
Introduction to UNIX Makefiles and compiling
programs with GCC

Marvin Smith

September 8, 2011



Why use makefiles?

I easier than building each component individually

I you can ensure that all binaries are built with
up-to-date code



Why use makefiles?

I easier than building each component individually

I you can ensure that all binaries are built with
up-to-date code



General Composition of a Makefile

...Example of a Rule...

TARGETS: PREREQUISITES

RECIPE

...Sample...

a.out: main.cpp

g++ main.cpp

What does this mean?

TARGETS: what you want to build

PREREQUISITES: files required to execute

RECIPE: commands required to execute rule



Sample Application

Main Driver

Function 1 - Append1

Function
2 - Append2



Some Notes
I Prerequisites compare the timestamps of the listed files

against the target. If they are newer than the target, the
rule is executed automatically.

I Targets should always be the name of the file you wish to
create. This is how the makefile determines dependencies
and resolves them. Exeptions are for commands like
clean, check, all, etc.

I When making the recipe, ensure that the recipe uses a
TAB! Spaces are not the same and the makefile will fail...



Simple Makefile

Notice that each object is built individually and the parameters for identical builds are required in each line



Macros

macro name = some value
I example: CC = g++
I example: CFLAGS = -Wall -g
I example: SOURCES = main.cpp function1.h function2.h

NOTE: macro names should be in capital letters for
convention



Simple Makefile with Macros

Notice now
that we have
replaced the
compile options
with a Macro
variable. You
can do this
with files,
items, flags,
etc.



Automatic Macros
Automatic macros are predefined macros which make sorting
through lists



Advanced Makefile with Automatic Macros
Using
Automatic
Macros, we can
now skip listing
each item
separately and
focus on just
placing our files
in the source
list. That way,
our building
will be less
prone to errors.



Useful G++ flags

I -g : compile library with GDB flags, essential if you want to
use debugger

I -Wall : compile with all warning flags. Better type checking
and more warnings for things that are allowed but not
recommended.

I -O1 : compile code with optimizations that don’t reduce
compile speed

I -O2 : compile with all optimizations which don’t affect binary
size, like unrolling loops.

I -O3 : compile with all supported optimizations

I -Os : optimize code for binary size

I -c : compile object files. Requires the .cpp files and headers of
other libraries (no other objects)

I -o : allows compiler to build outputs with name other than
a.out.



CS 302 Project Requirements

I All code must be able to compile on GCC for Unix machines.
You can use Windows for personal use and for your demo, but
I need to be able to compile it on my own.

I All projects must include a makefile. I should be able to just
type make and everything works. Organization of your project
is up to you.

I If certain functions don’t work in your program, it MUST be
annotated in your report. Your grade will severely suffer
otherwise.

I All code must be turned in using either zip or tar compression.
Just right click on any operating system and compress. Don’t
email me your files as separate attachements.

I Don’t worry. If I have problems building and running your
code, I will let you know and usually let you fix it.


