
Introduction to GDB and Debuggers

Marvin Smith

September 7, 2011

Marvin Smith Introduction to GDB and Debuggers



What happens when our code has bugs?

What are our solutions?

I Cascades of cout statements?

I Re-write your code?

I Bug your T.A.? (wink, wink)

Marvin Smith Introduction to GDB and Debuggers



Debuggers

Use a debugger! Debuggers allow you to step through your
code to determine what is actually happening when you run
your program.

Marvin Smith Introduction to GDB and Debuggers



What is the output of variable c?

#define square(x) x*x

#include <iostream>

using namespace std;

int main()

{

int a = square(3+5);

int b = a*2;

int c = b/4;

cout << c << endl;

return 0;

}

Marvin Smith Introduction to GDB and Debuggers



Result

Answer: 11

Correct Solution: 32

Where is the bug?

Marvin Smith Introduction to GDB and Debuggers



Approach

This is an unusually difficult problem because everything looks
perfectly fine. Rather than use cout statements, lets try GDB.

Marvin Smith Introduction to GDB and Debuggers



Using GDB

To allow for the use of GDB, compile your code with the following
command...

g++ test.cpp -g

-g gives the binary files the ability to be accessed by gdb.

Marvin Smith Introduction to GDB and Debuggers



Using GDB

To start GDB, run

gdb a.out

Marvin Smith Introduction to GDB and Debuggers



Starting Your Code

To start running your program, type run. Make sure that you ran
GDB with a binary file. GDB will run your program until you reach
a breakpoint, your program finishes, or it crashes...

Marvin Smith Introduction to GDB and Debuggers



Using GDB

There are several commands that are useful.

list - list 10 lines of code.

b x - establish breakpoint at line x

step - step into next line

next - go to next line and execute

continue - continue program until end/break

print x - output value of variable x

backtrace - print the function trace to the point

Marvin Smith Introduction to GDB and Debuggers



(gdb) list

list - list the next 10 lines of code

list x - list 10 lines surrounding line x

list x,y - list lines of code from x to y

Marvin Smith Introduction to GDB and Debuggers



(gdb) break

Breakpoints are stops in code where you can freeze program
operation. Breakpoints are useful in order to stop and evaluate
your program.

break - create breakpoint at current line

break x - create breakpoint at line x

break file:x - create breakpoint at line x in file

break function - create breakpoint at function

clear x - remove breakpoint at line x

NOTE: Clear works the same as breakpoint

Marvin Smith Introduction to GDB and Debuggers



(gdb) print
When running your program, it is useful to print the value of
variables stored in your program. Note that GDB can access
private member variables.

print variable - print the value of a variable

Marvin Smith Introduction to GDB and Debuggers



(gdb) step (gdb) next (gdb) continue

At some point, we need to step through the program and analyze
it line by line.

next - process the next line of code in function

step - if code is function, go into it

continue - run program until next breakpoint or finish

Notice that next skips the Push function.

Notice that step enters into the Push function.

Marvin Smith Introduction to GDB and Debuggers



(gdb) backtrace
Segmentation faults are difficult as it can be annoying and difficult
to step until a failure. Rather than step through code, just let the
program fail and run a backtrace.

backtrace - print the functions leading up

to the current line

Marvin Smith Introduction to GDB and Debuggers



Segmentation fault handling

This tells us that the last function the program entered which our
code was the destructor for the Stack. We should enter the
destructor and find the line which caused the failure.

Marvin Smith Introduction to GDB and Debuggers



Start Demo

Marvin Smith Introduction to GDB and Debuggers


