13 Red-Black Trees

=1l as
vered
vhich
:d b ‘ . . . :
Y Chapter 12 showed that a binary search tree of height & can implement any of the
when basic dynamic-set operations—such as SEARCH, PREDECESSOR, SUCCESSOR,

MINIMUM, MAXIMUM, INSERT, and DELETE—in O (k) time. Thus, the set op-
n the . - . . o S
erations are fast if the height of the search tree is small; but if its height is large,

alues
ch a their performance may be no betier than with a linked list. Red-black trees are one
. £ . .
er of of many search-tree schemes that are “balanced” in order to guarantee that basic
dynamic-set operations take O (Ign) time in the worst case.
built
nized -
h the 13.1 Properties of red-black trees
of a
inary A red-black tree is a binary search tree with one extra bit of storage per node: its

color, which can be either RED or BLACK. By constraining the way nodes can be
colored on any path from the root to a leaf, red-black trees ensure that no such path
is more than twice as long as any other, so that the tree is approximately balanced.

Each node of the tree now contains the fields color, key, left, right, and p. If
a child or the parent of a node does not exist, the corresponding pointer field of
the node contains the value NIL. We shall regard these NIL’s as being pointers to
external nodes (leaves) of the binary search tree and the normal, key-bearing nodes
as being internal nodes of the tree.

A binary search tree is a red-black tree if it satisfies the following red-black
properties:

1. Bvery node is either red or black.

2. The root is black.

3. Every leaf (NIL) is black.

4. If a node is red, then both its children are black.
5

. For each node, all paths from the node to descendant leaves contain the same
number of black nodes.

274

Chapter 13 Red-Black Trees

Figure 13.1(a) shows an example of a red-black tree.

As a matter of convenience in dealing with boundary conditions in red-black
tree code, we use a single sentinel to represent NIL (see page 206). For a red-black
tree T, the sentinel #i/[T] is an object with the same fields as an ordinary node in
the tree. Its color field is BLACK, and its other fields—p, left, right, and key—can
be set to arbitrary values. As Figure 13.1(b) shows, all pointers to NIL are replaced
by pointers to the sentinel nil/{1].

We use the sentinel so that we can treat a NIL child of a node x as an ordinary
node whose parent is x. Although we instead could add a distinct sentinel node for
each NIL in the tree, so that the parent of each NIL is well defined, that approach
would waste space. Instead, we use the one sentinel #i/[7T'] to represent all the
NIL’s—all leaves and the root’s parent. The values of the fields p, left, righ,
and key of the sentinel are immaterial, although we may set them during the course
of a procedure for our convenience.

We generally confine our interest to the internal nodes of a red-black tree, since
they hold the key values. In the remainder of this chapter, we omit the leaves when
we draw red-black trees, as shown in Figure 13.1(c).

We call the number of black nodes on any path from, but not including, a node x
down to a leaf the black-height of the node, denoted bh(x). By property 5, the
notion of black-height is well defined, since all descending paths from the node
have the same number of black nodes. We define the black-height of a red-black
tree to be the black-height of its root.

The following lemma shows why red-black trees make good search trees.

Lemma 13.1 ,
A red-black tree with n internal nodes has height at most 21g(n + 1).

Proof We start by showing that the subtree rooted at any node x contains at least
250 1 internal nodes. We prove this claim by induction on the height of'x. If
the height of x is 0, then x must be a leaf (nil[{T]), and the subtree rooted at x
indeed contains at least 2P — 1 = 2% — 1 = O internal nodes. For the inductive
step, consider a node x that has positive height and is an internal node with two
children. Each child has a black-height of either bh(x) or bh{x) — 1, depending on
whether its color is red or black, respectively. Since the height of a child of x is
less than the height of x itself, we can apply the inductive hypothesis to conclude
that each child has at least 2"~ — 1 internal nodes. Thus, the subtree rooted at x
contains at least (20P)=1 — 1) 4 (2bh)-1 _ 1y 1L 1 = 2P0 _ 1 jnternal nodes,
which proves the claim.

To complete the proof of the lemma, let & be the height of the tree. According
to property 4, at least half the nodes on any simple path from the root to a leaf, not

lack
lack
le in
~can
aced

nary
2 for
dach
L the
ight,
urse

ince
vhen

de x
, the
1ode
lack

Jeast
x. If
at x
ctive
tWo
ig on
"X 1S
:lnde
fat x
des,

ding
,, not

13.1 Properties of red-black trees 275

(c)

Figare 13.1 A red-black tree with black nodes darkened and red nodes shaded. Every node in a
red-black tree is either red or black, the children of a red node are both black, and every simple path
from a node to a descendant leaf contains the same number of black nodes. (a) Every leaf, shown
as a NiL, is black. Each non-NiL node is marked with its black-height; NIL’s have black-height 0.
{b) The same red-black tree but with each NIL replaced by the single sentinel nif{T'], which is always
black, and with black-heights omitted. The root’s parent is also the sentinel. (¢} The same red-black

tree but with leaves and the root’s parent omitted entirely. We shall use this drawing style in the
remainder of this chapter.

276

S

Chapter 13 Red-Black Trees

including the root, must be black. Consequently, the black-height of the root must
be at least 4/2; thus,

n>2M 1.

Moving the 1 to the left-hand side and taking logarithms on both sides yields
lg(n + 1) = h/2,0r h < 21g(n + 1). &

An immediate consequence of this lemma is that the dynamic-set operations
SEARCH, MINIMUM, MAXIMUM, SUCCESSOR, and PREDECESSOR can be imple-
mented in O(lg) time on red-black trees, since they can be made to run in O (k)
time on a search tree of height 4 (as shown in Chapter 12) and any red-black tree
on n nodes is a search tree with height O(1gn). (Of course, references to NIL in
the algorithms of Chapter 12 would have to be replaced by nil[T].) Although the
algorithms TREE-INSERT and TREE-DELETE from Chapter 12 run in O (lgn) time
when given a red-black tree as input, they do not directly support the dynamic-set
operations INSERT and DELETE, since they do not guarantee that the modified bi-
nary search tree will be a red-black tree. We shall see in Sections 13.3 and 13.4,
however, that these two operations can indeed be supported in O (Ig n) time.

Exercises

13.1-1

In the style of Figure 13.1(a), draw the complete binary search tree of height 3 on
the keys {1,2,...,15}. Add the NiL leaves and color the nodes in three different

ways such that the black-heights of the resulting red-black trees are 2, 3, and 4.

13.1-2

Draw the red-black tree that results after TREE-INSERT is called on the tree in
Figure 13.1 with key 36. If the inserted node is colored red, is the resultmg tree a
red-black tree? What if it is colored black? :

13.1-3

Let us define a relaxed red-black tree as a binary search tree that satisfies red-
black properties 1, 3, 4, and 5. In other words, the root may be either red or black.
Consider a relaxed red-black tree T whose root is red. If we color the root of T
black but make no other changes to 7', is the resulting tree a red-black tree?

13.1-4

Suppose that we “absorb” every red node in a red-black tree into its black parent,
so that the children of the red node become children of the black parent. (Ignore
what happens to the keys.) What are the possible degrees of a black node after all
its red children are absorbed? What can you say about the depths of the leaves of
the resulting tree?

~ 7

i
of

132 Rouations 277

13.1-5

Show that the longest simple path from a node x in a red-black tree to a descendant
leaf has length at most twice that of the shortest simple path from node x to a
descendant leaf.

¢ 13.1-6
<) i What is the largest possible number of internal nodes in a red-black tree with black-
=

13.1-7

%JD height 7 What is the smallest possible number?
\{J‘) Describe a red-black tree on n keys that realizes the largest possible ratio of red in-
@é “ ternal nodes to black internal nodes. What is this ratio? What tree has the smallest
possible ratio, and what is the ratio?

13.2 Rotations

The search-tree operations TREE-INSERT and TREE-DELETE, when run on a red-
black tree with n keys, take O (Ign) time. Because they modify the tree, the resuit
may violate the red-black properties enumerated in Section 13.1. To restore these
properties, we must change the colors of some of the nodes in the tree and also
change the pointer structure.

We change the pointer structure through rofation, which is a local operation in
a search tree that preserves the binary-search-tree property. Figure 13.2 shows the
two kinds of rotations: left rotations and right rotations. When we do a left rotation
on a node x, we assume that its right child y is not nil[T }; x may be any node in
the tree whose right child is not nil/{T']. The left rotation “pivots” around the link
from x to y. It makes y the new root of the subtree, with x as y’s left child and y’s
left child as x’s right child. k

The pseudocode for LEFT-ROTATE assumes that right{x] = nil[T] and that the
root’s parent is nil{7'].

278

Chapter 13 Red-Black Trees

| .
e~ LEFT-ROTATE(T, x) /i-\
(X /i TS ' :
o v :
="\ RIGHT-ROTATE(T, y)
Y

Figure 13.2 The rotation operations on a binary search tree. The operation LEFT-ROTATK(T, x)
transforms the configuration of the two nodes on the left into the configuration on the right by chang.
ing a constant number of pointers. The configuration on the ri ght can be transformed into the config-
uration on the left by the inverse operation RIGHT-ROTATE(T, ¥). The letters o, 8, and ¥ represent
arbitrary subtrees. A rotation operation preserves the binary-search-tree property: the keys in ¢
precede key[x], which precedes the keys in g, which precede keyly], which precedes the keysin y,

LEFT-ROTATE(T, x)

Iy « right[x] B> Set y.
2 rightlx] < left] v} &> Turn y’s left subtree into x’s right subtree,
3 plleftiy]] « x
4 plyl < plx] P> Link x’s parent to y.
5 0 plx] = nil[T]
6 then root[T] « y
7 else if x = left[p[x])
8 then left{ p[x]] « ¥
9 else right[p[x]] « ¥
10 lefily] « x > Put x on y’s left,
I plx] <y

Figure 13.3 shows how LEFT-ROTATE operates. The code for RIGHT-ROTATE
is symmetric. Both LEFT-ROTATE and RIGHT-ROTATE run in O(1) time. Only
pointers are changed by a rotation; all other fields in a node remain the same.

Exercises

13.2-1
Write pseudocode for RIGHT-ROTATE,

13.2-2

Argue that in every n-node binary search tree, there are exactly n — 1 possible
rotations.

le

13.2 Rotations 279

Figure 13.3 An example of how the procedure LEFT-ROTATE(T', x) modifies a binary search tree.
Inorder tree walks of the input tree and the modified tree produce the same listing of key values.

13.2-3

Let a, b, and ¢ be arbitrary nodes in subtrees «, £, and y, respectively, in the left
tree of Figure 13.2. How do the depths of a, b, and ¢ change when a left rotation is
performed on node x in the figure?

13.2-4

Show that any arbitrary n-node binary search tree can be transformed into any other
arbitrary n-node binary search tree using O (n) rotations. (Hinr: First show that at
most n — 1 right rotations suffice to transform the tree into a right-going chain.)

13.2-5 *

We say that a binary search tree T can be righf-converted to binary search tree Tp
if it is possible to obtain 7, from 7} via a series of calls to RIGHT-ROTATE. Give
an example of two trees Ty and T, such that 7} cannot be right-converted to 7.
Then show that if a tree 77 can be right-converted to 73, it can be right-converted
using O (n?) calls to RIGHT-ROTATE.

80

Chapter 13 Red-Black Trees

13.3 Insertion

Insertion of a node into an n-node red-black tree can be accomplished in O (ig n)
time. We use a slightly modified version of the TREE-INSERT procedure (Sec-
tion 12.3) to insert node z into the tree 7" as if it were an ordinary binary search
tree, and then we color z red. To guarantee that the red-black properties are pre-
served, we then call an auxiliary procedure RB-INSERT-FIXUP o recolor nodes
and perform rotations. The call RB-INSERT(T, z) inserts node z, whose key field
is assumed to have already been filled in, into the red-black tree 7.

RB-INSERT(T, z)

Iy < nl[T]
2 x <« root{T]
3 while x % nil[T]
4 do y <« x
5 if key[z] < key[x]
6 then x < [left{x]
7 else x <« right[x]
8 plz] <y
9 iy =mnlT]
10 then root[T] < z
It else if key[z] < key[y]
12 then lefily] < z
13 else right{y} < z
14 left{z} < ml[T]
15 right[z] < ml[T]
16 color[z] < RED
17 RB-INSERT-FIXUP(T, z)

There are four differences between the procedures TREE-INSERT and RB-
INSERT. First, all instances of NIL in TREE-INSERT are replaced by mil[T]. Sec-
ond, we set left[z] and right|z] to nil[T] in lines 14-15 of RB-INSERT, in order
to maintain the proper tree structure. Third, we color z red in line 16, Fourth,
because coloring z red may cause a violation of one of the red-black properties,
we call RB-INSERT-FIXUP (T, z) in line 17 of RB-INSERT to restore the red-black
properties,

133 Insertion 281

RB-INSERT-FIXUP(T, z
1 while color{p[z]] = RED

2 do if p{z] = left{p{plz]]]

3 then y < right[p{piz]]]

4 if color[y] = RED

5 then color[p[z]} <~ BLACK > Case |
6 colorly] < BLACK r> Case 1
7 color{piplz]l] < RED B> Case 1
8 z < plplzl] > Case |
9 else if z = right{p[z]]
10 then z < plz] > Case 2
11 LEFT-ROTATE(T, z) b> Case 2
12 color{plz]] < BLACK > Case 3
13 color{piplz]ll < RED > Case 3
14 RIGHT-ROTATE(T, piplzl]) > Case 3
15 else (same as then clause

with “right” and “left” exchanged)
16 color[root[T]] < BLACK

To understand how RB-INSERT-FIXUP works, we shall break our examination
of the code into three major steps. First, we shall determine what violations of
the red-black properties are infroduced in RB-INSERT when the node z is inserted
and colored red. Second, we shall examine the overall goal of the while loop in
lines 1-15. Finally, we shall explore each of the three cases' into which the while
loop is broken and see how they accomplish the goal. Figure 13.4 shows how
RB-INSERT-FIXUP operates on a sample red-black tree.

Which of the red-black properties can be violated upon the call t0 RB-INSERT-
Frxup? Property 1 certainly continues to hold, as does property 3, since both
children of the newly inserted red node are the sentinel nil[T |. Property 5, which
says that the number of black nodes is the same on every path from a given node, is
satisfied as well, because node z replaces the (black) sentinel, and node z is red with
sentine} children. Thus, the only properties that might be violated are property 2,
which requires the root to be black, and property 4, which says that a red node
cannot have a red child. Both possible violations are due to z being colored red.
Property 2 is violated if z is the root, and property 4 is violated if z’s parent is red.
Figure 13.4(a) shows a violation of property 4 after the node z has been inserted.

The while loop in lines 1--15 maintains the following three-part invariant:

ICase 2 falls through into case 3, and so these two cases are not mutually exclusive.

282 Chapter 13 Red-Black Trees

@

(®)

(©

) |
.

Figure 13.4 The operation of RB-INSERT-FIXUP. (a) A node z after insertion. Since r and its
parent plz] are both red, a violation of property 4 occurs. Since z’s uncle y is red, case 1 in the
code can be applied. Nodes are recolored and the pointer z is moved up the tree, resulting in the tree
shown in (b). Once again, z and its parent are both red, but z’s uncle y is black. Since 7 is the right
child of p{z], case 2 can be applied. A left rotation is performed, and the tree that results is shown
in (¢). Now z is the left child of its parent, and case 3 can be applied. A right rotation yields the tree
in (d), which is a legal red-black tree.

- B W v

[CRe]

133 Insertion 283

At the start of each iteration of the loop,

a. Node z is red.
b. If p[z] is the root, then p[z] is black.

c. If there is a violation of the red-black properties, there is at most one
violation, and it is of either property 2 or property 4. If there is a violation
of property 2, it occurs because z is the root and is red. If there is a
violation of property 4, it occurs because both z and p[z] are red.

Part (c), which deals with violations of red-black properties, is more central to
showing that RB-INSERT-FIXUP restores the red-black properties than parts (a)
and (b), which we use along the way to understand situations in the code. Because
we will be focusing on node z and nodes near it in the tree, it is heipful to know
from part (a) that z is red. We shall use part (b) to show that the node plplz]] exists
when we reference it in lines 2, 3, 7, 8, 13, and 14.

Recall that we need to show that a loop invariant is true prior to the first itera-
tion of the loop, that each iteration maintains the loop invariant, and that the loop
invariant gives us a useful property at loop termination.

We start with the initialization and termination arguments. Then, as we examine
how the body of the loop works in more detail, we shall argue that the loop main-
tains the invariant upon each iteration. Along the way, we will also demonstrate
that there are two possible outcomes of each iteration of the loop: the pointer z
moves up the tree, or some rotations are performed and the loop terminates.

Initialization: Prior to the first iteration of the loop, we started with a red-black
tree with no violations, and we added a red node z. We show that each pari of
the invariant holds at the time RB-INSERT-FIXUP is called:

a. When RB-INSERT-FIXUP is called, z is the red node that was added.

b. If p[z] is the root, then p[z] started out black and did not change prior to the
call of RB-INSERT-FIXUP.

¢. We have already seen that properties 1, 3, and 5 hold when RB-INSERT-
FIxup is called.
If there is a violation of property 2, then the red root must be the newly added
node z, which is the only internal node in the tree. Because the parent and
both children of z are the sentinel, which is black, there is not also a violation
of property 4. Thus, this violation of property 2 is the only violation of red-
black properties in the entire tree.
If there is a violation of property 4, then because the children of node 7 are
black sentinels and the tree had no other violations prior to z being added,
the violation must be because hoth 7 and nl71 are vad Mavantan Hhmes ~oe

284 Chapter 13 Red-Black Trees

Termination: When the loop terminates, it does so because p[z] is black. (If z
is the root, then p{z] is the sentinel nil{T], which is black.) Thus, there is
no violation of property 4 at loop termination. By the loop invariant, the only
property that might fail to hold is property 2. Line 16 restores this property, too,
so that when RB-INSERT-FIXUP terminates, all the red-black properties hold,

Maintenance: There are actually six cases to consider in the while loop, but three
of them are symmetric to the other three, depending on whether z°s parent p|z]
is a left child or a right child of z’s grandparent p[p[z]], which is determined
in line 2. We have given the code only for the situation in which p[z] is a left
child. The node p[p[z]] exists, since by part (b) of the loop invariant, if p{z] is
the root, then p[z] is black. Since we enter a loop iteration only if p[z]is red,
we know that p{z] cannot be the root. Hence, p[p[z]] exists.

Case 1 is distinguished from cases 2 and 3 by the color of z’s parent’s sibling, or
“uncle.” Line 3 makes y point to z’s uncle right[p{ plz]l], and a test is made in
line 4. If v 1s red, then case 1 is executed. Otherwise, control passes to cases 2
and 3. In all three cases, z’s grandparent p{p{zl]] is black, since its parent p{z]
is red, and property 4 is violated only between z and plz].

Case I: 2’s uncle y is red

Figure 13.5 shows the situation for case 1 (lines 5-8). Case 1 is executed
when both p[z] and y are red. Since p{p[z]] is black, we can color both p[z]
and y black, thereby fixing the problem of z and p[z] both being red, and
color p[plz]] red, thereby maintaining property 5. We then repeat the while
loop with p[p[z]] as the new node z. The pointer z moves up two levels in the
tree.

Now we show that case 1 maintains the loop invariant at the start of the next
iteration. We use z to denote node z in the current iteration, and z’.= p[plz]]
to denote the node z at the test in line 1 upon the next iteration. :

a. Because this iteration colors p[p{z]] red, node z’ is red at the start of the next
iteration.

b. The node p[z']is p{p[plz]]] in this iteration, and the color of this node does
not change. If this node is the root, it was black prior to this iteration, and it
remains black at the start of the next iteration.

c. We have already argued that case 1 maintains property 5, and it clearly does
not introduce a violation of properties 1 or 3.

If node 7' is the root at the start of the next iteration, then case 1 corrected
the lone violation of property 4 in this iteration. Since z’ is red and it is the
root, property 2 becomes the only one that is violated, and this violation is
due to 7.

ile
he

Xt

Xt

€S
it

€S

EY
o

A}

18

13.3 Insertion 285

Figure 13.5 Case 1 of the procedure RB-INSERT. Property 4 is violated, since z and its parent p[z]
are both red. The same action is taken whether (a) r is a right child or (b) z is a left child. Each of
the subtrees «, f, ¥, 8, and ¢ has a black root, and each has the same black-height. The code for
case 1 changes the colors of some nodes, preserving property 5: all downward paths from a node to
a leaf have the same number of blacks. The while loop continues with node z’s grandparent p[p(z]]
as the new z. Any violation of property 4 can now occur only between the new z, which is red, and
its parent, if it is red as well.

If node z’ is not the root at the start of the next iteration, then case 1 has
not created a violation of property 2. Case 1 corrected the lone violation
| of property 4 that existed at the start of this iteration. It then made 2’ red
and left p[z’] alone. If p{z’] was black, there is no violation of property 4.
If p[z’} was red, coloring z’ red created one violation of property 4 between 2’
and plz'].

Case 2: 2’s uncle vy is black and z is a right child
Case 3: 7’s uncile y is black and z is a left child

In cases 2 and 3, the color of z’s uncle v is black. The two cases are distin-
guished by whether 2 is a right or left child of p[z]. Lines 10-11 constitute
case 2, which is shown in Figure 13.6 together with case 3. In case 2, node z
is a right child of its parent. We immediately use a left rotation to transform
the situation into case 3 (lines 12-14), in which node z is a left child. Because
both z and p{z] are red, the rotation affects neither the black-height of nodes
nor property 5. Whether we enter case 3 directly or through case 2, z’s uncle y
is black, since otherwise we would have executed case 1. Additionally, the
node p[plz]] exists, since we have argued that this node existed at the time that

286

Chapter 13 Red-Black Trees

Figure 13.6 Cases 2 and 3 of the procedure RB~INSERT. As in case 1, property 4 is violated in
either case 2 or case 3 because z and its parent p[z] are both red. Each of the subtrees o, f,v,and §
has a black root (e, §, and y from property 4, and § because otherwise we would be in case 1), and
each has the same black-height. Case 2 is transformed into case 3 by a left rotation, which preserves
property 5: all downward paths from a node to a leaf have the same number of blacks. Case 3
causes some color changes and a right rotation, which also preserve property 5. The while loop then
terminates, because property 4 is satisfied: there are no longer two red nodes in a row.

lines 2 and 3 were executed, and after moving z up one level in line 10 and then
down one Jevel in line 11, the identity of p[p[z]] remains unchanged. In case 3,
we execute some color changes and a right rotation; which preserve property 3,
and then, since we no longer have two red nodes in a row, we are done. The
body of the while loop is not executed another time, since p[z] is now black.

Now we show that cases 2 and 3 maintain the loop invariant. (As we have just
argued, p[z] will be black upon the next test in line 1, and the loop body will
not execute again.)

a. Case 2 makes z point to p[z], which is red. No further change to z or its
color occurs in cases 2 and 3.

b. Case 3 makes p[z] black, so that if p[z] is the root at the startof the next
iteration, it is black. »

c. Asin case 1, properties 1, 3, and 5 are maintained in cases 2 and 3.
Since node z is not the root in cases 2 and 3, we know that there is no viola-
tion of property 2. Cases 2 and 3 do not introduce a violation of property 2,
since the only node that is made red becomes a child of a black node by the
rotation in case 3.
Cases 2 and 3 correct the lone violation of property 4, and they do not intro-
duce another violation.

Having shown that each iteration of the loop maintains the invariant, we have
shown that RB-INSERT-FIXUP correctly restores the red-black properties.

13.3 Insertion 287

Analysis

What is the running time of RB-INSERT? Since the height of a red-black tree on n
nodes is O(lgn), lines 1-16 of RB-INSERT take O(lgn) time. In RB-INSERT-
Fixup, the while loop repeats only if case 1 is executed, and then the pointer z
moves two levels up the tree. The total number of times the while loop can be
executed is therefore O(lgn). Thus, RB-INSERT takes a total of O(gn) ame.
Interestingly, it never performs more than two rotations, since the while loop ter-
minates if case 2 or case 3 is executed.

in

(s Exercises
ad
es 13.3-1
3 In line 16 of RB-INSERT, we set the color of the newly inserted node z to red.
en Notice that if we had chosen to set z’s color to black, then property 4 of a red-black
tree would not be violated. Why didn’t we choose to set z’s color to black?
" 4)9"“ 13.3-2
3, | Show the red-black trees that result after successively inserting the keys 41, 38, 31,
5, 12, 19, 8 into an initially empty red-black tree.
e
13.3-3
Suppose that the black-height of each of the subtrees «, §, v, ¢, ¢ in Figures 13.5
‘_St and 13.6 is k. Label each node in each figure with its black-height to verify that
il property 5 is preserved by the indicated transformation.
‘ 13.3-4
its

Professor Teach is concerned that RB-INSERT-FIXUP might set color{mil[T]] to

; RED, in which case the test in line 1 would not cause the loop to terminate when z

Xt ‘ is the root. Show that the professor’s concern is unfounded by arguing that¥RB-
‘ INSERT-FIXUP never sets color[nil{T]} to RED. ‘

. 13.3-5
a- -
f, ﬁ Consider a red-black tree formed by inserting n nodes with RB-INSERT. Argue
hé that if n > 1, the tree has at least one red node.
13.3-6
o

Suggest how to implement RB-INSERT efficiently if the representation for red-
black trees includes no storage for parent pointers.

ve

