806 Brrs, CHARACTERS, STRINGS, AND STRUCTURES CHAPTER. 16

Eight of Diamonds JBce of Hesris
Eight of Clube Five of Spades
Seven of Hearts ~ Deuce of piamonds
Ace of Ulubs Ten of Diamonds
Deuce of Srades Six of Dismonds
Seven of Spades Deuce of Clubs
Jack of Clubs Ten of Spades
King of Hearts Jack of ‘Diamonds
Three of Hearts Three of Diamonde
Three ol Clubs Nine of Clubs
Ten of Hearte Devce of Hearts
Ten of Clubs Beven of Diamonds
Biz of Clubs Qusen of Spades
Siw of Hearts Three of Spades
Nine of Diamonds : Ace of Didamonds
Jack of Spades Five of Clube
¥ing of Diameonds Seven of Clubs
Nine of Spades CFour of Bearte
‘«Sﬁx;of;Spades Eight of Spades
Queen of Diameonds Five of Disnonfs .
Chce of Spades . NHine of Hearte |
 Bing of ciubs Five of Searte é
¥ing of Spades Four of Diamonds %
Queen of Hearts Eight of Hesrts ‘
Four of Spades. = Jack of Hearts §
SFour of Clubs Queen of Clube g
. ~ :

— _
Fig. 16.3 Output for the high-performance card shuffling and dealing simulation,

16.7 Bitwise Operators

C++ provides extensive bit manipulation capabilities for programmers who need to get
down to the so-called “bits-and-bytes” level. Operating systems, test equipment software,
networking software, and many other kinds of software require that the programmer com-
municate “directly with the hardware.” In this and the next several sections, we discuss
C++'s bit manipulation capabilities. We introduce each of C++’s many bitwise operators
and we discuss how to save memory by using bit fields.

All data is represented internally by computers as sequences of bits. Each bit can
assume the value 0 or the value 1. On most systems, a sequence of 8 bits forms g byte—
the standard storage unit for a variable of type char. Other data types are stored in larger
numbers of bytes. The bitwise operators are used to manipulate the bits of integral operands
(char, short, int, and long; both signed and unsigned). Unsigned integers are
normally used with the bitwise operators.

e : Portability Tip 16.3
ot

Birwise data manipulations are machine dependent,

&

CHAPTER .

Note
tions of !
number s
and-16.8
byte) int
program

The
OR (*),
&, <<, 8
bitwise
operant

respond
result
OR opt
is1.T
specifi
rightt
sets al
discus
fors &
)
tatior
uns:
pla
dis
an ir
selel
valu
the
ob

CHAPTER 16

J simulation,

need to get
:nt software,
ammer com-
, we discuss
se operators

l{ach bit can
ms a byte——
red in larger
ral operands
integers are

CHAPTER 16 : Brrs, CHARACTERS, STRINGS, AND STRUCYURES 807

Note that the bitwise operator discussions in this section show the binary representa-
tions of the integer operands. For a detailed explanation of the binary (also called base 2)
number system see the appendix, “Number Systems”. Also, the programs in Sections 16.7
and 16.8 were tested on a PC compatible using Borland C++. This system uses 16-bit (2-
byte) integers. Because of the machine-dependent nature of bitwise manipulations, these
programs may not work on your system.

The bitwise operators are: bitwise AND (&), bitwise inclusive OR { |), birwise exclusive
OR (4}, left shift (<<), right shift (>>), and complement (~). (Note that we have been using
&, <<, and »> for other purposes. This is a classic example of operator overloading.) The
bitwise AND, bitwise inclusive OR, and bitwise exclusive OR operators compare their two
operands bit-by-bit. The bitwise AND operator sets each bit in the result to 1 if the cor-
responding bit in both operands is 1. The bitwise inclusive OR operator sets each bitin the

“result to 1 if the corresponding bit in either (or both) operand(s) is 1. The bitwise exclusive

OR operator sets each bit in the result to 1 if the corresponding bit in exactly one operand
is 1. The left shift operator shifts the bits of its left operand to the left by the number of bits
specified in its right operand. The right shift operator shifts the bits in its left operand to the
right by the number of bits specified in its right operand. The bitwise complement operator
sets all 0 bits in its operand to 1 in the result and sets all 1 bits to 0 in the result. Detailed
discussions of each bitwise operator appear in the following examples. The bitwise opera-
tors are summarized in Fig. 16.4.

When using the bitwise operators, it is useful to print values in their binary represen-
tation to illustrate the precise effects of these operators. The program of Fig. 16.5 prints an
unsigned integer in its binary representation in groups of eight bits each. Function dis-
playBits uses the bitwise AND operator to combine variable value with variable
displayMask. Often, the bitwise AND operator is used with an operand called a mask—
an integer value with specific bits set to 1. Masks are used to hide some bits in a value while
selecting other bits. In displayBits, mask variable displayMask is assigned the
value 1 << 15 (10000000 00000000). The left shift operator shifts the value 1 from
the low order (rightmost) bit to the high order (leftmost) bit in displayMask, and fills in
0 bits from the right. The statement

Opergtor - Name : Desciiphion

& bitwise AND The bits in the result are set to 1 if the corresponding bits in
the two operands are both 1.

bitwise inclusive OR The bits in the result are set to 1 if at least one of the cor-
responding bits in the two operands is 1.
A bitwise exclusive OR The bits in the result are set to 1 if exactly one of the corre-
sponding bits in the two operands is 1.

<< left shift Shifts the bits of the first operand left by the number of bits
specified by the second operand,; fill from right with 0 bits.

Fig. 16.4 The bitwise operators (part 1 of 2),

n 808

Brrs, CHARACTERS, STRINGS, AND STRUCTURES Cuarter 16

Operdin:

Nome Deseriptions

P

{

19 ¢

Fig. 16.5

Fig. 16.4

right shift with sign

===
Shifts the bits of the first operand right by the number of bitg
extension

specified by the second operand: the method of filling from
theieﬂisznachinedependenL

one’s complement All 0 bits are set to 1 and all 1 bits are set to 0.

The bitwise operators (part 2 of 2),

// Fig. 16.5: figlé_05.cpp

// Printing an unsigned integer in bits
#include <iostream.hs

#include <iomanip.h>

void displayBits(unsigned J;

int main()

unsigned x;

cout << "Enter an unsigned integer: "e
cin »>> x;

displayBits(= ¥

return 0;

void displayBits(unsigned value)

unsigned ¢, displayMasl = 1 << 15;
cout << setw(7) << value << " = L
for (¢ = 1y ¢ <= 16; c++)
cout << { value & displayMask ? 1@ : 10),
value- <<= 1;
if (¢ % 8 == @)
cout << ' 1,

cout << endl;

ifEntef‘aﬁﬂuhsigne&;iﬁteger:f
65000 = 13134181 33101000

3 S e e

CHAPTER 16

number of bits
of filling from

CHAPTER 16 BITE, CHARACTERS, STRINGS, AND STRUCTURES 809

cout << { value & displayMask ? '1' : 0');

determines whether a 1 or a 0 should be printed for the current leftmost bit of varjable
wvalue. Assume variable value contains 65000 (11111101 11101000). When
valus and displayMask are combined using &, all the bits except the high order bit in
variable value are “masked off” (hidden) because any bit “ANDed” with ¢ yields 6. If
the leftmost bit is 1, value & displayMask evaluates to 10000000 00000000
(which 1s interpreted as true, and 1 is printed-—otherwise, 0 is printed. Variable value
is then left shifted one bit by the expression value <<= 1 (this is equivalent to the assign-
ment value = value << 1). These sieps are repeated for each bit variable value. Fig-
ure 16.6 summarizes the results of combining two bits with the bitwise AND operator.

oy Common Programming Ervor 16.5

I Using the logical AND operator (&&) for the bitwise AND operator (&) and vice versa.

The program of Fig. 16.7 demonstrates the use of the bitwise AND operator, the bit-
wise inclusive OR operator, the bitwise exclusive OR operator, and the bitwise comple-
ment operator. The program uses function displayBits to print the unsigned integer
values. The output is shown in Fig. 16.8.

Bit 1 ‘ D Bifleminy
0 0 0
1 0 0
0 1 0
1 1 1

Fig. 16.6 Results of combining two bifs with the bitwise AND operator (&),

// Fig. 16.7: figl6_07.cpp

1

2 // Using the bitwise AND, bitwise inclusive OR, bitwise
3 // exclusive OR, and bitwise complement operators.
4 #include <iostream.h>

5 #include <iomanip.h>

[¢)

7/ wvoid displayBits(unsigned);

8

9 int main()

10 ¢

11 ungigned numberl, numbexr2, mask, setBits;

12

13 numberl = 65535;

14 mask = 1;

Fig. 16.7 Using the bitwise AND, bitwise inclusive OR, bitwise exclusive OR, and
bitwise complement operafors (parf T of 2).

810

void displayBits
{

BH39CHARACTE

cout << "The regy

displayBits(
diaplayBits(
cout <<
displayBits(

numberi
setBits =
cout <<
displayﬂits(
&isplayBits(
cout <<
displayBits(

B

15
24

numberl =
number? =
cout <<
displayBits(
displayBits(
cout <<
displayBits(

numberl =
displayBits(
cout << wign

displayBits(

return 0;

“usgin

"\nThe re

"usin

“ugin

RS, STRINGS, AND STRUCTURES

1t of combining the

numberl);

magk);

numberl &

I3
13

1z

numberl);
setBits);

numberl |

139;
189,
"\nThe

numberi);
number2);

number] 4

21845;
cout << "\nThe one!

numberl);
<< endl;
~numberl)

(unsigned

unsigned c, displayMask

cout << getw(7 } << value << " = u.

for (¢ = 1;
cout << ¢
value <<=

¢out << endl;

Using the bitwise AND, bitw,

Q<= 16;
1:

0

bitwise complement operg

¢ the bitwise aAND op

sult of combinin

g the bitwisge inelus

result of combinin

g the bitwise exclus

masgk });

setBitg),

numbex?);

g complement of\nv;

.
¥

value)

= 1 << 15;

F

[+2 2 20 BN §
value & displayMask » vie

Ise inclusive OR,
tors (part 2 of 23,

fcllowing\n";

arator & is\nw;

¢ the following\n";

ive OR operator | is\nn;

g the fcllowing\n“;

ive omr Sperator 4 ig\pw,

P00),

bitwise exclusive OR, and

CHAPTER 16

is\nv;

CHAPTER 16 Brts, CHARACTERS, STRINGS, AND STRUCTURES 811

Fig. 16.8 Ouiput for the program of Fig. 16.7.

In Fig. 16.7, variable mask is assigned the value 1 (00000000 00000001), and
variable number1 is assigned value 65535 (11211111 13111111). When mask and
numbexl are combined using the bitwise AND operator (&) in the expression numberl
&mask, the result is 000060000 00000001, All the bits except the low order bit in vari-
able numberl are “masked off” (hidden) by “ANDing” with variable mask.

The bitwise inclusive OR operator is used to set specific bits to | in an operand. In Fig,
16.7, variable numbex1 is assigned 15 (00000000 000011.11), and variable setBits
is assigned 241 (00000000 11110001). When numberl and setBits.are combined
using the bitwise OR operator in the expression numberl | setBits, the result is 255
(60000000 11111111). Figure 16.9 summarizes the results of combining two bits with
the bitwise inclusive OR operator.

Common Programming Error 16,6

Using the logical Ok operator (| | for the bitwise OR operator { [} and vice versa.

The bitwise exclusive OR operator (4) sets each bit in the result to 1 if exactly one of
the corresponding bits in its two operands is 1. In Fig. 16.7, variables numbexi and
numbex2 are assigned the values 139 (00000000 10001011) and 299 (00600000
11000111). When these variables are combined with the exclusive OR operator in the
expression numbezrl 4 nmumbexZ, the result is 00000000 01001100. Figure 16.10
summarizes the results of combining two bits with the bitwise exclusive OR operator.

’ 812 Brrs, CHARACTERS, STRINGS, AND STRUCTURES

CHAPTER 16

Bit1. : B2 Bit 1] Bty

0 0
1 . 0
0 1
1 1

Fig. 169 Results of combining fwo bifs

Bit1 : gz Bitbadin
0 0 o
1 0 1
0 1 1
1 1 4

Fg. 16,10 Results of combining two bit

$ with the bitwise exclusive OR operator (4).

The bitwise complement operator (~) sets all
sets all 0 bits to 1 in the result—otherwise referr
the value.” In Fig. 16.7, variable numberl
01010101). When the expression
106101010).

The program of Fig. 16.11 demonstrates the
operator (>>). Function displayBits i

1 bits in its operand to 0 in the result and
ed 1o as “taking the one's complement of
1s assigned the value 21845 (6lol0101
~numbexrl is evaluated, the result is (10101010

left shift operator (<<) and the right shift
$ used to print the unsigned integer values,

V17 Fig. 16.11: Eigl6_11.cpp
// Using the bitwise shift operators

#include <iostream.hs>

4 #include <iomanip.h>

5

6 wvoid displayBits{ unsigned Y
7

8

int main()

9

10 ungigned numberl = 960;

11

}2 cout << "The result of left shifting\nv;
13 displayBits(numberi Vs

14 cout << "8 bit positions using the left n
15

<< *ghift operator is\n";

Fig. 1611 Using the bifwise shiff operaiors (part 1 of 2), D

CHAPTER 16

srator ().

-

arator (A)t
s result and
plement of
1010101
0101010

right shift
r values.

CHAPTER 16 BITS, CHARACTERS, STRINGS, AND STRUCTURES 813
16 displayBits(numberl << 8§ };
17 cout << "\nThe result of right shifting\n";
18 displayBits (numberl):;
19 cout << "8 bit positions using the right *
20 << "ghift operator is\n";
21 displayBits(numbexrl >> 8);
22 return 0;
23 3}
24
25 woid displayBits(unsigned valus)
26
27 unsigned ¢, displayMask = 1 << 15;
28
29 cout << getw({ 7) << value << ¥ = ¥;
30
31 for (e = 1; € <= 16; c++) {
32 cout << (value & displayMask ? *1* ¢ 0' };
33 value <<= 1;
34
35 if (¢ % 8 == 0)
36 cout << ' fp
37 3
38
39 cout << endl;
40 3
The vesult of left shifting kg
‘850 = 00DDO0TY 12000000 . . g
& bit positions wsing the left shift operator << is E
49152 = 11000000 00008000 i
S = £
The result of right shifting 'g
. 960 = 000000TL 11000000 , ; .
“g‘bit~p0ﬁiti0ﬂ5 uging the right shift operator > is %
3 = 0D0EDGRO 00000011 : |

Fig. 16.11 Using the bitwise shift operators (part 2 of 2).

The left shift operator (< <) shifts the bits of its left operand to the left by the number
of bits specified in its right operand. Bits vacated to the right are replaced with 0s; 1s
shifted off the left are lost. In the program of Fig. 16.11, variable number1 is assigned the
value 960 (00000011 11000000). The result of left shifting variable numbex1 8 bits
in the expression numberl << 8 is 49152 (11000000 00000000).

The right shift operator (>>) shifts the bits of its left operand to the right by the number
of bits specified in its right operand. Performing a right shift on an unsigned integer
causes the vacated bits at the left to be replaced by Os; 1s shifted off the right are lost. In
the program of Fig. 16.11, the result of right shifting numberl in the expression
nomhart >> fic 2 (000600000 00000011,

814 Birs, CHARACTERS, STRINGS, AND STRUCTUREY CHAPTER 16

The result of shifting a vaiue is undefined if the righr operand is negative or if the right op-

erand is larger than the number of bits in which the left operand is stored.

result of Fight shifting a signed value is machine dependent. Some machines Jill with zero
and others use the si gn bir,

Each bitwise operator (except the bitwise complement operator) has 4 corresponding
assignment operator. These birwise assignment operators are shown in Fig. 16.12 and are
used in a similar manner to the arithmetic assignment operators mtroduced in Chapter 2,

Figure 16.13 shows the precedence and associativity of the various operators intro-
duced to this point in the text, They are shown top to bottom in decreasing order of prece-
dence.

Bitwise ussignment ongimtor

&= Bitwise AND assignment operator.
= Bitwise inclusive OR assignment operator,
Ao Bitwise exclusive OR assignment operator.
<<= Left shift assignment operator.
>em=t Right shift with sign extension assignment operator.

Operators : L _ Associotivity. Type
: ¢ (unary; right (o left) : ¢ (binary; left to right) left to right highest
[1 . - lefttoright hi ghest ‘
ik - ! delete sizeof right to left unary
X __hew - o e
¥ / % - left to right inultiplicative
+ - left to right additive
<< > left to right shifting
< <= > >= left to right relational
== e left to right equality
& - left to right bitwise AND L
N

left to right bitwise XOR
—— clllomght bitwise X(

| lefttoright bitwise OR

"TER 16

ight op-

ith zero

mding
nd are
er 2.

intro-
prece-

S S

CHAPTER 16 Brrs, CHARACTERS, STRINGS, AND STRUCTURES 815
. Operators . ‘ - Associaiiily. Type

&& left toright: logical AND

[] left toright logical OR

?e right to left conditional

= #=m em Fm [m %= right to left assignment

P = Ao LLm s> wm

B left toright comma

Fig. 16.13 Operator precedence and associativity (part 2 of 2.

16.8 Bit Fields

C++ provides the ability to specify the number of bits in which an unsigned or int
member of a class or a structure (or a union—see Chapter 18, “Other Topics”) is stored.
Such a member is referred to as a bir field. Bit fields enable better memory utilization by
storing data in the minimum number of bits required. Bit field members must be declared
as int or unsigned.

2

prsmeey P CTfOFMance Tip 16.2

8 Bit fields help conserve storage.

Consider the following structure definition:

struct BitCard {
unsigned face : 4;
unsgigned suit : 2;
unsigned color : 1;
¥:
The definition contains three ungigned bit fields—Face, suit, and color—used to
represent a card from a deck of 52 cards. A bit field is declared by following an unsigned
or int member with a colon () and an integer constant representing the width of the field
(i.e., the number of bits in which the member is stored). The width must be an integer con-
stant between O and the total number of bits used 1o store an int on your system. Our ex-

~amples were tested on a computer with Z-byte (16 bit) integers.

The preceding structure definition indicates that member face is stored in 4 bits,
member suit is stored in 2 bits, and member color is stored in 1bit, The number of bits
is based on the desired range of values.for each structure member. Member face stores
values between @ (Ace) and 12 (King)——4 bits can store a value between 0 and 15. Member
suit stores values between 0 and 3 (0 = Diamonds, 1 = Hearts, 2 = Clubs, 3 = Spades)—
2 bits can store a value between 0 and 3. Finally, member colox stores either 0 (Red) or
1 (Black)—1 bit can store either 0 or 1.

The program in Fig. 16.14 (output shown in Fig. 16.15) creates array deck containing
52 struct bitCard structures. Function £111Deck inserts the 52 cards in the deck
array, and function deal prints the 52 cards. Notice that bit field members of structures

i’
I
b

b

816

are accessed exactly

BITS, CHARACTER

8, STRINGS, AND STRUCTURES
as any other struc
means of indicating the card col

endl;

CHAPTER 16

ture member. The member color i
oron a system that allows color displays.

$ included as a

1 7/ Fig. 16.14; figlé_14.cpp
217 Example using a bit field
3 #include <lostream.h>
4 #include <iomanizp.h>
b
6 struct BitCard {
7 unsigned face 4;
8 unsigned suit . 2z
Y unsigned color : 1
10 3;
11
12 woig £illbeck(BitCard * ¥z
13 void deal (BitCard *),
14
15 int main()
16
17 BitCard deck[52 1
18
19 £illDeck(deck);:
20 deal(deck);
21 return 0;
2 3
23
24 woid fillbeck(BitcCard *wheck)
25 q
26 for (int i = 0; i <= 51; i++ V4
27 wheck[i].face = i % 13;
28 Wheck[1 J.suit = § ;4 13;
29 wheck[i].color = i / 26;
30 }
31 3
32
38 7/ Output cards in two column format. Cards 0-25 mubscripted
34 7/ with kl (colwmn 1). Cards 26-51 subscripted k2 in (column 2.)
35 woid deal{ BitCard *wDeck)
36 ¢
37 for (dint kI = 0, k2 = El + 26; ki <= 257 kles, k2++) {
38 cout << "Card:" <« setw(3) << wheck{ ki 1. face
39 €< " Buit:v << getw(2 } << wheck[ki l.suit
40 << " Color:® << gsetw(2) << whbeck[k1 l.coloxr
41 << " << "Card:v << Satw(3) << wheck[k2 1.face
42 << T Buit:r << setw(2 } << wheck[k2].guic
43 << " Coloxr:" << setw(2) << wheck| k2 l.color

TER 16

dasa

.ad
n2.)

.face

CHAPTER 16 Brrs, CHARACTERS, STRINGS, AND STRUCTURES

817

Caxrd: 0 0 rcolor: 0 Caxd: 0O 2 Color: L
Card: 1 0. Colers 0 card: 1 2 Color: 1
Caxd: 2 O Color:i @ Card: 2 2 Colors L
Card: 3 O gcolors 0 Card: 3 2 folor: i
Card: 4 ¢ Color: 0 Cavd: 4 2 oolor: 4
Card: -5 : 0 color: 0 Card: & 2 Cokory i
Cards 6 s Oiitolor: 0 Caxds 6 27 Color: 1
Card:s 7.8 s B Colors B Card: 7 2o Colore 4
Card: o . guit: 0 Color: . Card: 8 ZoColeort il
Card: 9. Suivs 0 Coloxr: 0 Card:r:. Y 2oiColors 1
Card: 10 Suiv: 0. Color: 0 - Card: 10 4o Colors 1
Cards 11 Buits 0 Colors l Cardy 11 Z-stolors L
Cards 12 Seitv:. 0 Coleory @ Card: 12 2 Colors 4
Card: 0 suits i Colors 0. Carxd: 0 3 ecolor: 1
card: 1 Suit: 1 Colors 0. Card: % 3 Coloxr: 4
card: 2 Suit: 1 Color: 0 Card: 2 3. Coloz:o i
Card: 3 8uits ioplers 0 Caxds 3 3 Color:
cards 4 sulirs % Color: 8 Caxds 4 3 Cclore g
Card: 5. Suit: 1 Color:s 0 mard: 8 3 color: 1
Card: 6 Suit: 1 Color: 0 Cexd: 6 3 Colors 1
Card: 7 Suit: i Ccolor: 0 Cerd: 7 3 Zolor: 1
card: 8 Suit: 1 Color: 0 Card: B 3 colox: 4
Card: O muit: 1 caler: 0 Cavd: 9 sotolers 1
Card: 10 Suit: 1 Color: 0 Cawxd: 190 3 Color: 4
taras 11 Buite 1 color: 0 Cavd: 30 2 color: L
Cardé: 12 Suite 1 Color: © Cezd: 18 SooColer: 4

Fig. 16.15 Output of the program in Fig. 16.14.

It is possible to specify an unnamed bit field in which case the field is used as padding
in the structure. For example, the structure definition uses an unnamed 3-bit field as pad-
ding—nothing can be stored in those three bits. Member b (on our 2-byte word computer)

is stored in another storage unit.

gtruct Example {

ungigned a : 13;
unsigned s 3;
unsigned b s 4;

Y

An unnamed bit field with a zero width is used to align the next bit field on a new

storage unit boundary. For example, the structure definition

struct Example {
ungigned a :
unsgigned : 0;
ungigned b :

}:

uses an unnamed 0-bit field to skip the remaining bits (as many as there are) of the storage

vimit dnm wrhink m d6 cbarad and alion Tan the nevt atarace 1mit honmdary.

CHAPTER 16

Brrs, CHARACTERS, STRINGS, AND STRUCTURES

=y Portability Tip 16.5

Bit field manipulations are machine dependent. For example,

Some computers allow bit
=314 Jields to cross word boundaries, whereas others do not.

Common Programming Error 16.8

Attempting 1o access individual bits of a bit field as if they were elements of an array. Bir

 fields are not “arrays of bits.”

sy COmmon Programming Error 16,9

Attempting to take the address of a bit field (the
4 because they do not have addresses),

, Performance Tip 16.3

Although bit fields save space, using them can cause ihe
cuting machine language code. This occurs because it takes extrg machine language op-
erations to access only portions of an addressable storage unit. This is one
of the kinds of space-time trade-offs that occur in computer science.

16.9 Character Handling Library

Most data is entered into computers as charactersmincluding letters, digits, and various
special symbols. In this section, we discuss C++7s capabilities for examining and manipu-
lating individual characters. In the remainder of the chapter, we continue the discussion of
character string manipulation that we began in Chapter 5.

The character handling library includes severa
manipulations of character data, Each function r

of many examples

I functions that perform useful tests and
eceives a character—represented as an
anipulated as integers. Remember
architectures do not allow negative
haracter handling functions manip-
the functions of the character han-
handling library, be sure to include

int—or EOF as an argument. Characters are often m
that EOF normally has the value -1 and some hardware
values to be stored in char variables. Therefore, the ¢
ulate characters as integers. Figure 16.16 summarizes
dling library. When using functions from the character
the <ctype. k> header file.

Sint isdigit(int o)

Returns txue if o is a digit, and false otherwise,

int isalpha(int ¢) Returns txrne ifeis a letter, and false otherwise.

int isalnum(int o) Returns true if ¢ is a digit or a letter, and falge otherwise.

Returns txue if cisa hexadecimal digit character, and
false otherwise. (See Appendix E, “Number Systems,” for a
detailed explanation of binary numbers, octal numbers, deci-
mal numbers and hexadecimal numbers.)

int iswxdigit(int c)

int islower(int c) Returns true ifcisa lowercase letter, and false otherwise,

int isupper(int ¢) Returns txue if ¢ is an uppercase letter; false otherwise,

Fig. 16.16 summoary of the character handiing library fu—n;ﬂons (part 1 of 2y,

