and potential
profit. Indeed, the weaker (6-ply) opponent chose F7
giving an additional 100-point bonus to the white player.
In this case, interestingly, this advantage did not
ultimately lead to a better result at the end of the game
(although in more cases, such traps were beneficial).

Note, in Figure 8, that a trap was also identified for
the move C2, but the move was considerably worse in
both cases and was therefore not selected.

Move F1 G1 A2 C2 A3 F5 E6

Standard 150 50 -150 -50 0 400 400

Trappy 150 50 -150 -37.5 0 400 448

Figure 8 - Options & corresponding scores for move 7

Although the overall results were as expected, they
did not hold in 100% of the cases. This is natural, since
the terminal evaluation function is itself non-optimal,
and therefore some noise in the results is to be expected.

5.2 Results against Human Opponents
Desdemona also played a series of matches in the

Yahoo! Games Online environment against a variety
human opponents. Desdemona played 50 games using
standard minimax, and 50 games using trappy minimax.

The environment not only provides a mechanism for
playing games, but also awards ratings for performance
over time. Ratings are calculated using the ELO system
[Elo78], and range roughly from 0 to 3000, with 1500
being an average competitor. The ELO system
determines ratings not only by win-loss record, but also
factors in the strength of the opponents. Players on
Yahoo! Games vary in skill level, so Desdemona faced a
variety of opposition, and it is likely that the two
versions (standard and trappy) faced a somewhat
different set of opponents. The ELO rating system takes
such variations into account.

After 50 games, Desdemona with standard minimax
achieved a rating of 1680 (39 wins, 9 losses, 2 draws).
With trappy minimax, Desdemona achieved a rating of
1702 (40 wins, 9 losses, 1 draw).

The log file for the games played by the trappy
version of Desdemona was examined, and statistics are
shown in Figure 9. While it is understandable that
humans would frequently not play the move predicted by
minimax, it is interesting to note that in 30% of those
cases, humans fell into traps set by the algorithm.

Number of games 50

Traps set 198

Humans played optimally 34

Humans fell for traps 61

Humans made non-optimal move
but did not fall into trap 103

Figure 9 - Trappy Minimax versus Humans

Overall, it appears that the imprecise nature of

human play makes humans good candidates for
succombing to the types of traps set by trappy minimax
in Othello. It is particularly interesting that Desdemona
achieved a higher ELO rating when using the trappy
algorithm (rather than standard minimax), despite the
fact that it was knowingly playing moves that were
deemed inferior by its own evaluation. This supports the
efficacy of setting traps in the manner proposed.

1-4244-0464-9/06/$20.00 2006 IEEE. 209 CIG'06 (May 22-24 2006)

6. Conclusions
Trappy minimax is a game-independent extension of

the minimax algorithm that further takes advantage of
human frailty. Whereas minimax assumes best play by
the opponent, trappy minimax tries to predict when an
opponent might err. It works by identifying moves that
qualify as potential traps, by comparing the various
backed-up scores returned through iterative-deepening.
Three methods were described for aggregating those
scores: median, best, and last level. Traps were evaluated
for both trappiness and profitability, and the results
factored into the algorithm’s move selection.

Our Othello implementation, named Desdemona,
was used to test the algorithm both against computer and
human opposition.

The trappy algorithm was better able to capitalize on
weaker computer opposition than standard minimax. In
67% of the cases, using the trappy algorithm enabled
Desdemona to achieve a better final score than when
standard minimax was used. This was because a weak
opponent was likely to fall into some of the traps.

Desdemona achieved a higher rating against human
opposition when using the trappy algorithm than when it
used standard minimax. Humans frequently fell for the
traps set by the algorithm. Yahoo! Games was used to
facilitate the games, and the rating calculation was done
by a neutral (online) system.

Desdemona’s occasional deliberate choice of a
slightly inferior move, in the interests of setting a trap,
caused it to perform slightly worse against strong
computer opposition. This did not come as a surprise.

Trappy minimax requires no more time and space
complexity than standard minimax. In fact, when
iterative deepening is used (and it usually is), the
mechanism for including trappy analysis is already
present. Alpha-beta pruning can also still be used without
modification. The trappy method is therefore an
inexpensive and effective form of minimax, particularly
against human opposition.

7. Future Work
Given the encouraging results shown by

Desdemona, we intend to test the trappy algorithm on
other games such as Chess and Checkers. Checkers is
well-known to be a game that lends itself to short-term
tactical analysis, so we optimistically are hoping to
realize benefits that match or exceed those observed in
Desdemona.

8. References

[Buro97] M. Buro, The Othello Match of the Year:
Takeshi Murakami vs. Logistello, ICCA Journal 20(3),
1997 pp 189-193

[CM95] D. Carmel and S. Markovitch, “Opponent
Modeling in a Multi-Agent System”, Workshop on
Adaptation and Learning in Multiagent Systems - IJCAI,
Montreal 1995.

[Elo78] The Rating of Chessplayers, Past and Present.
Batsford, 1978.

[HCH02] A. Hoane., M. Campbell, and F. Hsu, Deep
Blue, Artificial Intelligence 134, 2002, pp 57-83.

[Kotok62] A. Kotok, A Chess Playing Program for the
IBM 7090 Computer. B.S. Thesis, MIT, June 1962.

[Schaeffer89] J. Schaeffer, The History Heuristic and
Alpha-Beta Search Enhancements in Practice, IEEE
Trans. on Pattern Analysis and Machine Intelligence,
1989, pp 1203-1212.

[Shannon50] C. Shannon, Programming a Computer
for Playing Chess, Philosophical Magazine 41, 1950, pp
256-275.

1-4244-0464-9/06/$20.00 2006 IEEE. 210 CIG'06 (May 22-24 2006)

Evaluating Individual Player Strategies in a Collaborative
Incomplete-Information Agent-Based Game Playing Environment

Andrés Gómez de Silva Garza

Abs ract—In Spanish-speaking countries, the game of
dominoes is usually played by four people divided into two
teams, with teammates sitting opposite each other. The players
cannot communicate with each other or receive information
from onlookers while a game is being played. Each player only
knows for sure which tiles he/she has available in order to
make a play, but must make inferences about the plays that the
other participants can make in order to try to ensure that
his/her team wins the game. The game is governed by a set of
standardized rules, and successful play involves the use of
highly-developed mathematical, reasoning and decision-making
skills. In this paper we describe a computer system designed to
simulate the game of dominoes by using four independent
game-playing agents split into teams of two. The agents have
been endowed with different strategies, including the
traditional strategy followed by experienced human players.
An experiment is described in which the success of each
implemented strategy is evaluated compared to the traditional
one. The results of the experiment are given and discussed, and
possible future extensions mentioned.

t

I. INTRODUCTION
HE game of dominoes, as played in Spanish-speaking
countries, provides an environment in which one can

research the collaborative and decision-making abilities of
individual players. The players participate in the game with
incomplete information about which moves the other players
can and cannot make, as they cannot communicate with
anyone during the game or examine the tiles that the other
players have been dealt. However, despite this missing
information players must try to collaborate with their
teammate against the other team in order to win each game.
Several strategies can be envisioned which players can
follow in order to decide which move to make at each turn
during a game depending on the current game state, the
possible moves they can make, and the potential effects of
these moves on their teammate and opponents. We have
implemented an agent-based architecture that allows us to
change the strategies followed by the different players in
order to perform a computational evaluation of the relative
effectiveness of each.

In Section II of this paper we describe the game of

dominoes as played in Spanish-speaking countries in order
to set the context for the rest of the discussion. In Section III
we describe our computational implementation of the game
of dominoes in an agent-based system. In Section IV we
describe the experiment we performed in order to evaluate
the alternate playing strategies we have implemented and
present the results of the experiment. In Section V we
discuss our results. Section VI mentions possible future
extensions, both to the system and to the experiment.

Manuscript received December 16, 2005. This work was supported in
part by the Asociación Mexicana de Cultura, A.C.

Andrés Gómez de Silva Garza is with the Department of Computer
Engineering, Instituto Tecnológico Autónomo de México (ITAM), Río
Hondo #1, Colonia Tizapán-San Ángel, 01000—México, D.F., México
(phone: (+52-55) 5628-4000x3644, fax: (+52-55) 5628-4065; e-mail:
agomez@itam.mx).

II. THE GAME OF DOMINOES
Most people in most countries, if given a set of dominoes,

would probably not know what to do with them. They would
probably be familiar with dominoes from having seen on TV
the latest world record being set for the largest number of
consecutively-toppled dominoes forming designs and words
(as seen from above), but would probably have to research
the rules in order to find out how to use the dominoes in
order to play a game. The search might end up providing a
large and confusing set of potential games that can be played
(e.g., see [1]), each with its own variations on the rules
(many of them very different from each other). On the other
hand, in Spanish-speaking countries there is a highly-
standardized set of rules for playing dominoes, with few
local variations only in some minor details, which most
people learn as they are growing up. The game of dominoes
is therefore common and widespread amongst the population
in, and therefore can be considered a cultural invariant of,
these countries.

There are 28 pieces (normally called tiles) in a set of
dominoes. The face of each tile is split into two halves, and
each half has a certain number of dots (between 0 and 6)
painted on it. There is only one tile in each set of dominoes
for each combination of dots a tile might have (e.g., there is
only one tile having 4 dots on one half and 5 dots on the
other, known as the 4-5 or 5-4 tile). Some tiles have the
same number of dots on both halves, such as the 0-0 tile;
these are known as doubles or, in Spanish, mules. Fig. 1
shows a few domino tiles and the standardized appearance
of each of the possible number of dots on the halves of the
tiles.

T

1-4244-0464-9/06/$20.00 2006 IEEE. 211 CIG'06 (May 22-24 2006)

Fig. 1. A few domino tiles and the standardized appearance of each
possible number of dots (between 0 and 6) on their halves. One of the tiles
shown is a double (the 2-2 tile, at the right). The others are the 5-0 (or 0-5)
tile, the 6-1 (or 1-6) tile and the 3-4 (or 4-3) tile, from left to right.

While some variations of the game allow for two or three

players to play against each other, the usual configuration is
for four players to split into two teams in order to play.
Teammates sit opposite each other on the table. No player is
allowed to communicate with any other player, whether
“friend” or “foe,” or to receive information from onlookers
(who are also not supposed to comment on the game
amongst themselves) during play. There is a saying in
Spanish that “onlookers are made of wood” (i.e., they are
supposed to not move and not make a sound during the
game). In this respect a game of dominoes is similar to card
games such as bridge or hearts (for the rules of those games,
see for example [2] and [3]), which have been studied and
implemented computationally (for example, see [4] and [5]).

Before beginning a game the entire set of tiles is placed
face-down on the table and mixed by hand (called making
soup in Spanish) sufficiently so that no player can guess
(even if they originally knew) the number of dots that the
different individual tiles have. After that, each player picks
any seven tiles from the mix and stands them up in front of,
but close to, his/her seating position, without allowing the
other players to see their contents (however, the number of
tiles possessed by each participant must always be visible to
the other players).

In the first game played, the first player to move (play or
place a tile face-up on the table) is the one that ended up
having the mule of sixes (the double six or 6-6 tile) in
his/her set of tiles. If subsequent games are played, one of
the players of the team that won the previous game has to
take the initiative and make the first move (sometimes after
a brief negotiation with his/her teammate, in theory without
revealing to them or to the opposing players anything about
how “good” or how “bad” their set of tiles is or the contents
thereof). Desirable characteristics that make a set of tiles
good are discussed below.

After the first move is made by a player, play proceeds to
that player’s left, with each player taking turns in that order
until the end of the game. Fig. 2 shows the seating
arrangement of a group of four domino players as seen from
above.

Table

Player
p0

Player
p2

Player
p1

Player
p3

Fig. 2. Seating arrangement of a group of four domino players as seen from
above.

If the first player to move, by playing the 6-6 tile, was

player p0 in the diagram shown in Fig. 2, then the next
player is p1. Player p1 has to play a 6-something tile in
order to make a move. If p1 doesn’t have any tile with a 6
on it, he/she has to pass, and play proceeds with player p2,
etc. If a player has at least one possible move at a given
stage in the game, then he/she is required to make a move at
that time (there can be no passing unless it’s impossible for a
player to make a move). As moves are made, the tiles placed
on the table must form a linear arrangement such that at
most two other tiles end up being adjacent to any given tile.
Mules that have been played are usually placed on the table
perpendicular to the rest of the tiles so that they can be
distinguished (and counted) more easily. Fig. 3 shows a
potential set of tiles placed on the table after several moves
have been made in a typical game of dominoes.

Fig. 3. Possible state of the game (tiles placed on the table) after five moves
in a typical game of dominoes. The horizontally-placed tiles should be
adjacent to each other but small spaces have been left between them in the
figure in order for the different tiles to be easily distinguishable.

Only some of the tiles held by a player at a given time can

potentially be placed on the table to make a move. These
candidate tiles are the ones that have, on one of their halves,
one of the numbers on the exposed or open ends of the tiles
already placed on the table (4 or 0 in Fig. 3). If the state of
the game is as shown in Fig. 3 and it’s player p1’s turn, then
p1 can only play his/her tiles that have a 4 or a 0 on one of
their halves. If he/she has the 0-3 tile (amongst other
playable tiles, perhaps) and decides to play it, said tile must
be placed adjacent to the 4-0 tile (already on the table), thus

1-4244-0464-9/06/$20.00 2006 IEEE. 212 CIG'06 (May 22-24 2006)

blocking the 0 and leaving a 3 open (plus the 4 which
remains open from the previous game state). After player
p1’s move, the tiles on the table would look as shown in Fig.
4. The next player (p2) can only play tiles with a 4 or a 3 on
one of their halves, if any. Whichever tile is played, the 4 or
the 3 will end up being blocked (unless the 4-4 or 3-3 tile is
played, which would leave the same values open, 4 and 3).

Fig. 4. Possible state of the game after one more move is made following
the state of the game shown in Fig. 3.

Most of the time there will be several candidate tiles that

can be played at any given time during a game. This is
where the inferential and decision-making capabilities of a
player become important. In order to select which of many
candidate tiles to play, an analysis can be made of which
plays may be beneficial to one’s team or detrimental to the
opposing team. A player can benefit his/her team by
benefiting him/herself or by benefiting his/her teammate.
Which one of these is more important depends on the game
situation and strategy being employed, but in a traditional
strategy the decision is based on which player is more likely
to finish the game (and thus win it for the team) first. This is
normally the player (in the team) that has the least number
of tiles still remaining, also known as the leader.

The traditional way of playing is that the first player to
move (except in the first game, when the player with the 6-6
tile is required to play that tile) plays a tile that “benefits”
him/her (and becomes, at least for the moment, his/her
team’s leader). For instance, if a player, upon analyzing the
tiles he/she has, sees that four tiles have 5 dots on one of
their halves, that player decides that the number 5 is
beneficial to him/her (in that game, for the moment). This is
because, since there are only seven tiles with 5’s on one of
their halves, then no other player will be able to have four
5’s, and it’s even possible that some players (hopefully in
the opposing team) don’t have any 5’s at all on their tiles.
By placing a tile such that a 5 is left open on the table, the
player is decreasing everyone else’s chances of being able to
play (or at least of having several possible plays to choose
from). The other players, upon seeing this move, assume
that the first player to move “likes” 5’s. If it is the turn of a
player on the opposing team, he/she will try to block any 5’s
existing on the table (because 5’s are beneficial to the
opponent, and in theory detrimental to one’s team—though
in some occasions this may not be true). If it is the turn of
the teammate of the first player to make a move, he/she will
try to place a 5 on the table, if at all possible, in order to
benefit his/her teammate, the team leader, and will try to
avoid blocking any 5’s already on the table unless it’s

impossible to do so. Players have to pay attention to which
tiles have been played by which of the other players because
these moves may indicate preferences or dislikes (if a player
has had to pass at some point or block his/her teammate’s
preferred number) among the different numbers. This is the
type of information that can be used to one’s team’s benefit
or the other team’s detriment. The leader of a team may also
change during play (though the chances of this are reduced
if the first player of the team to play has a good set of tiles
initially). This factor influences the decision of whether it’s
better for the team as a whole for a player, when it’s his/her
turn to make a move, to try to benefit him/herself or his/her
teammate.

A game ends when a player is left without any tiles, in
which case it is considered that he/she (and his/her team)
won the game. The total number of points remaining on the
tiles of the two players in the opposing team are added up
and awarded to the winning team. Another possibility is for
the game to end up being closed (no player can make a
move anymore, yet all players still have tiles remaining that
they haven’t been able to play). This can happen if, for
instance, both open ends of the tiles on the table have a 5,
yet no player has any tile with a 5 left (all seven tiles with a
5 on them have already been played and are on the table). If
a game is closed, then the team with the smallest total
number of points remaining on their two player’s tiles is
considered to have won the game (and is awarded the total
number of points remaining on the tiles of the two players in
the opposing team). If a game is closed and both teams end
up having exactly the same number of points (n) in their
remaining tiles, then the team of the last player to have made
a move (the player that closed the game) is considered to
have won the game (and is awarded n points).

Usually at least one entire match (sequence of games) will
be played by one team against another. After a match is over
the teams may be reshuffled in order to continue playing
more matches with different configurations of players, or it
may be decided that the same teams should be kept in order
to play a best-of-three or best-of-five, etc., series of matches.
Normally the end of a match occurs when one of the teams
(the winning team) reaches at least 100 points. The ability of
participants to tally points correctly, keep track of game or
match results, or make logical or even legal moves may
eventually deteriorate, depending on how much alcohol has
been consumed! One common variation that exists on these
rules is that points are awarded for losing, rather than
winning games. Thus, if a team wins then the other (losing)
team is awarded the total number of points remaining on
their own tiles, and a match is over when a team (the team
that has lost the match) reaches 100 points.

III. IMPLEMENTATION
We have implemented an agent-based system called

DOMAGE (it’s a pity that this word means “pity” in French,
but the name stands for DOMino AGEnt), written in Java.

1-4244-0464-9/06/$20.00 2006 IEEE. 213 CIG'06 (May 22-24 2006)

Each agent reasons independently of the rest. It knows
exactly which tiles it has at any given time but can only
“see” how many tiles the other players have at any stage of
the game, not which tiles they are. Assumptions and
inferences must be made about these during the decision-
making process based on which moves each of the other
players has previously made during the game. No
communication takes place between the agents in
DOMAGE.

In DOMAGE, in order to perform a “negotiation” to
decide which of the two players of the team that won the
previous game will begin the next game, each player’s set of
tiles is evaluated. In this evaluation, a good starting set of
tiles is considered to be one in which the dots are well
distributed and at least one tile is held which has each of the
possible number of dots on it (i.e., at least one tile has a 0 on
one of its halves, at least one tile has a 1, at least one tile has
a 2, etc., all the way to 6). In addition, a good starting set of
tiles should have at least one dominant number, i.e., number
of dots for which at least three different tiles are held (e.g.,
at least three separate tiles have a 2 on one of their halves).
Finally, a good starting set of tiles is one in which no more
than two tiles are doubles. In DOMAGE, if both players in
the team that won the previous game match all three
requirements for having a good starting set of tiles, then one
of them is chosen at random to start the game. However, if
one of the players in the team that won the previous game
has a clear advantage (a better set of tiles) over its teammate,
given these three criteria, then the player with the better set
of tiles is the one that is assumed to “volunteer” to begin
(make the first move of) the next game.

The system creates four instances of the domino-playing
agent (p0, p1, p2, and p3) in order to set up a match. Seven
different strategies have been implemented. Perhaps more
strategies could be thought of, but the idea was to come up
with clearly distinct strategies for the purpose of evaluating
them, and in fact the last two are really subsets or
combinations of the first five. In the current implementation
each agent, from the moment it is created, follows only one
of the implemented strategies. The differences between the
seven strategies stem from the fact that each is based on
prioritizing in different ways the basic goals (or some of the
basic goals) that an agent may pursue when deciding which
move to make. Some examples of these goals are: benefit
oneself, benefit one’s teammate, block the opposing team’s
leader, etc. The seven strategies that have been implemented
are explained in the following paragraphs (assuming it’s
player p’s turn to make a move).

In the traditional strategy (T) the first priority for p is to
benefit its team. If p is the team leader then p decides on a
move that is beneficial to p, if possible (this is the highest-
priority goal for p). Otherwise p makes a move that is
beneficial to p’s teammate, if possible. If p is not the team
leader then the relative priorities of these two possibilities
are switched. If none of these two options are possible with

the playable tiles that p has, then p tries to block the leader
of the opposing team. If that’s not possible then p tries to
block the non-leader of the opposing team. Finally, if it is
impossible to satisfy any of the other intentions mentioned
given the playable tiles that p has at a given point during the
game, then p simply chooses to play the playable tile with
the highest number of dots in total (in order to at least
minimize the damage in case of an eventual loss).

The second strategy that has been implemented is a
completely altruistic strategy (A)—player p only thinks
about the other players and about making “positive”
(beneficial) rather than “negative” (blocking) moves, while
still giving a higher priority to p’s team over the opposing
team. The highest priority, given these constraints, is that
first p attempts to make a move that is beneficial to p’s
teammate. If this isn’t possible, then p tries to make a move
that is beneficial to the non-leader of the opposing team. If
this isn’t possible then p tries to benefit the opposing team’s
leader. Finally, if none of these options are possible then p
chooses at random from amongst its playable tiles (rather
than try to benefit itself or block any other player, since
none of these options would be completely altruistic).

The third strategy that has been implemented is a
completely selfish strategy (S)—player p thinks only of
itself. In this strategy the highest priority is for p to benefit
itself. If this isn’t possible given the playable tiles p
currently has, then one of the playable tiles is simply chosen
at random (rather than making a decision on which move to
make by thinking of the other players and whether the move
would be to their benefit or detriment).

The fourth implemented strategy is a completely random
strategy (R). Player p decides from amongst its playable tiles
at random, without bothering to analyze the possible effects
of any move, whether beneficial or detrimental, on any of
the other players (or itself).

The fifth strategy that has been implemented is a suicidal
strategy (SU)—player p only tries explicitly to benefit the
opposing team. First an attempt is made to benefit the
opposing team’s leader, and if that’s not possible then an
attempt is made to benefit the opposing team’s non-leader. If
that’s not possible either then a random move is made,
without any attempt at all to explicitly make a move that is
beneficial to p or its team.

The sixth implemented strategy is a combination of the
traditional and altruistic strategies (TA)—it’s a traditional
strategy but with a slight bias towards thinking more of
others than of oneself. The first thing player p attempts to do
in this strategy is to benefit its teammate (whether that
teammate is the team leader or not). If that’s not possible,
then p tries to make a move that will benefit p. If that’s not
possible then an attempt is made to block the opposing
team’s leader. If that’s not possible then an attempt is made
to block the non-leader of the opposing team. If none of the
previous possibilities pan out then the highest-valued
playable tile is chosen.

1-4244-0464-9/06/$20.00 2006 IEEE. 214 CIG'06 (May 22-24 2006)

The seventh strategy that has been implemented is a
combination of the traditional and selfish strategies (TS)—
it’s a traditional strategy but with a slight bias towards
thinking more of oneself than anyone else. The first thing
that player p attempts to do in this strategy is to make a
move that will benefit itself, and if that’s not possible, then p
tries to benefit its teammate (irrespective of whether p or p’s
teammate is the team leader). If that’s not possible then p
tries to block the opposing team’s leader. If that’s not
possible then p tries to block the non-leader of the opposing
team. Finally, if none of the previous options are possible
then p chooses a tile to play at random.

IV. EXPERIMENT AND RESULTS
As our goal was to evaluate the different strategies that

have been implemented as compared to the traditional
strategy, we arbitrarily chose player p0 to be our “guinea
pig.” Therefore, in the experiments the strategy followed by
p0 was varied, whereas the strategy followed by the other
three player agents was always the traditional strategy. Each
time that p0’s strategy was changed, 100 matches were
played. For each set of 100 matches, statistics were gathered
on which player agent (and therefore which team) won the
match. Thus, a total of 700 matches were played between
the four domino-playing agents, 100 for each strategy
employed by p0. The teammate of player p0 is p2; their team
will be labeled team0 from now on.

In the 100 matches in which p0 used the traditional
strategy, all four agents were behaviorally equivalent.
Therefore, it is to be expected that each of the four agents
should win approximately 25% of the games. We decided
that we would tolerate a variation of ±10% due to random or
other factors. Therefore, in the experiments it will be
considered “normal” if a player agent wins between 22.5%
and 27.5% of the games. Any strategy for which p0 wins
more than 27.5% of the games will therefore be considered a
good strategy for p0 compared to the traditional one (though
this does not necessarily mean that it will be good for p2,
and therefore for team0 as a whole). Any strategy for which
p0 wins less than 22.5% of the games will be considered a
bad strategy for p0 compared to the traditional one (though
this does not necessarily mean that it will be bad for p2, and
therefore for team0 as a whole). Any strategy for which
team0 wins more than 55% of the matches will be
considered a good strategy for team0 compared to the
traditional one. Any strategy for which team0 wins less than
45% of the matches will be considered a bad strategy for
team0 compared to the traditional one.

The results of the experiment are shown in Table 1 below.
The table lists the strategy used by p0 in each of the sets of
100 matches, the percentage of games won by p0 when
playing the corresponding strategy (PGWp0), the percentage
of games won by p2 when p0 was playing the corresponding
strategy (PGWp2), and the percentage of matches won by
team0 when p0 was playing each strategy (PMWteam0).

TABLE I

RESULTS OF THE EXPERIMENT
Strategy
for p0: PGWp0: PGWp2: PMWteam0:

Traditional (T): 25.6% 24.4% 54%
Altruistic (A): 24.4% 20.3% 35%

Selfish (S): 27.5% 25.2% 54%
Random (R): 28.8% 21.6% 48%
Suicidal (SU): 25% 21.7% 35%
Traditional-
Altruistic (TA):

26.2% 23.3% 49%

Traditional-
Selfish (TS):

26.5% 25.5% 50%

Percentage of games won by player p0 (PCWp0), percentage of games
won by p0’s teammate, p2 (PCWp2), and percentage of matches won by p0
and p2’s team, team0 (PMWteam0) after 100 matches were played for each
of seven different strategies (T, A, S, R, SU, TA, and TS) followed by p0.

V. DISCUSSION
As the results in Table I show, a few strategies stand out

for different reasons. The random (R) strategy produced the
highest percentage of games won for player p0 (28.8%).
However, p2’s percentage of games won for the same
strategy was 21.6%, one of the lowest, thereby producing a
total of 51.4% of all games won for team0, but only 48% of
the matches won by team0. The high value for the
percentage of games won by player p0 can perhaps be
explained by the fact that playing randomly instead of trying
to make an intelligent move based on analyzing the game
state was misleading to the other players (including p0’s
teammate, p2), and therefore their decisions (which were
made in a more systematic manner) didn’t have the impact
they were designed to have. On the other hand, the
percentage of matches won by team0 wasn’t as low as it
could have been despite this fact. This result might be useful
to take into account if a non-collaborative version of
DOMAGE is implemented, as in that situation it doesn’t
matter (in fact it might be better) if a player’s random moves
become misleading to the rest of the players.

The selfish strategy (S) also produced a high percentage
of game wins for p0 (just barely on the limit of the ±10%
tolerance of variation from the norm), 27.5%. On the other
hand, the percentage of matches won by team0 when p0
played with this strategy is 54%, not quite 10% above what
would be expected, and the same as the percentage of
matches won when p0 used the traditional (T) strategy. This
leads us to believe that the result is more due to random
factors than to any real benefit of the selfish strategy over
the others. Strangely enough, the selfish strategy (S) seems
to perform slightly less well than the purely random strategy
(R) even though it involves first trying to determine if any
potential move is beneficial to the player making the
decision and only making a random move if no self-
beneficial move can be found. But it might be another
worthwhile strategy to consider in a non-collaborative
version of DOMAGE.

1-4244-0464-9/06/$20.00 2006 IEEE. 215 CIG'06 (May 22-24 2006)

The altruistic (A) and suicidal (SU) strategies allowed p0
to win 24.4% and 25% of the games, respectively, close to
what would be expected from a traditional (T) strategy.
However, both resulted in very low percentages of games
won for p0’s teammate p2 (20.3% and 21.7%, respectively).
The percentage of matches won by team0 when p0 used
these strategies was also very low: 35% for both. Thus,
neither of these two strategies seems to be recommendable.

None of the other strategies tested stand out when
compared to the traditional strategy (T). This experiment has
allowed us to arrive at some conclusions on the relative
performance of the different strategies that we thought of.
These strategies make sense in the context of the game of
dominoes and have only been implemented for that domain.
In contrast, [5] presents a comparison of different general-
purpose search strategies used in the context of several
games. However, even though the strategies have only been
implemented and tested for dominoes, the results might well
be applicable to other, similar games (where team members
try to collaborate with each other, and compete against the
opposing team, based on incomplete information).

VI. FUTURE WORK
The DOMAGE system in its current incarnation can serve

as a test-bed for further experiments, but extensions to the
implementation would both enhance the system’s
capabilities and provide the means for different types of
experiments. A long-term goal is to enable the system to
play with humans. In its current state the system is probably
too dumb to serve as a teammate to a human player against
another pair of human players or even to play against
humans in a non-collaborative version of the game of
dominoes. This is because its strategies are rigid—once a
game begins the same initial strategy is followed blindly
throughout. Allowing for adaptive strategies (which can
change the priorities of the goals they attempt to achieve as
the game progresses) or allowing the player agent making
the decisions to change strategies during the game might
give DOMAGE some of the flexibility needed to play with
people. For instance, as a game progresses it becomes more
and more important to get rid of the double tiles that one
might have (though how important depends on how many
doubles one has) in order to avoid the possibility of a double
becoming strangled. A double becomes strangled when all
six tiles with a given number (for instance, all tiles with a 5
on one of their halves) have been played except the double.
This makes it impossible for the double ever to be played
(because the number 5 will never be able to be left open on
the table, a necessary precondition in order to be able to play
another tile with a 5, in this case the 5-5 tile). Coming up
with additional strategies might also be worthwhile.

The current implementation of DOMAGE also focuses on
positive aspects of a game’s history. Agents pay attention to
which domino tiles have been played by which of the other
players while the game has been going on, and therefore can

infer which numbers are “liked” by them. However, there
are currently no mechanisms implemented to allow an agent
to predict which move another player will make, and
therefore to infer which numbers are disliked (not present on
any of the halves of the tiles possessed) by other players. For
instance, if the values open on the table are 3 and 5, and a
player p blocks the 5 even though he/she has previously
seemed to like 5’s, it probably means that that player does
not have any tiles with 3 on them. By making this inference
the opposing team can increase the possibility of making p
pass (or at least continue to block him/herself or his/her
teammate) by leaving the 3 open on one (or, even better,
both) ends of the tiles already on the table. Thus, a more
complex reasoning engine that tries to hypothesize about
other players’ motivations in making different moves may
give the system more intelligence.

In addition, the different possible goals that are attempted
(according to a predefined list of priorities) in the strategies
are currently mutually exclusive. In the current
implementation, once a tile has been identified that, if
played, will achieve the goal with the highest priority
possible (out of the goals involved in the strategy), that
move is made by the player agent. Instead, if all playable
tiles were analyzed according to all possible goals, then for
instance a move might be identified that not only benefits
the agent’s teammate but also blocks the opposing team’s
leader at the same time. When the goals are allowed to
interact in this way the candidate tile might be assigned a
higher weight when deciding which move to make, thus
again resulting in more intelligent decision-making
capabilities for the game-playing agents.

The experimental results we presented in Section IV and
discussed in Section V will help guide us in making these
adjustments to the DOMAGE system. Additional
experiments might also give us useful information. For
instance, it might be interesting to see what happens if both
players in a team “agree” on following a specific strategy
(out of the ones discussed earlier) before a game begins. In
fact, it might also be interesting to see what happens if each
player in a team agrees to follow a specific strategy (but a
different one for each player) before a game begins. In both
of these situations the players in a team would have
additional information (that cannot be communicated during
play) that might help them lead their team to win a game.

REFERENCES
[1] http://www.dominorules.com/dominorules.aspx.
[2] http://www.pagat.com/boston/bridge.html.
[3] http://nelson.oit.unc.edu/~alanh/hearts-copy-

strategy.html.
[4] M. Ginsberg, “GIB: imperfect information in a computationally

challenging game,” Journal of Artificial Intelligence Research, vol.
14, pp. 303-358, 2001.

[5] N. Sturtevant, “A comparison of algorithms for multi-player games,”
in Proc. 3rd Int. Conf. Computers and Games, Edmonton, Canada, July
2002, pp. 108-122, Springer-Verlag.

1-4244-0464-9/06/$20.00 2006 IEEE. 216 CIG'06 (May 22-24 2006)

Highly Volatile Game Tree Search in Chain Reaction

Dafyd Jenkins
School of Biosciences

University of Birmingham
UK, B15 2TT

djj134@bham.ac.uk

Colin Frayn
CERCIA, School of Computer Science

University of Birmingham
UK, B15 2TT

cmf@cercia.ac.uk

Abstract— Chain Reaction is a simple strategic board game
for two or more players. Its most interesting feature is that
any static evaluation for board positions is highly volatile and
can change dramatically as the result of one single move.
This causes serious problems for conventional game-tree search
methods. In this work, we explore an innovative approach using
Monte Carlo analysis to determine advantageous moves through
a stochastic exploration of possible game trees. We extend
the concept of Monte Carlo analysis to include round-based
progressive pruning. We also investigate the concept of volatility
as a bias to the alpha-beta values within a hierarchical search
tree model, in order to cope with the inherent unpredictability.

I. INTRODUCTION

Chain Reaction is an as yet unstudied game played on
a square or rectangular board of user defined size. The
current work considers only two opposing players, though
it is possible to play with a larger number. Due to the
potential complexity of move resolution, Chain Reaction is
a computer-only board game with implementations on many
different platforms. It has very simple rules, yet is also very
strategic and complex.

The object of the game is to remove all of the opponent’s
pieces from the board by causing chain reactions of ‘explo-
sions’.

A. Rules of Chain Reaction

Chain Reaction consists of several simple rules:

Game set up

The board is initially empty, and each player has a number
of pieces of a specific colour.
Each square on the board is assigned a ‘capacity’ value
depending on the number of neighbours it has (up, down,
left and right):

� A corner square has 2 neighbours
� An edge square has 3 neighbours
� All other squares have 4 neighbours

Placing pieces

Each player takes turn in placing a piece of their specific
colour on the board.
A piece may be played on a square if:

� The square is empty, or
� The square contains 1 or more pieces of the player’s

colour.

Fig. 1. (top) Square explosion (bottom) Square explosion and capture

Exploding a square

After a piece has been placed on the board, it must be
checked for explosions.

A square explodes if it contains an equal or greater
number of pieces to its ‘capacity’ value.

If the square explodes then the pieces in the square are
removed and one piece is added to each of its neighbour
squares. Any opposing pieces currently in the neighbour
squares are removed and replaced with an equal amount of
the player’s pieces.

Each of the neighbours must then be checked for
explosions, and so chain reactions of explosions may take
place. Figure 1 (top) shows the outcome of a cell explosion,
and Figure 1 (bottom) shows the outcome of a cell explosion
capturing an opponents piece.

The order in which the board is updated makes a
significant difference to the final outcome of the move.
As such a specific order for updating the board is defined.
The initial square in which the move is made is added
to a queue. If the square has reached capacity, then the
neighbouring squares are added to the queue in the order

1-4244-0464-9/06/$20.00 2006 IEEE. 217 CIG'06 (May 22-24 2006)

Left, Right, Up, Down.

B. Motivation for using Chain Reaction

Whilst Chain Reaction has very simple rules and game
play, the game has an ‘easy to learn; hard to master’
complexity to it. It shares many similarities with Go, such
as the importance of structure within a game position, and
an extremely large branching factor (the exact branching
factor is, at this time, currently unknown). This means that
many standard game playing techniques give poor results.
Chain Reaction also does not have a decreasing complexity
as the game progresses, unlike chess for example, where the
complexity begins to decrease as pieces are captured. The
complexity only generally decreases during the extremely
short end-game of Chain Reaction (usually one or two
moves).

II. STANDARD APPROACHES

Perhaps the most commonly used game playing technique
is the Minimax algorithm, along with its many variants.
Minimax has been used on a wide variety of games, most
notably Chess (such as ‘Deep Blue’[1] and ‘ChessBrain’[2])
and Draughts/Checkers (such as ‘Chinook’[3]). However,
the Minimax algorithm has several drawbacks:

� High time complexity for large branching factors
� Requires large amounts of subjective domain knowledge

incorporated into a heuristic function for board evalua-
tion

� The ‘horizon effect’ in which good moves may be
missed if the ply depth is not large enough, or bad
moves may be inadvertently selected if a specific branch
currently looks promising, but leads to an extremely
poor move one or more ply ahead.

Evolutionary methods have also been widely used in
game playing algorithms, in particular in Go. This is
largely due to the inherent problems the Minimax approach
encounters when applied to such a complex game. Neural
networks have been applied to board evaluation to offset
the problems associated with hand-crafting a sufficient
evaluation heuristic function for a Minimax search[4].
Spatial reasoning techniques have also been used to
influence neural network design for Go, in order to attempt
a ‘divide and conquer’ approach to board evaluation [5], [4]
and this also referred to as ‘soft segmentation’ [6].

Our original work consisted of attempting to use several
evolutionary techniques, along with the classical Minimax
algorithm to develop game players for Chain Reaction. A
range of players were designed and played against each
other, including an evolutionary player using neural network
board evaluation functions influenced by spatial reasoning,
together with genetic algorithms and data mining techniques
for knowledge discovery. We also implemented a standard
Minimax player with � � � pruning and a simple piece

counter heuristic. Finally, we investigate the application of
particle swarm optimisation to a piece-position table board
evaluation heuristic. The results of these experiments can be
found in our earlier work[7].

In our earlier work, we were unable to evolve significantly
successful strategies using a spatial neural-network approach
under a number of different training schemes. The motivation
for this new work was to explore new and distinct techniques
for evolving strategies within this complex game, and to
investigate whether or not the new methods are capable of
overcoming the difficulties of dealing with a highly volatile
game tree.

III. MONTE CARLO APPROACH

The Monte Carlo method (also known as statistical
sampling) is a stochastic technique designed to sample a
large search space, allowing inferences to be made about
the properties of that search space as a whole. This has
been used to explore the behaviour of various physical and
mathematical systems such as numerical integration and
optimisation problems, and it relies on random (or pseudo-
random) number generators to allow the non-determinism
required to generate statistically valid results. The use
of Monte Carlo simulations for a problem assumes that
the problem can be described using probability density
functions. The simulation then proceeds to randomly sample
the probability density function many times. Such repeated
sampling allows an average result to be generated, which is
then used as the solution[8].

The Monte Carlo method was first applied to Go in 1993
by Brügmann[9]. In this paper the method was combined
with a Simulated Annealing process which was used to
assign probabilities to each available move. Using these
probabilities many random games (samples) are played
from the current board position until completion. The move
which returns the highest average score from these statistical
samplings (that is, the move with the highest win-fraction),
will then be the move selected and played.

Whilst this is an incredibly simple algorithm, and is
based purely on random sampling, it performs quite well
with the authors citing a ranking of around 25 kyu (Kyu is
the ranking system used within Go; a lower Kyu indicates
a stronger player. A new or extremely novice player usually
has a kyu of over 30) on a 9x9 board. This result is very
interesting as the choice of the moves made is based solely
on random numbers, and randomly sampled games, with no
domain knowledge required other than the rules of the game.

Bouzy and Helmstetter also investigated the use of the
Monte Carlo method in Go in their 2003 paper[10]. The
authors used a simpler approach than that used by Brügmann
called Expected-Outcome proposed by Abramson[11], and

1-4244-0464-9/06/$20.00 2006 IEEE. 218 CIG'06 (May 22-24 2006)

introduce several modifications to the base algorithm.

A. Monte Carlo method for Chain Reaction

The Monte Carlo approach we propose is slightly
different and simpler than the approach used by Bouzy and
Helmstetter[10].

The Monte Carlo method we designed consists simply
of sampling the required number of random games until a
resolution is reached, for each legal move available to the
player. Moves within the game simulations are selected at
random from the current player’s available legal moves.
The probability density function used to sample the random
moves is uniform, so all moves have an equal probability
of selection. The outcome of each game is recorded. The
move with the highest number of wins from the random
game simulations is selected and played.

This method limits the domain knowledge required by the
algorithm to an absolute minimum, and so only fundamental
game rules are supplied to the player.

This simpler method was chosen due to the large
computations often required to update the game board after
each move. However, the ’game over’ states are easily
detectable. This is in contrast to Go which has a complex
board update (for example locating eyes and ‘dead’ pieces)
and also complex ’game over’ states, involving difficult
evaluations of territorial control.

B. Results of Monte Carlo method

Our Monte Carlo player was tested against a random
player, and a Minimax player with a piece counter heuristic.
2000 games were played on a 5x5 board with each player
alternating colours and therefore the first move. The Monte
Carlo player generated between 1 and 100 samples per
move each game. The Minimax player used a ply depth
between 1 and 4 each game.

As can be seen from Figure 2 the Monte Carlo player
wins over 90% of all games against the random player
even at the lowest number of samples used in the Monte
Carlo simulation. The results indicate a general decrease
in playing strength of the Monte Carlo algorithm as the
number of samples used per move is reduced.

We have investigated the playing strength of algorithms
without considering the time spent per move. Our interest
here is purely in the variation of playing strength with the
internal parameters of the algorithms chosen. In future work,
one could investigate the efficiency of the various algorithms
after normalising by their speed. When comparing a Monte-
Carlo player against a standard � � � search this is easy
to implement by setting the latter to use a fixed-time limit

instead of a fixed-depth limit.

IV. PROGRESSIVE PRUNING

One of the modifications used by Bouzy and Helmstetter
was ‘Progressive Pruning’, which was applied to the
algorithm in an attempt to speed-up the Monte Carlo
method[10]. This simple modification involves ‘pruning’
candidate moves when they initially appear statistically
inferior to other moves. This allows the algorithm to
concentrate on a more careful analysis of the remaining,
more promising possibilities.

As our Monte Carlo method did not use the same
statistical framework as Bouzy and Helmstetter, a new
Progressive Pruning algorithm was devised. This algorithm
was based on a tournament selection strategy, in which
a number of ‘rounds’ are played within the tournament,
with only a certain fraction of candidate moves allowed to
proceed to the following round. Once a certain maximum
number of rounds has been played, the best remaining move
is selected and played.

The number of rounds and samples per candidate move
per round were arbitrary selected, as with the standard
Monte Carlo algorithm. Further investigation of the most
suitable values to use here is left for future work.

Each round the maximum capacity of candidate moves
which are allowed to progress to the following round is
reduced by ����

������
. For example if 5 rounds are selected,

then the maximum capacity will be reduced by 20% each
round. The number of wins recorded for each candidate
move is carried forward each round, with only the top
ranking (cumulative) players proceeding. On a 5x5 board,
this means that the 5 worst players are discarded each round.
However, the algorithm specifies that only the maximum
number of candidates is reduced each round, so in most
cases, with fewer than 20 candidate moves, no moves will

Fig. 2. Monte Carlo player against Random and Minimax players. A result
of 50% indicates that the players are of equal strength.

1-4244-0464-9/06/$20.00 2006 IEEE. 219 CIG'06 (May 22-24 2006)

be discarded until the 2nd or 3rd round.

Only the candidate moves which survive to the final
round of the tournament will be analysed with the maximum
specified number of samples.

Fig. 3. Computational complexity saving of Progressive Pruning algorithm

As shown by Figure 3 the Progressive Pruning algorithm
will never require more effort than the standard Monte
Carlo method. The candidate moves surviving until the last
round will be examined in exactly the same depth as with
the standard method, however all other (supposedly inferior)
moves will be analysed in decreasing levels of detail. Based
on an average number of total moves available to the player
at any given time of half the number of squares on the
board, then the Progressive Pruning algorithm will require
approximately 30% fewer samples than the standard Monte
Carlo method on a 5x5 board. A varied pruning method
could clearly reduce this still further, but with a trade-off
against the risk of accidentally removing a promising branch.

A. Results of Progressive Pruning method

In order to test that the Progressive Pruning method did
not worsen the game playing strength of our code, we
played a number of games against a random player on a 5x5
board, once again with each player playing 1000 games as
the first player, and 1000 as the second player. An average
was taken over the first and second set of results. The
total time taken was also recorded. These results were then
compared to the results obtained from the standard Monte
Carlo method.

Monte Carlo samples per move
100 50 25 10 5

Monte Carlo 984 980.5 970 937 918.5
Progressive pruning 989.5 980.5 966.5 943 910

TABLE I

AVERAGE NUMBER OF WINS OF MONTE CARLO AND PROGRESSIVE

PRUNING AGAINST RANDOM PLAYER

Fig. 4. Difference between results of Progressive Pruning and standard
MC player against random player. Note the small scale of the y-axis

As shown by Table I and Figure 4 the performance of
the Progressive Pruning algorithm is equivalent to that of
the Monte Carlo algorithm against the random player, with
variations less than one percent in either direction.

Figure 5 shows the reduction in computational complexity
of the Progressive Pruning algorithm in comparison to the
standard Monte Carlo algorithm. The results also confirm
the 30% reduction estimated in section IV.

V. VOLATILITY

During our analysis of Chain Reaction it was noticed that
the game has an usual characteristic. Game positions within
Chain Reaction can vary extremely rapidly. This means that
in many positions it is difficult to define a suitable heuristic

Fig. 5. Time taken for Progressive Pruning and standard MC player against
random player

1-4244-0464-9/06/$20.00 2006 IEEE. 220 CIG'06 (May 22-24 2006)

to evaluate a given game position. An example of this is
shown in figure 6. Here we see an example game position
where white seems to have lost, and indeed if black is to
move next then the game should be over. However, if white
is to move, then she will in fact win instantly. Although this
is a purely manufactured game position, similar positions
occur very frequently within the course of a game of Chain
Reaction. Whilst the position may not lead to a win for the
currently losing player, as in the example, the number of
pieces, and territory of the players can fluctuate rapidly.

Fig. 6. Example of volatile game position

A. Theory of volatility

Our analysis of Chain Reaction and volatility leads us to
believe that quantifying the volatility of the current game
position may have a significant impact on the performance
of a standard � � � game-tree search. We believe this for
several reasons, most importantly:

� Any extra information and knowledge given to the
evaluation heuristic can prove beneficial, provided the
information is incorporated in an accurate way into the
evaluation.

� It may search the game-tree more efficiently, by reduc-
ing cut-offs when using the ��� algorithm. This would
be due to the more informed evaluation heuristic, but
also the influence of the volatility score on the search
window bounds. Whilst this may slow the algorithm
down, as fewer cut-offs within the tree are made, the
risk that a seemingly good move in a very volatile
environment will be accepted is reduced.

� Volatility may also be beneficial when using unsafe
pruning techniques such as ‘delta cuts’ by allowing an
adaptive ‘delta’ parameter to be used, instead of the
static parameter used with the technique.

B. Example of volatility

The concept of volatility was investigated as an alternative
to the quiescent (or horizon) search algorithm for game-tree
search. Quiescent search allows leaf nodes within the tree
to be further expanded if 2 conditions are met:

1) The leaf node is non-terminal (e.g. the search has
stopped due to the ply depth limit being reached)

2) The leaf node is classed as ‘interesting’.
What makes a game position ‘interesting’ is highly

subjective, but examples of ‘interesting’ moves in chess
would be piece exchanges, promotions and check positions.
If a fairly long set of moves is caused by a number of
piece exchanges, then we could say that the current branch
is not only interesting, but also volatile, due to the rapid
fluctuations of player advantage. In situations such as these
it is beneficial to expand the current branch of the tree
until it is no longer volatile. For example, a series of piece
captures may lead to the players Queen under threat, but if
the move is a leaf due to the ply depth being reached, then
the player will not take the vulnerability of the Queen into
account. This may lead to very poor moves being made, as
the player is unable to see ‘over the horizon’ to the next
ply.

However, whilst quiescent search is an extremely useful
algorithm for games such as chess, its application to Chain
Reaction may be somewhat limited. This is due to the
larger inherent volatility within the game, than for example
chess. If we take the example of piece exchanges in Chain
Reaction as the condition to describe ‘interesting’ moves
and so lead to a quiescent search, then it is highly likely
that a search would never terminate. In mid and end game
situations in Chain Reaction, the piece turnover between
players is extremely rapid. This means that most leaf nodes
will need to be explored a lot further, which is clearly
infeasible in terms of search time. We therefore propose that
using volatility as a measure of the degree to which we can
‘trust’ results from each branch, may be a viable alternative
to using a quiescent search.

C. Volatile game-tree search for Chain Reaction

Due to time constraints, the algorithm designed for Chain
Reaction is used in a standard ��� algorithm without unsafe
pruning techniques such as ‘delta cuts’ or ‘razoring’. The
algorithm used is as follows:

1) Generate required statistics about current game state.
Statistics include quantifying the volatility of the po-
tential moves, and also estimated pay-off of potential
moves.

2) Generate a game-tree using the �� � algorithm.
3) Pass down estimated pay-off to appropriate leaf nodes.
4) Modify the � and � parameters using the quantified

volatility to widen the �� � search window
5) Select appropriate move using Minimax algorithm

1) Generating statistics: Statistics about the current
game position can be created using the standard Monte
Carlo method (or progressive pruning method) described
in the previous chapter. During each Monte Carlo sample,
the number of pieces each player has is recorded at each
move. From this the average pieces change per move can

1-4244-0464-9/06/$20.00 2006 IEEE. 221 CIG'06 (May 22-24 2006)

be estimated using the following formula:

���������	 �
�

��

�

��� � ������ ��� � �����

�

where
 is the total number of moves played in the
simulated game, �� is the number of pieces on the board
belonging to the current player on move �, and � � is the
number of pieces on the board belonging to the opponent
player on move �.

The value generated from this formula is used as the
quantified volatility for the given move. This process is then
repeated for all legal moves from the current game position.

Future work may involve investigating the effect of
playing only a limited number of moves when simulating
the game, rather than playing until completion. It is likely
that the volatility value generated for the entire game will
be significantly different to specific parts of the simulated
game, and so will be inaccurate at any particular time.
herein lies another interesting avenue for future research.

The estimated pay-off of potential moves is simply
calculated as the number of wins simulated by the Monte
Carlo method of the given move. This value is taken as the
normalised win percentage from 0 (no wins) to 1 (win all
games). Once again this process is repeated for all legal
moves from the current game position. This is used in the
initial �� � move ordering.

2) Game-tree generation: The game-tree is generated
using the standard �� � search algorithm, however several
other parameters are also required. The volatility value and
estimated pay-off is passed down the appropriate branches
as the tree is created.

The generated score is then scaled using the estimated
pay-off, so that moves with a smaller estimated pay-off will
be scaled down more than moves with a larger estimated
pay-off.

3) Modifying � and � parameters: Within the � � �

algorithm, the 2 parameters � and � are used to cut branches
from the game-tree which will result in a move at most
no better than the best currently found. This allows the
search to complete much more quickly as fewer nodes and
branches have to be expanded. However, in a highly volatile
game position, the scores generated for the move may not
be very high (due to the simple piece counting heuristic),
but the move may still be quite good. Therefore, the � and
� parameters are modified using the current volatility, to
widen the search window. The following 2 formulas are used:

Fig. 7. Example of volatile game tree

������ ������ ���������	

and

���� ���� ���������	

This has the effect of widening the search window,
meaning that it is more difficult for a seemingly good move
within a highly volatile branch to cause a cut-off.

VI. RESULTS OF VOLATILITY METHOD

Our Volatile player was played against a random player,
and a Minimax player with a piece counter heuristic
separately. 1000 games were played on a 5x5 board as each
of first and second player. The Volatile player generated
between 1 and 100 samples per move and a ply depth
between 1 and 4 each game. The Minimax player used a
ply depth between 1 and 4, which was kept the same as that
of the Volatile player.

Figures 8 and 9 show that the Volatile game tree algorithm
has a negative effect on the strength of the player, compared
with a standard game tree with the same ply depth. However,
as the number of samples generated per move increases
the strength of the player increases, and in the case of
ply depths of 1 and 2 against the random opponent, and
ply depth 1 against the equivalent Minimax opponent the
Volatile game tree is a stronger player than an equivalent
Minimax game tree.

Whilst the technique presented here does not improve
performance of a standard � � � search, unsafe pruning
techniques may benefit from using volatility for generating

1-4244-0464-9/06/$20.00 2006 IEEE. 222 CIG'06 (May 22-24 2006)

Fig. 8. Volatile player against random player

Fig. 9. Volatile player against Minimax player

adaptive parameters. For example, in the techniques used
to prune leaf nodes or frontier nodes in game trees, some
measure of the expected volatility in a standard game
position is required in order to assess whether a poorly
performing branch might still climb back above � on
subsequent ply. Techniques known as futility pruning
and delta cuts both use such a measure. In the default
implementation, this buffer value is usually set to a fixed
value, assumed to be sufficiently large to avoid (most)
accidental false prunings. However, the addition of a
volatility measure could be used to assign a dynamic buffer
value which would make the pruning far more effective
by encouraging more cuts in safer positions and avoiding
erroneous cuts in highly volatile positions.

VII. CONCLUSIONS

We have presented a number of interesting results
concerning the application of Computational Intelligence
techniques to the game of Chain Reaction.

1) We have shown how the Monte Carlo technique of
statistical sampling may be applied to the process of
choosing a best move for any given game position.

2) We have shown that the Monte-Carlo method can,
with moderate search time, outperform a simple ���

pruning minimax search, to depth of 4 ply or less. We
anticipate that Monte Carlo players can also outper-
form deeper-searching minimax players, though this
remains open for future work. Unfortunately, the time
required for such a simulation increases significantly
with the minimax depth.

3) We have identified a Progressive Pruning technique
which is able to reduce the number of game samples
required in a standard Monte Carlo search by approx-
imately 30% for an average game situation.

4) We have investigated the introduction of a volatility
estimate into the standard � � � search algorithm,
compensating for the difficulty of implementing a
quiescence search within Chain Reaction.

ACKNOWLEDGMENTS

Dafyd Jenkins would like to acknowledge funding from
the EPSRC, UK, in support of his MSc research. Colin
Frayn would also like to acknowledge financial support from
Advantage West Midlands. We also acknowledge Brian
Damgaard and Lee Haywood, for interesting discussions
during the earlier stages of this research.

REFERENCES

[1] F. Hsu, M. S. Campbell, and A. J. Hoane, Jr., “Deep blue system
overview,” in Proceedings of the 9th international conference on
Supercomputing. New York: Association for Computing Machinery,
03-07 July 1995.

[2] C. Justiniano and C. M. Frayn, “The chessbrain project: A global
effort to build the world’s largest chess supercomputer,” Journal of
the International Computer Games Association, vol. 26, no. 2, pp.
132–138, 2003.

[3] J. Schaeffer, J. C. Culberson, N. Treloar, B. Knight, P. Lu, and
D. Szafron, “A world championship caliber checkers program,” Ar-
tificial Intelligence, vol. 53, no. 2-3, pp. 273–289, 1992.

[4] G. Kendall, R. Yaakob, and P. Hingston, “An investigation of an
evolutionary approach to the opening of Go,” in Proceedings of the
2004 Congress on Evolutionary Computation CEC2004. COEX,
World Trade Center, 159 Samseong-dong, Gangnam-gu, Seoul, Korea:
IEEE Press, 20-23 June 2004, pp. 2052–2059.

[5] K. Chellapilla and D. B. Fogel, “Anaconda defeats hoyle 6-0: A case
study competing an evolved checkers program against commercially
available software,” in Proceedings of the 2000 Congress on Evolution-
ary Computation CEC00. La Jolla Marriott Hotel La Jolla, California,
USA: IEEE Press, 6-9 2000, pp. 857–863.

[6] M. Enzenberger, “Evaluation in go by a neural network using soft
segmentation,” in Proceedings of the 10th Advances in Computer
Games Conference. Berlin, Germany: Springer Science+Business
Media, 20-23 June 2003.

[7] D. Jenkins and C. Frayn, “An evolutionary alternative to classical board
game ai approaches,” Master’s thesis, School of Computer Science,
University of Birmingham, UK, January 2005, contact authors for
copies.

[8] C. S. E. Project, “Introduction to monte carlo methods,” 1995, eBook,
http://csep1.phy.ornl.gov/CSEP/MC/MC.html.

[9] B. Brügmann, “Monte carlo go,” Max-Planck-Institute of Physics,
Tech. Rep., 1993.

[10] B. Bouzy and B. Helmstetter, “Monte-carlo go developments,” in
10th Advances in Computer Games conference, Graz 2003. Kluwer
Academic Publishers, 2003, pp. 159–174.

[11] B. Abramson, “Expected-outcome: A general model of static evalu-
ation,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 12, no. 2, pp. 182–193, 1990.

1-4244-0464-9/06/$20.00 2006 IEEE. 223 CIG'06 (May 22-24 2006)

es

Abstract—This paper proposes a new paradigm for the
generation of game worlds using principles from the science of
complexity. It argues that through the emergence of complex
phenomena from simple interactions and building blocks, game
worlds capable of surprise and of showing creative behavior
may be evolved. A conceptual model incorporating these
principles is described and BitBang, a software framework
implementing this model, is presented. Usage examples are
given and implications for game design are addressed.

I.INTRODUCTION

ESPITE substantial advances both in hardware and soft-
ware technology, computer games' artificial

intelligences fail to demonstrate the abilities to both surprise
the human players for an indeterminate period of time and
display creative behavior. The lack of constant surprise and
creative behavior hinders two basic goals of computer games:
longevity and helping the player maintain a state of suspen-
sion of disbelief. Sophisticated as they may be, when played
for long enough time, most game AI reveals the deterministic
nature of its internal processes.

D

In this paper we analyze the possible shortcomings of the
current artificial intelligence paradigm for computer games
and propose an approach based on the science of complexity.
Under this paradigm we propose an agent-based conceptual
model with roots in Alife systems for the simulation of game
environments capable of displaying the properties of creativi-
ty and innovation. Then we turn to describing the BitBang
framework, a software platform developed for the implemen-
tation of this conceptual model. We discuss the implications
of this new paradigm on game design and terminate by giving
examples of application to different game genres and making
some final remarks on the direction of our future work.
Overall this paper presents a conceptual and technological
proposal based on the early stages of a research project.

II.FROM COMPLICATED TO COMPLEX

The great majority of computer games use traditional arti-
ficial intelligence strategies when modeling agent behavior
[5]. These strategies are themselves rooted in common engi-

Manuscript received December 18, 2005.
Telmo L. T. Menezes is a Ph.D. student at the Computer Science

Department, University of Coimbra, Coimbra, Portugal and a fellow of the
Fundação Para a Ciência e Tecnologia under the grant number
SFRH/BD/19863/2004 (e-mail: telmo@dei.uc.pt).

Tiago R. Baptista is a Ph.D. student at the Computer Science Department,
University of Coimbra, Coimbra, Portugal and a fellow of the Fundação Para
a Ciência e Tecnologia under the grant number SFRH/BD/18401/2004
(e-mail: baptista@dei.uc.pt).

Ernesto J. F. Costa is a Full Professor at the Computer Science
Department, University of Coimbra, Coimbra, Portugal (e-mail:
ernesto@dei.uc.pt).

neering methodologies that served us well in overcoming a
vast array of technical problems. They are the "divide and
conquer" approach for dealing with complicated problem do-
mains and top down system design, where a system is created
from a hierarchy of linear sub-systems with increased special-
ization down the tree. This approach is common in computer
games artificial intelligence systems. A typical game AI will
use scripting or state machines for decision-making, followed
by specialized reasoning algorithms like A* for path finding,
influence maps for spatial placement of units or trained neural
networks for activities like flying planes or driving cars and
many others. Under this paradigm, when a new functionality
is needed the system is extended and new modules that im-
plement that functionality are added to the hierarchy. This
approach achieved considerable success in hard logic tasks
like military strategy and spatial reasoning but so far failed to
achieve truly creative, innovative behavior. An indication of
the lack of progress in these last areas is that current main
stream game design theory tends to promote the idea that the
goal of artificial intelligence in computer games should not be
that of achieving real intelligence but of fooling the player
into the belief that he or she is interacting with real intelli-
gence.

We argue that the reason for this lack of progress in devel-
oping artificial creative and innovative behavior is that the
paradigm used is inadequate for the task, and that under a
new paradigm these goals are indeed achievable.

The problem of the nature of complexity is obviously not
limited to the area of computer games, and since the late 20th

century some areas of study have developed with new ways
to approach this problem: chaos theory, science of complexi-
ty and the complex and adaptive systems (CAS) field of
computer science. These approaches provide us with a set of
new fundamental assumptions about complex systems. Chaos
theory reveals the non-linear nature of many of nature's pro-
cesses. In non-linear systems a small variation in the input
may lead to a big variation on the output and , conversely, a
big variation in the input may lead to a small variation in the
output. Some non-linear systems follow simple laws and yet
are unpredictable unless we had infinite precision and com-
plete information. Such is the case of meteorological
phenomena or the stock market. This is the first assumption
we accept for our new paradigm. Complexity sciences study
all kinds of processes, from the physical to the social level
and finds fundamental similarities among them. One of these
similarities is that of decentralized processes and local inter-
actions which is related to another very important property of
complex systems: emergent phenomena.

Complex systems in nature tend to be created by the local

Towards Generation of Complex Game Worlds
Telmo L. T. Menezes, Tiago R. Baptista, and Ernesto J. F. Costa

1-4244-0464-9/06/$20.00 2006 IEEE. 224 CIG'06 (May 22-24 2006)

interactions of a large number of agents or entities from
which emerge phenomena that are much more complex than
the building blocks of the system. Decentralized processes
mean that there is no hierarchy or chain of command, and
that a series of agents of equal status auto-organizes by fol-
lowing simple local rules, as can be seen for example in an
ant farm or in bird flocks and also, yet sometimes less obvi-
ously, in human societies. Another important aspect of
emergence is that it tends to layer, so that from the building
blocks emerges a layer of complex phenomena that them-
selves interact under the same principles and cause the
emergence of another layer of even more complexity. For the
purpose of game design and game worlds simulation we can
model reality as having the following layers: physical, biolog-
ical and then social. We argue that progress in graphics,
sound and physics engines are operating only at the physical
layer level and that we need to develop strategies and design
theory to make the biological and social layers emerge.

Complex Adaptive Systems study computational models
for the generation of complexity and are based on the as-
sumption that "adaptation builds complexity", as J. H.
Holland [1] demonstrated with his Echo CAS simulation.
Adaptation is a general concept that contains more specific
processes like darwinist evolution and learning. On a CAS,
evolutionary pressure and/or learning processes on a co-evo-
lutionary environment push the system to new levels of
complexity.

Co-evolution is a central concept: the environment is
evolving as much as the agents and the evolution of the
agents and of the environment constantly influence each oth-
er. Under this assumption we no longer find it appropriate to
model the world simulation in a module separated from the
agent reasoning modules, as is usual in traditional approach-
es.

A classical AI solution follows a classical hierarchical func-
tionality approach to divide the problem in self-contained
modules, and adds features by producing a more complicated
system. Unfortunately, a complicated engineering system is
generally more error-prone as each new functionality is
added, since the number of potentially unforeseen interac-
tions increases. A complicated system also tends to have
many single points of failure and an inability to operate pro-
ductively under scenarios not considered during its design.

The method we propose does not promote divisionism,
gaining features by an increase in complexity. We favor
emergent functionality. “Emergent functionality means that
a function is not achieved directly by a component or a hier-
archical system of components, but indirectly by the
interaction of more primitive components amongst them-
selves and with the world.” [2] In a complex system if
modules do form, this happens by processes of self-organiza-
tion and not by decision of human designer. Auto-
organization promotes fuzzier frontiers between modules and
the ability to adapt. Such is the case of the human brain that
although divided in identifiable functional areas, may to some

extent adapt to injury, relearning and remapping needed func-
tionalities to non-damaged areas. Although superficially
appearing to be a complicated system, the human brain is in-
deed a complex one.

To summarize, we define a “complicated system” as one
that results from the aggregation of specialized linear sub-
systems and “complex system” as one that emerges from the
local interactions of simple agents auto-organizing in a given
environment. Trivially we may state than in a complex system
the whole is greater than the sum of its parts.

Under these assumptions we propose a conceptual model
for developing a new kind of simulation for digital entertain-
ment, and BitBang, a software framework that implements
this conceptual model.

III.CONCEPTUAL MODEL

The model for artificial intelligence in games we propose
describes the artificial world, as opposed to describing the ar-
tificial brain. As such, we define the world as having the
following components: perceptions, actions, features, brains,
agents, and things. The connections between all these ele-
ments can be observed in figure 1.

All these are fairly abstract concepts, and in this model
they keep that abstract property, as we can take advantage of
it. Having that in mind we now define those components in
our model.

Perceptions are the input from the world to the agent. Be-
ing an abstract concept, we can have higher or lower order
perceptions. A higher order perception would be, for exam-
ple, the “friend is near” perception, and a lower order
perception would be, for example, the temperature percep-
tion. One other thing to note is that the world referenced
here also includes the agent himself, thus opening up the pos-
sibility to have a perception on oneself. That would be the
case of, for example, a perception on the agent's own energy
level.

One other interesting possibility is the use of direct rather

Fig. 1. Diagram showing the relations between the various components of
the conceptual model.

1-4244-0464-9/06/$20.00 2006 IEEE. 225 CIG'06 (May 22-24 2006)

than symbolic perceptions. An example of a direct perception
is a render of the 3D world as viewed through the agent's
eyes, or the wave of the sound reaching the agent. These
kind of perceptions can, at first, seem more difficult to deal
with, but we believe that for a large enough world, they can
prove easier to handle and also faster to compute. Also, us-
ing direct perceptions, one could aim to emerge new kinds of
data processing schemes.

The actions are the output from the agent to the world.
Again, we can have higher and lower order actions. We
could have the action go home or the action go front. This
choice of granularity will have an impact on where on the
zone of emergent phenomena we can place our world. This is
explained later in this section and can be viewed on figure 2.
As with the perceptions, actions can also act on the agent
himself. An example of such an action could be the action
store in memory.

Note that we categorize the perceptions and actions as
higher or lower order just as an example of different possibil-
ities for the abstract concepts. Other categorizations are also
possible.

Both the perceptions and the actions can be seen as the ca-
pabilities of the agent. In a world with several species, each
would have its intrinsic capabilities, and as such, what it can
perceive from the world and how it can act on the world.

The features are, again as an abstract concept, the charac-
teristics of the agent or thing. It can be, for example, color,
energy, the 3D form, or anything that we want to character-
ize our agents and things with. A feature can then act as a
source for a perception, be it a self-referenced perception like
seeing your own color, or a perception on other objects.

The brain is a decision making component. It receives the
perceptions through the agent, and decides what actions the
agent should take. The brain is not bound to any kind of pre-
defined artificial intelligence model. It is possible to
implement the brain using for example, a rule system, a neu-
ral network, or anything that can take perceptions on the
input and output a decision on the action to take.

An agent is an object of the world that has cognitive capa-
bilities. An agent has a set of perceptions, a set of actions, a
set of features, and a brain component.

A thing is an object void of the brain component. A thing
has only a set of features. Still, the concept of thing is of ma-
jor importance to the model as it permits the artificial world
to more closely mimic the real world. We can view the thing
as having no active power to change the world, but make a
difference in the phenomena that emerges from the interac-
tions of the agents with the things and the perceptions the
agents have of the things.

When all the components are implemented and initialized,
we can then start the simulation. In this model, there is no
definition of simulation step, as we won’t have any type of
centralized control. As such, the simulation is asynchronous.
The agents will independently perceive, decide, and act.

As can be seen, there is no evolutionary mechanism includ-

ed in the definition of the model. That’s because we imple-
ment evolution as an action. That is accomplished by giving
the agents the capability of reproduction. The reproduction
can be implemented as having mutation, cross-over, and any
other mechanism we want. Again, there is no central control
to the process of reproduction. The agents choose to repro-
duce and with what other agent to reproduce with.
Moreover, there is no explicit fitness function. The agents die
due to lack of resources, predators, age, or any other mecha-
nism implemented in the world. Thus, in this model we have
open ended evolution.

As mentioned, in this model we aim to produce emergent
behavior. This emergence can happen at various levels, or at
different layers, depending on what level are the components
implemented for a specific world. Although the model is ca-
pable of simulating a wide range of levels, we aim to emerge
behaviors, and as such fall in a narrower range. This can be
seen in figure 2. It would be theoretically possible with this
model to approach the zone where everything emerges (the
quantum zone). However, computational power, and thus,
time, restrains this possibility.

IV.COMPARISON WITH OTHER ALIFE SYSTEMS

As the model we are describing is an Alife system, a possi-
ble criticism of this work could be that of deeming
unnecessary the creation of a new such system when several
others already exist. It is our belief that none of the existing
Alife systems are designed to address the goal of generating
complex game worlds capable of providing real entertain-
ment in the interaction with human players. This is due both
to conceptual and technological reasons.

One of the oldest and most known such systems is Tierra
[6]. Tierra was created with the goals of simulating alterna-
tive biologies and allowing for the direct observation (and
arguably proving of) darwinist evolution. In Tierra, agents
are programs represented in special-purpose, simple machine
code. Tierra simulates cellular and multi-cellular processes. It
is our goal to be able to simulate much higher level phenome-

Fig. 2. Diagram showing the zone where we want to work on the range of
possible emergent phenomena. The more to the left, the less emergent
phenomena and the more predefined parameters. The more to the right, the
more emergent phenomena. On the far right we would run the simulation at
the quantum level and everything would emerge from that.

1-4244-0464-9/06/$20.00 2006 IEEE. 226 CIG'06 (May 22-24 2006)

na, by defining higher level perceptions and actions while ap-
plying similar evolutionary and adaptive principles. It is also
out goal to achieve complex behaviors through the interac-
tion of simple agents to an extent that enables the simulation
to run in present or near-future hardware. While our model is
agnostic in regard to the brain model, we are pursuing strate-
gies that are less processor intensive than turing-complete
machine code programs and that will be the subject of future
publications.

Not less importantly, both Tierra and its successor Avida
[7] produce 2D simple and conceptual visualizations. While
this is adequate for the goals of these projects, the frame-
work we propose fully integrates with current 3D graphics
engines and physics engines.

Other engines exist with 3D visualizations, but none to the
best of our knowledge fit with the goals we purpose. Dar-
winbots, for example, while being a 3D game environment is
oriented towards a specific game (C-Robots) and is imple-
mented in Visual Basic, thus not making optimal use of
processing power.

It is also important to note that while games designed as
Alife systems have achieved great success, as is the case of
“Creatures” and the “Sims” franchises. It is our intention to
take this design one step further and use the Alife simulation
as a generative system, capable of creating complex worlds
from simple seeds.

V.THE BITBANG ENGINE

To implement our model, we created the BitBang Engine.
This framework is implemented having in mind the use of the
model in game development. The BitBang Engine provides
an object oriented framework that can be used as a library for
the artificial intelligence part of a game, both for runtime and
for design. To illustrate the use of the library, we also imple-
mented a Simulation Engine that integrates a 3D engine, a
physics engine, and the BitBang Engine. Both the BitBang
and the Simulation engines are implemented in C++ and have
bindings for Python to provide scripting. Other language
bindings are in the works. We show a screenshot of the Sim-
ulation Engine runing a simple experiment in figure 4.

Being implemented as a library, the BitBang Engine is very
easily plugged into any game engine. We show that in figure
3. There we can see that the glue code is in the actions and
perceptions that derive from the BitBang abstract classes.
For example, the action “go front” would have physics spe-
cific code to instruct the corresponding physics object to
advance in the direction it is facing. In the process of creating
this software we have already tried a few different engines.

In the BitBang Engine we implemented all the components
of the conceptual model. Most are implemented as abstract
classes that are then derived to create a specific world. The
child classes should be implemented by the user of the library.
Nevertheless, the BitBang Engine provides some ready-made
implementations for these abstract classes. In the case of the
brain, an implementation using a rule system is already pro-

vided by the engine, as are some perceptions, for example
perceptions of vision.

To be able to evolve the world, we need considerable pro-
cessing power. To cope with that need, we devised two
strategies. The first one is to be able to run the simulation in
accelerated time. As we are working with game technology,
the whole simulation would normally run in real-time. We
need to tweak this technology to accelerate simulation time
as to enable the passing of years in a short time. The other
strategy is to implement the model as a distributed applica-
tion. This way we can run the simulation in a high
performance cluster and use all the power that recent tech-
nology can offer.

Having the simulation running at a cluster has the problem
of getting run-time visualization and feedback. To cope with
that, we use a client-server architecture. The server software
runs at the cluster in accelerated time. When required, the
client can connect to the server and at that time, the server

Fig. 3. Diagram depicting the link between a game engine and the BitBang
Engine, as well as the glue code required to change when the game engine
changes. There are a number of other objects not shown here, but these are
the important ones regarding the interface with the library. The objects not
shown merely implement the conceptual model described earlier.

Fig. 4. Screenshot of the BitBang engine in action. In this simple
experiment, evolving agents exist in a 3D world were resources must be
gathered for survival.

1-4244-0464-9/06/$20.00 2006 IEEE. 227 CIG'06 (May 22-24 2006)

will fall back to real time and the client can visualize the sim-
ulation. This architecture opens up another interesting
possibility. Rather than acting as a mere observer, it is possi-
ble for the client to act as a part of the simulation, enabling a
human agent to enter the simulated world and act on it. That
opens up a whole new range of interesting ways to evolve the
world.

VI.EXAMPLES

In this section we will try illustrate the concept with some
examples of possible applications for real computer games.
Each example will contain a brief description of the game
world, followed by the definition of the initial conditions for
game generation: the actions and perceptions available to the
agents as well as the reproductive strategy.

The main purpose of these examples is to show the flexi-
bility of the concept across game genres. During our future
work we will focus in one or several game worlds designed
to be rich enough to explore the possibilities of the BitBang
engine. We believe that although the concepts we propose
may help enrich current games genres, it may also be used to
foster new paths for game design. Another aspect of the ex-
amples is that they illustrate BitBang operation at different
abstraction levels, proposing the generation of emergent phe-
nomena from different simulation platforms.

A.First Person Shooter
World description: autonomous agents moving in a 3D

maze try to shoot as many other agents as possible without
being shot themselves. New weapons, ammunition, armor
and energy bonus are spawned at random or fixed locations
at random times. Using BitBang a FPS world may be popu-
lated with heterogeneous adversaries for the human player(s),
with diversified behaviors.

Actions: rotate left; rotate right; move forward; move
back; raise aim; lower aim; shoot; change weapon; jump.

Perceptions: agent visible; number of agents visible; agent
in aim; energy level; ammunition level; current weapon.

Reproductive strategy: since reproduction is not typically
part of the game design in a first person shooter, new agents
are spawned that combine the genotype of two existing
agents each time an agent dies. In this case reproduction is a
fixed rule in each agent’s mandatory brain, its mechanics not
subject to evolution.

B.Real Time Strategy
World description: a set of teams or civilizations com-

pete for dominance of a map. Each team may build units or
structures according to the available resources. Units or
structures may be military in nature or resource gatherers /
workers. The current trend in RTS games is to have a central
intelligence control all the units and structures of a team. Us-
ing BitBang, each unit and structure is treated as an
autonomous agent, letting the centralized strategy emerge
from local interactions. Agents are provided with communi-

cation actions not usually present in RTS games, necessary
for the propagation of information inside teams, so team-lev-
el behaviors emerge.

Actions (not necessarily available for all agents): rotate
left, rotate right, move, attack, build, gather, deposit, create
unit, repair, talk, (reproduce).

Perceptions: see (unit type | structure type | team affilia-
tion | interaction | resource); resource level; energy level;
hear.

Reproductive strategy: both structures and units are
agents and can be reproduced. Certain structure types create
certain unit types and certain unit types build certain struc-
ture types, each according to its evolvable internal rules.
When a building or unit is created, its genotype is the result
of a crossover from two existing or previous units of the
same kind. In case no sufficient units of a certain type are
available for crossover, dead units are used, selected by an
heuristic that induces evolutionary pressure. An interesting
variation of the genre could have units actually reproduce
with each other, providing a direct bio-inspired crossover
mechanism more aligned with the concepts we propose. In
this latter case, structures could be passive objects controlled
by agent units following the same uniform reproductive strat-
egy. Unit types could be modeled as species, only capable of
reproducing with the same kind. This environment would
thus present strong co-evolution, a recognized generative
process of natural complex systems.

C.Space Exploration
World description: the player controls a space ship with

the mission of exploring the Universe. She may enter a plan-
et’s orbit and then beam down to explore. Planets may be
hostile or peaceful, provide trading opportunities, more infor-
mation about the Universe and sell new technology for the
space ship. In this case the BitBang engine is used to gener-
ate diversified planets by randomly setting initial conditions in
their evolution. Space travel between planets takes long
enough for planet evolution to take place, thus providing the
player with a virtually limitless Universe. The BitBang agents
in this case are the inhabitants of the planets. The actions and
perceptions in this case are a generic proposition. In this sce-
nario we would want the simulation to be very close to an
artificial life environment. Agents may use different skins or
algorithmically generated names to tag each other, thus creat-
ing clans, collaboration and competition.

Actions: rotate, walk, build, sell, buy, pick, drop, eat,
drink, talk, change vestment, attack, reproduce, (…).

Perceptions: see (agent | object | tag), energy level, happi-
ness level, hear, (…).

Reproductive strategy: sexed, with crossover upon
agents’ decision.

D.Life Simulation Game
World description: Introduced by the Sims franchise, this

is an open-goal game where the player controls the daily life

1-4244-0464-9/06/$20.00 2006 IEEE. 228 CIG'06 (May 22-24 2006)

of a person or family in its mundane aspects, interacting with
other AI controlled persons in the game world. The Sims
game is a notable example of a new paradigm game, incorpo-
rating already some of the concepts we describe. This genre
is perfectly suited for the introduction of co-evolutionary
generative strategies.

Actions: rotate, walk, buy, pick, drop, eat, act upon, talk,
change clothes, reproduce, sleep, (…).

Perceptions: energy, cleanliness, environment light level,
sleepiness, hunger level, time of day, blather level, see (agent
| object | tag), (…).

Reproductive strategy: sexed, with crossover upon agen-
t's decision.

VII.IMPLICATIONS FOR GAME DESIGN

A change in paradigm like the one we describe in this pa-
per has important implications in game design strategies. We
claim that to achieve real surprising, creative and innovative
behavior in game agents, the level of control that the design-
ers have over the game must be lowered. We also claim that
such a system will have the ability to surprise the game de-
signer herself, and that attempts to exert greater control over
the system will limit its capacity to reach the goals we pro-
pose. This happens because under a model where simple
processes auto-organize to cause the emergence of a layer of
more complex behavior, the full understanding of the individ-
ual workings of the simple processes will not imply the full
understanding of the emergent layer of complexity. Although
this may appear to be a shortcoming of our model, it is in-
deed the property that makes it succeed. We can not expect
to be surprised by a system we fully understand. Note that
the degree to which each agent is a black box depends great-
ly on the brain algorithm being used. A rule list exposes its
internal processes to a human observer so she can easily un-
derstand the results of evolution on a given experience, but a
neural network may prove much more difficult to decode.
Also note that even when we understand the individual work-
ings of an agent, we may not be able to fully grasp the
emergent phenomena that derive from a large number of in-
teractions.

Under our model the game designer will not design the
world, but instead design the seed that will generate the
world. These seeds consist of the basic laws of the world,
and of the set of actions, perceptions and features available to
the agents. The design process will consist of a loop of defin-
ing the seed, allowing the world to evolve, evaluate the
results and then redefine or tweak the seed and iterate until
the end result is satisfying. The definition of the seed is a new
method in game design that needs to be studied. Studying
seed design methodologies is one of the current focuses of
our work.

In a complex simulation, quality control through exhaus-
tive test cases is not feasible. Two concepts that are central
to emergent complex phenomena are positive and negative
feedback. Positive feedback tends to exaggerate a phe-

nomenon over time while negative feedback tends to attenu-
ate it. Negative feedback is typically used in classical
engineering for control systems. Uncontrolled positive feed-
back is often dangerous and potentially destructive to a
system. During the evaluation design phase, these two con-
cepts may be used to analyze the system and access its
stability for the purpose of the game. It should be noted that
although the possibility of exhaustive testing of the system is
lost, auto-organizative systems tend by its very nature to be
very resistant to unexpected situations and have the property
of graceful degradation. This means that a failure or destruc-
tion of a component of the system will not cause it to fail but
only to degrade its quality to some extent. Failure is only
reached when a critical percentage of the system's building
blocks are compromised.

Another interesting consequence of this model is the possi-
bility of incorporating evolution in the game itself. This could
be done in several ways. In a god-like game we may let the
player tweak basic world rules and thus influence global evo-
lution. In a first or third-person game we may let the player
influence individual agents, altering their learning or survival
chances and thus influencing global evolution from the prop-
agation of the effects of local interactions.

VIII.FINAL REMARKS

The work presented in this paper is in progress since late
2004 and this is the first paper presenting the ideas, models
and software produced by the work. We are now in the state
of having a stable version of the BitBang Engine. The Simu-
lation Engine is in active development and near ready to
produce the first large scale experiments and scenarios.

In the future, the BitBang Engine will include more bind-
ings for other languages, for example for .NET, enabling the
use of a large range of languages like C#, Boo, Lisp, and
many others. We also aim to provide more ready-made final
classes for the easier creation of common experiments.

We will also experiment and study specific design strate-
gies for games.

REFERENCES

[1] J. H. Holland, Hidden Order – How adaptation builds complexity.
Helix Books, 1995.

[2] L. Steels, “Towards a Theory of Emergent Functionality” in J.-A.
Meyer and S. W. Wilson (eds) From Animals to Animats: Proceedings
of the First International Conference on Simulation of Adaptive
Behaviour, Cambridge, MA: The MIT Press, 1990, pp. 451–461.

[3] S. Wolfram, A New Kind of Science. Wolfram Media, Inc., 2002.
[4] Per Bak, How Nature Works – The Science of Self-Organized

Criticality. Oxford University Press, 1997.
[5] Steve Rabin et al, AI Game Programming Wisdom. Charles River

Media, 2002.
[6] Ray, T. S, “Overview of Tierra at ATR” in Technical Information,

No.15, Technologies for Software Evolutionary Systems, Kyoto,
Japan, ATR-HIP, 2001.

[7] C. Adami and C.T. Brown, “Evolutionary Learning in the 2D Artificial
Life Systems Avida”, in Proceedings of Artificial Life IV, R. Brooks,
P. Maes, Eds., MIT Press p. 377-381, 1994.

1-4244-0464-9/06/$20.00 2006 IEEE. 229 CIG'06 (May 22-24 2006)

The Blondie25 Chess Program Competes Against Fritz 8.0 and a
Human Chess Master

David B. Fogel
Timothy J. Hays
Sarah L. Hahn

James Quon
Natural Selection, Inc.

3333 N. Torrey Pines Ct., Suite 200
La Jolla, CA 92037 USA

dfogel@natural-selection.com

Abstract- Previous research on the use of coevolution
to improve a baseline chess program demonstrated a
performance rating of 2650 against Pocket Fritz 2.0
based on 16 games played (13 wins, 0 losses, 3 draws).
The resultant program, named Blondie25, did not use
any rules for managing the time allocated per move; it
simply used three minutes on each move. Heuristics to
more effectively manage time were developed by trial
and error, play testing against Fritz 8.0. The best
heuristics discovered were different for black and
white. The results of 12 games played on each side
were 1 win, 4 losses, and 7 draws for black, and 2
wins, 6 losses, and 4 draws for white. Fritz 8.0 is rated
currently at 2752 (±20) on SSDF (the acronym for the
Swedish Chess Computer Association), placing it as
the 12th strongest program in the world. At the time of
the contest between Blondie25 and Fritz 8.0, Fritz 8.0
was rated #5 in the world. The results are the first case
of an evolved chess program defeating a world-class
chess program (three times). The performance rating
for Blondie25 against Fritz 8.0 was 2635.33, which
compares well with the previous performance rating
of 2650 against Pocket Fritz 2.0. Blondie25 was then
tested against a nationally ranked human chess
master, rated 2301. In four games, Blondie25 won
three and lost one.

1 Introduction and Background

As noted in [1], chess has served as a testing ground for
efforts in artificial intelligence, both in terms of
computers playing against other computers, and
computers playing against humans for more than 50 years
[2-9].

This paper reports on progress in testing the self-learning
evolutionary chess program, named Blondie25. (A similar
protocol for learning to play checkers was named
Blondie24 [10]). Results reported in [11] indicated that
the evolved program earned a 16-game performance
rating of 2650 against Pocket Fritz 2.0, rated between
2300-2350, with 13 wins, 0 losses, and 3 draws.

Blondie25 is the result of 7462 generations of evolution in
self-play in which the static board evaluator was evolved,
including material values, positional values, and three
object neural networks (front, back, and center of the
chessboard). Moves are selected based on minimax with
alpha-beta pruning. Readers interested in background on
the development of the program should review [11]. One
of the limitations of the Blondie25 program is that it has
not evolved (because it has not been allowed to evolve)
the use of time per move as a facet of play. Instead, it has
devoted an equal amount of time for each move,
regardless of the current situation or history of moves. For
tournament conditions, three minutes per move have been
used.

An effort was made to incorporate simple heuristics for
using time more effectively. Performance was judged on
competitions with Fritz 8.0, a highly rated chess program
that was in the top five of all chess programs rated on [12]
at the time of our testing. Fritz 8.0 is currently ranked as
the 11th best program in the world.

The approach undertaken was to reflect the time control
management in Fritz 8.0, while also taking into account
whether or not a move made by Fritz 8.0 was anticipated.
Anticipated moves suggest that prior searching was
effective in gaining insight into future play; unanticipated
moves suggest that more time may be required to search a
branch of the game tree that was not appreciated.

2 Heuristics for Time Management

Experimentation in 153 games (some of which crashed
mid-play) yielded two different sets of heuristics for time
management for Blondie25 playing black or white.1 It
may be helpful to recall that 120 minutes are allocated for
the first 40 moves (first time period), 60 minutes are
allocated for the next 20 moves (second time period), and
30 minutes are allocated for all remaining moves.

1 During this experimentation, it was verified that
allowing Blondie25 to use a constant time per move
resulted in poor performance against Fritz 8.0.

1-4244-0464-9/06/$20.00 2006 IEEE. 230 CIG'06 (May 22-24 2006)

mailto:angeline@natural-selection.com

The heuristics were chosen for black are presented in the
following algorithm, where Ft is the amount of time used
by Fritz 8.0 on the previous move and x is Blondie25’s
time:

1. If Fritz 8.0’s move was anticipated, then x = Ft –
10 seconds, but not less than 20 seconds.

2. If Fritz 8.0’s move was unanticipated, then if:
a. Ft < 3 minutes, x = Ft + 1 minute
b. 3 < Ft < 5 minutes, x = Ft + 2 minutes
c. Ft > 5 minutes, x = Ft + 4 minutes

3. Regardless of whether or not Fritz 8.0’s move
was anticipated, if Ft > 8, then x = Ft + 3
minutes.

4. In addition, if Blondie25 is down on pawns but
not other pieces then add 1 minute to x. If
Blondie25 is down on pieces other than pawns,
add 4 minutes to x. If Blondie25 is down both
pawns and pieces, set x = 10 minutes.

5. After leaving the opening book, for the first three
moves, x = 20 seconds.

6. For the fourth move out of the book, x = 10
minutes.

7. For the 41st move, which begins the second
period of time control, x = 8 minutes.

8. If the duration assigned for any move would
cause an overtime condition or leave fewer than
20 seconds for each remaining move, then x is
set to the ratio of the time remaining to the
number of moves remaining in the time period.

Rules 2 and 3 above applied to the first and second
time periods.

The heuristics for white were similar, but simpler:

1. If Fritz 8.0’s move was anticipated, then x = Ft –

10 seconds, but not less than 20 seconds.
2. If Fritz 8.0’s move was unanticipated, then if:

a. Ft < 3 minutes, x = Ft + 1 minute
b. 3 < Ft < 5 minutes, x = Ft + 2 minutes
c. Ft > 5 minutes, x = Ft + 4 minutes

3. Regardless of whether or not Fritz 8.0’s move
was anticipated, if Ft > 8, then x = Ft + 3.

4. For the first three moves out of the opening
book, x = 20 seconds.

5. If the duration assigned for any move would
causes an overtime condition or leave fewer than
20 seconds for each remaining move, then x is
set to the ratio of the time remaining to the
number of moves remaining in the time period.

It is unclear presently why the effects of the additional
black rules were helpful for playing black but not white.
The rationale for some of the rules can be offered;
however, the values assigned for time periods only reflect
the results of experimentation and no claim of optimality
should be inferred.

The baseline for 20 seconds/move was arbitrary. Using
less time than Fritz 8.0 used when Fritz 8.0’s move was
anticipated assisted in saving time for situations that were
unanticipated. In such situations, the longer that Fritz 8.0
used to find its move suggests a deeper required search.
For black, more time is provided when Blondie25 is
playing behind; however, testing with this strategy for
white did not evidence any tangible benefits. Also for
black, extra time is provided at the beginning of play
(fourth move out of the book) to provide an initial deeper
search, and at the beginning of the second time period,
but it is not entirely clear why this may be effective for
black.

Both Fritz 8.0 and Blondie25 were executed using a
Pentium II processor running at 1.5GHz with 512MB of
RAM. The SSDF (Swedish Chess Computer Association)
rating of 2752±20 of for Fritz 8.0 was based on a Athlon
1200MHz with 256MB of RAM. Thus, the computing
equipment used was slightly more powerful than used by
SSDF. Fritz 8.0 was run using default parameters on the
Fritz 8.0 engine, which includes a hashtable size of 409
MB, contempt value, selectivity, tablebase depth,
agressiveness, the “permanent brain,” five-piece perfect
endings, and so forth.

3 Results

Twenty-four games were played between Blondie25 and
Fritz 8.0 with the above-described heuristics for time
management. An equal number (12) of games were
played with Blondie25 as black and as white. The results
were 1 win, 4 losses, and 7 draws for Blondie25 as black,
and 2 wins, 6 losses, and 4 draws as white. Thus, the
overall performance was 3 wins, 10 losses, and 11 draws.
Given Fritz 8.0’s current rating [10] of 2752, this
corresponds to a performance rating for Blondie25 of
2635, commensurate with grand masters. We believe this
is the first result of chess program that was optimized
using evolutionary algorithms that was able to defeat a
(then) top-5 chess program (now ranked 11 on [10]).

Following this contest, it was desired to compete
Blondie25 against a competent human player. It is well
known that computer chess programs do not play in the
same manner that human masters and grand masters do,
and that rating earned solely in comparison to other
computer programs may not reflect ratings earned against
human competition. Co-author James Quon, a nationally
ranked chess master, played a four-game series against
Blondie25 (two as black, two as white). The program won
three of the four games and lost the other, earning a
performance rating of 2501.

4 Discussion

Co-author James Quon, a nationally ranked chess master,
analyzed each of the 24 games against Fritz 8.0. His

1-4244-0464-9/06/$20.00 2006 IEEE. 231 CIG'06 (May 22-24 2006)

assessment is that the match between the two programs
was very competitive, where the programs seemed more
closely matched than the score would indicate. The
opening phase of the game is still a weak point for
Blondie25, not only because it does not have knowledge
of the theoretical variations but it would also often
maneuver pieces in apparently mysterious ways other
than simply developing the pieces. Multiple bad openings
were played repeatedly, so this handicap was manifested
multiple times.

The quality of the openings was varied. Some extremely
poor lines were chosen, but there were other games in
which the program would go deep into chess theory. Of
note was one game in which an early queen check should
likely not be found in Fritz 8.0’s normal opening book,
since it is judged to be a poor move; however, we verified
that the default opening book was indeed in use in all
games.

In contrast, there were many instances in which
Blondie25 was able to achieve a superior endgame. At
times, it appeared that Fritz 8.0 was not playing with the
use of an endgame database, but Blondie25 was unable to
convert the advantage of poor play and would have won
more games if it had been able. There were, however,
missed opportunities by both sides in the endgames.
There were theoretical endings that were not winnable,
but the programs (both Blondie25 and Fritz 8.0) readily
cashed in their middlegame advantages to enter these
endgames because they did not realize that although the
endings gave them a mathematical advantage, this
advantage could not be converted into a win.

James Quon’s analysis of each of the 24 games is posted
at www.natural-selection.com/b25vf8.html.

James Quon also analyzed the four games that he played
against Blondie25. His assessment of these games is
offered in the appendix and also appears at www.natural-
selection.com/b25vjquon.html.

5 Conclusions

The good use of time in chess can provide a significant
advantage over a poor use, or a method that applies an
equal amount of time to each situation. Although
Blondie25 was able to easily defeat Pocket Fritz 2.0 in an
earlier competition without using time management,
playing against Fritz 8.0, one of the top programs in the
world, required more effective time management. The
results of trial-and-error hand tuning of ideas that should
assist in time management, which reflect the time
management that Fritz 8.0 uses, earned three wins against
Fritz 8.0. Although Blondie25 cannot compete evenly
versus Fritz 8.0, the performance in 24 games suggests a
rating of about 2635.

Blondie25’s results against James Quon evidence the first
time that an evolved chess program has defeated a human

master. Quon noted, however, that the program’s opening
play is often weak and he was able to detect a horizon
effect in some games (in which the program can be
manipulated because it can only see to a fixed ply depth).
Future work will be aimed at offering additional object
neural networks to Blondie25 to allow it to learn other
features of the chessboard and pieces in coevolutionary
self-play, and also incorporating a more meaningful
opening book that would ensure a competitive start to
matches against strong players.

Fritz 8.0 has been optimized in many successive versions
of program releases for extremely rapid position
evaluation and game tree search. In contrast, very little
such optimization has been used in Blondie25. This
suggests an opportunity to improve the competitive
performance of Blondie25 with software engineering. In
addition, performance ratings on small sets of games are
inherently variable. It would be of interest to evolve time
management rules and determine if more effective rules
could be discovered, and to evaluate these rules across a
wider array of chess programs and human competitors in
a sufficient number of games to provide bounds on the
program’s rating that are in line with those offered by the
Swedish Chess Computer Association.

Acknowledgments

The authors thank Digenetics, Inc. for use of its chess
game engine, and Garry Kasparov for comments on our
earlier research. Portions of this paper were reprinted or
revised from [1] in accordance with IEEE Copyright
procedures. This work was sponsored in part by NSF
Grants DMI-0232124 and DMI-0349604. Any opinions,
findings and conclusions or recommendations expressed
in this material are those of the authors and do not
necessarily reflect the views of the National Science
Foundation (NSF). The authors thank the reviewers for
their important criticisms that improved the paper.

Bibliography

1. Fogel, D.B., Hays, T.J., Hahn, S.L., and Quon, J.
(2004) “An Evolutionary Self-Learning Chess Program,”
Proceedings of the IEEE, December, pp. 1947-1954.
2. Shannon, C.E. (1950) “Programming a Computer for
Playing Chess,” Philosophical Magazine, Vol. 41, pp.
256-275.
3. Turing, A.M. (1953) “Digital Computers Applied to
Games,” in Faster than Thought, B.V. Bowden, Ed.,
London: Pittman, pp. 286-310.
4. Newell, A, Shaw, J.C., and Simon, H.A. (1958)
“Chess-Playing Programs and the Problem of
Complexity,” IBM J. Res. Dev., Vol. 2, pp. 320-325.
5. Levy, D.N.L. and Newborn, M. (1991) How
Computers Play Chess, New York: Computer Science
Press, pp. 28-29, 35-39.
6. Cipra, B. (1996) “Will a Computer Checkmate a Chess
Champion at Last?” Science, Vol. 271, p. 599.

1-4244-0464-9/06/$20.00 2006 IEEE. 232 CIG'06 (May 22-24 2006)

7. McCarthy, J. (1997) “AI as Sport,” Science, Vol. 276,
pp. 1518-1519.
8. Markman, A.B. (2000) “If You Build It, Will It
Know?” Science, Vol. 288, pp. 624-625.
9. Holden, C. (2002) “Draw in Bahrain,” Science, Vol.
298, p. 959.
10. Fogel, D.B. (2002) Blondie24: Playing at the Edge of
AI, Morgan Kaufmann, San Francisco.
11. Fogel, D.B., Hays, T.J., Hahn, S.L., and Quon, J.
(2005) “Further Evolution of a Self-Learning Chess
Program,” Proc. 2005 IEEE Symp. Computational
Inteligence and Games, G. Kendall and S. Lucas (chairs),
IEEE, Piscataway, NJ, pp. 73-77.
12. The Swedish Chess Computer Association publishes
ratings of the top 50 computer programs at
http://w1.859.telia.com/~u85924109/ssdf/list.htm

Appendix
This appendix provides annotations by James Quon (a
national chess master rated 2301) of a 4-game series
between Blondie25 versus Quon, under simulated
tournament conditions. Blondie25 plays as black in the
first 12 games, and as white in the remaining 12 games.

Standard legend for chess symbols:
= equal
+= slight advantage white
=+ slight advantage black
+- clear advantage white
-+ clear advantage black
+-- decisive advantage white
--+ decisive advantage black
! good move
!! brilliant move
? bad move
?? blunder
!? interesting move involving some risk
?! dubious move
+ check
checkmate
1-0 white wins
0-1 black wins
½-½ draw

Quon, Jim - Blondie [E40]
(Game 1)
E40: Nimzo-Indian: Rubinstein (4 e3): Unusual Black 4th
move. Black plays the opening very slowly, allowing
White to gain a space advantage. It does a good job
finding defensive maneuvers to hold the position. White
misses a chance to push the advantage with 15.g4!
allowing Black to play successful break in the center.
When the position turns tactical, Blondie is in its element
and finds the win. 1.d4 e6 2.c4 Nf6 3.Nc3 Bb4 4.e3 Ne4
This is not considered a serious threat to White. 5.Bd2
Nxd2 6.Qxd2 d5 last book move [6...0–0 7.Nf3 f5 8.Be2
b6 9.a3 Bd6 10.0–0 Bb7 11.b4 Rf6 White gets a space

advantage, while Black has the Bishop pair and chances
on the kingside.] 7.a3 [7.Nf3 0–0 8.0–0–0!?] 7...Be7 8.f4
I wanted to create a closed position which in general is a
computer's weak point. [8.cxd5 exd5 9.Bd3 c6 10.Nf3 0–
0 11.0–0 is about equal.] 8...Nc6 [Blocking the c-pawn.
More active is 8...dxc4 9.Nf3 c5 10.Bxc4 cxd4 11.exd4
0–0 12.0–0 Nc6] 9.c5 [9.cxd5? exd5 straddle white with a
backward pawn on the now open e-file.] 9...Bh4+? wastes
time. Black played very slowly allowing White free
development. 10.g3 Bf6 11.Nf3 b6 12.b4 [also playable is
12.cxb6 cxb6 13.Bb5 Bb7 14.Ne5 Rc8 15.Nxc6 Bxc6
16.Bxc6+ Rxc6] 12...bxc5 13.bxc5 g6 14.Rb1 [14.Ne5
Nxe5 (14...Bxe5 15.fxe5 f6 16.Bb5 Bd7 17.exf6 Qxf6
18.Rf1 Qe7 +=) 15.fxe5 Bg7 16.Bb5+ Bd7 17.Bxd7+
Qxd7 18.0–0 0–0 19.Rab1 f6 20.exf6 Rxf6 21.Rxf6
Bxf6=; 14.g4 h6 15.h4 Na5 =+] 14...Ne7 [14...Bd7
15.e4!? dxe4 16.Nxe4 Bg7 17.Bg2 0–0 18.0–0 with
complications that should favor White because of his
active pieces and space advantage.] 15.Bd3 [15.Be2 Bg7
16.0–0 f6 17.e4 dxe4 18.Nxe4 0–0 19.Bc4 Nd5 20.Rfe1
Rf7=; 15.g4!? Bg7 16.h4 (16.g5 h6 17.Bd3 hxg5 18.fxg5
Nf5 =+) 16...f6 a)16...a6 17.h5 gxh5 18.Rxh5 e5 19.dxe5
Bxg4 20.Rg5 Bxf3 21.Rxg7 Nf5 22.Rg5 d4 23.exd4
(a)23.Rxf5 dxc3 24.Qxd8+ Rxd8 25.Rc1 c2 26.Be2 Be4
27.Rg5) 23...Nxd4 24.Kf2 Bc6 25.Rh5 +/-; b)16...h5
17.g5 +=; 17.h5 gxh5 18.Rxh5 e5 19.dxe5 Bxg4 20.exf6
Bxh5 21.fxg7 Rg8 22.Ng5 Qd7 23.Nb5 +-] 15...c6
16.Ne2 [16.0–0 0–0 17.e4 dxe4 18.Bxe4 Ba6 19.Rfe1=]
16...Bg7 17.0–0 f6 Controls e5+g5 Black does a good job
preparing counterplay with the e5 pawn push. 18.Rb3
[White can try 18.e4 dxe4 19.Bxe4 0–0 20.Rb2 Nd5
21.Rfb1] 18...0–0 19.Rfb1 Qe8 [19...Qc7 seems more
natural, avoiding placing the Queen on the potentially
dangerous e-file and hemming in the f8 Rook as well.]
20.Qa5 e5 Attacks the pawn chain 21.Ba6?! Probably
this is a little too ambitious. [Better is 21.dxe5 fxe5
22.Nxe5 Bxe5 23.fxe5 Qf7 24.Qe1 and White can still
keep the advantage.] 21...Bg4 22.Kf2 Nf5 23.Qd2 Rf7
Black has created a strong attack. 24.Neg1 Ne7 [Another
strange retreat that seems to be one of Blondie's more
common problems. More direct is 24...exd4 25.exd4 Re7
26.h3 Bxf3 27.Nxf3] 25.Bb7 Rb8 26.Qa5 [Not 26.fxe5
fxe5 27.dxe5 Qf8] 26...Bf5 27.R1b2 Rf8 28.Qxa7 It
seems White should have enough time to grab the pawn
and then return to defend the King. 28...exf4 29.exf4 Qd7
30.Qa5 Be4 31.Qd2? [31.Qe1 Rfe8 32.Nd2 Bf5 33.Ngf3
Nc8 34.Qf1 Qe6 And White has retaken the advantage
due to the outside passed pawn.] 31...g5!? 32.Ba6 Rxb3
33.Rxb3 Qf5 [Not 33...Ng6 34.Rb7 Qe6 35.Qa5 gxf4
36.Qc7] 34.Bf1 [Better might be 34.Ne2 g4 35.Ne1 Qe6]
34...Ng6 35.Rb6 Qd7 36.Qb2 [36.fxg5? fxg5 37.h3 g4
38.hxg4 Bxf3 39.Nxf3 Qxg4; 36.Ne2 Bh6 37.a4 gxf4
38.gxf4 Qc7 is better for Black.] 36...gxf4 37.Rb8 Qe6
38.Rxf8+ Bxf8 39.Qc3 Be7 40.Bh3 f5 41.Ne2 fxg3+
42.hxg3 Qf7 43.a4 f4 44.g4? A mistake that prove costly.
White succumbs to Black's pressure. [44.gxf4!? is worth
looking at 44...Nxf4 45.Nxf4 Qxf4 46.Qe3 Bh4+ 47.Ke2
Bxf3+ 48.Qxf3 Qxd4 49.Be6+ Kg7 50.Qf7+ Kh6
51.Qf8+ Qg7 52.Qxg7+ Kxg7 53.Bxd5=] 44...Bd8

1-4244-0464-9/06/$20.00 2006 IEEE. 233 CIG'06 (May 22-24 2006)

45.Qb3 Bxf3 46.Qxf3 Bh4+ 47.Kf1 Qb7 48.Nxf4?
[48.g5 Qb1+ 49.Kg2] 48...Qf7 49.a5 Nxf4 [49...Qxf4?
50.Qxf4 Nxf4 51.g5 Nxh3 52.a6 Nxg5 53.a7] 50.a6 Bg5
[50...Nxh3?? is definitely not advisable 51.Qxf7+ Kxf7
52.a7] 51.Kg1 [51.Bg2 doesn't change the outcome of the
game 51...Qa7 52.Qa3 Ne6] 51...Qg7 [51...Qg7 52.Bf1
Qxd4+ 53.Kh1 Qxc5] 0–1

Blondie - Quon, Jim [B01]
(Game 2)
This loss by Blondie can be almost entirely blamed on the
lack of opening theory, and inability to overcome its
"horizon effect." White has may chances to gain a clear
advantage in the opening, but instead goes into a forced
losing line. It sees that at the end of the variation it is head
material, but doesn't realize that it will ultimately lose its
Knight. It continues to sacrifice pawns to stall the loss of
this material, but this simply makes the win much easier
for Black. 1.e4 d5 2.exd5 Qxd5 3.Nc3 Qe6+? [3...Qa5
4.d4 Nf6 5.Nf3 c6 6.Bc4 Bf5 7.Bd2 e6 8.Qe2 Bb4 9.0–0–
0 Nbd7 would be following normal lines.] 4.Be2 Qg6
5.Bf3? [Better is 5.Nf3 Qxg2 (5...c6 6.0–0 Bh3 7.Ne1 Nf6
8.d4 e6 9.Bd3 Bf5 10.Nf3 Bxd3 11.Ne5 Qh5 12.Qxd3
Nbd7 and White retains a slight advantage.) 6.Rg1 Qh3
7.d4 Qd7 8.Ne5 Qd8 9.Bc4 e6 10.Qf3 Nf6 11.Be3 with
compensation.] 5...c6 6.Nge2 Bg4 7.Nf4 [Better is:
7.Bxg4 Qxg4 8.0–0 Nd7 9.d4 White's lead in
development gives him the advantage.] 7...Bxf3 8.Nxg6
[8.Qxf3 Qxc2 9.0–0 Qf5 10.g4 Qd7 and it's unclear
whether White has compensation for it's pawn.] 8...Bxd1
9.Nxh8 Bxc2 10.d3? Gives away a pawn for no good
reason. It seems be trying to push the loss of its Knight
beyond the horizon. [10.0–0 g6 11.d4 Bg7 12.Nxf7 Kxf7
13.Be3 loses less material but White is still lost.]
10...Bxd3 11.Be3 g6 12.0–0–0 Bf5 13.g4? This sacrifice
is not helpful. 13...Bxg4 14.Rd4 Bf5 [14...Nf6 15.Bg5
Nbd7 16.Re1 Bf5 17.Rb4 Nc5 would also work, but the
game forces the exchange of more pieces.; 14...Bh5!
15.Rf4 f5 eliminates any White counterplay.] 15.Rh4 Nf6
16.Bd4 Nbd7 [16...g5 is a little more to the point after
17.Bxf6 gxh4 18.Re1 Nd7 19.Bxh4 Bh6+ 20.Kd1 f6
21.Ne4 Kf8] 17.Re1 g5 18.Bxf6 Nxf6 19.Rb4 b6 20.f4
g4 21.Rc4 Rc8 [21...Bg7 22.Rxc6 Bxh8 23.Rc7 Nd7
24.Nd5 e6 25.Ne3 Kd8 is fine for Black, but I did not
want open lines for White's Rooks.] 22.Ra4 Rc7 23.Re5
[23.Rc4 Bh6! 24.Nb5 cxb5 25.Rxc7 Bxf4+ with the
double attack.] 23...Be6 24.Ne4 [24.Rg5 Bd5 25.Rd4 h6
doesn't help either.] 24...Nxe4 25.Raxe4 f5! 26.Re2 Bc8
27.h3 Bg7 28.hxg4 Bxh8 the rest is technique. 29.Rxf5
Bxf5 30.gxf5 Bg7 31.Rh2 h6 32.Rc2 Kf7 33.Kd1 c5
34.Rd2 a5 35.Ke2 Rc6 36.Ke3 Bd4+ 37.Ke4 h5 38.Rh2
Rh6 39.b3 h4 40.Kf3 h3 41.Kg4 Kf6 42.a4 [42.Re2 h2
43.Re6+ Kg7 44.Rxe7+ Kf8 45.Re1 Bg1] 42...Bg1
43.Rxh3 Rxh3 44.Kxh3 Kxf5 45.Kg3 Be3 0–1

Quon, Jim - Blondie [E48]
(Game 3)
E48: Nimzo-Indian: Rubinstein: 5 Bd3 d5 including 6
Ne2, but excluding 6 a3. In this game Blondie

demonstrates its prowess in wide open games. White
chooses a line that allows Black to achieve early equality.
Black breaks with e5 while White cannot find a way to
utilize his Bishop pair advantage. Black finds a tactic to
win a pawn in the ending and the rest is history. 1.d4 e6
2.c4 Bb4+ 3.Nc3 Nf6 4.e3 0–0 5.Bd3 c5 6.Nge2 d5
7.a3?! [Better is 7.cxd5 exd5 8.a3 cxd4 9.axb4 dxc3
10.Nxc3] 7...cxd4 8.exd4 dxc4 9.Bxc4 Be7 10.0–0 Nbd7
11.Bg5 e5!? An interesting choice by Blondie. White is
straddled with an isolated pawn which Black is more than
happy to eliminate for active piece play. In theory this is
probably not the correct choice, although White does not
find a way to refute it. Blondie's lack of understanding of
strategies in this position seems to be the cause of this
move. [11...Nb6 12.Ba2 Bd7 13.Qd3 Rc8 is a more
common.] 12.Ba2 h6 13.Bh4 exd4 14.Qxd4 Nb6=
15.Rfd1 Qxd4 16.Rxd4= [16.Nxd4 Rd8=] 16...Re8
17.h3 Secures g4 17...Bf5 18.Rad1 Rac8 With the
accuracy of a computer, Black has covered all weak
points in its position. White still possesses the Bishop-pair
which gives him a slight pull. 19.Bb3 Bh7 [19...g5
20.Bg3 Nh5 21.Bd6 Bxd6 22.Rxd6 Be6 23.Bxe6 Rxe6
and White's superior pawn structure may not be enough to
win.] 20.Kf1 g5 21.Bg3 Bf8 22.Nb5 Bc5 23.Nd6 Bxd6
24.Bxd6?? A decisive mistake. [24.Rxd6!? is noteworthy
24...Kg7 25.Nc3=] 24...Bc2 25.Bxc2 Rxc2 26.R4d2
Rxd2 27.Rxd2 Nc4 28.Rd4 Nxb2 29.Ng3 [29.Bb4 Na4]
29...Kh7 30.Nf5 b5 31.g4 Nc4 32.a4 [32.Bb4!?]
32...Re4–+ [Worse is 32...Nxd6 33.Rxd6 Kg6 34.axb5]
33.Be7 [33.Rxe4 Nxe4 34.Bf8 bxa4 35.f3–+] 33...Rxd4
34.Nxd4 Nd5 35.Bc5 bxa4 36.Bxa7 a3 37.Nc2 a2
38.Bd4 Nd2+ 39.Ke2 Nb3 40.Kd3 [40.Be5 f6 41.Bb2
Nf4+ 42.Kf3 Nd2+ 43.Kg3–+] 0–1

Blondie - Quon, Jim [B70]
(Game 4)
B70: Sicilian Dragon: 6 g3 and 6 Be2 (without a later
Be3) This game follows along the lines of the Sicilian
Dragon Defense. Normally White will try to attack
Black's king with a combination of pawns and pieces.
Blondie tries to do this attack with just pieces. Black has
chances to hold the position but plays a blunder and loses
a piece. 1.e4 c5 2.Nf3 d6 3.d4 cxd4 4.Nxd4 Nf6 5.Nc3
g6 6.Bb5+? Why exchange this Bishop? Better is Bc4
putting pressure on Black's kingside. 6...Bd7 7.Bg5 Bg7
8.0–0 last book move 8...a6 9.Bxd7+ This exchange gives
Black more room to develop his pieces. 9...Nbxd7 10.Qf3
[10.Nd5 Nxd5 11.exd5 h6=] 10...0–0 11.Rad1 Qc7=
Black's position is a bit passive, but there are no apparent
weaknesses. 12.Qh3 Rfe8 13.Rfe1 b5 14.a3 e6 Covers
d5+f5 [14...Nb6 is also playable.] 15.Bh6 Bh8 16.Re3
[16.f4 White's Rooks are already well placed. This pawn
move threatens to break open Black's fragile position.]
16...Ne5 17.Rg3 This rather artificial attack should be
defensible with proper defense. There is no clear way to
break through Black's wall without the help of pawns.
17...Qb7? This plan to attack along the b-file is too slow
and goes nowhere. Better is: [17...Rac8 18.Qh4 Nc4
19.Bc1 Nd7 20.Rh3 Nf8= and Black's game is fine.]

1-4244-0464-9/06/$20.00 2006 IEEE. 234 CIG'06 (May 22-24 2006)

18.Qh4 b4 19.axb4 Qxb4 20.b3 Prevents intrusion on c4
20...Rac8 21.Nce2 Nc6 [21...Ned7 22.c3 Qb7 23.f3=]
22.Nxc6 Rxc6 23.c4 Blondie has created a fortress on the
Queenside and now the threats on the Kingside become
serious. 23...Nd7 [23...d5 24.e5 a)24.exd5 exd5 25.Re3
Rce6; b)24.cxd5 exd5 25.Re3 dxe4µ (b)25...Rxe4?!
26.Rxe4 Qxe4 27.Qxe4 Nxe4 28.Rxd5=) ; 24...Ne4
25.Rh3 Bxe5 26.Bf4] 24.Rh3 Bf6 25.Bg5 Bxg5 26.Qxg5
Qc5 27.Qf4 Rb6?? [Black needed to play 27...Re7
28.Rhd3 Ne5 with only a slight advantage to White.]
28.Rxh7!!+- Demolishes the pawn shield 28...Kxh7
Theme: Deflection from f7 [28...Rf8 29.Qh6 Qe5+-]
29.Qxf7+ A double attack 29...Kh6 30.Qxe8 [30.Qxe8
Qe5 31.Qxd7 Rxb3 32.Ng3+- (32.Qxd6?? that pawn is
deadly bait and will cause White grave problems
32...Qxd6 33.Rf1 Qb4–+) ; 30.Qxd7?! is a useless try
30...Rf8 31.Nd4 Rxb3=] 1–0

1-4244-0464-9/06/$20.00 2006 IEEE. 235 CIG'06 (May 22-24 2006)

Anomaly Detection in Magnetic Motion Capture
using a 2-Layer SOM network

Iain Miller
School of Computing
University of Paisley

United Kingdom
Email: iain.miller@paisley.ac.uk

Stephen McGlinchey
School of Computing
University of Paisley

United Kingdom
Email: stephen.mcglinchey@paisley.ac.uk

Benoit Chaperot
School of Computing
University of Paisley

United Kingdom
Email: benoit.chaperot@paisley.ac.uk

Abstract— Over recent years, the fall in cost, and increased
availability of motion capture equipment has led to an increase
in non-specialist companies being able to use motion capture
data to guide animation sequences for computer games and
other applications.[1] A bottleneck in the animation production
process is in the clean-up of capture sessions to remove and/or
correct anomalous (unusable) frames and noise. In this paper an
investigation is carried out on the use of a system comprising
of two layers of self-organising maps in identifying anomalous
frames in a magnetic motion capture session.

I. INTRODUCTION

Motion capture is the process of recording the motion of
actors and/or objects, and this data is often used in computer
games to animate characters and other game objects. The
process normally involves tracking sensors or markers that
have been placed in key positions on the actor’s body, and
detecting their locations in three-dimensional space. As the
cost of equipment decreases, the realm of Motion Capture
is no longer the preserve of specialist companies who take
care of all aspects of data capture and post-processing. The
task of supplying animation scenes from a motion capture
system is now seen as a commodity, and so the focus has
started to veer towards processing the output from a capture
session as quickly and cheaply as possible. By improving post-
processing, motion capture studios can get more useful (and
commercial) application out of the capture equipment.

In previous work ([4]), a statistical method based on the
variance of the distances between nodes, was used to detect
anomalous points, whilst Kovar and Gleicher [3] use distance
metrics to automatically detect similar motions in a session.
Müller et al. [5] focus on using geometric relations to perform
content-based retrieval and Gibson et al. [2] use principal
component analysis and a multi-layered perceptron to extract
motion information from a video or film. However, the latter
two methods of feature extraction or recognition still require
a considerable amount of input from an animator. Ideally, the
animator interaction would be either non-exisentant or minimal
and with this paper the aim is to investigate the usefulness
and accuracy of a two-layered unsupervised neural network to
the problem area of capture data clean-up. Section 2 gives an
overview of the factors that produce noise and anomalies into
the magnetic motion capture sessions, plus notes of the ideas

behind the network design. Section 3 describes the form of
the network and the parameters for learning, whilst section 4
provides a discussion and display of some of the results.

II. BACKGROUND

The noise that can be produced during a capture are split
into two types: sensor noise and positional anomalies. Sensor
noise comes about by small variations in the magnetic fields
used to induce a signal, the synchronization of the magnetic
phases and interference from unwanted metal objects in or
around the capture space. Positional anomalies come about
when the sensors move too close to or too far from the field
generators and where the sensors are unable to detect the
field strength accurately and so produce anomalous results.
The outcome being sensors reporting their positions that are
inverted in the vertical axis or placed at a seemingly random
position and breaking the skeleton of the captured article
(which can be human, animal or an inanimate object).

The fact that the system should work autonomously of all
external influences proscribes that, in a neural network method
of anomaly detection, Self-Organising Maps, SOMs, provide
one possible method for the system. The unsupervised nature
of the SOMs allows the system to train each net to a session’s
particular structural make-up. The approach outlined here uses
an initial layer of SOMs (one for each sensor in the capture
session) to create inputs for a higher, second-layer SOM,
thereby cutting the dimensionality of the final grid down by a
third.

III. METHODOLOGY

Data is read in and stored in a separate matrix for each
sensor in the session (called nodes from here on). Equation
1 shows one node’s data in one frame in the session, whilst
equation 2 (i is the node number and F is the total number
of frames) shows the overall storage matrix for a node.

ni(t) =
[

ni1(t) ni2(t) ni3(t)
]

(1)

Ni =

ni(1)
ni(2)

...
ni(F)

 (2)

1-4244-0464-9/06/$20.00 2006 IEEE. 236 CIG'06 (May 22-24 2006)

For each node, a one-dimensional SOM is created and
initialised (equation 3 with 4 showing the weight vector of
a neuron, M is the number of neurons in the net). Each SOM
is trained for 100 epochs using only the data for its associated
node. One epoch uses every frame in the session, fed into the
network in a random order.

Si =

s1

s2

...
sM

 (3)

sm =
[

sm1 sm2 sm3

]
(4)

The Euclidean distance between the input vector and each
neuron in a SOM is calculated, and the neuron with the
minimum distance being declared the winner (see equation
5, i is the node number and k is the vector element).

ci = arg min
1≤j≤M

(

√√√√ 3∑
k=1

(nik
(t)− sjk

)2) (5)

The weights for the winning neuron are then updated using
equation 6 with α being the adaptive learning rate (equation 7,
T = 100F , where F is the total number of frames and tc is the
training cycle), and h1 is the gaussian neighbourhood function
(equation 8 and figure 1, j and ci are the neuron numbers of the
neuron being updated and winning neuron respectively) that
modifies the neurons closest to the winner more than those
further away.

s′l = sl + αh(ni(t)− sl) (6)

α = α0(1−
tc

T
) (7)

h1 = e
−(j−ci)

2

2 (8)

The outputs from each of these SOMs form the input vector
for the second-layer SOM (equation 9). The second-layer
SOM is a two-dimensional array of neurons (equation 10)
with each neuron having a weight vector of that shown in
equation 11. The winner is decided by the minimum Euclidean
distance, as in the first-layer SOMs, with the training updates
calculated using the same adaptive learning rate and gaussian
neighbourhood function h2 (equation 12, with R and C being
the row and column address of the neuron being updated and
cR and cC the row and column address of the winning neuron).

In =

c1

c2

...
cM

 (9)

Fig. 1. Graph of the Neighbourhood function used to updated the SOM
Weights

V =

v11 v12 · · · v1b

v21 v22 · · ·
...

...
. . .

...
va1 · · · vab

 (10)

v =

w1

w2

...
wM

 (11)

h2 = e
−(R−cR)2−(C−cC)2

2 (12)

In order to find the best combination of network sizes for
the first and second layer SOMs, a series of empirical studies
were carried out with the number of neurons in each of the
first-layer SOMs varying between 11 and 51 in increments of
10 neurons. For the second-layer SOMs, the size of the neuron
array was always kept square and used the following sizes:
11x11, 21x21, 31x31, 41x41, 51x51. The evaluation of what
makes one network better than another is a subjective matter.
Therefore, in order to make the decision more objective, three
criteria were used to evaluate each resultant net:

1) Separation of the differing areas of ”clean” and ”anoma-
lous” frames, the more defined a specific area is the
better.

2) Minimisation of ”Overlapping Points”, where one neu-
ron can win when a frame is either ”clean” or ”anoma-
lous”.

3) Reduction in the proportion of ”Missing Neurons”,ones
which do not win at any point for a session.

IV. RESULTS AND DISCUSSION

Initially the networks were tested on one file, F1, of 407
frames, that consists of a series of frames with the figure
inverted (blue ©), followed by a series of anomalous frames

1-4244-0464-9/06/$20.00 2006 IEEE. 237 CIG'06 (May 22-24 2006)

(red +), then a series of clean frames (green 2), finishing
with a series of anomalous frames (magenta �). Due to this
there are three changeover points, from this it can be surmised
that there are strong possibilities of overlapping points being
generated at each of the changeovers. Hence the par score for
overlapping points is three.

No. of Neurons Total used Overlap Level of
1st Lyr 2nd Lyr Used neurons (%) Neurons Group

11 11 60 49.6 4 Fair
11 21 99 22.4 2 Poor
11 31 110 11.4 3 Poor
11 41 126 7.5 3 Poor
11 51 120 4.6 2 Fair
21 11 55 45.5 3 Poor
21 21 139 31.5 2 Fair
21 31 86 8.9 2 Poor
21 41 131 7.8 3 Poor
21 51 145 5.6 2 Good
31 11 49 40.5 3 Good
31 21 96 21.8 1 Good
31 31 115 12.0 3 Poor
31 41 116 6.9 3 Good
31 51 123 4.7 2 Fair
41 11 48 40.5 3 Poor
41 21 94 21.3 3 Good
41 31 97 10.1 2 Good
41 41 120 7.1 3 Fair
41 51 135 5.2 2 Good
51 11 51 42.1 3 Poor
51 21 122 27.7 2 Good
51 31 111 11.6 2 Fair
51 41 123 7.3 3 Fair
51 51 139 5.3 2 Good

TABLE I
TABLE OF RESULTS FOR THE EMPIRICAL STUDIES OF THE 2-LAYERED

SOM NETWORK

Fig. 2. Plot of the Winning Neurons for a 2-Layer SOM with 21 Neurons
in each First-Layer SOM and 51x51 in the Second-Layer SOM

Fig. 3. Plot of the Winning Neurons for a 2-Layer SOM with 31 Neurons
in each First-Layer SOM and 21x21 in the Second-Layer SOM

Fig. 4. Plot of the Winning Neurons for a 2-Layer SOM with 41 Neurons
in each First-Layer SOM and 21x21 in the Second-Layer SOM

Some of the results from the empirical tests are shown
above. Figures 2, 3 and 4 are examples of outcomes considered
good and figures 5, 6 and 7 are examples of bad outcomes. In
terms of timing issues a look at figure 8 shows that an increase
in the size of the first layer SOMs does not have a significant
effect on the training time of a network. However the increase
in the time needed to train larger second layer SOMs increases
in an exponential way.

From these results it was concluded that a second-layer
SOM of size 21-by-21 neurons provided results with appropri-
ate spread of the separate file groups. There is little difference
between the outcomes whether you had 31 or 41 neurons in
each first-layer SOM, but they produced the best grouping.
Therefore, these networks were re-run three times each to see
whether they produce consistency in their outcomes. Figure 9
show the results for the 31/21 network and figure 10 41/21

1-4244-0464-9/06/$20.00 2006 IEEE. 238 CIG'06 (May 22-24 2006)

Fig. 5. Plot of the Winning Neurons for a 2-Layer SOM with 21 Neurons
in each First-Layer SOM and 41x41 in the Second-Layer SOM

Fig. 6. Plot of the Winning Neurons for a 2-Layer SOM with 51 Neurons
in each First-Layer SOM and 11x11 in the Second-Layer SOM

network.
From these it can be seen that although both networks can

reproduce their results they do not do so with complete consis-
tency. However, those produced by the 41/21x21 network have
a greater degree of consistency. To these ends this network
was tested with 3 other, much larger files (all 2823 frames).
Two were fairly simple files, T2 and T3, with a series of clean
frames (blue ©) followed by a series of anomalous frames (red
+). T2 contained many more clean frames than anomalous,
whilst T2 contained more anomalous than clean. The third file,
T1, contains 60% clean frames, split between two series (blue
© and green 2) , interspersed with four series of anomalous
frames (red + and �, magenta � and �) and four series of
unknown frames (black �, �, � and +). The unknown frames
are those where it is very difficult to tell whether or not the
structure in the frame has been kept or whether it is slightly

Fig. 7. Plot of the Winning Neurons for a 2-Layer SOM with 51 Neurons
in each First-Layer SOM and 31x31 in the Second-Layer SOM

Fig. 8. Plot of the Change in Time Taken by Increasing the Size of the First
Layer SOMs (Legend indicates the number of Neurons in each First Layer
SOM)

anomalous. The results for these are shown in figures 11.

As can be seen in all three files there is a good degree
of grouping for the different elements. In file T1 there are
three overlapping nodes, which can be considered as a par
score (with there being two periods of clean series), but there
is a void of unused neurons in the middle of the network.
Another issue with the grouping in this file is that two series
of clean neurons are each spread over two areas. However,
seeing as these areas are distinctly separate to the anomalous or
unknown frames, it lends evidence to support the supposition
that this network is capable of separately grouping clean and
anomalous data.

1-4244-0464-9/06/$20.00 2006 IEEE. 239 CIG'06 (May 22-24 2006)

Fig. 9. Plots of the Winning Neurons for the Re-Runs of a 2-Layer SOM
with 31 Neurons in each First-Layer SOM and 21x21 in the Second-Layer
SOM

Fig. 10. Plots of the Winning Neurons for the Re-Runs of a 2-Layer SOM
with 41 Neurons in each First-Layer SOM and 21x21 in the Second-Layer
SOM

1-4244-0464-9/06/$20.00 2006 IEEE. 240 CIG'06 (May 22-24 2006)

Fig. 11. Plots of the Winning Neurons of a 2-Layer SOM with 31 Neurons
in each First-Layer SOM and 21x21 in the Second-Layer SOM for Files T1,
T2 and T3 respectively top to bottom

A. Automating Classification

As has been shown, a network with 41 neurons in each
first layer SOM and a 21 by 21 SOM in the second layer

can produce a network capable of grouping and thereby
classifying magnetic motion capture data into clean, inverted
and anomalous. The key to making a system like this of
viable commercial use, is to then limit the amount of animator
interaction required for the system to identify which group
corresponds to which classification. A look at a graph of the
Euclidean distances between the winning neuron in the second
layer and the input vector (see figure 12), suggests that there
could be a link between an increase in the Euclidean distance
and change in classification of data in a series of frames. The
changeover points in F1 come in frames 51, 218 and 349,
and as can be seen, there are spikes in the Euclidean distance
around those points. There is however another spike/group of
spikes around frame 290 that would need to be explained
or compensated for in an automated scene. However, from
looking at the larger files there is a doubt to this being
a universal solution. One reason for this could be that the
larger epoch size introduces a degree of over-training into the
network.

Fig. 12. Plot of the Euclidean Distance between the Winning Neuron and
the Input Vector for the 41/21 Network with F1

V. CONCLUSION

Any system that seeks to automate the clean-up process of
magnetic motion capture data is required to both provide a
means of classifying into groups (A,B,C and D, etc.) and then
identify the meaning of a group (i.e. that group A is clean data,
B is anomalous data, C is inverted, etc.). In this paper we have
shown a mechanism that has the ability to complete the first
part of these requirements, and that there may be a means to
developing the second. Though several network combinations
produce good results for the separate of frames into groups the
one that gave good results for both the small and large files
was one with a 41-neuron 1D network for each sensor used
in the session, with the results feeding into the inputs of a
21-by-21 2D network in the second-layer. There are problems
with the process and the time taken for training a network are

1-4244-0464-9/06/$20.00 2006 IEEE. 241 CIG'06 (May 22-24 2006)

still an issue. However, some of these could be alleviated by
the generation of a generic test file for a specific sensor set-
up, which contained series of clean, anomalous and inverted
frames for a given capture space. A network could then be
trained for that file and the different groups identified by a
human operator, this could then be used to identify frames in
other capture sessions using the same capture sensor set-up
and space.

So far no pre-processing has been applied to the data before
it is fed into the network, so that the effects of the capture
space can be taken into account. However, it may be that
the use of pre-processing techniques (such as centring or
sphering), improve the grouping of the outputs and/or make
the identification of what groups are easier. Other experiments
could focus on the size of an epoch and whether using a
random sample of all the frames rather than all of the frames in
a session can produce quicker training, without compromising
the usefulness of the technique. Alternatively, the use of
some form of stopping criteria could be employed to save
unnecessary training cycles and thereby improve the overall
timing of the system.

ACKNOWLEDGMENT

The authors would like to thank Artem Digital for the
provision of the test data, www.artem-digital.co.uk.

REFERENCES

[1] Margaret S. Geroch, Motion Capture for the Rest of us, Journal of
Computing Sciences in Colleges,Vol. 19 No. 3, 2004. pp157-164.

[2] David P. Gibson, Neill W. Campbell, Colin J. Dalton and Barry T.
Thomas, Extraction of Motion Data from Image Sequences to Assist
Animators, Proceedings of the British Machine Vision Conference 2000.

[3] Lucas Kovar, Michael Gleicher, Automated Extraction and Parameteri-
zation of Motions in Large Data Sets, ACM Transactions on Graphics,
Vol. 23, Issue 3, p.559-568. August 2004.

[4] Iain Miller, Stephen McGlinchey Automating the Clean-up Process of
Magnetic Motion Capture Systems Proceedings of the Game Design and
Technology Workshop, November 2005.

[5] Meinard Müller, Tido Röder, Michael Clausen Efficient Content-Based
Retrieval of Motion Capture Data ACM Transactions on Graphics, Vol.
24, Issue 3, p677-685. July 2005.

1-4244-0464-9/06/$20.00 2006 IEEE. 242 CIG'06 (May 22-24 2006)

Intelligent Battle Gaming Pragmatics with Belief Network Trees

Carl G. Looney

Abstract – The events in an evolving battlespace unfold under the

partial control of adversarial commanders, who each attempt to force the
situation into a favorable state according to their goals. The player here
must match wits with a bot by using available resources and situation
models to achieve a goal. Unlike checkers or chess, or characters acting
out scripts, the current situations are not known with certainty but can
only be estimated from associations and correlations with other
uncertain data. Further, either side can make multiple moves without
waiting for the other side to act, so timeliness is critical. The player
selects a scenario, weapons, a goal and parameters to initialize such
games. The adversarial bot starts with a set of rules that expand by
experience using case-based reasoning. The philosophical and pragmatic
approach taken here lays out a scheme for battle gamimg, whether real
or recreational, by means of a tree of belief networks to aid in the
decision making at each move. This preliminary investigation precedes
the future development of algorithms.

I. INTRODUCTION

A battlespace (BS) is an irregular and finite volume of

space that includes a portion of the surface of the earth and the

space above and below it, along with all of the entities of

concern contained in it. Entities may be, for example, rivers,

hills and mountains, tunnels, highways, bridges, trucks and

other vehicles, trees and other foliage, fields, houses, major

buildings such as schools, hospitals, libraries, etc. Of greatest

concern are hostile forces that may be, e.g., tanks, trucks with

missiles, individuals with automatic rifles or rocket propelled

grenades or shoulder fired missiles, mortars, explosive laden

vehicles, improvised explosive devices, and a wide variety of

other armaments. In urban warfare, there are civilians who are

off limits, although some of them may be hostile combatants

and treated as such if and when their status becomes known.

However, nothing is certain in a BS. Knowledge consists of

a set of beliefs in the truths of variables, any of which may be

partially correct. Further, much critical knowledge is temporal

so that it will be different at a later time. Thus the fog of war,

i.e, the inability to see much of what is out there and what is

coming next, is ubiquitous.

Examples of goals of a player (commander) may be to eject

the enemy forces from an area, to destroy valuable assets, or to

reduce them to a state where they can not maneuver

effectively. An ordered list of subgoals may be designed to

cause a desired effect (effects-based actions), such as to

prevent enemy re-supply. Such effects put the enemy at

successively greater disadvantages and less able to function

well. This can provide a gamer with a winning strategy while

preserving one’s forces somewhat.

 Manuscript received January 31, 2006.
Carl G. Looney is with the Department of Computer Science and

Engineering, College of Engineering, University of Nevada, Reno, Reno, NV
89557; 775-784-4313; fax: 775-784-1877; email: looney@cse.unr.edu.

A battle game pits two adversarial commanders and their

resources against each other in a selected scenario with goals

for each. In an intelligent computer BS game either: i) two (or

more) people play as enemies; or ii) a person plays against the

machine. Here we envisage the latter where a bot plays the

intelligent adversarym(see [1]).

Sensors, human observers, pre-known facts, and wireless

communications are assumed for both the gamer (game player)

and the adversarial bot. Correlative predictions help the gamer

to form a partial picture of the situation, but in an actual BS

there is an overload of uncertain information from which the

salient features must be gleaned so decisions can be made

efficiently.

An astute gamer wants to keep all possible resources while

degrading and eliminating those of the competitor, but as in

any game, one may be willing to risk certain resources to gain

strong advantage over the adversary. Examples are a bold

attack against critical enemy resources of great value, forcing

the enemy to expend valuable resources, drawing the enemy

into a vulnerable position, or to deny supplies. The gamer must

be constantly aware of traps, ambushes, being hit unexpectedly

or by superior forces, and of vulnerability to loss of critical

resources. A gamer must also be aware of opportunities to

seize to obtain gains.

II. THE NATURE OF BATTLESPACE KNOWLEDGE

 The main entities of concern in an actual BS are: 1) friendly

forces and their armaments, force readiness, other resources

(such as buildings, supply depots, trucks, fuel, ammunition,

etc.); 2) the hostile forces and their armaments and resources;

3) neutral entities; 4) advantageous and disadvantageous

locations (hills, bridges, woods, etc.); 5) observation and

communications facilities; 6) transportation resources (roads,

sea ports, trucks, helicopters, etc.), and 7) weather and terrain

conditions. Of great importance are observation facilities

because both the gamer and bot commanders must observe to

build their models of the BS situation, without which they are

blind.

 But not everything in a BS can be observed, and so prior

knowledge and estimates from partial knowledge must be used.

Figure 1 shows the nature of knowledge about the situation,

where part of the BS can be observed, part is known by prior

knowledge and part can be estimated from one or both of the

previous two parts. But observations are noisy, uncertain and

incomplete, as are many facts from prior knowledge, and thus

all estimates made from them are also.

 Some entities can be observed by sensors such as optic,

infrared (IR), radar, synthetic aperture radar (SAR), moving

1-4244-0464-9/06/$20.00 2006 IEEE. 243 CIG'06 (May 22-24 2006)

target indicator (MTI) radar, laser radar (ladar), human

observers and signal intelligence (SIGINT), which detects

frequency bands, repetition intervals, etc., to determine the

type of equipment being used. But there are also hidden

entities, missing data and noise so that it is not possible to

observe all of the entities or even many of the particulars of

those observed (for correct identification of target type). Thus

the BS situation must be modeled with beliefs (0 to 1) of the

existence, type and status of many entities.

Figure 1. The nature of knowledge.

Both the gamer and the adversarial bot operate according

to their respective models of the BS situation, but the bot’s

modus operandi is determined by its rules, some of which it

will learn from game playing experience.

The relationships between entities and between their

attributes provide knowledge of the BS because gamers use

them to organize entities into echelons (unit levels) of the

adversary, the mix of forces, their locations and stances, and

patterns of behavior. The questions they pose are: how do

these entities support, supply, and reinforce each other? What

purposes do the organizational units of the given mixtures

imply? How may they be used separately or together? What

threats do they present? What does their behavior indicate? If

the bot attacks the bridge from the South, e.g., could the

gamer’s forces on the South side of the bridge become

trapped?

III. INTELLIGENT BATTLESPACE GAMING

On start-up of each game, the Game Controller module

calls the Initializer that permits the selection of a scenario,

armaments and parameters. The Initializer then builds an

uncertain BS model situation for the gamer and another one for

the bot. The Game controller then calls the Move Controller

that permits a next move by either the gamer or bot, whichever

one issues the next call to an event handler. Here, either the

Bot Move or the Gamer Move handles the event.

The Bot Move module accesses the bot’s BS model and

feeds key truth values to the bot’s rule base that controls its

moves. The Gamer Move module must display the Gamer’s

BS model on the screen and accept input from the gamer that

commands actions to be taken by the gamer’s forces. In a fully

developed system, the BS model also posts belief values

computed from belief networks (described later) that represent

a case base for learning.

The Game Controller then generates some random values

as noise on new observations and updates the Actual BS and

the two BS models for the gamer and the bot commanders. It

also adds any results to the case bases of each side for

learning. It then checks for the next move event from either the

gamer or the bot.

Scenarios may be an urban environment such that one of a

set of bridges over a river must be taken and secured; or it may

be a rescue operation on an island where guerilla forces hold

hostages in a town school and guard the roads leading into the

town. New scenarios may be added by descriptors of the

terrain, situation, goals, etc., at later times. Figure 2 shows the

Selector Interface that allows the gamer to chose the scenario

and other conditions for the battle game. Figure 3 presents a

high level functional diagram of the battle game system.

Figure 2. Selecting the BS conditions.

Figure 3. A high level functional diagram.

 As in a chess game (see [2] for the most complete gaming

strategies for chess), there are myriads of moves and counter

moves possible in a tree of moves, but unlike board games (see

[3] for a discussion of artificial intelligence and computer

games), the current situation here is only partially known and

a move may not be an actual move because there may be feints

and other uncertainties. Also the adversaries are not restricted

to a single move before the other side moves, so if one side has

a plan and can move several times before the other one moves

it can be an advantage (or disadvantage if the moves are not

good ones). A move need not be a single action but may

1-4244-0464-9/06/$20.00 2006 IEEE. 244 CIG'06 (May 22-24 2006)

encompass a sequence of several actions to be done by

different force units in parallel.

The decision cycle [4] is the response time, after an enemy

action gets underway, to construct and consider the updated

situation, select a response (decision), and begin its execution.

It is advantageous in modern warfare to have a shorter decision

cycle, which has moved from months during the Civil War to

weeks during World War II, to days in Viet Nam, to hours

during the Gulf War. In future warfare it must be in terms of

minutes.

 At the start of a battle game when the gamer and the enemy

bot get their initial BS models from the limited information

computed for them, each can make a plan, that is a sequence

of actions to achieve a goal. But like actual warfare, no

complete plan can be made beforehand because the adversarial

counter-moves to the moves are not certain and can even be

quite surprising. Thus contingencies must be planned to cope

with the omnipresent unknown responses and tactics, and new

plans may be needed at critical points by one or both sides.

The initial situation (BS) models are built by the Initializer

from given prior knowledge of the terrain and terrain-attached

man-made entities, the enemy forces observed, and the prior

knowledge such as the enemy modus operandi. Later situations

are built from updated information and threat assessments

made, which include the uncertain intentions of the adversaries

(see[4,5]).

The first step for the gamer in the battle with the forces

commanded by the adversarial bot is to observe the Actual BS

via the GUI that shows whatever sensors and human observer

data are available, as supplied by the game modules, to bring

into play any prior information and estimate the present BS

situation to update the gamer’s model of the BS. The allowed

uncertain information is displayed on the screen for the gamer,

who must form a mental model for examining possible moves

and their results and then input moves.

Figure 4. Conceptual controllers of an environment.

Figure 4 shows the game posed as a problem of partial

control of an environment against an intelligent adversary who

also partially controls that environment. The BS is a complex

environment that can be in any of finitely many states. The

gamer’s command inputs try to drive the environment to a

desired state from its present state in opposition to the bot’s

intelligent controller. Prior knowledge about the terrain,

weather, and the types and positions of hostile weapons, modes

of activity and locations of support facilities are incorporated

in the gamer’s updates.

The user input module must allow the gamer to view the

current unertain observations and review the prior information

in a window. The new gamer’s BS model that is built of

entities, their locations, enemy organizations and behaviors,

and terrain and weather, is to be considered by the gamer and

actions are to be planned. In an automatic game where the

gamer does not decide the actions (they are decided by a

friendly bot), a Situation Assessor module performs this

function, but in all cases such a module performs it for the

adversary bot that learns from its experience.

For the bots intelligent decision making, the Effectiveness

Function modules compare each new BS model with the

desired situation to determine the success of the last move

(there could also be such a function for the gamer, but

automation of the gamer would then merely pit two machine

intelligences against each other and would not be a game for

a human to play by thinking and using human intelligence).

The bot plans a move by examining a set of possible moves

and using weights similar to fuzzy truths to fire rules to select

moves. This involves a traversing a tree of moves and counter-

moves, where the effectiveness function is applied to each

possible move to determine the best move from the current tree

level. This is equivalent to thinking ahead.

The Threat Assessor module for the adversarial bot checks

and weights each possible action by the gamer, given its

current BS model and the planned action, and checks the

vulnerabilities of the bot’s forces. A move that is weighted

high by the Effectiveness Function, but which leaves any

unacceptable vulnerabilities is weighted lower here. The

assessment of the enemy threats uses the bot’s BS model and

prior information from the database. This requires probing the

tree of possible friendly and hostile moves at the next lower

level, at least.

A Feasibility Measure uses the effectiveness and threat

assessment functions to weight the possible actions for the bot.

The responses of the gamer to each possible bot move, as well

as the threats of the expected new situation, are predicted with

beliefs. Figure 5 shows the bot’s process flow (there could be

a similar process for the gamer, but not here, where the human

must play). There are several iterations of the loop of trial

decision, new situation assessment and threat assessment

before the weighted action decisions are provided to the bot.

The bot choses the one with the highest weighting according

to the feasibility measure.

The breadth of these iterations is the number of different

moves available (at the current level of a tree diagram) and the

depth is the number of lower levels of moves. Computational

intelligence usually requires a search of the possibility space,

just as in a chess-playing program. The speed and memory

power of today’s computers, together with a sufficient

database, permit the search of an enormous tree of possible

actions and their resulting states, but this is not practical here.

Unlike a chess game where the situations are observed with

1-4244-0464-9/06/$20.00 2006 IEEE. 245 CIG'06 (May 22-24 2006)

certainty and the results of moves are definite, the situations,

threats and move results here are all tenuous.

Figure 5. High level functional block diagram for bot.

There are many approaches to computer games between

two adversaries, one of which is game theory [6] where there

always exists the Nash equilibrium. However, a mathematical

game assumes the adversaries will take turns moving, which is

more and more unlikely in the real world where continuing

moves and sorties are more parallel-sequential.

IV. TREES OF BELIEF NETWORKS

Because entities in a BS situation model are uncertain with

beliefs providing the degree of certainty, the events associated

with entities are also uncertain. Relationships between entities

connect entities and events in an uncertain way. We propose a

new type of model here. Belief networks [7,8] have been used

for simpler situations at a fixed time interval, and dynamic

belief networks have been used for a set of variables over

different time instances. But our proposed model captures

entities, events and relationships over time in a tree type

structure.

A belief network tree is a tree where: 1) there are

supernodes, nodes, and decision nodes; 2) the supernodes

below the root node are entries to small belief networks of

variables and influence connections that have conditional

beliefs, usually in the form of Bayesian probabilities [8], which

represents the situation if that branch is taken; 3) the branches

from Level 1 downward are from decision nodes to supernodes

and may have weights assigned that represent beliefs of the

opponent’s actions or benefits of one’s own moves; 4) the

belief networks entered from the supernodes at the same level

may be quite different, as determined by the branch action.

Figure 6 shows a simple case of such belief network tree.

The tree has three levels, where Levels 1 and 2 each have two

(dark) supernodes (Level 0 has a single one). From the root, or

start, supernode, the two events below at Level 1 have beliefs

of 0.8 and 0.2 for the enemy’s action, say, to cross the bridge

or defend from the other side.. From Level 1, there are two

possible branches from an event with respective beliefs of 0.3

and 0.7. From any supernode below Level 0, a belief tree is

entered that provides a possibly unique situation. The events

have entities and entities have attributes. These and their

beliefs are modeled in the belief networks.

Figure 6. A simple dynamic belief tree.

All paths that lead to desirable event situations with higher

beliefs or weights are accepted as candidates and the others are

pruned. This leads to the best move from Level 0 to Level 1,

then from Level 1 to Level 2, to make trial decisions and

consider the outcomes, then assign the mission and observe the

new BS state (situation). However, what is really needed is a

method for backtracking from the most desired belief network

to the current level of moves.

The process discussed above is usually done by humans

using subjective beliefs and intuition, where the actual BS

indicated in Figure 5 is not seen, in an attempt to achieve a

goal. This is the essence of BS gaming. In the game of chess,

there is certainty if all the possible moves and counter moves

are examined for sufficiently many levels. Due to the

complexities and uncertainties at all levels in a BS, there is

experience and intuition involved when the gamer assigns

missions (selects a move). A selected move should lead to an

expected gain, or benefit, according to the effectiveness and

feasibility functions, and a loss should not be too severe even

if the more unlikely events occur (a minimax move).

An intelligent gaming system should incorporate experience

and intuition, and so must have memory of experiences and an

ability to extract benefits and losses from these to select

suboptimal moves in the future. Thus it must store the actual

moves and the results, along with a feasibility value of the

move. It can do this in a relational table of rows of values for

the columnar field variables. Such a table is a record of cases

and forms a case base [9,10,11] that also stores feasibility

values. The tables can also be mined for (fuzzy [12,13])

conditional associations. These can then be represented by

belief networks with the associations (influences) having

strengths provided by the conditional rule confidences. By

1-4244-0464-9/06/$20.00 2006 IEEE. 246 CIG'06 (May 22-24 2006)

such recording and analysis of the relationships between

variables, a system extracts knowledge from the stored

experience data. The bot will learn in this fashion to play

expertly against humans and can then be used to play against

enemy commanders in actual battles.

V. A SIMPLE EXAMPLE

We now consider the simple scenario of a BS as displayed

in Figure 7. The river has two bridges that are each guarded by

5 red tanks (R) and a small group of red fighters (F) with small

arms and rocket propelled grenade launchers. At Building 2

there is a reserve red force of 6 tanks and one fighter group.

The blue force (bottom center) is to take one of the bridges

(the goal). The red force command is expected to hold the

reserves until an attack occurs and then move them to where

needed. The East Bridge is considered more vulnerable. Here

the forces will initially be evenly matched, which is a risk for

the blue forces (the red forces are to hold the bridges at all

costs).

Figure 7. A simple battlespace example.

A blue feint on the West bridge may start the reinforcement

of the red forces from Building 2 toward the West bridge, but

the feint would require some blue resources. The main attack

by blue forces would be against the East bridge when the red

reinforcements are nearing the West bridge. If the small blue

force feint keeps the red forces and reinforcements occupied

at the West bridge, then the main blue force can presumably

hit the East bridge and take it before the red reserves can be

shifted.

From the root supernode in Figure 8, one branch would be

for the feint on the West bridge (Level 1) followed by an

attack on the East bridge (Level 2). Another branch would be

an attack on the East bridge with no feint on the West bridge.

Figure 8 shows the blue force events in bold font and the red

force events in italics. A symmetrical situation is for the East

and West bridges to be interchanged so we prune those

branches. Thus there would be the two branches from the root

node that would yield two different situations.

Figure 8. A belief network tree for the simple example.

From Level 0, if the blue force feints an attack on the W.

Bridge, the red force either reinforces the W. Bridge or holds

the reserves. If the red forces reinforce the W. Bridge, then the

blues attack the E. Bridge, in which case the reds reinforce the

E. Bridge too late. This sequence of situations has the highest

value of the feasibility function for the blue forces, whereas a

blue attack on E. Bridge with no feint resulting in the blue

withdrawal on the right bottom would have a low feasibility

value.

VI. CONCLUSIONS

We have presented some aspects of actual and simulated

battle games that are not present in the usual computer games.

Such battle games can be simulations with random draws to

model the uncertainty, but the adversaries must be free to

move as many times at whatever times they chose, or refrain

from moving. Each must update its BS situation model at

(probably different) time increments from which to make move

decisions based on the incomplete and uncertain model. It is a

difficult problem to design such a game or a system to aid

commanders in a real war game. In the computer games case,

the real world scenarios must be modeled and implemented in

software with the generation of uncertainties, whereas in the

real world of battle, these are generated by reality. In either

case the gamer must assess the situation from uncertain data

and select moves, and it is the selection of moves that can be

aided by processing on the stored experience data.

A possible use of such a battle game system is to train a bot

that could then aid commanders in actual battle situations to

speed up the decision cycle. Our proposed approach needs

further development and a more detailed expansion with real

scenarios to judge its utility. Our future work will be in this

direction.

1-4244-0464-9/06/$20.00 2006 IEEE. 247 CIG'06 (May 22-24 2006)

REFERENCES

[1] John E. Laird, “Using a computer game to develop

advanced AI,” IEEE Computer, July, 2001, 70 - 71.

[2] E. A. Heinz, “Scalable search in computer chess,” Vieweg,

Braunschweig, Germany, 2000.

[3] Stuart Russell and Peter Norvig, Artificial Intelligence, A

Modern Approach, 2 Edition, Prentice-Hall, Upper Saddle nd

River, 2003.

[4] Carl G. Looney, “Exploring fusion architecture for a

common operational picture,” Information Fusion 2, 2001,

251 - 260.

[5] C. G. Looney and L. R. Liang, “Cognitive situation and

threat assessments of ground battlespaces,” Info. Fusion 4,

2003, 297 - 308.

[6] Don Ross, “Game Theory,” The Stanford Encyclopedia of

Philosophy (W inter 2005 Edition), Edward N. Zalta (ed.),

http://plato.stanford.edu/archives/win2005/entries/game-theory/

[7] Nadkarni, S. and P. Shenoy, A Bayseian network approach

to making inferences in causal maps. European J. Operations

Research, 2001. 128: p. 479-498.

[8] Pearl, J., Probabilistic Reasoning in Intelligent Systems:

Networks of Plausible Inference. 1988, San Mateo, California:

Morgan Kaufmann Publishers.

[9] A. Aamodt, and E. Plaza, Case-based reasoning:

foundational issues, methodological variations and system

approaches. IEEE AI Communications, 1994. 7(i): p. 39-59.

[10] Kolodner, J.L., Maintaining Organization in a Dynamic

Long-Term Memory. Cognitive Science, 1983. 7(4): p. 243-

280.

[11] Schank, R., Dynamic memory: a theory of reminding and

learning in computers and people. 1982, Cambridge, UK:

Cambridge University Press.

[12] Lily Liang and Carl Looney, “Fuzzy belief state-based

data mining,” Proc. IEEE IRI 2004, Las Vegas, Mar. 2004.

[13] Kuok, C.M., Fu A. and Wong, M.H. M ining Fuzzy

Association Rules in Databases. ACM SIGMOD Record ,,

March,1998. 27(1): p. 41-46.

1-4244-0464-9/06/$20.00 2006 IEEE. 248 CIG'06 (May 22-24 2006)

Fun in Slots
Kevin Burns

Abstract— People play games for fun. Yet we are lacking a
fundamental understanding of what fun is and how fun works
in games and other media. For example, why do thousands of
people spend millions of dollars playing slot machines,
especially when most know they will lose money in the long
run? To answer this question, I present an aesthetic analysis of
slot play using a Bayesian-information approach. The finding is
that fun in slots can be seen as arising from a difference in
information gained from good versus bad outcomes. This
difference is modeled by marginal entropies and the result is a
measure of fun in slot play, showing for what range of payoff
probabilities slots are fun and at what probability they are
most fun. The approach is extended to games of skill and the
same Bayesian-information theory is used to derive
computational measures of fun in these games.

I. INTRODUCTION
UN is serious business, especially in the entertainment
industry. But games are also used in other industries for

testing-out strategies and training of employees, and real
fights against competitors and enemies are driven by
feelings of tension and pleasure. Yet these feelings and fun
are poorly understood, especially from a computational
perspective. This may be acceptable and even desirable for
game consumers, but it is not acceptable for game designers
if they are to advance the state of their art and practice
through systematic engineering.

This paper takes a small step towards understanding fun
in games, with a focus on gambling in slot machines. The
approach is one of computational aesthetics, which is
relevant to computational intelligence because human
emotions affect human cognition, and vice versa. From a
practical perspective, aesthetics are important to efforts
aimed at: (i) designing machines that adapt to the feelings of
users, i.e., in human-computer interface design, and (ii)
designing machines that can simulate human behavior, i.e.,
in artificially intelligent agents. The bottom line is that
human actions are driven by both thinking and feelings, in
both occupational work and recreational play; hence a
computational understanding of intelligence must include a
computational understanding of aesthetics.

The question is: Why do people play gambling games like
slot machines, even when they know they will lose in the
long run? Clearly they play for fun, but then what is fun?

Manuscript received March 31, 2006. This work was supported by the

MITRE Technology Program.
Kevin Burns is with the MITRE Corporation, 202 Burlington Road,

Bedford, MA 01730-1420 USA (phone: 781-271-8762; fax: 781-271-2101;
e-mail: kburns@mitre.org).

 In one answer, Koster [1] writes, “Fun is just another
word for learning” (pg. 46); “Games that are too hard kind
of bore me, and games that are too easy also kind of bore
me.” (pg. 10). But all learning is not so fun, and
“Goldilocks” statements about people liking things “not too
hard or too easy” are really just common sense.

Slot machines are a good example because playing them
is clearly fun for many people, and yet the game does not
seem to be much of a learning challenge. In fact it is rather
remarkable that slots, which are so repetitive [2], are such a
popular amusement for cognitive intelligence. Therefore, a
theory of fun must address the pleasure that comes from
repetition as well as the pleasure that comes from a learning
challenge; plus slots are not fun for everyone so personal
preferences must be part of the equation, too.

Here I develop an equation, f = G * E + G’ * E’, for fun
in slots, based on a general theory of aesthetic experience
called EVE’ [3]. According to EVE’, fun comprises two
types of pleasure, each stemming from subjective success in
different but related types of cognitive processing. One type
is pleasure that arises from success in forward-looking
Expectations (E) of what will happen in a media experience
(e.g., game). The other type is pleasure-prime that arises
from success in backward-looking Explanations (E’) of
what has happened in a media experience (e.g., game). The
two are related by Violations (V) of E that create
opportunities for E’ in the sequence E-V-E’ .

Here, following EVE’, I argue that fun in slots is a
tradeoff between pleasure (p) at E and pleasure-prime (p’) at
E’, where p corresponds roughly to the idea of repetition [2]
and p’ corresponds roughly to the idea of a learning
challenge [1]. In expanding and evaluating the equation, f =
G * E + G’ * E’, I show that while fun in slots involves both
repetition at E and a learning challenge at E’, logically most
of the fun must come from E’. I also discuss how E’ itself is
governed by a tradeoff between good/bad outcomes, and
how personal preferences and a sense of humor affect the
computed measure of fun.

The analysis is generalized beyond slots to games of skill,
and the same basic equation is shown to apply. The main
finding is that fun in slots and other games can be modeled
and measured as a difference in information gained from
good outcomes versus bad outcomes, where information is
measured by marginal entropy. The net fun in games is
made possible by Violations (V) of Expectations (E) for
good and bad outcomes, which create tension that is
ultimately resolved with pleasurable or displeasurable
Explanations (E’).

F

1-4244-0464-9/06/$20.00 2006 IEEE. 249 CIG'06 (May 22-24 2006)

II. DISCUSSION
When used in its most general sense, the term “gambling”

refers to games in which the outcome is unknown – and in
that sense most games can be considered gambling games
(see Section III). When used in a more specific sense, the
term “gambling” refers to the genre of game play found at
casinos and race tracks and other venues where one pays
some amount of money A (ante) with the chance P<1 of
getting a payoff J (jackpot) where J>A.

Financially speaking, casino gambling is a zero-sum game
because whatever is lost by one player is gained by another
player, i.e., “the house”. Psychologically speaking, the same
is not true, and in fact the casino industry thrives on a win-
win phenomenon whereby the house wins money and the
player wins pleasure. That is, people play even though they
lose money, and the only plausible explanation for this
rather puzzling behavior is that they must be having some
fun.

As a simple and concrete example, consider a “fair” slot
machine in which the player antes one coin and there are
only two possible outcomes: either the player gets a jackpot
of J coins or the player gets nothing. The machine is “fair”,
because J=1/P where P is the probability of hitting the
jackpot. Of course most slots are more complex than this
because there are a number of payoffs {J1, J2, …, Jn}, each
with a corresponding P that is equal or at least roughly equal
to 1/J, i.e., {P1, P2, …, Pn}. Real slots are also not “fair”,
because the house takes a percentage (typically around 5%),
and so the payoffs are reduced accordingly.

Nevertheless, here I analyze a test tube game in which
there is only one P and J=1/P. The results generalize to the
more complex case simply by treating a real machine as a set
of single-P machines with various Ps.

From a normative perspective, the player’s expected
utility in this slot game is zero because the average outcome
is P*J=1, which equals the ante of one coin. Yet, from a
cognitive perspective, the player must be getting some sort
of subjective utility or net fun, otherwise he would not play.
Here it is relevant that research in the field of behavioral
decision making [4] has shown that people have subjective
(cognitive) utilities that deviate from objective (normative)
utilities. That is, the mental value of a dollar gained or lost,
called the marginal utility, is more or less than a dollar.

But this only makes fun in slots more puzzling, since the
cognitive deviations from normative behavior are usually
such that people are risk averse – which means that they not
only avoid “fair” bets but actually require better than even
odds in gambling choices. This finding is exactly the
opposite of what one would expect to find if cognitive
biases in subjective utility were the reason that people play
slots. For example, a typical subjective-versus-objective
utility function [4] is shown in Fig. 1. Here the subjective
utility (y-axis) increases with objective utility (x-axis), but
the slope decreases as utility increases, which means that
people are risk averse.

The applicability of such curves to human behavior in

decision gambles has been well established by numerous
studies [4]. The underlying intuition, which says that a
dollar is worth less as the number of dollars increases, can
be traced back at least as far as Bernoulli [5] who proposed
that subjective utility is roughly proportional to the
logarithm of objective utility – as plotted in Fig. 1.

The point here is that people have been shown to be risk
averse in gambling studies, which suggests that they would
not play slots even if the slots were known to be “fair”, let
alone if the odds were known to be stacked against them.
But people do play, and this makes the slot craze even
harder to explain, i.e., it further highlights the need for a
computational understanding of fun in games.

Fig. 1. A typical utility curve, plotting subjective utility (y-axis)
versus objective utility (x-axis) as y = log x.

Below I present an analysis that leads to a plausible
explanation for why people play slots. The approach uses a
Bayesian-information theory, and the results suggest that the
reason people play slots is that they get more information
from winning jackpots than they do from losing antes, i.e.,
the net fun comes from an informational gain even when
there is no financial gain. And since net fun or pleasure can
offset the displeasure of losing money, this finding may also
explain why people play casino slot machines that are not
even “fair”. In short, the idea is to analyze slots as an
informational game, which a player can win, rather than a
financial game, which a player cannot win.

A. Expectations
To begin the analysis, consider a player’s beliefs before a

payoff. For the fair machine (above), a player’s Expectation
(E) of a jackpot J can be modeled as log P [6]. Note that this
is an informational measure of expectation that refers to the
occurrence of the event (jackpot), not a financial measure of
either the amount of the jackpot J or the expected utility of
the jackpot P*J.

1-4244-0464-9/06/$20.00 2006 IEEE. 250 CIG'06 (May 22-24 2006)

 Note also that the measure of E is log P rather than raw P.

Referring to Fig. 1, log P increases monotonically with P, as
it should if it is to be a measure of expectation. However,
there are three reasons [3] for using log P instead of raw P,
namely: (i) log P is the information-theoretic measure of
expectation that gives rise to a measure of entropy [6], (ii)
log P is consistent with common wisdom [5] and
experiments [4] on subjective utility, and (iii) log P and its
additive inverse log 1/P = -log P are “linear” [6] measures
that are symmetric about an anchor of zero – and cognitive
processes for measuring quantities are known to be
governed by a number “line” [7].

Here, the player expects to win a jackpot with probability
P and expects to win nothing with probability 1-P. So, in
information-theoretic terms: EJ = log P provides a
mathematical measure of success in forming Expectations
when the payoff J is actually observed; and E0 = log (1-P)
provides a mathematical measure of success in forming
Expectations when the payoff 0 is actually observed. Thus,
weighing the E for each informational outcome (J or 0) by
its frequency of occurrence (P or 1-P) in repeated play, the
total measure of success in forming Expectations (E) while
playing slots is given as follows:

E = {EJ + E0} = {P * log P + (1-P) * log (1-P)}

Notice that this expression is equal to the negative of total

entropy for the set of possible outcomes {0, J}, since the
entropy for a set {si} of i signals (outcomes) with
probabilities {Pi} is defined as -Σi Pi * log Pi [6]. The plot
for E in Fig. 2 shows that E is highest at P=0 and P=1, while
E is lowest at P=0.5. That is, the maximum negative-entropy
(minimum entropy) occurs at P=0 and P=1 where the
machine is completely predictable, while the minimum
negative-entropy (maximum entropy) occurs at P=0.5 where
the machine is completely random.

In EVE’ [3], this measure E of success in forming
Expectations gives rise to pleasure (p). An example is the
pleasure that people get from listening to the same songs
over and over again, i.e., because they like hearing the notes
that they expect to hear. Now, while this is clearly part of an
aesthetic experience, it is certainly not the whole story, as
we know from the fact that sometimes people like to hear
new songs. And, in the case of slots, if all the pleasure came
from success at E then, as shown in Fig. 2, people would
prefer to play slot machines that are completely predictable
– which is obviously not the preference observed at casinos.

B. Explanations
According to EVE’ [3], the rest of the story after E is V

and E’. That is, incurring a Violation (V) of an Expectation
(E) will create tension – which in turn leads to pleasure-
prime (p’) if and when the tension is resolved by an
Explanation (E’). An example is the release of tension that
causes laughter (pleasure) when one “gets” a joke in
comedy, which comes after a punch line (Violation) but only
when the audience “gets it” (Explanation).

Thus, pleasure at E and pleasure-prime at E’ are both part
of the aesthetic equation modeled by EVE’. The two
pleasures (p and p’) are different, because pleasure p is
related to avoiding Violations while pleasure-prime p’ is
related to incurring Violations, but they are both part of total
pleasure.

To complete the story of EVE’ in slots, consider a
player’s belief after a payoff. In either case, payoff J or
payoff 0, there will be some Violation (V) of Expectation
(E) because the outcome actually occurred with probability
1 and yet the modeled probability was <1; either P (for
payoff J) or 1-P (for payoff 0). Because payoff J is expected
with probability P, the measure of Violation when payoff J
occurs is as follows: VJ = log (1/P) = log 1 - log P = -log P.
Likewise, because payoff 0 is expected with probability 1-P,
the measure of Violation when payoff 0 occurs is as follows:
V0 = log (1/(1-P)) = log 1 - log (1-P) = -log (1-P).

Now for either outcome (J or 0), the player experiences
both a measure of E and a measure of V = -E. The E causes
pleasure (see above) and the V causes tension which, if
resolved by E’, leads to pleasure-prime. Conceptually, E and
E’ are different in that E (before V) involves the forward-
looking Expectation of possible outcomes, while E’ (after V)
involves a backward-looking Explanation of the actual
outcome. Computationally, the equation for E can be written
from information theory (see above), but the equation for E’
must apply Bayesian theory. That is, using H (hypothesis) to
denote a player’s mental model of cause and effect in the
game: E involves predicting the likelihood of a datum Di in
the set {Di} of possible outcomes, given a set of hypotheses
{Hk}. Conversely, E’ involves perceiving the most likely
hypothesis Hk in the set {Hk}, given the actual datum Di. In
the latter case, for E’, perception can be modeled as a
process of Bayesian inference [8].

Fig. 2. A plot of the function E in slots. E measures the average rate of
success in forming Expectations for payoffs J and 0.

1-4244-0464-9/06/$20.00 2006 IEEE. 251 CIG'06 (May 22-24 2006)

The basic difference between E and E’ is that E is

governed by likelihoods of the form P(Di|Hk), while E’ is
governed by posteriors of the form P(Hk|Di). The details are
explained elsewhere [3], [9], [10], but here for slots the
Bayesian analysis is simplified by the fact that there are only
two hypotheses, denoted L = “good luck” or ~L = “bad
luck”. Using ~J to denote a payoff of 0, the priors before
each outcome are P(L)=P and P(~L)=1-P, and the
likelihoods are P(J|L)=1, P(J|~L)=0, P(~J|~L)=1 and
P(~J|L)=0. Now the problem is to compute the posteriors
P(L|J), P(~L|J), P(~L|~J) and P(L|~J), which can be done
with Bayes Rule.

By Bayes Rule, P(L|J) = P(L)*P(J|L) / [P(L)*P(J|L) +
P(~L)*P(J|~L)] = (P*1)/(P*1+(1-P)*0) = 1, and similarly
P(~L|J)=0, P(~L|~J)=1 and P(L|~J)=0. Thus, for this special
case of 0/1 likelihoods, the posteriors are simply equal to the
corresponding likelihoods. In short, a good outcome (payoff
J) is explained as “good luck” with posterior probability 1,
P(L|J)=1, and a bad outcome (payoff 0) is explained as “bad
luck” with posterior probability 1, P(~L|~J)=1.

Since the posterior Explanation of a Violation in slots is
equal to 1, the tension of the Violation will be completely
resolved [3] such that E’=V. But here I assume that the
resolution will give rise to pleasure when P(L|J)=1, and
displeasure when P(~L|~J)=1. That is, L is like “getting” a
good joke, which feels good, and ~L is like “getting” a bad
joke, which feels bad, so L and ~L lead to pleasure and
displeasure, respectively.

Thus, weighing each E’=V by its frequency (probability)
of occurrence in repeated play, and negating the measure E0’
for the case of payoff 0 because it give rise to displeasure,
the total measure of success in forming pleasurable
Explanations is given as follows:

E’ = {E’J - E’0} = -{P * log P - (1-P) * log (1-P)}

The result, plotted in Fig. 3, shows that E’>0 when P<0.5
and E’ is maximized at a P value of about 0.15.

Notice that an implicit assumption in the above
expression for E’ is that pleasure and displeasure are
equally weighted. That is, the equation assumes that
resolving a unit of tension in a good way (pleasure), and
resolving a unit of tension in a bad way (displeasure), are
equal in absolute value. But in fact this may not be so, and it
clearly depends on the personal preferences of a particular
player. Said another way, different people may have
different tastes for good/bad payoffs, which by analogy to
comedy might be called their sense of humor in the game of
slots. Thus, the expression for E’ should really be written as
follows:

E’ = -{H+ * P * log P - H- * (1-P) * log (1-P)}

where H+ and H- are weighting factors that account for the
player’s sense of humor in slots, 0≤H+≤1 and 0≤H-≤1.

Fig. 4. A plot of the function E’ in slots for a player with a good sense
of slot humor.

Fig. 3. A plot of the function E’ in slots. E’ measures the average rate
of success in forming pleasurable Explanations after Violations of
Expectations.

For example, if a person has a good sense of slot humor,
which might be described in behavioral terms as a positive
disposition because one likes good outcomes more than one
dislikes bad outcomes, then H+ > H-. Conversely, if a player
has a bad sense of slot humor, which might be described in
behavioral terms as a negative disposition, then H- > H+. To
see the effect on the measure of E’, the above equation is
plotted for two cases: H+/H- = 1.0/0.5 in Fig. 4 and H+/H- =
0.5/1.0 in Fig. 5. These plots show how the personality of
the player, or sense of slot humor if you will, affects E’ by
magnifying and shifting the player to either the left or the
right of the average curve shown in Fig. 3.

Now, putting E and E’ together, the total pleasure or fun
(f) from playing slots is given as follows:

f = G * E + G’ * E’

1-4244-0464-9/06/$20.00 2006 IEEE. 252 CIG'06 (May 22-24 2006)

where E and E’ are measures of success in forming
Expectations (E) and Explanations (E’). Here, G and G’ are
scaling factors that translate a level of success (E or E’) to a
unit of pleasure (p or p’). They are similar to the factors H-
and H+ above in that they account for personal preferences.
However, while H- and H+ are concerned with a player’s
preferred mental attitude in E’, G and G’ are concerned with
a player’s preferred mode of processing in E versus E’, i.e.,
the relative enjoyment they get from success in forming
Expectations (E) versus Explanations (E’).

Fig. 7. A plot of the fun function f, where the scaling factors for E and
E’ are G/G’=1/3, showing that fun is positive for 0<P<0.2 and peaked
at P=0.05.

Finally, substituting the measures of E and E’ derived
above, the total fun (f) can be written as follows:

 f = G * {P * log P + (1-P) * log (1-P)} +

- G’ * {H+ * P * log P - H- * (1-P) * log (1-P)}

Fig. 5. A plot of the function E’ in slots for a player with a bad sense
of slot humor.

Here it is useful to examine some specific cases for H-/H+
and G/G’ to see how fun varies. First, assume that H-=H+=1
and G=G’=1. Then, fun is the sum of Fig. 2 for E and Fig. 3
for E’, as shown in Fig. 6. In this case (Fig. 6) we see that p
dominates p’, such that fun is maximized at P=0 or P=1
where the machine is completely predicable, and fun is
always negative in between. Thus, a person with these G and
H preferences would not find slots fun.

 Fig. 7 shows a case where H-=H+=1 but G/G’=1/3, which
means the player enjoys a unit of success at E’ three times
more than a unit of success at E. Here we see positive fun
between P=0 and P=0.2, with peak fun around P=0.05.
Finally, Fig. 8 shows a player who has the same G/G’
preference but who also has a good sense of slot humor (H-

=0.5 and H+=1.0). Here we see a broader and higher range
of positive fun, with peak fun at about P=0.10.

Fig. 8. A plot of the fun function f, where the scaling factors for E and
E’ are G/G’=1/3, for a player with a good sense of slot humor,
showing that fun is positive for 0<P<0.4 and peaked at P=0.10.

Fig. 6. A plot of the fun function f for the case where the scaling
factors for E and E’ are G=G’, showing that fun is negative.

1-4244-0464-9/06/$20.00 2006 IEEE. 253 CIG'06 (May 22-24 2006)

These plots, which I call Goldilocks functions, are useful
because they illustrate the basic tradeoff between E and E’
via G and G’, and the relative importance of H- and H+, to
fun in slots. That is, people would only play slots (as they
do) if G<G’, which means that the fun in slots comes more
from Explanations (E’) that resolve Violations than from
Expectations (E) that prevent Violations in EVE’. Moreover,
for players with G<G’, a player’s sense of slot humor is also
important, and players with H-<H+ will find slots more fun.
In short, it only makes sense to reduce E and incur V to
achieve E’ if the player enjoys a unit of E’ more than he
enjoys a unit of E – and this makes even more sense to a
player with a good sense of slot humor.

C. Limitation
One limitation of the above analysis is that it assumes the

player’s mental models for J and P=1/J reflect the J and P of
the machine he plays. But in fact a player’s models may be
different, especially for P, since people are known to exhibit
many biases in probabilistic inference and knowledge. For
example, in the well-known bias called “gambler’s fallacy”,
if a series of coin flips has come up with more heads than
tails then the person will think he is “overdue” for tails, i.e.,
he thinks that the probability of tails on the next toss is
>50%. This raises the question of how such a bias in the
player’s model might affect fun, i.e., perhaps the fun comes
from “wishful thinking” in a bias like the gambler’s fallacy.

But here again, like the case of subjective utility discussed
earlier (Section II.A), the bias does not explain fun in slots
because it would make slots less fun not more fun. To see
why, consider the following expression for E’ where P
reflects the player’s model for the probability of a jackpot
and F reflects the actual frequency of a jackpot from the
machine: E’ = -{F * log P - (1-F) * log (1-P)}. Assuming
F=cP where c=0.75<1, Fig. 9 plots the result for E’ (dotted
line) compared to the baseline case (solid line) where c=1.
The plot shows that fun is actually decreased by the bias.

D. Validation
As one test of EVE’, the predicted P for peak fun in slots

can be compared to the actual P of real slot games that
people play for fun. As noted in Section II.A, a real slot
machine offers a range of jackpots {Ji}, where each Ji has a
Pi that is roughly proportional to 1/Ji. Here, for a real
machine, I consider the “Twenty-One Bell three-wheel
nickel machine” analyzed by Scarne [11], who notes that the
payback to players is 94% and who says, “I’d be playing it
just for fun; I wouldn’t expect to beat it in the long run.”

Presumably this real machine has been optimized for fun,
or at least it is close to peak fun for slot players. Scarne’s
detailed analysis shows that the set of payoffs {Ji} has i=8
where Pi*Ji is roughly constant for all i. The average rate P
of getting some payoff (i=1 through 8) is computed to be
13%. This result compares well to the peak P of around
0.10-0.15 given by EVE’s theory, as seen in Figures 3 and 8.

III. EXTENSION
Section II showed that fun in slots can be seen as arising

from informational play rather than financial play. That is,
the aesthetic experience of slot fun can be seen as a net
difference in information gained from good outcomes versus
bad outcomes, where information gain is measured by
marginal entropy.

Each instance of information gain (good or bad) is a
Violation (V) of Expectation (E) that is resolved with either
a pleasurable (good outcome) or displeasurable (bad
outcome) Explanation (E’) – and net fun comes when the
marginal entropy of good outcomes given by -P * log P is
larger than the marginal entropy of bad outcomes given by -
(1-P) * log (1-P).

But slots is a game of luck, and this raises the question of
how EVE’ might apply to games of skill. Here, to
generalize, I consider any game of skill in which the player
can score a win or loss. The player cannot control all aspects
of the game, so the outcome is unknown. Thus, a player of
this game can be modeled by a win probability S, which is
like P in slot games because it establishes a player’s
Expectations for a win or loss on each attempt.

Following EVE’ and focusing on the Violations (V) and
Explanations (E’) that were seen to be the main source of
fun in slots, the two possible outcomes in a game of skill are
W=win or L=loss, which are akin to payoff J and payoff 0 in
slots. Likewise, there are two kinds of Violations, namely:
(i) VL, when the player scores a loss, where the magnitude
of Violation is VL = -log (1-S), since log (1-S) is the
measure of Expectation for a loss, and (ii) VW, when the
player scores a win, where the magnitude of Violation is VW
= -log S, since log S is the measure of Expectation for a win.

Now the big difference between slot games and skill
games is that a player’s Explanation (E’) for a Violation VL
in a game of skill will involve causal logic like, “I lost
because I did x and I might have won if I did y”.

Fig. 9. A plot of E’ for two cases. The dashed line applies to the case
where the actual frequency F of a jackpot is less than the player’s
mental model P, F=0.75*P. The solid line applies when F=P.

1-4244-0464-9/06/$20.00 2006 IEEE. 254 CIG'06 (May 22-24 2006)

Per EVE’ [3], such an Explanation would resolve some of
the tension with pleasure where the amount of some would
be proportional to the degree of might in the Explanation. In
particular, if the Explanation was “… I would have won….”
then the Explanation would resolve all the tension.

Here, as a simple and bounding case, I assume that such
Explanations resolve all of the tension from VL with
pleasure. On the other hand, there can be no “what if”
Explanation like this for a Violation VW because the win did
occur. That is, the only Explanation for VW is “I won
because I did x and I should not have won if I did x”. Since
this Explanation does not explain anything, I assume it
resolves all of the tension from VW with displeasure.

Thus, writing the equation for E’ = EL’ - EW’ yields:

E’ = -{(1-S) * log (1-S) - S * log S}
 = {S * log S - (1-S) * log (1-S)}

Notice that this equation is the same as that for slots

(above), except negated because the Violations are opposite.
That is, in slot games the win/loss Violations VJ/V0 are
resolved with pleasure/displeasure because it is a game of
luck, while in skill games the win/loss Violations Vw/VL are
resolved with displeasure/pleasure because it is a game of
skill. In both cases a difference in marginal entropies is what
gives rise to net fun, but the good/bad entropies are reversed
because the goodness/badness of the information gain
depends on the player’s Explanation of the Violation. That
is, the amount of information gain is measured in light of the
player’s mental models [10], which govern his Expectations,
and the impact of this information is measured in light of the
player’s mental models, which govern his Explanations. In
short, the player’s feelings of fun depend on his
interpretation of the information [3] via mental models [10].

Fig. 10 plots the function E’ for this skill game, which is
the inverse of Fig. 3 for the slot game. As seen in Fig. 10, E’
is positive for P>0.5 and peak E’ occurs at a P of about 0.85.
Thus, it is most fun to win often but not always.

This analysis of skill games is admittedly speculative, but
it does show how differences in Explanations of Violations
for different games (e.g., luck versus skill) can give rise to
different fun functions. It also shows how fun in skill games
can be seen as arising from an information gain, much like
that in slot games – and how the emotional impact of this
information gain depends on the mental models that govern
a player’s Explanations, which in turn give rise to feelings
of pleasure/displeasure.

In particular, the function E’ versus S would be different
for a game where the Explanations were of a different sort
or sign (+ or -). For example, consider a game of skill where
the player’s causal logic is similar to the above in that
Violations VL are still resolved with pleasurable
Explanations, but different from the above in that Violations
VW are not resolved at all rather than being resolved with
displeasurable Explanations.

 This might be the case if the player had a different sense
of humor in the game, and/or if the player did not understand
the game well enough to explain unexpected wins as
something that should not have happened (see above). Here,
retaining the assumption that a player always has an excuse
(Explanation) for losing, and assuming that fun is dominated
by E’ rather than E, then fun would be driven by the
following equation for E’:

Fig. 10. A plot of the function E’ versus win probability S, for a game
of skill. E’ is positive for S>0.5 and the peak E’ is at about P=0.85.

E’ = -(1-S) * log (1-S)

which is simply the marginal entropy of the losing outcome.
This Goldilocks function, plotted in Fig. 11, has the shape of
an inverted bowl that is skewed towards large S and peaked
at about S=0.6.

Fig. 11. A plot of E’ versus win probability S, for a game of skill
similar to Fig. 10 except with a different assumption about how the
player resolves Violations VW when he wins. Here the Goldilocks
function for peak fun is broader and peaked at about S=0.6.

1-4244-0464-9/06/$20.00 2006 IEEE. 255 CIG'06 (May 22-24 2006)

 As one point of empirical evidence, player’s judgments of
enjoyment (which I call fun) were measured in an
experiment [12] using a variant of the game “Punch Out”.
This game is a simplistic simulation of a boxing match,
where the player takes defensive actions and makes
offensive attacks against a computer opponent, and each
round is scored with a margin of victory ranging from -10
(worst loss) to +10 (best win). After each round the player
gave a subjective rating of enjoyment, and the mean values
were correlated to the margin of victory. The results showed
that peak fun occurred at a margin m of +1; the peak fun
dropped off rapidly for m<1 and dropped off less rapidly for
m>1; fun was negative for m<-2; fun was positive for m>-1.

Here, to compare EVE’s theory to this data, a win
probability S must be converted to a measure of margin m.
Using the standard approach of a Rasch model [13], margin
m would vary roughly as logit (S) = log (S/(1-S)).

Now, besides E’ per the above equation, the theory of
EVE’ includes E from the equation E = S * log S + (1-S) *
log (1-S). Also, E is scaled by a factor G and E’ is scaled by
a factor G’. Here I assume G/G’=1/3, which is the same
ratio used in the slot plot of Fig. 8. Fig. 12 plots the fun
function, f = G * E + G’ * E’, against logit (S). Compared to
the empirical data (discussed above), the theoretical results
match the quantitative value of the margin (m=+1) for peak
fun as well as the qualitative drop-off of the curve, which is
faster for m<1 (going negative) than for m>1 (staying
positive).

This agreement between theory and data suggests that
similar modeling with EVE’ [3] can be used to explain and
predict fun in other games, and that the nature of players’
Explanations of Violations in “Punch Out” may be similar to
those assumed in the above analysis.

IV. CONCLUSION
The contribution of this paper is to show how fun in

games can be analyzed with a computational-aesthetic
approach, using Bayesian-information theory. In particular, I
showed how slots and other games can be seen as
informational games, played in a cognitive progression of
Expectation-Violation-Explanation (EVE’), where fun arises
from information gains that can be measured by marginal
entropies. This finding is important because it provides a
plausible explanation for human behavior in slot play, and
because the same Bayesian-information theory of EVE’ can
be applied to other games and other aesthetic experiences in
general – in order to model and measure how fun works.

The analysis was obviously simplified in not modeling the
aesthetics of bells, wheels, coins, etc., and in assuming that
the player’s anticipations can be reduced to an average
probability P of a payoff J. As such, the study does not
capture all the nuances of each atomic E-V-E’ experience in
the “time domain”. However, the results do capture major
modes of time-averaged aesthetics in the “frequency
domain”, plotted as Goldilocks functions. These functions
show how enjoyment can be modeled and measured by
Bayesian extensions to Shannon entropies. The analysis is
also limited by the assumption of scaling factors, but
theoretical bounds on these factors are discussed (e.g.,
G<G’), and the results are seen to be relatively insensitive
within the bounds.

REFERENCES
[1] R. Koster, A Theory of Fun for Game Design. Scottsdale, AZ:

Paraglyph Press, 2005, pg. 10, pg. 46.
[2] E. Huhtamo, “Slots of fun, slots of trouble: An archaeology of arcade

gaming,” in Handbook of Computer Game Studies, J. Raessens and J.
Goldstein, Eds. Cambridge, MA: MIT Press, 2005, pp. 3-21.

[3] K. Burns, “Atoms of EVE’: A Bayesian basis for aesthetic analysis of
style in sketching,” Artificial Intelligence for Engineering, Design,
Analysis and Manufacturing, in press.

Fig. 12. A plot of the fun function f versus win margin m, where m is
computed as logit (S) and S is the win probability. The function is the
sum of fun from E and E’, weighted by G:G’ factors in ratio of 1:3.
The peak fun occurs at m=+1 and fun drops off more rapidly for m<1
than for m>1. This theoretical model matches empirical data on
players’ enjoyment in a game of “Punch Out” [12].

[4] J. Baron, Thinking and Deciding, Third Edition. New York, NY:
Cambridge University Press, 2000, pp. 238-243.

[5] D. Bernoulli, “Exposition of a new theory of the measurement of
risk,” L. Sommer, Trans. Econometrica, vol. 22, 1954, pp. 23-26.
Original work published 1738.

[6] C. Shannon and W. Weaver, The Mathematical Theory of
Communication. Urbana, IL: University of Chicago Press, 1949.

[7] S. Dehaene, The Number Sense: How the Mind Creates Mathematics.
New York, NY: Oxford University Press, 1997.

[8] D. Knill and W. Richards, Perception as Bayesian Inference.
Cambridge, UK: Cambridge University Press, 1996.

[9] K. Burns, “Bayesian inference in disputed authorship: A case study of
cognitive errors and new system for decision support,” Information
Sciences, vol. 176, no. 11, 2006, pp. 1570-1589.

[10] K. Burns, “Mental models and normal errors,” in How Professionals
Make Decisions, H. Montgomery, R. Lipshitz and B. Brehmer, Eds.
Mahwah, NJ: Lawrence Erlbaum, 2005, pp. 15-28.

[11] J. Scarne, Scarne’s New Complete Guide to Gambling. New York,
NY: Simon & Schuster, 1961, pp. 445-448.

[12] P. Piselli, “Relating cognitive models of computer games to user
evaluations of entertainment,” MS thesis, Dept. of Computer Science,
Worcester Polytechnic Institute, 2006.

[13] G. Rasch, Probabilistic Models for Some Intelligence and Attainment
Tests. Chicago, IL: University of Chicago Press, 1980.

1-4244-0464-9/06/$20.00 2006 IEEE. 256 CIG'06 (May 22-24 2006)

Style in Poker
Kevin Burns

Abstract— Style is the cognitive basis for behavior in game
play. This is because mental limits force human beings to act
based on reduced rule-sets, which in game parlance are called
styles, rather than exhaustive enumeration of options, which in
game theory are called strategies. This paper explores the
computational underpinnings of style in poker, by analyzing
three versions of a two-player game ranging from very simple
to rather complex, using theoretical analyses and deterministic
calculations. The results show that simple styles derived from
commonsense reasoning often closely approximate the Nash
equilibrium strategies. Moreover, styles often outperform Nash
equilibrium strategies against sub-optimal strategies, and some
styles are seen to be nearly maximally super-optimal – i.e.,
almost equivalent to a player who is perfectly Bayesian. This is
an important finding with respect to the practical tradeoff
between effort and winnings, because the computational
implementation of styles is trivial compared to that of
strategies.

I. INTRODUCTION
TYLE in poker is a distinctive pattern of decision making.
Poker players often refer to styles like Tight versus

Loose or Passive versus Aggressive [1], [2], [3], and poker
programs often reflect these same styles in artificial agents
[4], [5], [6]. But how do such styles arise in human heads?
And how well do simple styles perform against sophisticated
strategies in head to head competition? These are the
questions explored in this paper.

Here style is analyzed in three versions of poker ranging
from very simple to rather complex. The simplest game,
discussed in Section II, is a Borel [7] type game, denoted
AB because the longest path through the game tree is AB,
where player A bets and player B calls. Here the game is
simplified even further in that there are only two possible
hands that each player may hold, high or low. This game is
denoted AB-2. A more complex game, discussed in Section
III, adds a raise option for player B, and a fold/call decision
for player A, so it is denoted ABA’-2. The most complex
game, analyzed in Section IV, is an ABA’-11 game of
integer poker played with a deck of 11 cards.

All three games are tractable to mathematical analysis of
optimal strategies. This provides a useful benchmark for
comparing and contrasting “normative” (game theoretical)
strategies to “cognitive” (game psychological) styles. The
three-game progression has a threefold objective, as follows:

Manuscript received March 31, 2006. This work was supported by the
MITRE Technology Program.

Kevin Burns is with the MITRE Corporation, 202 Burlington Road,
Bedford, MA 01730-1420 USA (phone: 781-271-8762; fax: 781-271-2101;
e-mail: kburns@mitre.org).

First, the simplest game serves to introduce the
psychological notion of style in game playing and relate it to
the mathematical definition of strategy in game theory.
Second, the more complex games show how styles scale as
the game tree and game states grow. Finally, the progression
suggests directions for future work aimed at extending
research on styles of play beyond poker to real life problems
in business and warfare [8], [9].

The present research differs from previous research in
combining a cognitive perspective on style in game playing
[10] with a normative perspective on strategies in game
theory. Other studies have been concerned with finding [11]
and learning [12] optimal or near-optimal strategies in
scaled-down or full-scale [13], [14] pokers, including recent
research on the problem of opponent modeling [15], [16]
where Bayesian methods [17], [18] can be used to exploit
opponents who play with sub-optimal strategies. The
problem of combinatorial explosion and the notion of
conceptual abstraction [19] to deal with this problem are
ubiquitous in these studies, but there is still a big gap
between normative strategies in game theory and cognitive
abstractions in game playing.

The reality is that cognitive styles are vastly simpler that
normative strategies, computationally, because people
cannot exhaustively enumerate and evaluate the huge (order
>E10) game trees of full-scale poker. And yet people can
play very well against computer opponents [20], which
means that cognitive styles can be extremely efficient
compared to normative and near-normative strategies.

The question addressed in this paper is: How can people
play so well? The approach compares normative strategies
to cognitive styles in a progression of poker games, to see
how they relate and to see how styles might scale. In so
doing, it is shown that commonsense styles are effective in
capturing the computational advantages of optimal strategies
with reduced rule-sets that are extremely simplified. In
particular, it is shown that bet/raise styles characterized by a
fixed [x, y] vector of hand strengths can approximate the
performance of sophisticated strategies in Bayesian updating
of win:loss odds and Bayesian decisions on betting and
raising.

These findings suggest that research on style can shed
light on how to win in poker, as well as how to win in real
life. And that is the purpose of this paper, namely to analyze
the basis behind commonsense styles and compare their
performance to optimal strategies – in order to assess the
advantages and disadvantages of style-based reasoning in
the constrained context of poker playing.

S

1-4244-0464-9/06/$20.00 2006 IEEE. 257 CIG'06 (May 22-24 2006)

II. AB-2 GAME

A. Strategies
As perhaps the simplest poker, consider a two-player

Borel [7] type game, similar to [21] in that each hand is
either high (H) or low (L). This game could be played by
dealing each player a coin where heads is H and tails is L,
and each player would see only his own coin. Player A must
bet or fold, and if he bets then player B must call or fold.
Before the deal each player antes “a” chips to the pot, then a
bet by A or a call by B adds “b” chips to the pot.

For this game there are only three possible outcomes: (1)
A folds so B nets “a” chips; (2) A bets and B folds so A nets
“a” chips; (3) A bets and B calls so the player with the
higher hand (H>L) nets “a+b” chips. In a showdown where
both hands are equal, then the pot is split and each player
nets 0 chips.

Since each player is dealt either L or H, a strategy can be
expressed as a doublet (L, H), e.g., (fold, fold) means a
player will fold with L and fold with H. Using the notation
f=fold, b=bet and c=call, each player has four possible
strategies. Putting A’s strategies in rows and B’s strategies
in columns, the payoff matrix (Table 1) has 16 cells, each
computed as an average over all possible game states.

As an example, consider the cell for row A(b, b) and
column B(f, c). There are four possible game states to
consider, namely: (1) A=L and B=L; (2) A=L and B=H; (3)
A=H and B=L; (4) A=H and B=H. Applying the strategies
A(b, b) and B(f, c) to each state yields the following payoffs
for A: (1) +a; (2) -(a+b); (3) +a; (4) 0; where + is a win for
A and - is a win for B. Since each state is equally likely, the
average payoff is +(a-b)/4. The remaining cells are
computed similarly.

Now, for a specific game with real numbers for “a” and
“b”, the payoff matrix can be quantified and solved for the
optimal strategies, using standard techniques [21]. For
example, when a=1 and b=4, the payoff matrix is as shown
in Table 2. Examination shows that, for player A, the
strategy A(f, b) dominates A(f, f) and A(b, f). Eliminating
the first and third rows, player B’s strategy B(f, c) dominates
B(f, f), B(c, f) and B(c, c). Thus, there is a minimax or Nash
equilibrium, which is the minimum of columns and the
maximum of rows, at B(f, c) and A(f, b). Here the value of
the game (to player A) is -1/4.

This type of strategic analysis to find optimal (Nash
equilibrium) solutions is standard in the field of game
theory. It is presented here not as an original contribution
but rather to highlight (below) how psychological styles of
game playing differ from mathematical strategies of game
theory. In game theory (above), decisions are made by
exhaustive enumeration of all possible actions and
outcomes, assuming one’s opponent does the same, and then
by selecting one’s own strategy to provide maximum benefit
to oneself, assuming the opponent does the same for himself.
But in game playing, by cognitive humans as opposed to
normative systems, there are three major differences.

First, human players cannot in general perform exhaustive
enumeration of all possible scenarios due to mental limits.
Second, although maximum benefit is a reasonable
objective, humans will and should balance the possible
winnings with the cognitive effort, i.e., they will not and
should not expend large increases in effort for small
increases in winnings. Finally, in game play, humans will
often assign values to attributes that are not modeled in the
payoff matrix.

For example, a player may assign value to the act of
betting itself because it is more fun [22] than folding, and
after all most players are playing for pleasure as well as
money – as there may be much better (less effort) ways of
making money. Plus, even if money is the only value
considered in the equation, the value of a dollar to a person
depends on how many dollars that person has, i.e., it is well
known from research studies on human judgment [23] that
people have non-linear utility functions.

TABLE 1
PAYOFF MATRIX FOR AB-2 GAME

 B(f, f) B(f, c) B(c , f) B(c, c)

A(f, f) -a -a -a -a

A(f, b) 0 -a/4 +b/4 +(b-a)/4

A(b, f) 0 -(2a+b)/4 -a/4 -(3a+b)/4

A(b, b) +a +(a-b)/4 +(3a+b)/4 0

Cells show payoff for A; negative is loss for A and win for B; A’s

strategies are in rows; B’s strategies are in columns; f=fold, b=bet, c=call.

A B bet

fold fold

call

Fig. 1. Game tree for AB poker. Player A must bet or fold; if A bets
then B must call or fold. Before the deal, each player antes “a” chips
to the pot; a bet by A or a call by B adds “b” chips to the pot.

TABLE 2
PAYOFF MATRIX FOR AB-2 GAME

a=1, b=4

 B(f, f) B(f, c) B(c, f) B(c, c)

A(f, f) -1 -1 -1 -1

A(f, b) 0 -1/4 +1 +3/4

A(b, f) 0 -6/4 -1/4 -7/4

A(b, b) +1 -3/4 +7/4 0

1-4244-0464-9/06/$20.00 2006 IEEE. 258 CIG'06 (May 22-24 2006)

 Taken together, these three issues make it not only
impossible but inefficient for people to worry about the
optimal strategy. So they settle for a good enough or
satisficing [24] strategy, more commonly called a style [10].

B. Styles
Compared to a strategy in game theory (above), a style in

game playing is a reduced rule-set or heuristic [25] that
simplifies a player’s mental efforts. The reduction is
typically accomplished via robust assumptions and
commonsense reasoning, so styles can be remarkably
effective even when they are extremely simplified.

As an example, consider the strategy B(c, f). This strategy
violates common sense because if B calls with a low card,
then he most likely does so because he believes it has
positive expectation of a payoff, so he should also call with
a high card where the expectation of a payoff is even higher.
The same argument applies to the strategy A(b, f). Also
violating common sense are A(f, f) and B(f, f), since a
player should not bother to ante to the pot if he knows he
will never bet in an attempt to win the pot.

Thus, using common sense, the payoff matrix in Tables 1
and 2 can be reduced from 4x4 to 2x2. And, in fact
mathematical solution of the payoff matrix for all “a” and
“b” shows (with details omitted here) that such strategies
eliminated by common sense are never optimal, which
means that common sense is efficient in reducing this
problem without affecting the answers.

In similar logic to simplify his thinking, a human player
with mental limits might note that, while there are an infinite
number of games in ante-bet (a-b) space (see Fig. 2), this
space can be divided into three regions: (1) bets that are
fairly small, i.e., b<<a; (2) bets that are moderate, i.e., b≈a;
(3) bets that are fairly large, i.e., b>>a.

Here, common sense says that a given style will be best in
a given region of a-b space, and different styles will be best
in different regions of a-b space, simply because: (1) when
b<<a there is not much to lose by a bet and there is a lot to
gain from the ante, so one should bet with L, (2) when b≈a
there may be situations where it is not worthwhile to bet
with L; (3) when b>>a there is lot to lose by a bet and not
much to gain from the ante, so one should only bet with H.

Also, since a player will typically play the role of both A
and B (alternating with the deal), it makes sense for him to
look for similarities between the roles of A and B. Here the
player will notice that in each role (A or B) he is basically
making the same decision, i.e., should he or should he not
put “b” chips in the pot? For A this is a bet, and for B it is a
call, but for each it is “b” chips and the only difference is
who acts first. Thus, by this logic the possible strategies can
be reduced to just two styles. Using “0” to denote L and “1”
to denote “H”, the two styles can be characterized as [0] or
[1], where: [0] means the player will bet or call a bet when
he has a hand ≥0; [1] means the player will bet or call a bet
when he has a hand ≥1.

 In words, these two styles are called Loose or Tight,
where: Loose [0] means a player will play (bet or call) with
a low or high hand, and this style includes the strategies
A(b, b) and B(c, c); Tight [1] means a player will play (bet
or call) only with a high hand, and this style includes the
strategies A(f, b) and B(f, c).

Here it is interesting that the analytical solution for
optimal strategies actually reduces to the same three cases
(1), (2), (3) and two styles [0], [1] produced by
commonsense reasoning. That is, quantifying Table 1 for all
“a” and “b”, and solving for mimimax solutions, the results
are reduced to the cases (regions) and styles (numbers)
shown in Fig. 2.

Now focusing on the middle region of Fig. 2, a player
may note that, when playing in the role of role of A he must
act with no information about B’s hand, while when playing
in the role of B he has gained some information about A’s
hand from the fact that A has bet. Thus, it makes common
sense to play Looser as A than as B because: (i) Looser play
at A will give away less information, and (ii) Tighter play at
B will adjust for the information gained from A’s bet. Thus,
again we see that commonsense reasoning is consistent with
the game-theoretic results plotted in Fig. 2.

It is also interesting to note how the commonsense
reasoning about Tight and Loose styles explicitly considers
aspects of Bayesian inference. That is, in Bayesian updating
one has a “casual model” of one’s opponent that can be used
to infer the likely cause (hand) of an effect (bet). And, since
commonsense likelihoods for an opponent are such that
P(he-bet|he’s-strong)>P(he-bet|he's-weak), the posterior
P(he’s-strong|he-bet) is greater than the prior P(he’s-strong)
that one had before the opponent made his bet. This sort of
logic plays no role in a Nash equilibrium, which is computed
by exhaustive enumeration under the assumption that the
opponent also performs exhaustive enumeration.

a

b

A[1]
B[1]

A[0]
B[1]

A[0]
B[0]

Fig. 2. Optimal styles for AB-2 poker, where [0] = Loose and [1] =
Tight. The regions show that: when b<a, then a Loose[0] style is
optimal for player A and B; when a<b<2a, then a Loose [0] style is
optimal for player A and a Tight [1] style is optimal for player B;
when b>2a, then a Tight [1] style is optimal for player A and B.

1-4244-0464-9/06/$20.00 2006 IEEE. 259 CIG'06 (May 22-24 2006)

 The point here is that model-based reasoning and style-
based modeling, which are often ignored in mathematical
game theory, are vitally important in psychological game
playing. This is because it is the only kind of
reasoning/modeling that a human player can perform, and
since his opponents are human (usually) it is also the kind of
reasoning/modeling that the player should perform in order
to exploit his opponents’ weaknesses – which can lead to
super-optimality.

C. Super-optimality
By “super-optimality”, I mean performance better than a

minimax or Nash equilibrium (here called “Nash strategy”),
where “better” is made possible by the fact that the Nash
strategy is optimal only in a certain context based on
specific assumptions. Super-optimality arises from
intelligence adapting to situational context, especially
intentional context – which in poker has to do with the
opponent’s intent. The Nash equilibrium assumes that both
players are maximizing their expected utility over an
exhaustive enumeration of all possible strategies and game
states. And, since human players cannot do this, there are
often super-optimal strategies that can outperform the
minimax strategy against a sub-optimal strategy.

As an example, consider a game with the betting structure
of a=2 and b=1. In this case, the payoff matrix in Table 3
shows a minimax at B(c, c) and A(b, b), where the value of
the game is 0. Referring to Fig. 2, for b<a the best style is
Loose for A and B. But if A plays a sub-optimal Tight A(f,
b) and B still plays Loose B(c, c), then the value of the game
is -1/4, which is better for B. And if B now switches from
the minimax Loose B(c, c) to Tight B(f, c), then the value is
-2/4, which is even better for B. Thus, if B knows that A
will play Tight, which is sub-optimal, then B can be super-
optimal by changing his style to Tight.

Note that the reverse is not true because the game is not
symmetric in that one player must act first, i.e., even if B
deviates from the minimax and plays Tight B(f, c), then A’s
best style is still Loose A(b, b), for a value of +1/4 compared
to the minimax value of 0. These examples illustrate how,
when one player adopts a sub-optimal style and the other
player knows it, then that player can sometimes but not
always exploit it by switching to a super-optimal style that
would otherwise be sub-optimal.

Such exploitability of sub-optimal strategies by super-
optimal strategies is well known from previous research in
game theory. The contribution here is not to repeat what is
widely known about strategies, but rather to relate it to what
may not be so widely known about styles – based on
commonsense reasoning as follows:

Clearly the best style for both players is Loose when b<a,
because the large size of the ante is worth the risk of a small
bet. But if player A does not realize this, then he will fold
when he holds L, so any bet by A will mean that he holds H.
Thus, it makes sense for B to fold whenever he holds L, i.e.,
B should switch to Tight when he knows that A plays Tight.
Conversely, if B plays Tight and A knows it, then A knows
that B will only call with H. Thus, A may benefit from
playing Loose, but since A is already playing Loose
(optimally) his knowledge of B’s style does him no good.

In short, the advantage of knowing an opponent’s style is
that it gives the player information about his opponent’s
hand whenever the opponent takes action. Computationally,
this allows a player to make stronger inferences about the
posterior P(he’s-strong|he-bet) via Bayesian updating [17],
[18]. The practical problem, of course is to infer an
opponent’s style and adapt one’s own style accordingly, and
this is commonly referred to as the problem of opponent
modeling [15], [16]. The above example highlights the
potential advantage of opponent modeling, but also
demonstrates that sometimes it will do no good.

Section IV (below) quantifies the benefits of opponent
modeling in a more complex ABA’-11 game. But first
Section III discusses an ABA’-2 game – similar to the AB-2
game treated above, except that it adds an extra branch to
the game tree. This game is useful for introducing another
dimension of style, besides Tight versus Loose, namely
Passive versus Aggressive.

III. ABA’-2 GAME
Fig. 3 shows the game tree for ABA’ poker. Compared to

Fig. 1 for AB poker, player B now has an option to raise,
and if B raises then player A (denoted A’) must call or fold.
When B raises, he matches A’s bet of “b” and raises it by
the same amount of “b”, so the pot is increased by “2b”.
After B raises, a call by A’ adds “b” to the pot such that both
player A and player B have each put “a+2b” chips in the pot.

Player A has three possible actions, denoted f, bf and bc,
where: f=fold; bf=bet at node A and then fold at node A’ if
B raises; bc=bet at node A and then call at node A’ if B
raises. Player B also has three possible actions denoted f, c
and r, where: f=fold, c=call; r=raise. This gives 32=9
strategies for each player, in a 9x9 payoff matrix, which can
be quantified for various values of “a” and “b” and then
solved for minimax strategies. The details are omitted here,
but remarkably it turns out that the increased complexity of
this 9x9 game compared to the 4x4 game introduces only
one more style to the set of optimal styles.

TABLE 3
PAYOFF MATRIX FOR AB-2 GAME

a=2, b=1

 B(f, f) B(f, c) B(c, f) B(c, c)

A(f, f) -2 -2 -2 -2

A(f, b) 0 -2/4 +1/4 -1/4

A(b, f) 0 -5/4 -2/4 -7/4

A(b, b) +2 +1/4 +7/4 0

1-4244-0464-9/06/$20.00 2006 IEEE. 260 CIG'06 (May 22-24 2006)

Here, similar to the AB-2 game (above), the notation [x,
y] is used to denote a style whose minimum hand to bet or
call a bet is x and whose minimum hand to raise or call a
raise is y. With this notation, the optimal strategies are
reduced to styles [0, 0], [0, 1] and [1, 1], which in poker
parlance are called Loose-Aggressive, Loose-Passive and
Tight, respectively. Here, like the AB-2 game, the term Tight
or Loose refers to the minimum hand x for which the player
will bet or call a bet, i.e., [1] or [0], respectively.

The new terms, Passive and Aggressive, refer to whether
or not the player will raise (or call a raise) with the same or
higher hand as the hand at which he bets (or calls a bet).
Passive does need a higher hand before he will raise or call a
raise. Aggressive does not need a higher hand before he will
raise or call a raise. Note that Tight is also Aggressive for
this 0/1 game, but in general the Passive-Aggressive
distinction applies to Tight as well as Loose styles (see
Section IV).

Fig. 4 shows the results of solving the 9x9 payoff matrix
for the ABA’-2 game, presented in same a-b (ante-bet) space
as Fig. 2. Here in Fig. 4 we see a similar result, namely that
Tight is the best style when b>>a and Loose is the best style
when b<<a. But now there are four regions, and in the lower
three regions each player (A or B) has no single best style,
i.e., the best style is a mixed style.

In the mathematical realm of game theory, a mixed
strategy arises where there is no minimax cell in the payoff
matrix, such that the optimal strategy is to play two or more
strategies with relative frequencies that equalize the value of
the game for the various strategies that the opponent may
play. For example, when a=1 and b=1, the payoff matrix is
reduced to a 2x2 matrix where there is no minimax cell.
Here A should play A(f, bc) 1/3 of the time and A(bf, bc)
2/3 of the time, because the resulting value of the game is -
1/12 regardless of whether B plays B(f, r) or B(r, r).

Similarly, in the psychological realm of game playing, a
mixed style is one where the player does not always play the
same style but rather “mixes it up”. But why, from a
commonsense perspective, would he do so? To see why,
consider how mixed strategies arise in the mathematics of
game theory.

Although it is not obvious from a payoff matrix, the only
reason that a mixed strategy is optimal is because the game
states have been discretized, in this case to either 0 or 1 (L
or H). That is, the mixed strategy is simply a way to play
“between the lines” of a 0/1 hypercube when the game states
(hand types) are forced to be on the lines of the hypercube.

Here it is important to note that “bluffing” in game theory
means sometimes betting with a hand that is “below the
line”, such that the average betting hand is “between the
lines”. This is much different from what bluffing means in
game play by people, where a bluff is based on an opponent
model that considers the question: What will he think if I do
this or that, and how will he change his play? Note that this
question only makes sense to ask if a player has a model of
his opponent’s style – and if the opponent also has a model
of his opponent’s style. Note also that the latter “and” is
extremely important, because a player cannot bluff (fool) an
opponent who does not have a model of him, and a good
bluff requires knowing what that model is.

Referring to Fig. 4, from a style perspective, it is
interesting that the major finding from the AB-2 game (Fig.
2) still applies. That is, Tight is still the best style for both
players when b>>a (upper left of a-b space) while Loose is
still the best style for both players when b<<a (lower right of
a-b space). It is also interesting that the lower-middle region
is a mixture of all styles. That is, in this lower-middle region
a player might play any style on a given deal and it would
only be over the long run (many thousands of hands) that
playing various styles with optimal frequencies would be
found to be clearly superior in terms of winnings. In short,
games played in the middle region, over reasonable numbers
of hands (hundreds or even thousands), are mostly luck.

A B

A’

bet

fold

fold

fold

call

call

raise

Fig. 3. Game tree for ABA’ poker. Player A must bet or fold; if A bets
then B can raise, call or fold; if B raises then A (denoted A’) must call
or fold. Before the deal, each player antes “a” chips to the pot; a bet
by A or a call by B adds “b” chips to the pot; a raise by B adds “2b”
chips to the pot and a call by A’ adds “b” chips to the pot.

a

b

A[1,1]
B[1,1]

A[1,1]+[0,1]
B[1,1]+[0.0]

A[1,1]+[0,1]+[0,0]
B[1,1]+[0,1]+[0,0]

A[0,1]+[0,0]
B[0,1]+[0,0]

Fig. 4. Optimal styles for ABA’-2 poker. The notation [x, y] gives the
minimum hand x for which the player should bet (or call a bet) and
the minimum hand y for which the player should raise (or call a raise).
In words, Tight is [1, 1], Loose-Passive is [0, 1] and Loose-
Aggressive is [0, 0].

1-4244-0464-9/06/$20.00 2006 IEEE. 261 CIG'06 (May 22-24 2006)

 This suggests that, when playing a game in the region
a≈b, it does not make sense for a player to bother with
complicated calculations. Instead he might as well just pick
any style [1, 1], [0, 1] or [0, 0] because it will be optimal at
least some of the time and maybe even most of the time. Of
course things are different in other regions of the a-b game
space, e.g., b>>a or b<<a, but for these extremes the proper
Tight or Loose style is obvious from common sense as
discussed above, and the choice between a Loose-Passive or
Loose-Aggressive style for b<<a is subject to the same sort
of “doesn’t matter much” logic that applies when a≈b.

In short, the above analysis suggests that: (i) a fixed [x, y]
style based on commonsense reasoning can efficiently
replicate the essential benefits of complicated game-
theoretic calculations, and (ii) the difference between
various strategies (styles) may or may not matter much. But
these findings are for an ABA’ poker where there are only
two hand types, and this raises the question of whether
similar results are obtained with more hand types. Thus,
Section IV extends the analysis to an ABA’-11 game.

IV. ABA’-11 GAME
The ABA’-11 poker discussed here, called One Card

High, is the simplest in a suite of Pared-down Pokers [9].
One Card High is integer poker, played with a deck of 11
cards numbered 0 though 10. Thus, it is a discretized version
of the continuous “zero-to-one” pokers analyzed by Borel
[7] and others [26]. The ABA’ logic of One Card High (Fig.
3) is similar to the most complex game analyzed by
Ferguson [27], but simpler in that it does not allow checking
(as does Ferguson’s variant). As such, it is perhaps best
characterized as a Borel type game (AB) but with an extra
branch A’ in the game tree, and played with a discrete deck
of 11 cards rather than a uniform interval of hand strengths.

The game tree and deck size for One Card High were
designed to offer a balance between complexity in the
number of game states and simplicity in estimating win:loss
odds. A total of 220 game states are possible, since there are
11*10=110 possible deals (one card to each player) and two
possible orders in which the players would play (switching
who goes first after each hand). When a player is dealt a
card Z, his win:loss odds are easily computed as Z:(10-Z).
This facilitates experiments on human performance in
Bayesian inference, since the prior is trivial to compute, but
these human experiments are beyond the scope of this paper.

Compared to the ABA’-2 game, this ABA’-11 game has a
finer discretization of possible game states, but the hand
types are still discrete (not continuous). Mathematically, this
leads to the result that all of the optimal strategies are mixed
in all regions of the a-b game space, which makes the
analysis more complicated to perform and present. A
summary of the results is provided in Fig. 5. Here, at
selected points in a-b space, the figure shows a single style
that reflects the optimal mixture of strategies.

To compute the single style at a given a-b point, the
payoff matrix was solved and the resulting mixed strategies
[xi, yi] were each weighted by their optimal playing
frequency in the mixture. The weighted average x and y
were then rounded to the nearest integers.

Referring to Fig. 5, the results for Tight and Loose in
ABA’-11 poker are similar to the results seen in ABA’-2
poker (Fig. 4). That is, Tight is best in the upper left region,
and Loose is best in the lower right region. Also similar to
the AB-2 game and ABA’-2 game, we see that the optimal
style for A is Looser than for B, i.e., A’s cards x and y are
typically about -2 those of B.

From a stylistic perspective, the interesting thing about
Fig. 5 is that the Nash equilibrium strategies, which are not
trivial to compute, can be reduced to a single pair of [x, y]
numbers at each a-b point. That is, when playing a specific
a-b game, a player would be playing at or near the Nash
strategy if he merely bet or called a bet whenever his card
was x or higher, and raised or called a raise whenever his
card was y or higher. Moreover, it is interesting that this is
typically how people play this game of One Card High, as
observed in pilot studies [10].

This suggests that just playing a simple [x, y] style may
be very effective. But it also implies that, when a player
does so with [x, y] not equal to the Nash equilibrium, then it
gives his opponent an opportunity to adopt a super-optimal
strategy that exploits the sub-optimal strategy. The question
is: How good or bad is it to just play a single style, which
may or may not be the Nash strategy, and how much can a
sub-optimal style be exploited by a super-optimal player?

a

b

A[6,9]
B[7,9]

A[3,7]
B[5,8]

A[2,6]
B[4,8]

A[4,8]
B[6,8]

A[2,6]
B[4,8]

A[1,5]
B[3,7]

A[2,6]
B[4,8]

A[1,4]
B[2,7]

A[0,3]
B[1,5]

2 5 8

2

5

8

Fig. 5. Optimal styles for ABA’-11 poker. The notation [x, y] gives
the minimum card x for which the player should bet (or call a bet) and
the minimum card y for which the player should raise (or call a raise).
In words, Tight is high x and Loose is low x; Passive is high y-x and
Aggressive is low y-x.

1-4244-0464-9/06/$20.00 2006 IEEE. 262 CIG'06 (May 22-24 2006)

To answer this question, I focused on a single a-b game
where a=1 and b=2, defining four styles as shown in Fig. 6.
Each style is named by the corresponding “animal
personality” typically assigned by poker players [3]. These
styles are extremely simplistic in that they play the same [x,
y] in the roles of A and B. Besides these four styles, I
defined a Nash player as one who plays the Nash
equilibrium strategy, which is different for A and B and
which is computed to be A[3, 7] and B[6, 8]. I also defined
an Expert player who plays with maximum super-optimality.

 For the Expert, I assume that he always knows his
opponent’s style and that he is a perfect Bayesian in
adjusting his win:loss odds and computing expected utility
as a basis for each betting action. The non-trivial
calculations performed by the Expert provide an upper-
bound estimate of how much a super-optimal player could
exploit a sub-optimal style via opponent modeling and
adaptive adjustments.

For example, at node A the expected utility of a bet by
Player A, computed by the Expert A, is as follows:

 UA,bet=PB,fold*[b+(b+2a)] + PB,call*[b+PA,win|B,call*(2b+2a)]

+ PB,raise*[PA’,call|B,raise*PA’,win|B,raise*(4b+2a)+PA’,fold|B,raise* (b)]

The calculations were performed in a deterministic
manner, by computing the performance of each style against
each other style (and against Nash and Expert) over all
possible game states. With the 11 card deck used in One
Card High, there are 220 possible game states (11*10
possible deals, where each player can be in role A or B). The
average per-hand winnings computed in this way are equal
to the asymptotic average computed from stochastic
simulations with random dealing. [It was found that
hundreds of thousands of hands had to be played in order for
stochastic winnings to approach the deterministic average.]

 The results of the pair-wise face-offs are shown in Fig. 7.
With respect to the Expert (X) and Nash player (N), both
beat the animal styles by margins that decrease in going
from Jackal to Elephant to Lion to Mouse. Thus, assuming
the opponent is Expert or Nash, a player with animal style
would do best (lose least) as a Mouse. Furthermore, it is
interesting that he would do well as a Mouse – since his
winnings against the other styles of Jackal, Elephant and
Lion would exceed the magnitude of his losses to the Expert
or Nash.

And yet the Mouse is not always the best animal, because
he would not do as well as the Lion against the Jackal. In
fact it is interesting that Lion beats Jackal by 0.27, which is
not only a much bigger margin than Mouse beats Jackal
(0.17), but also a much bigger margin than Nash beats
Jackal (0.18), and practically as much margin as Expert
beats Jackal (0.29). Therefore, when playing against a
Jackal, the Lion is effectively a super-optimal style that is
much better than the Nash strategy and almost as good as the
Bayesian Expert who plays maximally super-optimal. In
short, when playing a Jackal, the Lion has captured almost
all the advantages of super-optimal Expert play in just two
numbers [6, 6], without performing any of the Expert’s
complicated calculations (e.g., see above equation).

These results highlight two things about opponent
modeling in ABA’ poker, namely: (i) it is important to
detect the style of one’s opponent and adjust one’s own style
accordingly, and (ii) the adjustment does not have to be
done via complicated calculations like the Expert (above
equation), but rather can be done just by moving to another
style (like Mouse to Lion) in style space. And since this is
typically how people play poker, the above analysis helps to
explain why people are so good (or bad) at poker.

Tight

Aggressive

Passive

Loose
[6, 6]

[6, 8] [4, 6]

Jackal

[4, 4]

Elephant

Lion

Mouse

Fig. 6. Four styles of poker playing, denoted by animal personalities.
The notation [x, y] gives the minimum card x for which the player
will bet or call a bet, and the minimum card y for which the player
will raise or call a raise.

Jackal

Elephant

Lion

Mouse

X (-0.14)
N (-0.09)

0.15

0.09

0.17

0.17

0.08

0.27

X (-0.08)
N (-0.03)

X (-0.29)
N (-0.18)

X (-0.18)
N (-0.14)

Fig. 7. Results of pair-wise face-offs between each style in ABA’-11
poker. Arrow points to winning style. N denotes Nash player who
always plays the minimax strategy. X denotes Expert player who
plays maximally super-optimal. Negative numbers mean the Expert
(X) or Nash (N) beat the animal style by that amount.

The problem, of course, is knowing when and how to
adjust one’s style in adapting to one’s opponent. But here
again, commonsense reasoning applies. That is, against a
Loose-Aggressive Jackal, the obvious adaptation for a
Tight-Passive Mouse is to remain Tight (play only strong
hands) but become more Aggressive, like a Lion. This
makes sense because it will allow the player (Lion) to
exploit a Jackal’s style of betting and raising with weak
hands. As such, it appears that commonsense reasoning can
be an effective way to adapt super-optimal styles against
sub-optimal players.

1-4244-0464-9/06/$20.00 2006 IEEE. 263 CIG'06 (May 22-24 2006)

V. CONCLUSION
This paper explored the computational basis for

psychological styles in three poker games, ranging from
very simple to rather complex. The finding was that
commonsense styles efficiently reduce the computational
complexity of strategic reasoning, while approximating
Nash optimal and super-optimal (against sub-optimal)
strategies.

Some styles were shown to perform better than Nash
equilibrium strategies against sub-optimal styles, and one
style was seen to be almost maximally super-optimal. This
finding is important because it helps explain human success
in poker playing, and because it suggests how poker
research might be applied to real life problems that are
similar to poker. That is, people succeed at poker to the
extent that they act in accordance with effective strategies.
The analysis here showed how this could be achieved,
without strategic calculations, by adopting simple styles
based on commonsense reasoning.

Especially in real life, where the game rules and game
states are much more complex than even full-scale poker,
the basic problem is not to find the optimal solution in a
well-defined game space, but rather to find a good enough
solution in an ill-defined game space. Since styles are
typically based on robust assumptions and commonsense
reasoning, they can be applied to such ill-defined problems
in cases where game theory cannot. Thus, a better
understanding of how styles perform in poker games, which
are well-defined and which can be measured, may help to
understand how and how well styles work in real life.

For example, this research raises the question of why, if
the “good” styles are just common sense, do some players
adopt “bad” styles (like the Jackal) that cause them to lose
money in poker games? The answer, I believe, is that
common sense extends beyond the assumptions of previous
research to encompass other values that players have, like
the desire for “pleasure” in game play. For most people it is
more fun to bet than fold, and people who play poker do so
for pleasure as well as money, since there are other ways of
making money (and other ways of getting pleasure).

Therefore, with an eye towards future research, I would
argue that the study of computational intelligence in games
must be augmented by a study of computational aesthetics in
games [22], in order to understand why and how people
play. Any rational person will act in accordance with his
own preferences, e.g., in the case of a Jackal who may like
the fun of betting and raising, so these preferences must be
considered in efforts to explain and predict human behavior
in games or in life. This makes topics like style (here) and
fun [22] important to gaming applications – as well as to
real-world problems in judgment and decision making.

ACKNOWLEDGEMENT
Many thanks to Craig Bonaceto for numerous discussions

and computer programming.

REFERENCES
[1] A. Schoonmaker, The Psychology of Poker. Las Vegas, NV: Two Plus

Two Publishing, 2000.
[2] D. Sklansky, The Theory of Poker. Las Vegas, NV: Two Plus Two

Publishing, 1987.
[3] P. Hellmuth, Play Poker Like the Pros. New York, NY: Harper-

Collins, 2003.
[4] L. Barone and L. While, “Evolving computer opponents to play a

game of simplified poker,” Proc. IEEE Int. Conf. on Evolutionary
Computation (ICEC), 1998, pp. 108-113.

[5] L. Barone and L. While, “An adaptive learning model for simplified
poker using evolutionary algorithms,” Proc. Congress of Evolutionary
Computation (CEC), 1999, pp. 153-160.

[6] G. Kendall and M. Willdig, “An investigation of an adaptive poker
player,” Proc. 14th Australian Joint Conf. on Artificial Intelligence
(LNAI-2256), 2001, pp. 189-200.

[7] É. Borel, “Traité du Calcul des Probabilités et ses Applications
Volume 4, Fascicule 2”, Applications aux jeux des hazard. Paris:
Gautier-Villars, 1938.

[8] J. McDonald, Strategy in Poker, Business and War. New York, NY:
Norton, 1950.

[9] K. Burns, “Pared-down Poker: Cutting to the core of command and
control,” Proc. IEEE Conf. Computational Intelligence in Games,
2005. Available: http://csapps.essex.ac.uk/cig/2005/

[10] K. Burns, “Heads-up face-off: On style and skill in the game of
poker,” Proc. Am. Ass. Artificial Intelligence Fall Symposium on Style
in Language, Art, Music and Design, 2004. Available:
http://music.ucsd.edu/~sdubnov/style2004.htm

[11] H. Kuhn, “A simplified two-person poker,” in Contributions to the
Theory of Games, Vol. 1. Princeton, NJ: Princeton University Press,
1950, pp. 97-103.

[12] B. Hoehn, F. Southey, R. Holte and V. Bulitko, “Effective short-term
opponent exploitation in simplified poker,” Proc. AAAI’05, 2005, pp.
783-788.

[13] D. Billings, N. Burch, A. Davidson, R. Holte, J. Schaeffer, T.
Schauenberg and D. Szafron, “Approximating game-theoretic optimal
strategies for full-scale poker,” in 18th Int. Joint Conf. on Artificial
Intelligence (IJCAI), 2003.

[14] D. Koller and A. Pfeffer, “Representations and solutions for game-
theoretic problems,” Artificial Intelligence, Vol. 94, No. 1, 1997, pp.
167-215.

[15] D. Billings, D. Papp, J. Schaeffer and D. Szafron, “Opponent
modeling in poker,” Proc. 15th Nat. Conf. on Artificial Intelligence
(AAAI), 1998, pp. 493-498.

[16] A. Davidson, D. Billings, J. Schaeffer and D. Szafron, “Improved
opponent modeling in poker,” Proc. Int. Conf. on Artificial
Intelligence (ICAI), 2000, pp. 1467-1473.

[17] K. Korb, A. Nicholson and N. Jitnah, “Bayesian poker,” Proc. Conf.
on Uncertainty in Artificial Intelligence (UAI), 1999, pp. 343-350.

[18] F. Southey, M. Bowling, B. Larson, C. Piccione, N. Burch, D. Billings
and C. Rayner, “Bayes bluff: Opponent modeling in poker,” Proc.
Conf. on Uncertainty in Artificial Intelligence (UAI), 2005, pp. 550-
558.

[19] J. Shi and M. Littman, “Abstraction methods for game-theoretic
poker,” in Proc 2nd Int. Conference on Computers in Games, 2000, pp.
333-345.

[20] D. Billings, A. Davidson, J. Schaeffer and D. Szafron, “The challenge
of poker,” Artificial Intelligence, Vol. 134, 2002, pp. 201-240.

[21] M. Davis, Game Theory. New York, NY: Dover, 1997.
[22] K. Burns, “Fun in slots,” Proc. IEEE Conf. Computational

Intelligence in Games, 2006.
[23] J. Baron, Thinking and Deciding, 3rd Edition. New York, NY:

Cambridge University Press, 2000.
[24] H. Simon, The Sciences of the Artificial, 3rd Edition. Cambridge, MA:

MIT Press, 1997.
[25] G. Gigerenzer and P. Todd, Simple Heuristics that Make Us Smart.

New York, NY: Oxford University Press, 1999.
[26] C. Ferguson and T. Ferguson, “On the Borel and von Neumann poker

models,” Game Theory and Applications, Vol. 9, 2003, pp. 17-32.
[27] C. Ferguson, T. Ferguson and C. Gawargy, ‘Uniform(0,1) two-person

poker models”, Working Paper, Dept. of Mathematics, UCLA, 2004.

1-4244-0464-9/06/$20.00 2006 IEEE. 264 CIG'06 (May 22-24 2006)

http://csapps.essex.ac.uk/cig/2005/
http://music.ucsd.edu/%7Esdubnov/style2004.htm

Voronoi game on graphs and its complexity

Sachio Teramoto∗, Erik D. Demaine†, Ryuhei Uehara∗
∗ School of Information Science, Japan Advanced Institute of Science and Technology (JAIST),

1-1, Asahidai, Nomi, Ishikawa, 923-1292 Japan
† Computer Science and Artificial Intelligence Lab, the Massachusetts Institute of Technology,

32 Vassar Street, Cambridge, Massachusetts 02139, USA

Abstract— The Voronoi game is a two-person game which is
a model for competitive facility location. The game is played
on a continuous domain, and only two special cases (the 1-
dimensional case and the 1-round case) are well investigated.
We introduce the discrete Voronoi game in which the game
arena is given as a graph. We first show the best strategy when
the game arena is a large complete k-ary tree. Next we show
that the discrete Voronoi game is intractable in general. Even
in the 1-round case, and the place occupied by the first player
is fixed, the game is NP-complete in general. We also show that
the game is PSPACE-complete in general case.

Keywords: Voronoi Game, graphs, k-trees, NP-
completeness, PSPACE-completeness.

I. Introduction

The Voronoi game is an idealized model for competi-
tive facility location, which was proposed by Ahn, Cheng,
Cheong, Golin, and Oostrum [1]. The Voronoi game is
played on a bounded continuous arena by two players. Two
playersW (white) and B (black) put n points alternately, and
the continuous field is subdivided according to the nearest
neighbor rule. At the final step, the player who dominates
the larger area wins.

The Voronoi game is a natural game, but the general case
seems to be very hard to analyze from the theoretical point of
view. Hence, in [1], Ahn et al. investigated the case that the
game field is a bounded 1-dimensional continuous domain.
On the other hand, Cheong, Har-Peled, Linial, and Matoušek
[2], and Fekete and Meijer [3] deal with a 2- or higher-
dimensional case, but they restrict themselves to the one-
round game; first, W puts all n points, and next B puts all
n points.

In this paper, we introduce the discrete Voronoi game.
Two players alternately occupy n vertices on a graph, which
is a bounded discrete arena. (Hence the graph contains at
least 2n vertices.) This restriction seems to be appropriate
since real estates are already bounded in general, and we
have to build shops in the bounded area. More precisely, the
discrete Voronoi game is played on a given finite graph G,
instead of a bounded continuous arena. Each vertex of G
can be assigned to the nearest vertices occupied by W or
B, according to the nearest neighbor rule. (Hence a vertex
can be a “tie” when it has the same distance from a vertex
occupied by W and another vertex occupied by B.) Finally,
the player who dominates larger area (or a larger number of
vertices) wins. We note that the two players can tie in some
cases.

We first consider the case that the graph G is a complete
k-ary tree. A complete k-ary tree is a natural generalization
of a path which is the discrete analogy of 1-dimensional
continuous domain. We also mention that complete k-ary
trees form a very natural and nontrivial graph class. In [1],
Ahn et al. showed that the second player B has an advantage
on a 1-dimensional continuous domain. In contrast to this
fact, we first show that the first player W has an advantage
for the discrete Voronoi game on a complete k-ary tree, when
the tree is sufficiently large (comparing to n and k). More
precisely, we show that W has a winning strategy if (1)
2n ≤ k, or (2) k is odd and the complete k-ary tree contains
at least 4n2 vertices. On the other hand, when k is even and
2n > k, two players tie if they do their best.

Next, we show computational hardness results for the
discrete Voronoi game. When we admit a general graph as a
game arena, the discrete Voronoi game becomes intractable
even in the following strongly restricted case: the game
arena is an arbitrary graph, the first player W occupies
just one vertex which is predetermined, the second player
B occupies n vertices in any way. The decision problem
for the strongly restricted discrete Voronoi game is defined
as follows: determine whether B has a winning strategy
for given graph G with the occupied vertex by W. This
restricted case seems to be advantageous for B. However,
the decision problem is NP-complete. This result is also
quite different from the previously known results in the 2-
or higher-dimensional problem (e.g., B can always dominate
the fraction 1

2 + ε of the 2- or higher-dimensional domain)
by Cheong et al. [2] and Fekete and Meijer [3]. However,
Fekete and Meijer [3] showed that maximizing the area B
can claim is NP-hard in the one-round game in which the
given arena is a polygon with holes.

We also show that the discrete Voronoi game is PSPACE-
complete in the general case. This can be seen as a positive
answer to the conjecture by Fekete and Meijer [3].

II. Problem Definitions

In this section, we formulate the discrete Voronoi game on
a graph. Let us denote a Voronoi game by VG(G, n), where G
is the game arena, and the players play n rounds. Hereafter,
the game arena is an undirected and unweighted simple graph
G = (V, E) with N = |V | vertices.

For each round, the two players,W (white) and B (black),
alternately occupy an unoccupied vertex on the graph G (W
always starts the game, as in Chess). This implies that W

1-4244-0464-9/06/$20.00 2006 IEEE. 265 CIG'06 (May 22-24 2006)

and B cannot occupy a common vertex at any time. Hence
it is implicitly assumed that the game arena G contains at
least 2n vertices.

Let Wi (resp. Bi) be the set of vertices occupied by
player W (resp. B) at the end of the i-th round. We define
the distance d(v,w) between two vertices v and w as the
number of edges along the shortest path between them, if
such path exists; otherwise d(v,w) = ∞. Each vertex of G
can be assigned to the nearest vertices occupied by W and
B, according to the nearest neighbor rule. So, we define
a dominance set V(A, B) (or Voronoi regions) of a subset
A ⊂ V against a subset B ⊂ V , where A ∩ B = ∅, as

V(A, B) = {u ∈ V | min
v∈A

d(u, v) < min
w∈B

d(u,w)}.

The dominance sets V(Wi, Bi) and V(Bi,Wi) represent the
sets of vertices dominated at the end of the i-th round byW
and B, respectively. Let VW and VB denote V(Wn, Bn) and
V(Bn,Wn), respectively. Since some vertex can be a ”tie”
when it has the same distance from a vertex occupied by
W and another vertex occupied by B, there may exist a
set Ni of neutral vertices, Ni := {u ∈ V | minv∈Wi d(u, v) =
minw∈Bi d(u,w)}, disjoint from both V(Wi, Bi) and V(Bi,Wi).

Finally, the player who dominates a larger number of
vertices wins the discrete Voronoi game. More precisely, W
wins if |VW | > |VB|; B wins (or W loses) if |VW | < |VB|;
and the players tie otherwise. The outcome for each player,
W or B, is the size of the dominance set |VW | or |VB|. In
our model, note that any vertices in Nn do not contribute to
the outcomes VW and VB of the players (see Fig. 1).

III. Discrete Voronoi Game on a Complete k-ary Tree

In this section, we consider the case that the game arena
G is a complete k-ary tree T , which is a rooted tree whose
inner vertices have exactly k children, and all leaves are at
the same level (the highest level).

Firstly, we show a simple observation for Voronoi games
VG(T, n) that satisfy 2n ≤ k. In this game of a few rounds,
W occupies the root of T with her first move, and then W
can dominates at least N−1

k n + 1 vertices. Since B dominate
at most N−1

k n vertices, W wins. More precisely, we show
the following algorithm as W’s winning strategy.

Algorithm 1: Simple strategy
Stage I: (W’s first move) W occupies the root of T ;
Stage II: W occupies the unoccupied children of the

root for her remaining rounds;

In the strategy of Algorithm 1, W alternately pretends
to occupy the unoccupied children of root, though W may
occupy any vertex. This strategy is obviously well-defined
and a winning strategy for W, whenever the game arena T
satisfies 2n ≤ k.

Proposition 1: Let VG(G, n) be the discrete Voronoi game
such that G is a complete k-ary tree with 2n ≤ k. Then the
first player W always wins.

We next turn to a more general case. We call a k-ary tree
odd (resp. even) if k is odd (resp. even). Let T be a complete
k-ary tree as a game arena, N be the number of vertices
of T , and H be the height of T . Note that N = kH+1−1

k−1 and
H ∼ logk N. 1 For this game, we show the following theorem.

Theorem 2: In the discrete Voronoi game VG(G, n) where
G is a complete k-ary tree such that N ≥ 4n2, the first player
W always wins if G is an odd k-ary tree; otherwise the game
ends in tie when the players do their best.

In section III-A, we first show winning strategy for the
first player W when k is odd and the complete k-ary tree
contains at least 4n2 vertices. It is necessary to deliberate
the relation between the number of children k and the game
round n. Indeed,W chooses one of two strategies according
to the relation between k and n. We next consider the even
k-ary tree in section III-B, which completes the proof of
Theorem 2.

A. Discrete Voronoi game on a large complete odd k-ary tree

We generalize the simple strategy to Voronoi games
VG(T, n) on a large complete k-ary tree, where 2n > k and k
is odd (k ≥ 3). We define that a level h is the keylevel if the
number kh of vertices satisfies n ≤ kh < 2n, and a vertex v is
a key-vertex if v is in the keylevel. Let Ti denote the number
of vertices in the subtree rooted at a vertex in level i (i.e.,
T0 = N, Ti = kTi+1 + 1). Let {Vh

1 ,V
h
2 , . . . ,V

h
kh−1 } be a family

of vertices in the keylevel h such that the set Vh
i consists of

k vertices which have the same parent for each i.

k
h 2n

n

level 0

keylevel h

Th

αk
hk

level H(≥ 2h)

Fig. 2. The notations on the game arena T .

As mentioned above, a winning strategy is sensitive to
the relation between k, h, and n. So, we firstly introduce a
magic number α = 2n

kh , 1 < α < k (see Fig. 2). We note
that since k is odd, we have neither α = 1 nor α = k. By
the assumption, we have that the game arena T is sufficiently
large such that the subtrees rooted at level h contain sufficient
vertices comparing to the number of vertices between level
0 and level h. More precisely, by assumption N ≥ 4n2, we
have H ≥ 2h and N ≥ 4n2

α2 . We define γ := H−2h, and hence
γ ≥ 0.

The winning strategy forW chooses one of two strategies
according to the condition whether the magic number α is
greater than 1 + 2

k −
1

k−1 +
1

kh+γ(k−1) or not. The strategy is
shown in Algorithm 2.

Lemma 3: The keylevel strategy is well-defined in a dis-
crete Voronoi game VG(T, n), where T is a sufficiently large
complete k-ary tree so that N ≥ 4n2.

Proof: By assumption, there exists the keylevel h.

1In this paper, we write f (x) ∼ g(x) when limx→∞
f (x)
g(x) = 1.

1-4244-0464-9/06/$20.00 2006 IEEE. 266 CIG'06 (May 22-24 2006)

1st round 2nd round 3rd round

Fig. 1. Example of a discrete Voronoi game VG(G, 3), where G is the 15 × 15 grid graph; each bigger circle is a vertex occupied by W, each smaller
circle is an unoccupied vertex dominated by W, each bigger black square is a vertex occupied by B, each smaller black square is an unoccupied vertex
dominated by B, and the others are neutral vertices. In this example, the 2nd player B won by 108–96.

In Stage (a)-I, if B occupied a key-vertex in Vh
i andW has

not occupied any vertex in Vh
i , W occupies an unoccupied

key-vertex in Vh
i rather than occupying the other unoccupied

key-vertices. This implies that W can occupy at least one
key-vertex in each Vh

i , i = 1, 2, . . . , kh−1. Since the situation
W follows Stage (a)-II may happen when B occupies at least
one key-vertex, there exists such a children. IfW follows the
case (b), then this is obviously well-defined. So, the keylevel
strategy is well-defined.

Lemma 4: The keylevel strategy is a winning strategy for
W in a discrete Voronoi game VG(T, n), where T is a
sufficiently large complete odd k-ary tree so that N ≥ 4n2.

Proof: We first argue that W follows the case (a), or
α > 1+ 2

k −
1

k−1 +
1

kh+γ(k−1) . When the game ends in Stage (a)-I
(i.e., B never occupies any key-vertices, or does not occupy
so many key-vertices), the best strategy of B is as follows.
Firstly, B occupies all vertices in level h−1 for the first kh−1

rounds, and then occupies a child of key-vertex dominated
by W to dominate as much vertices as possible with her
remaining moves. In fact, the winner dominates more leaves
than that of the opponent. So, it is not so significant to occupy
the vertices in a level strictly greater than h + 1, and strictly
less than h − 1.

Now we estimate the players’ outcomes |VW | and |VB|.
Firstly, W dominates nTh vertices and B dominates (kh −
n)Th +

kh−1
k−1 vertices. Since B dominates the subtrees of W

with her remaining n − kh−1 vertices,

|VW | = nTh − (n − kh−1) Th+1,

|VB| ≤ (kh − n) Th + (n − kh−1) Th+1 +
kh − 1
k − 1

.

Since 2n = αkh and α > 1 + 2
k −

1
k−1 +

1
kh+γ(k−1) ,

|VW | − |VB|

≥ nTh − 2(n − kh−1) Th+1 − (kh − n) Th −
kh − 1
k − 1

> (kh+1α + 2kh−1 − khα − kh+1)Th+1 −
kh − 1
k − 1

≥ 1
kγ

Th+1 −
kh − 1
k − 1

.

By the definition of γ with γ = H − 2h,

1
kγ

Th+1 −
kh − 1
k − 1

=
1
kγ

(kTh+2 + 1) − kh − 1
k − 1

=
1
kγ

kH−h − 1
k − 1

− kh − 1
k − 1

=
1
kγ

k(2h+γ)−h − 1
k − 1

− kh − 1
k − 1

=
1

k − 1

(
1 − 1

kγ

)
> 0.

Next, we consider the case thatW follows Stage (a)-II. At
a level greater than h, there are three types of B’s occupation
(see Fig. 3). In cases (2) and (3) of Fig. 3, B has no profits.

level h

level h + 1

W

B BB

unoccupied vertex

(1) (2) (3)

B

Fig. 3. B’s occupations at the level greater than h.

Therefore, when B uses his best strategy, we can assume that
B only occupies vertices under W’s vertices. This implies
that B tries to perform a similar strategy to W, that is, to
occupy many key-vertices. More precisely, B chooses his
move from the following options at every round:
• B occupies an unoccupied key-vertex; or
• B occupies a vertex v in level h + 1, where the parent

of v is a key-vertex of W; or
• B occupies a vertex w in level h + 1, where the parent

of w is a key-vertex of B.
This implies that almost all key-vertices are occupied by
either W or B, and then the subtree of T consisting of the
vertices in level 0 through h − 1 is negligibly small so that
these vertices cannot have much effect on outcomes of W
and B. It is not significant to the occupation of these vertices
for both players.

Let xi (resp. yi) be the number of vertices occupied by
W (resp. B) in level i. Let y+i (resp. y−i) be the number of

1-4244-0464-9/06/$20.00 2006 IEEE. 267 CIG'06 (May 22-24 2006)

Algorithm 2: Keylevel strategy for W
if α > 1 + 2

k −
1

k−1 +
1

kh+γ(k−1) then
Stage (a)-I:
W occupies an unoccupied key-vertex so that at
least one vertex is occupied in each Vh

i ;
(Stage (a)-I ends after the last

key-vertex is occupied by either W
or B. Note that the game may finish
in Stage (a)-I.)

end
Stage (a)-II:
W occupies an unoccupied vertex which is a
child of the vertex v, such that v is occupied by
B, and v has the minimum level greater than or
equal to h;
(W dominates as much vertices as

possible from B.)
end

else
Stage (b)-I:
W occupies an unoccupied vertex in level h− 1;
(Stage (b)-I ends when such unoccupied

vertices are not exists.)

end
Stage (b)-II:
W occupies an unoccupied key-vertex whose
parent is not occupied by W;
(Stage (b)-II ends when such

unoccupied key-vertices are not

exist.)

end
Stage (b)-III:

if there exists an unoccupied vertex v in level
h + 1 such that the parent of v is occupied by B
then W occupies v;
else W occupies an unoccupied key-vertex in
level h + 1 whose parent is occupied by W;

end
end

vertices occupied by B in higher (resp. lower) than or equal
to level i.

When Stage (a)-I ends, W has xh key-vertices and B has
yh key-vertices. Note that xh+yh ≤ kh and yh < d kh

2 e ≤ xh < n.
xh+1 is the number of vertices occupied in Stage (a)-II. Let
y′h+1 be the number of occupations used to dominate vertices
of W’s dominance set by B in level h + 1, and y′′h+1 be
yh+1 − y′h+1. (see Fig. 4). Note that xh − yh ≥ y′h+1 − xh+1
(with equality if y′′h+1 + y−h−1 + y+h+2 = 0). Now, we estimate
their outcomes. SinceW can dominate at least xhTh+(xh+1−
y′h+1)Th+1 vertices, andW dominates yhTh+(y′h+1− xh+1)Th+1
vertices, the difference between the outcomes of W and B

level h

level h + 1

xh

xh+1

yh

y′′

h+1

y′

h+1

y
−

h−1

Fig. 4. The notations in the case (a) of keylevel strategy.

is

|VW | − |VB|
= xhTh + (xh+1 − y′h+1)Th+1 − yhTh − (y′h+1 − xh+1)Th+1

≥
(
k(xh − yh) − 2(y′h+1 − xh+1)

)
Th+1 > Th+1 > 0.

W can dominate at least Th+1 vertices more than that of
B, which is more vertices dominated by B using y0 vertices
between level 0 and h. So, W wins when α > 1 + 2

k −
1

k−1 +
1

kh+γ(k−1) .
We next argue thatW follows the case (b), or α ≤ 1+ 2

k −
1

k−1 +
1

kh+γ(k−1) . When xh−1 = kh−1, the best strategy for B is to
occupy as many key-vertices as possible. So, the differences
of outcomes are estimated as follows:

|VW | − |VB|

= (kh − 2n) Th + 2(n − kh−1) Th+1 +
kh − 1
k − 1

≥ (kh+1 − 2kh−1 − kh(k − 1)α)Th+1 + 2 · kh − 1
k − 1

≥ 2 · kh − 1
k − 1

− 1
kγ

Th+1

= 2 · kh − 1
k − 1

− 1
kγ

kh+γ − 1
k − 1

=
1

k − 1

(
kh − 2 +

1
kγ

)
> 0.

Finally, we consider the case of α < 1+ 2
k−

1
k−1+

1
kh+γ(k−1) and

xh−1 < kh−1 (or xh−1 + yh−1 = kh−1). In this case, the similar
arguments in which W follows Stage (a)-II can be applied.
Each xh−1, xh, and xh+1 is the number of vertices occupied
in Stage (b)-I, (b)-II, and (b)-III, respectively. As mentioned
above, y−h−2 and y+h+2 should be 0 to maximize B’s outcome
|VB|. Let y′h be the number of key-vertices occupied by B
whose parent is occupied by W, and y′′h = yh − y′h. Fig. 5
shows these notations. If W does not follow Stage (b)-III,

level h − 1

level h

level h + 1

xh−1

xh
xh+1

yh−1

y′′

h
y′

h
xh+1

y
−

h−2

Fig. 5. The notations in the case (b) of keylevel strategy.

then W wins since xh−1 − yh−1 ≥ y′h − xh and k(xh−1 − yh−1)−

1-4244-0464-9/06/$20.00 2006 IEEE. 268 CIG'06 (May 22-24 2006)

2(xh − y′h) > 0. If W follows Stage (b)-III, then we have
yh−1 + y′h + y′′h ≤ n, xh + y′′h = yh−1, and xh−1 >

1
2 kh−1 > yh−1

by the keylevel strategy. We can estimate the outcome ofW
as follows;

|VW | − |VB| = xh−1Th−1 + (xh − 2y′h − y′′h)Th + 2xh+1Th+1

> kxh−1 + xh − 2y′h − y′′h
≥ kh + 2(kh−1 − xh−1) − αkh

≥ kh−1

k − 1
− 1

kγ(k − 1)
> 0.

Therefore, the first player W wins when she follows case
(b) in the keylevel strategy. This completes the proof of
Lemma 4.

B. Discrete Voronoi game on a large complete even k-ary
tree

We consider the case that the game arena T is a large
complete even k-ary tree. We assume that the game VG(T, n)
is sufficed k > 2n, since W always wins if k ≤ 2n as
mentioned above. Moreover, we assume that the game arena
T contains at least 4n2 vertices. Hence the first player W
always loses if she occupies the root of T , since the second
player B can use the keylevel strategy of W and W cannot
drive B in disadvantage.

In fact, since T is an even k-ary tree, B can take the
symmetric moves of W if W does not occupy the root.
Therefore, B never loses. However, we can show that W
also never loses if she follows the keylevel strategy.

If B has a winning strategy, then the strategy must not be
the symmetric strategy ofW. However, such a strategy does
not exist, since W can occupy at least half of the vertices
on the important level, although the important level is varied
by the condition α > 1+ 2

k −
1

k−1 +
1

kh+γ(k−1) . This implies that
W can dominate at least half the vertices of T if she follows
the keylevel strategy. Therefore, if both players do their best,
then the game always ends in a tie.

IV. NP-Hardness for General Graphs

In this section, we show that the discrete Voronoi game is
intractable on general graphs even if we restrict ourselves to
the one-round case. To show this, we consider the following
special case:

Problem 1:
Input: A graph G = (V, E), a vertex u ∈ V , and n.
Output: Determine whether B has a winning strategy on
G by n occupations after just one occupation of u by W.

That is,W first occupies u, and never occupies any more,
and B can occupy n vertices in any way. Then we have the
following theorem:

Theorem 5: Problem 1 is NP-complete.
Proof: It is clear Problem 1 is in NP. Hence we prove

the completeness by showing a polynomial time reduction
from a restricted 3SAT such that each variable appears at
most three times in a given formula [5, Proposition 9.3].

Let F be a given formula with the set W of variables
{x1, x2, . . . , xn} and the set C of clauses {c1, c2, . . . , cm}, where
n = |W | and m = |C|. Each clause contains at most 3 literals,
and each variable appears at most 3 times. Hence we have
3n ≥ m.

Now we show a construction of G. Let W+ := {x+i | xi ∈
W}, W− := {x−i | xi ∈ W}, Y := {y j

i | i ∈ {1, 2, . . . , n}, j ∈
1, 2, 3}, Z := {z j

i | i ∈ {1, 2, . . . , n}, j ∈ 1, 2, 3}, C′ :=
{c′1, c′2, . . . , c′m}, D := {d1, d2, . . . , d2n−2}. Then the set of ver-
tices of G is defined by V := {u}∪W+∪W−∪Y∪Z∪C∪C′∪D.
The set of edges E is defined by the union of the following
edges: {{u, z} | z ∈ Z}, {{y j

i , z
j
i } | y j

i ∈ Y, z j
i ∈ Z with 1 ≤

i ≤ n, 1 ≤ j ≤ 3}, {{x+i , y
j
i } | x+i ∈ W+, y j

i ∈ Y with 1 ≤ i ≤
n, 1 ≤ j ≤ 3}, {{x−i , y

j
i } | x−i ∈ W+, y j

i ∈ Y with 1 ≤ i ≤ n, 1 ≤
j ≤ 3}, {{x+i , c j} | x+i ∈ W+, c j ∈ C if c j contains literal xi},
{{x−i , c j} | x−i ∈ W−, c j ∈ C if c j contains literal x̄i}, {{c j, c′j} |
c j ∈ C, c′j ∈ C′ with 1 ≤ j ≤ m}, {{c′j, u} | c′j ∈ C′ with 1 ≤
j ≤ m}, and {{u, di} | di ∈ D with 1 ≤ i ≤ 2n − 2}.

An example of the reduction for the formula F = (x̄1 ∨
x2 ∨ x3) ∧ (x̄2 ∨ x̄3 ∨ x̄4) is depicted in Fig. 6. Small white
and black circles are the vertices in Z and Y , respectively;
large black circles are the vertices in W+ ∪ W−; black and
white rectangles are the vertices in C and C′, respectively;
two white large diamonds are the same vertex u; and small
diamonds are the vertices in D. It is easy to see that G
contains 10n + 2m − 1 vertices, and hence the reduction can
be done in polynomial time.

x−3x+3x−2x+2x−1x+1 x−4x+4

c1 c2

c′1 c′2

u

u

Fig. 6. Reduction from F = (x̄1 ∨ x2 ∨ x3) ∧ (x̄2 ∨ x̄3 ∨ x̄4)

Now we show that F is satisfiable if and only if B has
a winning strategy. We first observe that for B, occupying
the vertices in W+∪W− gives more outcome than occupying
the vertices in Y ∪ Z ∪ C ∪ C′. More precisely, occupying
either x+i or x−i for each i with 1 ≤ i ≤ n, B dominates all
vertices in W+ ∪W− ∪ Y , and it is easy to see that any other
ways achieves less outcome. Therefore, we can assume that
B occupies one of x+i and x−i for each i with 1 ≤ i ≤ n.

When there is an assignment (a1, a2, . . . , an) that satisfies
F, B can also dominates all vertices in C by occupying x+i
if ai = 1, and occupying x−i if ai = 0. Hence, B dominates
5n+m vertices in this case, and thenW dominates all vertices
in Z, C′ and D, that is, W dominates 1 + 3n +m + 2n − 2 =
5n + m − 1 vertices. Therefore, B wins if F is satisfiable.

On the other hand, if F is unsatisfiable, B can dominate
at most 5n + m − 1 vertices. In this case, the vertex in C
corresponding to the unsatisfied clause is dominated by u.

1-4244-0464-9/06/$20.00 2006 IEEE. 269 CIG'06 (May 22-24 2006)

Thus W dominates at least 5n + m vertices, and hence W
wins if F is unsatisfiable.

Therefore, Problem 1 is NP-complete.
Next we show that the discrete Voronoi game is NP-hard

even in the one-round case. More precisely, we show the
NP-completeness of the following problem:

Problem 2:
Input: A graph G = (V, E), a vertex set S ⊆ V with
n := |S |.
Output: Determine whether B has a winning strategy on
G by n occupations, after n occupations of the vertices in
S by W.

Corollary 6: Problem 2 is NP-complete.
Proof: We use the same reduction in the proof of

theorem 5. Let S be the set that contains u and n−1 vertices in
D. Then we immediately have NP-completeness of Problem
2.

Corollary 7: The (n-round) discrete Voronoi game on a
general graph is NP-hard.

V. PSPACE-Completeness for General Graphs

In this section, we show that the discrete Voronoi game
is intractable on general graphs. More precisely, we consider
the following general case:

Problem 3:
Input: A graph G = (V, E) and n.
Output: Determine whether W has the winning strategy
on G by n occupations.

Then we have the following Theorem:
Theorem 8: The discrete Voronoi game is PSPACE-

complete in general.
Proof: We show that Problem 3 is PSPACE-complete.

It is clear Problem 3 is in PSPACE. Hence we prove the
completeness by showing a polynomial time reduction from
the following two-person game:

Gpos(Pos Dnf):
Input: A positive DNF formula A (that is, a DNF formula
containing no negative literal).
Rule: Two players alternately choose some variable of
A which has not been chosen. The game ends after all
variables of A has been chosen. The first player wins if
and only if A is true when all variables chosen by the first
player are set to 1 and all variables chosen by the second
player are set to 0. (In other words, the first player wins
if and only if he takes every variable of some disjunct.)
Output: Determine whether the first player has a winning
strategy for A.

The game Gpos(Pos Dnf) is PSPACE-complete even with
inputs restricted to DNF formulas having at most 11 variables
in each disjunct (see [6, Game 5(b)]).

Let A be a positive DNF formula with n variables
{x1, . . . , xn} and m disjuncts {d1, . . . , dm}. Without loss of
generality, we assume that n is even. Now we show a
construction of G = (V, E). Let X = {x1, . . . , xn}, D =

16

d1 d2 d3

u1 u2
24 24

16 16 16 16 16 16 16

Clique

x1 x2 x3 x4 x5 x6 x7 x8

Fig. 7. Reduction from A = (x1∧ x2∧ x4∧ x5)∨(x3∧ x5∧ x7∧ x8)∨(x6∧ x8)

{d1, . . . , dm}, U = {u1, u2}, and P = {p1, . . . , p2n2+6n}. Then
the set of vertices of G is defined by V := X ∪ D ∪ U ∪ P.

In this reduction, each pendant in P is attached to some
vertex in X ∪ U to make it “heavy.”

The set of edges E consists of the following edges: (1)
make X a clique with edges {xi, x j} for each 1 ≤ i < j ≤ n,
(2) join a vertex xi in X with a vertex d j in D if A has
a disjunct d j that contains xi, (3) join each d j with u2 by
{d j, u2} for each 1 ≤ j ≤ m, (4) join u1 and u2 by {u1, u2}, (5)
attach 2n pendants to each xi with 1 ≤ i ≤ n, and (6) attach
3n pendants to each ui with i = 1, 2.

An example of the reduction for the formula A = (x1 ∧
x2 ∧ x4 ∧ x5) ∨ (x3 ∧ x5 ∧ x7 ∧ x8) ∨ (x6 ∧ x8) is depicted
in Fig. 7. Black diamond and white diamond are u1 and u2,
respectively; white squares are the vertices in D; and small
circles are vertices in X. Large white numbered circles are
pendants, and the number indicates the number of pendants
attached to the vertex.

Each player will occupy (n/2)+ 1 vertices in G. It is easy
to see that G contains n+m+2+6n+2n2 = 2n2 +7n+m+2
vertices, and hence the reduction can be done in polynomial
time.

Now we show that the first player of Gpos(Pos Dnf) for A
wins if and only if W of the discrete Voronoi game for G
wins.

Since the vertices in X and U are heavy enough,W and B
always occupy the vertices in X and U. In fact, occupying a
vertex d j in D does not bring any advantage; since X induces
a clique, the pendants attached to some xi in N(d j) will be
canceled by occupying any xi′ by the other player.

Since the vertices in U are heavier than the vertices in
X, W and B first occupy one of u1 and u2, and occupy the
vertices in X, and the game will end when all vertices in X
are occupied.

The player W has two choices.
We first consider the case in whichW occupies u2. Then B

has to occupy u1, andW and B occupy n/2 vertices in X. It
is easy to see that, in this case, they tie on the graph induced
by U ∪ X ∪ P. Hence the game depends on the occupation
of D. In Gpos(Pos Dnf), if the first player has the winning
strategy for A, the first player can take every variable of a
disjunct d j. Hence, following the strategy, W can occupy
every variable in N(d j) on G. Then, since W also occupies
u2, d j is dominated by W. On the other hand, B cannot

1-4244-0464-9/06/$20.00 2006 IEEE. 270 CIG'06 (May 22-24 2006)

dominate any vertex in D since W occupies u2. Hence, if
the first player of Gpos(Pos Dnf) has a winning strategy, so
does W. (Otherwise, the game ends in a tie.)

Next, we consider the case in whichW occupies u1. Then
B can occupy u2. The game again depends on the occupation
of D. However, in this case, W cannot dominate any vertex
in D since B has already occupied u2. Hence W will lose
or they will tie at best.

Thus W has to occupy u2 at first, and then W has a
winning strategy if the first player of Gpos(Pos Dnf) has it.

Therefore, Problem 3 is PSPACE-complete.

VI. Concluding Remarks and Further Research

We give winning strategies for the first player W on the
discrete Voronoi game VG(T, n), where T is a large complete
k-ary tree with odd k. It seems thatW has an advantage even
if the complete k-ary tree is not large, which is future work.

In our strategy, it is essential that each subtree of the same
depth has the same size. Therefore, considering general trees
is the next problem. The basic case is easy: When n = 1, the
discrete Voronoi game on a tree is essentially equivalent to
finding a median vertex of a tree. The deletion of a median
vertex partitions the tree so that no component contains more
than n/2 of the original n vertices. It is well known that a
tree has either one or two median vertices, which can be
found in linear time (see, e.g., [4]). In the former case, W
wins by occupying the median vertex. In the later case, two
players tie. This algorithm corresponds to our Algorithm 1.

References
[1] H.-K. Ahn, S.-W. Cheng, O. Cheong, M. Golin, R. van Oostrum.

Competitive facility location: the Voronoi game, Theoretical Computer
Science, vol. 310, pp. 457–467, 2004.

[2] O. Cheong, S. Har-Peled, N. Linial, J. Matousek. The one-round
Voronoi game, Discrete and Computational Geometry, vol. 31,
pp. 125–138, 2004.

[3] S. P. Fekete, H. Meijer. The one-round Voronoi game replayed:
Computational Geometry Theory and Applications, vol. 30, pp. 81–94,
2005.

[4] F. Harary. Graph Theory, Addison-Wesley, 1972.
[5] C. H. Papadimitriou. Computational Complexity, Addison-Wesley Pub-

lishing Company, 1994.
[6] T. J. Schaefer. On the Complexity of Some Two-Person Perfect-

Information Games, Journal of Computer and System Sciences,
Vol. 16, pp. 185–225, 1978.

1-4244-0464-9/06/$20.00 2006 IEEE. 271 CIG'06 (May 22-24 2006)

Abstract—The paper describes the attempt to cultivate pro-

grams to climb the nano hill, a contest with exceptionally tight
parameters of the game called corewar. An existing tool, called
µGP, has been exploited. Two genetic operators were added to
tackle the peculiarities of the objective. The generated programs
compared favorably with others, either manually written or
evolved. µGP autonomously reproduced the same structure of
the current champion of the competition, and devised a sharp
self-modifying program exploiting a completely new strategy.

I. INTRODUCTION

In August 2004, a program called White Noise challenged
SAL Tiny Hill, the hardest corewar contests available on the
internet. White Noise defeated all opponents becoming the
new King Of The Hill (i.e., the champion). The program re-
coiled from the top on summer 2005 when Larger Than In-
finity was submitted, but became king again after 10 days
when on-a-tiny-amount-of-speed challenged the hill (ranks
in a corewar competition are updated continuously, and
scores may either increase or decrease). Today, White Noise
is still in the upper half of the hill, fighting to get to the top
again.

The point of interest in this story is that White Noise was
not written by a corewar expert as other programs on the hill,
but it was cultivated by an evolutionary algorithm called
µGP [1]. The corewar community traditionally pays fairly
attention to evolvers (as they call all evolutionary algo-
rithms) [8] [9], nevertheless White Noise was the first
evolved beast able to top the difficult SAL Tiny Hill. The
description of the enhanced techniques exploited to evolve it
can be found in [2].

This paper further extends the research targeting a differ-
ent type of contest, the so-called nano hills. The rules used in
nano hills makes this competition quite interesting from a
mere evolutionary point of view, while it would not be ap-
propriate if the final goal is to evolve a test program for a
microprocessor.

The main movelty in this paper is the description of two
new evolutionary operators for µGP, that allow different
search schemes to be exploited. In the contest of the nano
hill competition these enhance the search efficiency.

This paper is organized as follows: Section II describes

the game called corewar and the different competitions. Sec-
tion III focuses on the enhancements required to the evolu-
tionary core, while section IV details the fitness functions
used. Section V describes the experiments. Section VI con-
cludes the paper.

II. COREWAR

Corewar is a very peculiar game where two or more pro-
grams fight in a virtual-computer memory. Programs are
written in an assembly-like language called redcode and run
on a virtual machine named memory array redcode simula-
tor (MARS). The memory in MARS, also called core, is
organized as a circular array, so that there are no absolute
addresses but only relative offsets.

Thread 2

Thread 2

Thread 3

Thread 1

Thread 1

Thread 2

t=1 Thread 1

Thread 1

Program 2

Program 1
t=3

t=4

t=5

t=6

t=7

t=8

t=2

Figure 1: a graphical representation of the MARS time-
sharing environment

The instructions available in redcode are few, but with a

vast array of addressing modes, including immediate, indi-
rect, self-postincrement indirect, and so on. Indeed, it is
computationally a rather powerful language. The final goal
of a redcode program, however, is not to compute something
useful but to win a competiton. Programs are executed in a
time-slicing style, one instruction at a time each. Every pro-
gram may be composed of different threads; to ensure a fair
competition the MARS always gives each program (and not
each thread) an equal amount of time, so having multiple
threads means being able to perform more operations, but at
a slower pace. In figure 1 this is shown graphically in the
case of two programs, one with three threads and the other
with two.

A program wins if it causes all processes of the opposing
programs to terminate, remaining in sole possession of the

Evolving Warriors for the Nano Core

Ernesto Sanchez, Massimiliano Schillaci, Giovanni Squillero
Politecnico di Torino, Italy

All authors are with the Politecnico di Torino (DAUIN), Corso Duca degli
Abruzzi 24, 10123 Torino (e-mail: giovanni.squillero@ polito.it)

1-4244-0464-9/06/$20.00 2006 IEEE. 272 CIG'06 (May 22-24 2006)

machine. This is eventually accomplished by overwriting the
opponents’ code and making them execute an illegal instruc-
tion, either directly or by jumping to a location containing it.
When a thread executes an illegal instruction it is removed
from the execution list; to seriously kill a program all of its
threads have to be removed from execution, and this is defi-
nitely not an easy task. In the past years, researchers and
amateur players developed impressive warriors and subtle
strategies, most labeled with evocative names such as scan-
ners, vampires, dwarves, stoners. Such programs are com-
monly called warriors, stressing the aggressive nature of the
game.

Common strategies to defeat the adversary include laying
bombs on the core, which means writing illegal instructions
at some location; capturing the enemy instruction flow inside
useless routines, thus slowing their operation; jumping right
inside the other program's code, effectively becoming a sec-
ond copy of that program. On the other side, to avoid enemy
attack many warriors are written small, sometimes giving up
some of the flexibility that a longer code allows.

The true origin of corewar dates back to Darwin, a game
devised by Vyssotsky, Morris and Ritchie in the early 1960s
at Bell Labs. However, the popularization of the game is due
to the Dewdney column in Scientific American [3] in 1984.
In the same year, Dewdney and Jones rigorously character-
ized corewar and redcode in a document titled “Corewar
Guidelines”. The International Corewar Society (ICWS)
updated the redcode in 1986 and 1988, and proposed a new
update in 1994 that, although widely accepted, was never
formally set as the new standard.

Corewar contests are called hills. When a new program is
submitted to a hill, it plays G one-on-one games against each
of the N other programs currently on the hill. Each warrior
gets sw points for each win and st point for each tie (warriors
already present on the hill do not rematch one against each
other, but their old scores are recalled). Finally, all programs
are ranked from high to low and the least one is pushed off
the hill. Thus, while a program is present on a hill it can get
to the top as the result of a new challenge.

After two decades, the corewar community is still rather
active on the internet and organizes several hills. Different
hills accept different redcode style (e.g., instruction set or
program length) and run games with different parameters
(e.g., number of matches, maximum number of concurrent
warriors or scoring systems). The dimension of the MARS
memory (the core size) profoundly influences all strategies,
and is probably the key parameter. The most common core
size is c = 8,000, followed by c = 8,192, c = 55,400, and c =
800 (all of them divisible by 4).

The oldest and most famous server is simply named
KOTH [4] and still hosts seven hills with different settings.
However, the hardest hills are on a server called SAL [5], run
by the Department of Mathematical and Statistical Science of
University of Alberta, Canada. Differently from other hills,
the source code of warriors posted to SAL is not visible to

all users, and authors who are not willing to expose their
strategies send their latest warriors to this server only, con-
tributing to make the challenge very hard.

A. Tiny Hills

All hills with a core size c = 800 are called tiny, and usually
do not accept warriors containing more than 20 instructions.
Tiny hills are commonly targeted by evolvers and other
automatic optimizers, since the program length allows a cer-
tain flexibility while the search space is not huge.

Interestingly, before the tiny hills were introduced, core-
war was investigated mainly by humans, writing programs
according to strategies set out in advance. However, as hap-
pens with other games (e.g. go), changing the space available
to the players effectively turns one game into a fairly differ-
ent one. Strategies devised to play effectively in a big core
do not necessarily fare well in a tighter environment, so an
automated generation method has a chance to produce some
novelty in the field.

In theory, however, a hill with a reduced core is where
humans should achieve the best performance, since they can
take into account a very small number of independent ele-
ments while planning, but have a fairly deep understanding
capability. Nevertheless, White Noise defeated all human-
written warriors for more than one year, and, later on, Larger
Than Infinity, another version of the same warrior further
modified exploiting the µGP by Zul Nadzri, topped the hill
again.

B. Nano Hills

Nano hills are played by exceptionally short warriors (com-
posed of 5 or less instructions), in a reduced memory space
(80 locations). The restrictions in the number of child proc-
esses and execution time are also tighter than in the common
and tiny hill.

These characteristics make these hills even more attractive
for users of evolvers. First, the small size leads to a search
space that is smaller than that associated with other hills,
while still too large to make an exhaustive search practical;
this leads to the interesting situation where an automated
method to generate the warriors has a chance to perform a
significant sampling of the search space, but still needs to
use some heuristics to avoid getting lost.

Moreover, many evolved warriors, in fact, are manually
tweaked before they are submitted. This kind of fine tuning
requires three typically human elements that currently cannot
be incorporated in a generic evolutionary method: a deep
understanding of the specific problem; an analysis ability; a
predictive aptitude, to effectively direct further experimenta-
tion.

Automated methods are not all the same, however; the
usual metric for a corewar warrior is the outcome of its con-
frontations against other warriors: this not only depends
upon the exact composition of the hill, but is also a distinctly
nonlinear function of the warrior’s parameters. Simple hill-
climbing does not guarantee to find good results. Evolution-

1-4244-0464-9/06/$20.00 2006 IEEE. 273 CIG'06 (May 22-24 2006)

ary methods, with their ability to perform both an exploration
and an exploitation phase during the search process, can be
suited for the task.

III. WARRIOR EVOLUTION

The µGP is an evolutionary approach to generate Turing-
complete assembly programs. Its main purpose is the genera-
tion of test programs for microprocessors, although it can be
used to tackle a variety of problems [1].

The software has been augmented in the past with an as-
similation tool [10], able to translate existing test programs
into µGP individuals, allowing to further evolve them. This
technique can also be applied successfully to corewar pro-
grams.

While continuously updated, the evolutionary core as de-
scribed in the paper is not efficient in searching for a good
warrior in such an environment as a nano hill, and has been
enhanced with two new operators: safe crossover and scan
mutation.

Recombination is certainly an essential operation in an
evolutionary methodology; however, its implementation in
µGP relies on the concept of graph core to avoid disrupting
the structure of the individuals. The small size of programs
leads most of the times to graph cores that are as big as the
entire individual. This makes crossover decay in either a
swap of the two individuals, which is useless, or a concatena-
tion, which often produces individuals that exceed the 5 in-
struction limit for the nano hill. The purpose of the safe
crossover is being able to cut through the graph cores of the
individuals and correctly joining the obtained sections.

Warriors for the nano hill are very small programs, whose
functioning depends strictly upon the exact values of all their
constants. It makes sense, then, to be able to fine-tune any
one of them in the search for an optimum. While a local mu-
tation exists, the strong nonlinearity of the fitness function
makes a long-range search more effective. The scan mutation
answers exactly that need, allowing to find the (local) best
value for a given parameter, even when the fitness function is
very rough.

A. Safe Crossover

To completely explain the concept of safe crossover the
plain crossover has to be detailed. Inside µGP every individ-
ual is represented by a loosely-connected graph, made up of
several different subgraphs; every node of a subgraph, except
the first and last one, have an ancestor and a successor, form-
ing an ordered sequence. A recombination operator that sim-
ply swaps parts of two graphs is likely to disrupt the struc-
ture of the individuals. To avoid this the crossover in µGP
has been implemented resorting to the concept of graph core.
Informally speaking, a graph core is a self-contained sub-
graph that only has one incoming and one outgoing edge.
This well-defined connectivity allows the free interchange of
cores avoiding to disrupt the entire graph structure.

In some cases the need to find two compatible cores inside

the individuals is a constraint too strong for the successful
application of the recombination operator. The purpose of
the safe crossover is to be able to relax this constraint by
cutting (safely) through the graph cores during recombina-
tion. To this end the graph nodes are numbered, and every
edge in the graph is transformed into a numeric offset from
the node. After two subsequences of nodes are swapped be-
tween the graphs, the edges are restored; any reference out-
side the nodes numbering is resolved as a reference to the
first or to the last node in the resulting sequence. This effec-
tively allows swapping sections from two different graphs
without the need to find compatible subgraphs.

B. Scan Mutation

It must be noted that mutation of a single instruction in a 5-
line warrior is likely to change 20% of the code, producing a
dramatic effect. Thus, the mutation strength and even the
small mutation recently introduced [6] are likely to be inef-
fective during the exploitation phase.

Conversely, it is sometimes useful, especially near the end
of the evolutionary process, to be able to fine-tune the values
of some parameters in an individual. Although this may be
achieved using the normal forms of mutation (random muta-
tion and local mutation) a more efficient search operator
allows a faster convergence towards an optimum of the fit-
ness function.

The operation of the scan mutation is as follows: inside an
individual, a node is selected; if any parameters are associ-
ated with that node, one of them is targeted for scan; a new
individual is generated for every possible value of that pa-
rameter, effectively enumerating all of them. This process
also generates an individual exactly equal to the starting one,
but since the evolutionary core is equipped with a clone de-
tection and extermination mechanism, this does not affect the
evolutionary process.

Scan mutation is especially useful when the fitness func-
tion is strongly nonlinear or exhibits a large number of op-
tima. In these cases a long range search may increase the
performance of the evolutionary approach.

IV. FITNESS FUNCTION

The fitness function plays a fundamental role in every evolu-
tionary approach. Fitness must be able to lead the evolution
toward the desired goal, or at least away from the less prom-
ising region of the search space.

However, due to the peculiar rules of the hills, defining
such a fitness function is not easy. Once a certain program
has entered the hill, its author can help it by submitting new
warriors designed to lose with the first one and struggle rea-
sonably with all the others. Maybe such a warrior is instantly
pushed off from the hill, but as a result of its challenge the
first program improves its position.

This is a fairly standard practice among expert redcoders
and it is considered perfectly acceptable. It should be also
remembered that the source code of warriors on SAL is not

1-4244-0464-9/06/$20.00 2006 IEEE. 274 CIG'06 (May 22-24 2006)

available, and a great amount of expertise is required to ex-
ploit such team work between programs.

The problem of devising a fitness function is also hard-
ened by the fact that good repositories of strong warriors for
the nano hills do not exist. This lack also affects negatively
the assimilation technique.

Three different fitness functions have been implemented
for the purpose of the experiments, all based on the warriors
downloaded from the koenigstuhl infinite nano hill [7].

A. Fitness A

The first fitness function simply measured the points earned
by the warrior against all programs in the test hill.

;redcode-nano
;name Bob v2.1r1.7408
;author The MicroGP Corewars Collective
 org START
START:
 mov.i <-30, $-9
 spl.a #-36, >18
 mov.i >-14, {0
 mov.i >-29, {-2
 djn.f $-2, $-3

Figure 1: Bob v2.1r1.7408

This function can be highly ineffective because, unlike

those on the tiny hill, the warriors taken from koenigstuhl
infinite nano hill were non competitive, and evolution may
be biased. Another source of ineffectiveness in this approach
comes from the risk of overspecialization: the search may
lead to a warrior that only compares favorably to the warri-
ors in the test hill, but not against other ones. This risk is
common to all approaches that use a reference and lowers as
the size (or rather the diversity) of the test hill increases.

B. Fitness B

Test warriors were ranked and partitioned into 5 different
sets according to their relative strength. The points earned by
the warrior against programs in different sets were consid-
ered separately, and the 5 contributions were used as terms
of strictly decreasing importance for the fitness.

The idea behind this approach is to favor warriors able to
compete well with strong warriors. However, the ranking is
able to measure only the relative strength, and since these
warriors are not a significant sample of the SAL nano hill it
could be useless.

C. Fitness C

Test warriors were ranked, and the points earned by the war-
rior against all programs were weighted considering the rela-
tive strength of the opponent.

The idea behind this approach is analogous to the previous
fitness, as are its drawbacks. However, in this case the dis-
tinction between test warriors is not fixed and an erroneous
classification for some of them could be less deleterious.

D. Fitness D

Further experiments have been performed with a totally dif-
ferent, endogenous approach. The process in this case started
from scratch, with 20 random warriors that only serve as a
starting point. The evolutionary tool is used to produce war-
riors that maximize their performance, using Fitness A, a-
gainst these random warriors. The best 20 warriors of the
obtained population are then substituted to the existing refer-
ence warriors, and the process is iterated until a predeter-
mined timeout.

The use of an endogenous approach allows to avoid over-
specialization, but requires a greater computational effort to
obtain results, as the warriors have to be coevolved together
with their reference.

V. EXPERIMENTAL RESULTS

Three different experiments were run, using the different
fitness functions. All experiments used a population of 300
individuals, generating an offspring of 200 individuals at
each generation. The delta-entropy fitness hole (i.e. the
probability to choose an individual for reproduction based on
how different it is from the rest of the population instead of
looking at its rank) was set to 100% to promote diversity.
Evolution continued until the µGP detected a steady state,
and lasted approximately one day each on an AMD-K7 with
1,024GB of RAM, running Linux.

NAME SCORE
1 Polarization 05 162,1
2 Resolute 159,2
3 Master of the Core 158,3
4 Bob v2.1r1.7408 155,3
5 Polarization 04 155,1
6 Bob v2.1r2.6680 153,6
7 Man&Machine 152,8
8 qEvo[[3]] 151,5
9 Walking boots 151,4
10 Shutting Down Evolver Now 151,2
11 rdrc: Alcoholism Malt 151,1
12 rdrc: Repent Linemen 150,9
13 Petro "I'm Old" Warrior [II] 150,6
14 around the core in 80 cycle 150,5
15 the last of the dragons 150,4
16 Go on! 149,7
17 toy soldier 149,6
18 rdrc: Laundry OSHA 149,1
19 Petro "I'm Old" Warrior [I] 148,8
20 Ucekupatox 147,7

Table 1: First 30 positions of the SAL Nano Hill
after Bob v2.1r2.6680 challenge

A fourth, different, experiment was run using another fit-

ness function and a larger population of 1000 individuals,

1-4244-0464-9/06/$20.00 2006 IEEE. 275 CIG'06 (May 22-24 2006)

with 1000 offspring per generation.
It is worth noting that some experiments have been per-

formed before the new evolutionary operators were avail-
able, but none of them led to a satisfactory warrior. Indeed,
none of the obtained programs was even able to enter the
hill.

A. Bob

Exploiting the two new operators and the first fitness, the
evolutions of warriors generated by the µGP follows a dis-
tinctive trend. In the early generations the warriors are com-
posed basically of SPL instructions. Such programs replicate
themselves into the core (SPL stands for split, and is the in-
struction for spawning a new process), with no aggressive
strategy. Then, some DJN (decrement and jump if zero) in-
structions appear. Finally, the population is invaded from
warriors composed of SPL, MOV (move) and DJN, perform-
ing a core clear, i.e., systematically writing illegal instruc-
tion on the core. Remarkably, also White Noise contained a
core clear routine.

;redcode-nano
;name Crazy Onion I
;author The MicroGP Corewars Collective
 org START
START:
 spl.f #23, >57
 mov.i >-1, {42
 mov.i >23, {72
 mov.i {40, {-3
 mov.i {25, {50
 end

Figure 2: Crazy Onion I

Warriors evolved using this fitness were all called Bob.

The first one (Figure 1) entered the hill at the 6th position,
and later managed reaching the 4th with 155.3 points (Table
1).

Interestingly, submitting a newer Bob (Bob v2.1r2.6680)
produced the team work mentioned above, pushing the first
Bob to the 4th position.

;redcode-nano
;name Paedocypris horridus
;author The MicroGP Corewars Collective
 org START
START:
 spl.x #-5, >41
 mov.i #37, <2
 mov.i {-1, {-2
 mov.i >-20, {23
 djn.f $-3, <31
 end

Figure 3: Paedocypris horridus

B. Onions

Far more interestingly (although less productively) using the
second fitness and the assimilation process, the µGP culti-
vated a series of warriors named Onions. Figure 2 shows the

one called Crazy Onion I.
Despite the mediocre ranks (18th out of 50 with 148.9

points), it is quite interesting (Table 2).
Crazy Onion I is composed of an SPL and 4 MOV instruc-

tions. It tries to cover the core with bombs at the maximum
available speed. Since the nano hill parameters allow only 5
child threads, the SPL instruction is critical, and if it is hit
the warrior is defeated.

NAME SCORE
1 Polarization 05 161.9
2 Resolute 159
3 Master of the Core 157.5
4 Polarization 04 155.7
5 Bobv2.1r1.7408 155.3
6 Bob v2.1r2.6680 153.6
7 Man&Machine 152.9
8 Shutting Down Evolver Now 152.0
9 rdrc: Repent Linemen 151.4
10 rdrc: Alcoholism Malt 151.3
11 Petro "I'm Old" Warrior [II] 151.1
12 qEvo[[3]] 150.5
13 walking boots 150.1
14 rdrc: Laundry OSHA 150.0
15 Go on! 150.0
16 the last of the dragons 149.4
17 toy soldier 148.9
18 Crazy Onion I 148.9
19 Petro "I'm Old" Warrior [I] 148.8
20 around the core in 80 cycle 147.6

Table 2: First 30 positions of the SAL Nano Hill
after Crazy Onion I challenge

And according to Zul Nadzri, Crazy Onion I is almost

identical to his Polarization 05, the KOTH of the nano hill.
However, no warrior of the Polarization series was assimi-
lated by the µGP since their source code is kept secret by the
author. The reason for the large performance gap between
the two is the marked dependence on the exact parameter
values.

;redcode-nano
;name Foggy Maus (beta)
;author The MicroGP Corewars Collective
 org start
start:
 spl.a #-35, <35
 mov.i >-24, {-1
 mov.i >-21, <33
 mov.i @-5, {-8
 djn.i $-1, <50
 end

 Figure 4: Foggy Maus

Crazy Onion I was thought to be able to survive long on

the hill, but has been subsequently removed.

1-4244-0464-9/06/$20.00 2006 IEEE. 276 CIG'06 (May 22-24 2006)

C. Small Animals

More interesting result was produced by the µGP running
with the third fitness and not exploiting assimilation. Warri-
ors cultivated in this experiments were named from small
animals. The first one (Paedocypris horridus) is shown in
Figure 3.

Before submitting it, all other µGP generated warriors
were removed to avoid the team work effect. Paedocypris
horridus scored 155.9, ranking 2nd on the hill, just after Po-
larization 05 (Table 3).

NAME SCORE
1 Polarization 05 160.1
2 Paedocypris horridus 155.9
3 Resolute 155.0
4 Polarization 04 153.9
5 Master of the Core 152.5
6 Rdrc: Repent Linemen 151.8
7 Shutting Down Evolver Now 151.7
8 Man&Machine 151.6
9 the last of the dragons 151.6
10 Petro "I'm Old" Warrior [II] 151.5
11 rdrc: Laundry OSHA 151.3
12 Petro "I'm Old" Warrior [I] 150.3
13 rdrc: Alcoholism Malt 150.0
14 qEvo[[3]] 148.8
15 Go on! 148.2
16 toy soldier 148.2
17 around the core in 80 cycle 147.9
18 My nano Qscan III 147.6
19 rdrc: Delicate Crowbait 147.0
20 rdrc: Blanch Autoclave 145.9

Table 3: First 30 positions of the SAL Nano Hill
after Paedocypris horridus challenge

It’s quite hard to understand why Paedocypris horridus

won (and kept on winning). According to corewar experts, it
lays a carpet of MOV instruction from 20 locations away
which eventually combines with the main program, overwrit-
ing the DJN instruction, and creates a 23 line long warrior (a
SPL followed by 22 MOVs). This greatly increases the pro-
portion of time available for bombing with respect to the
total. Some of the threads execute the newly created code,
resulting in a more effective bombing, and making it more
difficult to kill.

D. Fancy animals

In about three days of computation, a warrior, named Foggy
Maus, has been produced using the Fitness D. Its structure
(shown in figure 4) resembles the Paedocypris horridus one:
a split followed by three mov’s and a djn. However, all con-
stants have different value.

Interestingly, these give the warrior a great versability:

Foggy Maus, first entered the hill at the 5th position and has
been subsequently pushed to the top of the hill, where it re-
sisted for more than 20 challenges.

VI. CONCLUSIONS

The new evolutionary heuristics detailed above have shown
their effectiveness in the field of corewar program cultiva-
tion. The generated warriors compare favorably with others,
either manually written or evolved, on the nano hill.

However, µGP autonomously reproduced the same struc-
ture of the current champion (Happy Onion I), and devised a
sharp self-modifying warrior exploiting a completely new
strategy (Paedocypris horridus): two results that could be
considered as requiring intelligence.

Lastly, an evolved non-specialized warrior (Foggy Maus)
eventually became KOTH, showing the efficacy of the
method.

New experiments are currently run, working together with
corewar experts.

NAME SCORE
1 Foggy Maus (beta) 156.5
2 Petro "I'm Old" Warrior [03] 155.7
3 Millionaire Landlord 155.6
4 Polarization 05 154.6
5 Resolute 153.6
6 rdrc: Repent Linemen 152.6
7 Master of the Core 151.2
8 rdrc: Alcoholism Malt 151.1
9 Bombus Sylvestris 150.2
10 Paedocypris horridus 150.2
11 iEvo[[1]] 150.1
12 Mellisuga helenae 149.4
13 Polarization 04 149.3
14 Unit 0446 148.4
15 Muddy Mouse 147.9
16 SuperSentryIV 147.9
17 Man&Machine 147.8
18 qEvo[[3]] 147.6
19 Shutting Down Evolver Now.. 147.6
20 Drunken Onion I 147.5

Table 4: First 30 positions of the SAL Nano Hill
challenges after uniquely twisted challenge

ACKNOWLEDGMENT

Authors whish to thank Zul Nadzri for his precious support.

1-4244-0464-9/06/$20.00 2006 IEEE. 277 CIG'06 (May 22-24 2006)

REFERENCES

[1] G. Squillero, “MicroGP — An Evolutionary Assembly Program Gen-
erator”, Journal of Genetic Programming and Evolvable Machines,
Vol. 6, No. 3, 2005, pp. 247-263

[2] F. Corno, G. Squillero, E. Sánchez, “Evolving Assembly Programs:
How Games Help Microprocessor Validation”, IEEE Transactions On
Evolutionary Computation, Vol. 9, 2005, pp. 695-706

[3] A. K. Dewdney, “Computer recreations: In the game called Core War
hostile programs engage in a battle of bits”, Scientific American,
250(5), 1984, pp. 14-22

[4] http://www.koth.org/
[5] http://sal.math.ualberta.ca/
[6] E. Sanchez, M. Schillaci, M. Sonza Reorda, G. Squillero, L. Sterpone,

M. Violante, “New Evolutionary Techniques for Test-Program Gen-
eration for Complex Microprocessor Cores”, Genetic and Evolution-
ary Computation Conference, 2005, pp. 2193-2194

[7] http://www.ociw.edu/~birk/COREWAR/koenigstuhl.html
[8] http://students.fhs-hagenberg.ac.at/se/se00001/yace.html
[9] http://users.erols.com/dbhillis/

1-4244-0464-9/06/$20.00 2006 IEEE. 278 CIG'06 (May 22-24 2006)

1-4244-0464-9/06/$20.00 2006 IEEE. 279 CIG'06 (May 22-24 2006)

Author Index

Ali M., 119
Alomari R. S., 119
Ashlock D., 19, 111
Bannach D., 98
Baptista T. R., 224
Barone L, 164, 173
Bouzy B., 187
Bryant B. D., 90
Burns K., 249, 257
Campbell M., 9
Cazenave T., 27
Chaperot B., 181, 236
Chaslot G., 187
Chong S.Y., 103
Conradie J., 67
Costa E. J. F., 224
Cowling P. I., 45
Davis I. L., 9
D’Silva T., 39
de Silva Garza A. G., 211
Dean D., 156
Deb K., 197
Demaine E. D., 265
Di Pietro A., 173
Engelbrecht A. P., 67
Fogel D. B., 230
Frayn C., 13, 217
Fyfe C., 181
Gordon S. V., 205
Gruber M., 98
Hahn S. J., 230
Hallam J., 134
Hays T. J., 230
Heinz E. A., 98
Hossain M. A., 45
Hynd K., 157
Ishibuchi H., 60
Jenkins D., 217
Justiniano C., 13
Karpov I. V., 39
Kunze K. S., 98
Lew K., 13
Looney C. G., 243

Louis S. J., 75, 148
Lucas S. L., 52
Lukowicz P., 98
Lund H. H., 134
McDonnell J. R., 83
McGlinchey S., 236
Menezes T. L. T., 224
Miikkulainen R., 39, 90
Miles C., 75
Miller I., 236
Mistry B., 156
Mittal S., 197
Nakashima T., 60
Naveed M. H., 45
Nicolescu M., 148
Nii M., 60
Olenderski A., 148
Quon J., 230
Reda A., 205
Reynolds R. G., 119
Rice A. J., 83
Runarsson T. P., 52
Sanchez E., 272
Saund E., 126
Schillaci M., 272
Soedarmadji E., 34
Spydell A., 83
Squillero G., 272
Stanley K. O., 39
Stremler S., 83
Syms P., 156
Takatani M., 60
Teramoto S., 265
Uehara R., 265
Van Lent M., 9
Varrichio C., 39
Vincent A., 157
Vrajitoru D., 142
While L., 173
Wittkamp M., 164
Yannakakis G. N., 134
Yao X., 103

1-4244-0464-9/06/$20.00 2006 IEEE. 280 CIG'06 (May 22-24 2006)

	010 Preamble.pdf
	2006 IEEE Symposium on Computational Intelligence and Games
	CIG’06
	May 22-24 2006
	Reno/Lake Tahoe, USA
	Contents
	Preface …
	Acknowledgements …
	Program Committee …
	Plenary Presentations
	Murray Campbell, Member of the Deep Blue Team, IBM TJ Watson
	Ian Lane Davis, CEO of MAD DOC software ………….……………………………………
	Michael Van Lent, Institute for Creative Technologies ………

	Oral Presentations
	Colin M. Frayn, Carlos Justiniano and Kevin Lew ………………………………
	Daniel Ashlock …………………………………………………………………………………………… 19
	Tristan Cazenave …………………………………………………………………………………………. 27
	Edwin Soedarmadji ………………………………………………………………………………………. 34
	Igor V. Karpov, Thomas D’Silva, Craig Varrichio, Kenneth O.
	P.I.Cowling, M.H.Naveed and M.A. Hossain …………………………………………………
	Simon M. Lucas and Thomas P. Runarsson ………………………………………………………
	Tomoharu Nakashima, Masahiro Takatani, Hisao Ishibuchi and M
	Johan Conradie and Andries P. Engelbrecht ………………………………………………
	Chris Miles and Sushil J. Louis …………………………………………………………………………
	Aaron J. Rice, John R. McDonnell, Andy Spydell and Stewart S
	Bobby D. Bryant and Risto Miikkulainen ………………………………………………………
	Ernst A. Heinz, Kai S. Kunze, Matthias Gruber, David Bannach
	Siang Y. Chong and Xin Yao …………………………………………………………………………….. 1
	Daniel Ashlock …………………………………………………………………………………………….. 111
	Robert G. Reynolds, Mostafa Ali and Raja’ S. Alomari …………………
	Eric Saund …………………………………………………………………………………………………. 126
	Georgios N. Yannakakis, Henrik Hautop Lund and John Hallam …
	Dana Vrajitoru …………………………………………………………………………………………….. 142
	Adam Olenderski, Monica Nicolescu and Sushil J. Louis ………………
	Vincent A., Dean D., Hynd K., Mistry B. and Syms P. ……………………
	Mark Wittkamp and Luigi Barone ……………………………………………………………………….
	Anthony Di Pietro, Luigi Barone, and Lyndon While …………………………
	Benoit Chaper and Colin Fyfe …………………………………………………………………………… 1
	Bruno Bouzy and Guillaume Chaslot ……………………………………………………………………

	Poster Presentations
	Shashi Mittal and Kalyanmoy Deb ………………………………………………………………………
	V. Scott Gordon and Ahmed Reda ……………………………………………………………………….
	Andrés Gómez de Silva Garza …………………………………………………………………………… 21
	Dafyd Jenkins and Colin Frayn ………………………………………………………………………….
	Telmo L. T. Menezes, Tiago R. Baptista, and Ernesto J. F. Co
	David B. Fogel, Timothy J. Hays, Sarah L. Hahn and James Quo
	Iain Miller, Stephen McGlinchey and Benoit Chaperot ……………………
	Carl G. Looney …………………………………………………………………………………………….. 243
	Kevin Burns ………………………………………………………………………………………………… 249
	Kevin Burns ………………………………………………………………………………………………… 257
	Sachio Teramoto, Erik D. Demaine and Ryuhei Uehara ………………………
	Ernesto Sanchez, Massimiliano Schillaci and Giovanni Squille

	Author Index …

	Preface
	Acknowledgements
	Program Committee
	Looking Back at Deep Blue
	Challenges for Game AI.
	Beyond Entertainment: AI Challenges for Serious Games

	200_0012.pdf
	I. INTRODUCTION & BACKGROUND
	II. Parallel Game Tree Search
	III. ChessBrain II
	A. Motivation
	B. Technical Configuration
	C. ChessBrain II Communication Protocols
	D. Architecture Advantages
	E. Architecture Drawbacks
	F. Comparison with alternative parallel implementations
	G. Comparison with other Chess projects
	H. The need for MsgCourier

	Conclusions : The Future of Distributed Gaming

	220_0011.pdf
	Introduction
	Background
	AI in gaming
	Neuroevolution
	Testbed for Integration and Evaluation of Learning Techniques (TIELT)

	System architecture
	Game engine
	Integration System
	Decision System

	Experiments
	Evaluation and Future Work
	Conclusion
	Acknowledgments

	255_0038.pdf
	I Introduction
	II The learning environment
	II-A The Legion II game/simulator
	II-B Agent sensors and controllers

	III Experimental evaluation
	III-A Experimental methodology
	III-B Effect on performance
	III-C Effect on behavioral consistency

	IV Discussion and future work
	V Conclusions
	References

	305_0027.pdf
	I. INTRODUCTION
	II. The INCIDER Model
	I. Human Decision Making in INCIDER
	II. Sensor Fusion
	III. Synthetic Environment Experimentation
	IV. Incorporation Into Constructive Simulations
	V. Conclusions and Future Work
	VI. Acknowledgements

	702_0005.pdf
	INTRODUCTION
	The game of dominoes
	Implementation
	Experiment and results
	Discussion
	Future work

	704_0017.pdf
	I.INTRODUCTION
	II.From Complicated to Complex
	III.Conceptual Model
	IV.Comparison With Other Alife Systems
	V.The BitBang Engine
	VI.Examples
	A.First Person Shooter
	B.Real Time Strategy
	C.Space Exploration
	D.Life Simulation Game

	VII.Implications for Game Design
	VIII.Final Remarks

	705_0025.pdf
	Introduction and Background

	708_0034.pdf
	I. Introduction
	II. Discussion
	A. Expectations
	B. Explanations
	C. Limitation
	D. Validation

	III. Extension
	Conclusion

	709_0035.pdf
	I. INTRODUCTION
	AB-2 Game
	A. Strategies
	B. Styles
	C. Super-optimality

	III. ABA’-2 Game
	IV. ABA’-11 Game
	V. Conclusion

	800 List of authors.pdf
	Author Index

