o in

n split)

risons,
ide the
ated as

cy. We
y as N
e list.}
if they
1 struc-
i colli-
sary. A
ndomly

m than
3 a dis-
t to be
3is over
mes are
arching
approx-

Exercises

imation~that helps us determine how much work is required by & particular algorithm.
Both building and measuring tools are needed to canstruct sound program selutions.

Exercises
1. Show the contents of the array

f g
E 43 7 G 23 i8 4 19 5 &6 14 3
i RSt R R 7 D T N S R S S SR s B ) §

after the fourth iteration of
4. BubbleSort

. SelectionSort
¢. InsertionSort
2. a. Show how the values in the array in Exercise 1 would have to be rearranged

. to satisfy the heap property.
% b. Show how the array would look with four values in the sorted portion after
reheaping.
3. a. Show how the values in the array in Exercise | would be arranged immedi~

ately hefore the execution of the function Merge in the original (nonrecur-
- sive) call to MergeSort.

b. Show how the values in the array in Exercise 1 would be arranged immedi-
ately before the first recursive call to GuickSort.

4, Given the array

24 E) 17 24 13 63 47 1

™
wn

(o1 1] (2] ¥ [4] (5] {6} {71 [8] {91

]
o

Uil iU E

tell which sorting algorithm would pmdﬁcg the following results after four itera-
tions:

669




| Chapter 10: Sorting and Searching Algorithms

a H 3 13 17 26 24 24 z5 47 60
o} {i] {2} [3] [4] 51 [a} (73 i8] 9]
b 1 3 13 17 25 24 24 60 ay 26
ral [11 [2] [3] [4] {51 63 (71 (8] (9]
¢ 3 17 24 26 2% 24 13 60 47 1
o} 1] [2] (21 (4] [s] [6] 171 fa} (%]

5. How many comparisons would be needed to sort an array containing 100 ele-
ments using ShortBubble

a, in the worst case?
b. in the best case?

6. A sorting function is called to sort a list of 100 integers that bave been read
from a file. If al] 100 values are zero, what would the execution requirements (in
terms of Big-0 notation) be if the sort used was

&

QuickSort, with the first element used as the split value?
ShortBubble?

SelectionSort?

HeapSert?

InsertionSort?

™o oAD T

MergeSort?

7. How many comparisons would be needed to sort an array containing 100 ele-
ments using SelectionSort if the original array values were aiready sorted?

10,000

9,900

4,950

9%

e. None of the above

BT P

8. A merge sort is used to sort an array of 1,000 test scores in descending order.
Which of the following statements is true?

a. The sort is fastest if the original test scores are sorted from smallest to largest.
b. The sort is fastest if the original test scores are in completely random order.

. The sort is fastest if the original test scores are sorted from largest to smallest.
d. The sort is the same, no matter what the order of the original elements.




o read
ents (in

00 ele-
rted?

g order.

largest.

order.

smallest.

9,

10.

11.

12.
13.

14,

15,

16.

Exercises

A list is sorted from smallest to largest when a sort algorithm is calied. Which
of the foliowing sorts would take the longest time to execute, and which would
take the shoriest time?

a. QuickSort, with the first element used as the split vaiue
ShortBubble

=

SelectionSort

HeapSort

poaoo

IngertionSort

h

MergeSort

a. In what case(s), if any, is the bubble sort O(N)?

b. It what case(s), if any, is the selection sort Olog,N}?
c. In what case(s), if any, is quick sort Q{N?)?

A very large array of elements is to be sorted. The program will be run on a per-
sonal computer with limited metmory. Whick sort would be a better choice: a
heap sort or a merge sort? Why?

Use the Three-Question Method to verify MerpeSort.
True or false? Correct the false statements.
4. MergeSort requires more space to execute than HeapSort.

b. QuickSort (using the first element as the split value) is betier for nearly
sorted data than HeapSort.

¢. The efficiency of HeapSort is not affected by the order of the elemenis on
entrance to the function.

Which of the following is true about QuickSort?
a. A recursive version executes faster than a nonrecursive version.
b. A recursive version has fewer lines of code than a nonrecursive version.

¢. A nonrecursive version takes more space on the run-time stack than a recur-
sive version.

d. It can be programmed only as a recursive function.

What is meant by the statement that “programmer time is an efficiency consid-

eration”? Give an example of a situation in which programmer time is used to

justify the choice of an algorithm, possibly at the expense of other efficiency

considerations.

Identily one or more correct answers: Reordering an array of pointers to list ele-
ments, rather than sorting the elements themselves, is a good idea when

the number of elements is very large.

o

the individual elements are large in size.

the sort is recursive.

]

=

there are multiple keys on which to sort the elements,

N

571



672

g

Chapter 10: Sorting and Searching Algorithms

17.

18,

19.

20,
AR

22,

23.

24,

25,

Go through the sorting algorithms coded in this chapter and determine which
ones are stable as coded. If there are unstable algorithms (other than HeapSort),
make them stable,

Give arguments for and against using functions (such as Swap) to encapsulate
frequently used code in a soriing routine,

Write a version of the bubble sort algorithm that sorts a list of integers in descend-
ing order.

We said that HeapSort is inherently unstable. Explain why.

Sooey County is about to have its annual Big Pig Contest. Because the sheriff’s
son, Wilbur, is majoring in computer science, the county hires him to computer-
ize the Big Pig judging. Eachk pig's name (string) and weight (integer) are to be
read in from the keyboard. The county expects 500 entries this year.

The output needed is a listing of the ten heaviest pigs, sorted from biggest to
smallest. Because Wilbur has just learned some sorting methods in school, he
feels up to the task of writing this “pork-gram.” He writes a program to read in
all the entries into an array of records, then uses a selection sort to put the entire
array in order based on the pigWeight member. He then prints the ten largest
values from the array.

Can you think of 2 more efficient way to write this program? If so, write the
algorithm.

State University needs a lsting of the overall SAT percentiles of the 14,226 stu-
dents it has accepted in the past year. The data are in a text file, with one line
per student. That line contains the student’s ID number, SAT overall percentile,
math score, English score, and high school grade point average. (At least one
blank separates each two fields.) The sutput needed is a listing of ali the per-
centile scores, one per line, sorted from highest to lowest. Duplicates should be
printed. Outline an O(N) algorithm to produce the listing.

Which sorting algorithm would you not use under the following conditions?
a. The sort must be stabie.

b. Data are in descending order by key.

c. Data are in ascending order by key.

d. Space is very limited.

Determine the Big-0 measure for SelectionSort based on the number of ele-
ments moved rather than the number of comparisons,

a. for the best case.
b. for the worst case,

Determine the Big-0 measure for BubbleSort based on the number of elements
moved rather than the pumber of comparisouns,

a. for the best case.
h. for the worst case,




ch
t},

ite

ff's
er-
he

o

he
in
tire
iest

the

it
line
tile,
one
16T~
i be

ents

For Exercises 29-32, use the following values:

Exercises

28. Determine the Big-0 measure for QuickSort based on the number of elements
moved rather than the number of comparisons,

2. for the best case.
b for the worst case.

27. Determine the Big-O measure for MergeSort based on the number of elements
moved rather than the number of comparisons,

a. for the best case.
b, for the worst case.

28. Fill in the following table, showing the number of comparisons needed either to
find the value or to determine that the value is not in the array, given the follow-
ing array of values.

dataValues

fﬁ
|
! 14 27 95 12 26 5 33 15 G 95 g
ﬁ !
I (0! i1l (2} 13] tal Is) 6] {71 i8] 1el 3
L J
. Search Search Binary
" dataValues | sortedValues | Search Search
Values Seguentially | Seguentially } sortedValues § Tree
15
17
14
5
a9
100
0

¢
-

66 47 87 80 126 140 145 153 177 285 393 395 467 566 620 735

j

673



| Chapter 10: Sorting and Searching Algorithms

29, Store the values into & hash table with 20 positions, using the division method
of hashing and the linear probing method of resoiving coilisions.

30. Store the values into a hash table with 20 positions, using rehashing as the
method of collision Tesolution. Use key % tableSize as the hash function, and
(key + 2} % tableSize as the rehash function.

41. Store the values into a hash table with ten buckets, each containing three slots.
If a bucket is full, use the next (sequential) bucket that contains a free slot.

32. Store the values into a hash table that uses the hash functien key % 106 1o
determine into which of ten chains to put the value.

33. Filt in the following table, showing the number of comparisons needed to find
cach value using the hashing representations given in Exercises 29-32.

Number of Comparisons

Vaiue Exercise 29 | Exercise 30 | Exercise 31 | Exercise 32

66

467

566

735

285

87

34. 1f you know the index of an element stored in an array of N unsoried elements,
which of the following best describes the order of the algorithm to retrieve the
element?

a. 0(1)
h. O(N)

e, Oflog,N)
d. 0N

e, O{0.5N)

35. The element being searched for is not in an array of 100 elements. What is the aver-
age number of comparisons needed in a sequential search to determine that the ele-
ment is not present

a. if the clements are comp}étely unsorted?
b. if the elements are sorted from smallest to largest?
e, if the elements are sorted from largest to smallest?




Exercises I 875

nethod 36. The element being searched for is not in an array of 100 elements. What is the
marimum number of comparisons needed in a sequential search to determine
as the that the element is not present
m, and a. if the elements are completely unsorted?
b. if the elements are sorted from smallest to largest?
e slots, c. if the elements are sorted from largest to smallest?
37. The element being searched for is in an array of 100 elements. What is the gyer-
10 1o age number of comparisons needed in a sequential search to determine the posi-
tion of the element
to find a. if the elements are completely unsoried?

b. if the elements are sorted from smallest to largest?

c. if the elements are sorted from largest to smallest?

38. Choose the answer that correctly completes the following sentence: The elements
in an array may be sorted by highest probability of being requested so as to reduce

a. the average number of comparisons needed to find an element in the list,

b. the maximum number of comparisons needed to detect that an element is not
in the list.

. €. the average number of comparisons needed to detect that an element is not
in the list.
d. the maximum pumber of comparisons needed to find an element that is in
; the iist,
39. True or false? Correct any false statements.

a. A binary search of a sorted set of elements in an array is always faster than a

sequential search of the elements.

ments, ) b. A binary search is an O(Nlog,N) algorithm,

eve the ¢. A binary search of elements in an array requires that the elements be sorted
from smallest to largest.

d. A high-probability ordeting scheme would be a poor choice for arranging an
array of elements that are equally likely to be requested,

2. When s hash function is used to determine the placement of elements in an
array, the order in which the elements are added does not affect the resylting
array.

e qver f. When hashing is used, increasing the size of the array always reduces the
the ele- number of collisions,

g. If we use buckets in a hashing scheme, we do not have to worry about col-
lision resolution. B

3

h. If we use chaining in a hashing scheme, we do not have to worry about col-
lision resolution,



676 | Chapter 10: Sorting and Searching Algorithms

40.

41,

42,

43.

44,

i The functions in this chapter are used only for external searching {i.e., not for
disk searching).

. The goal of a successful hashing scheme is an O(1) search.

Choose the answey that correctly compietes the following sentence: The number
of comparisons required to find an element in a hash table with N buckets, of
which M are full,

a. js always 1.

b. is usually onty slightly less than N.

¢. may be large if M is only slightly less than N

d. is approximately log,M.

e. is approximately log,N.

How might you order the elements in a lst of C++'s reserved words to use the
idea of high-probability ordering?

How would you modify the radix sort algorithm to sort the list in descending
order?

The radix sort algorithm uses an array of queues. Would an array of stacks work
just as well?
On the Web, the file Sorts.in contains a minimal test plan for the sorting algo-

rithms we have studied. Design a more comprehensive test plan and apply it
using SortDr.cpp.




