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1 Introduction to Range Searching.

At first sight it seems that database has little to do with geometry. The queries about

data in database can be interpreted geometrically.In this case the records in the database

are transformed into points in multidimensional space and the queries about records are

transformed into the queries over this set of points. Every point in the space will have

some information of person associated with it.

Consider the example of the database of personal administration where the general infor-

mation of each employee is stored. Consider an example of query where we want to report

all employees born between 1950 and 1955, who earns between Rs.3000 and Rs.4000 per

month. The query will report all the points that whose frost co-ordinate lies between

1950 and 1955, and second co-ordinate lies between 3000 and 4000.

In general if we are interested in answering queries on d - fields of the records in our

database, we transforms the records to points in d-dimensional space. Such a query is

called rectangular range query, or an orthogonal range query.

In Range Search problems, the collection of points in space and the query is some standard

geometric shape translatable in space. Range search consist either of retrieving ( report

problems ) or of counting ( count problems ) all points contained within the query domain.
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Figure 1:

2 1 - Dimensional Range Searching.

Let us consider the set of points P=p1,p2......pn. We have to search the range [x,x’] and

we have to report which points lies in that range. To solve the problem of range searching

we use the data structure known as balanced binary search tree T. The leaves of the T

store the points of P and the internal nodes of T will store the splitting values to guide

the search. Let xv denote the value stored at each split node v. The left subtree of the

node v contains all points smaller than or equal to xv, and the right subtree contains all

the points strictly greater than xv.

Let we search with x and x’ in T. µ and µ′ be the two leaves where the searches end,

respectively. Then the points in the interval [x:x’] are stored in the leaves in between µ

and µ′ including µ and µ′. To find the leaves between µ and µ′, we select the tree rooted

at nodes v in between the two search paths whose parent are on the search path. To find

these nodes we first find the node vsplit where the paths to x and x’ splits.
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Figure 2:

2.1 Algorithm

To find the split node let us consider lc(v) and rc(v) denote the left and right child,

respectively, of the node v.

Figure 3:

Procedure name FINDSPLITNODE

Input: A Tree T and two values x and x’ with x≤x’.

Output: The node v where the paths to x and x’ split, or the leaf where both path ends.
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1: v←root(T).

2: while v is not a leaf and ( x’≤xv or x>xv).

3: do if x’ ≤ xv

4: then v← lc(v)

5: else v← rc(v)

6: return v

Starting from vsplit we then follow the search path of x. At each node where the path

goes left, we report all the leaves in the right subtree, because this subtree is in between

the the two search paths. Similarly, we follow the path of x’ and we report the leaves in

the left subtree of the node where the path goes right. Finally we check the points stored

at the leaves whether they lies in the range [ x , x’ ] or not.

Now we see the query algorithm which uses the subroutine REPORTSUBTREE, which

traverses the subtree rooted at the node and reports all the stored at its leaves.This

subroutine takes takes the amount of time linear in the number of reported points, this

is because the number of internal nodes of any binary tree is less than its internal node.

2.2 Algorithm

Procedure name 1DRANGEQUERY(T,[X:X’])

Input: A binary search tree T and a range [x,x’].

Output: All points stored in T that lie in the range.

1: vsplit←FINDSPLITNODE(T,x,x’).

2: if vsplit is a leaf .

3: then check if the point stored at vsplit must be reported.

4: else (* Follow the path to x and report the points in subtree right of the path*).

5: v← lc(vsplit)

6: while v is not a leaf.

7: do if x’ ≤ xv

8: then REPORTSUBTREE(rc(v))
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9: v← lc(v)

10: else v← rc(v)

11: check if the point stored at the leaf v must be reported.

12: Similarly, follow the path to x’, reports the points subtree left of the path, and check if the point

stored at the leaf where the path ends must be reported.

2.2.1 Complexity analysis

The data structure binary search tree uses O(n) storage and it can be built in O(n log

n) time. In worst case all the points could be in query range, so the query time will be

Θ(n). The query time of Θ(n) cannot be avoided when we have to report all the points.

Therefore we shall give more refined analysis of query time. The refined analysis takes

not only n, the number of points in the set P, into account but also k, the number of

reported points.

As we know that the REPORTSUBTREE is linear in the number of reported points, then

the total time spent in all such calls is O(k). The remaining nodes that are visited are

the nodes of the search path of x and x’. Because T is balanced, these paths have a length

O(log n). The time we spent at each node is O(1), so the total time spent in these nodes

is O(log n), which gives a query time of O(logn + k).

2.2.2 Theorem

Theorem 1 Let P be the set of n points in one 1-dimensional space. The set P can

be stored in balanced binary search tree, which uses O(n) storage and has O(n logn)

construction time, such that the points in the query range can be reported in time O(k +

logn), where k is the number of reported points.

3 Kd - Trees.

Consider the 2-dimensional rectangular range searching problem. Let P be the set of n

points in the plane. The basic assumption is no two point have same x-coordinate, and

no two points have same y-coordinate.
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Definition 1 A 2-dimensional rectangular range query on P asks for the points from P

lying inside the query rectangle [x:x’]*[y,y’]. A point p :=(px,py) lies inside this rectangle

if and only if,

pxε[x,x’] and pyε[y,y’]

Let’s consider the following recursive definition of the binary search tree : the set of (1-

dimensional) points is split into two subsets of roughly equal size, one subset contains the

point smaller than or equal to splitting value, the other contains the points larger than

splitting value. The splitting value is stored at the root and the two subsets are stored

recursively in two subtrees.

Figure 4:

Each point has its x-coordinate and y-coordinate. Therefore we first split on x-coordinate

and then on y-coordinate, then again on x-coordinate, and so on. At the root we split the

set P with vertical line l into two subsets of roughly equal size. This is done by finding the

median x- coordinate of the points and drawing the vertical line through it. The splitting

line is stored at the root. Pleft, the subset of points to left is stored in the left subtree,
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and Pright, the subset of points to right is stored in the right subtree. At the left child of

the root we split the Pleft into two subsets with a horizontal line. This is done by finding

the median y-coordinate if the points in Pleft. The points below or on it are stored in the

left subtree, and the points above are stored in right subtree. The left child itself store

the splitting line. Similarly Pright is split with a horizontal line, which are stored in the

left and right subtree of the right child. At the grandchildren of the root, we split again

with a vertical line. In general, we split with a vertical line at nodes whose depth is even,

and we split with horizontal line whose depth is odd.

3.1 Algorithm

Let us consider the procedure for constructing the kd-tree. It has two parameters, a set

if points and an integer. The first parameter is set for which we want to build kd-tree,

initially this the set P. The second parameter is the depth of the root of the subtree that

the recursive call constructs. Initially the depth parameter is zero. The procedure returns

the root of the kd-tree.

Procedure name BUILDKDTREE(P,depth)

Input: A set of points P and the current depth depth.

Output: The root of the kd-tree storing P.

1: if P contains only one point

2: then return a leaf storing this point

3: else if depth is even

4: then Split P into two subsets with a vertical line l through the

median x-coordinate of the points in P.Let P1 be the set of points to the

left of l or on l, and let P2 be the set of points to the right of l.

5: else Split P into two subsets with a horizontal line l through the

median y-coordinate of the points in P.Let P1 be the set of points to the

below of l or on l, and let P2 be the set of points above l.

6: vleft←BUILDKDTREE(P1, depth +1).

7: vright←BUILDKDTREE(P2, depth +1).

8:Create a node v storing l, make vleft the left child of v, and make vright the right child of v.
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9:return v.

3.1.1 Construction time of 2-dimensional kd-tree

The most expensive step is to find the median. The median can be find in linear time,

but linear time median finding algorithms are rather complicated. So first presort the set

of points on x-coordinate and then on y-coordinate. The parameter set P is now passed

to the procedure in the form of two sorted list. Given the two sorted list it is easy to find

the median in linear time. Hence the building time satisfies the recurrence,

T(n)=O(1), if n=1,

O(n)+2T(dn/2e),if n>1

which solves to O( n log n).

Because the kd-tree is the binary tree, and every leaf and internal node uses O(1) storage,

therefore the total storage is O(n).

Lemma 1 A kd-tree for a set of n-points uses O(n) storage and and can be constructed

in O(n logn).

The splitting line stored at the root partition the plane in two half-planes. The left child of

the root corresponds to the left half-plane, and right child corresponds to right half-plane.

The left child of the left child of the root, corresponds to the region bounded to the right

by the splitting line stored at the root and bounded from above by the line stored at the

left child of the root. In general the region corresponding to the node v is the rectangle,

which can be unbounded on one or more sides. It is bounded by splitting lines stored at

the ancestors of v.

We denote the region corresponding to the node v by region(v). The region of the root

of the kd-tree is whole plane.Observe that a point is stored in subtree rooted at node v

if and only if it lies in region(v). We have to search the subtree rooted at v only if the

query rectangle intersects the region(v).

Observation 1 We traverse the kd-tree, but visit only nodes whose region is intersected

by query rectangle.
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When a region is fully contained in the query rectangle then report all the points stored

at its subtree.When traverse reaches a leaf, we check whether the point is contained in

the query region and, if so, report it.

let us consider the diagram given below.

Figure 5:

The grey nodes are visited when when we query with grey rectangle. The node marked

with star corresponds to a region that is completely contained in the query rectangle,

which is shown by darker rectangle in fig. Hence, the dark grey subtree rooted at this

node is traversed and all points stored in it are reported. The other leaves that are visited

corresponds to region that are only partially inside the query rectangle. Hence, the points

stored in them must be tested for inclusion in the query range; this results in point P6

and P11 being reported, and points P3, P12 and P13 not being reported.

3.2 Algorithm

Let us consider the procedure for searching the kd-tree. It has two parameters, the root

of the kd-tree and the query range R.

Procedure name SEARCHKDTREE(v,R)

Input: The root of ( a subtree of ) a kd-tree, and a range R.

9



Output: All points at leaves below v that lies in range.

1: if v is a leaf

2: then Report the stored at v if it lies in R

3: else if region(lv(c)) is fully contained in R

4: then REPORTSUBTREE(lc(v))

5: else if region(lc(v)) intersects R

6: then SEARCHKDTREE(lc(v),R)

7: if region(rv(c)) is fully contained in R

8: then REPORTSUBTREE(rc(v))

9: else if region(lc(v)) intersects R

10: then SEARCHKDTREE(lc(v),R)

The region corresponding to the left child of a node v at even depth can be computed

from region(v) as follows :

region(lc(v)) = region(v)
⋂

l(v)left

where l(v) is the splitting line stored at v, and l(v)left is the half plane to the left of and

including l(v).

Lemma 2 A query with an axis-parallel rectangle in a kd-tree storing n points can be

performed in O(
√

n+k) time, where k is the number of reported points.

First of all note that the time to traverse a subtree and report the points stored in its

leaves is linear in number of reported points. Therefore the total time is O(k). It remains

to bound the number of nodes visited by the query algorithm that are not in one of the

traversed subtrees.For each such node v, the region(v) is intersected by, but not fully

contained in the range.To analyze the number of such nodes, we shall bound the number

of regions intersected by any vertical line. This will give us an upper bound on the number

of regions intersected by the left and right edge of query rectangle. Similarly, we can find

the number regions intersected by the top and bottom lines of query rectangle.
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3.2.1 Complexity analysis

Let l be the vertical line, and T be a kd-tree. Let l(root(T)) be the splitting line stored at

the root of the kd-tree. The line l intersects either the region to the left of l(root(T)) or

the region to the right of l(root(T)), but not both.This observation seems to imply that

Q(n), the number of intersected regions in the kd-tree storing a set of n points, satisfies the

recurrence Q(n)=1+Q(n/2). But this is not true because the splitting lines are horizontal

at the children of the root. This means that if the line l intersects the region(lc(root(T))),

then it will always intersect the regions corresponding to both children of lc(root(T)).

Hence the recurrence we get is incorrect. To write the correct recurrence for Q(n) we go

down two steps in tree. Each of the four nodes at depth two in the tree corresponds to a

region containing n/4 points. Two of the four nodes correspond to intersected regions, so

we have to count the number of intersected regions in these subtrees recursively. More-

over, l intersects the regions of the root and of the root and of one of its children. Hence,

Q(n) satisfies the recurrence

Q(n)=O(1),if n=1,

2+2Q(n/4),if n>1.

This recurrence solves to Q(n)=O(
√

n). In other words, any vertical line intersects

O(
√

n) regions in kd-tree.Similarly, horizontal line intersects O(
√

n) regions. The total

number of regions intersected by the boundary of a rectangular range query is bounded

by O(
√

n).

Theorem 2 A kd-tree for a set P of n points can be build in O(n logn) time. A rectan-

gular range query on the kd-tree takes O(
√

n + k) time, where k is the number of reported

points.

Kd-trees can be also be used for higher-dimensional spaces. The construction algorithm

is very similar to the planar case. At the root, we split the set of points into two subsets

of roughly the same size by a hyperplane perpendicular to the x1-axis. In other words,

at the root the point set is partitioned based on the first coordinate of the points. At the

children of the root the partition is based on second coordinate, at nodes at depth two

on the third coordinate, and so on, until depth of d-1 we partition on last coordinate. Ai

depth d we start all over again, partitioning on first coordinate. The recursion stops only
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when one point is left, which is then stored at the leaf. Because a d-dimensional kd-tree

for a set of n points is a binary tree with n leaves, it uses O(n) storage. The construction

time is O(n logn).

Nodes in a d-dimensional kd-tree corresponds to regions, as in the plane. The query

algorithm visits those nodes whose regions are properly intersected by the query range,

and traverses subtree that are rooted at nodes whose region is fully contained in the query

range. It can be shown that the query time is bounded by O(n1−1/d+k).
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