CS365 - Final Exam Review Spring 2007

Sequences and Summations

- Sequences/Summations Notation
- Useful summation manipulations
- Take constants out of the summation
- Split into two summations
- Index shifting
- Order reversal
- Grouping

$$
\begin{aligned}
& \sum_{x} c f(x)=c \sum_{x} f(x) \\
& \sum_{x} f(x)+g(x)=\left(\sum_{x} f(x)\right)+\sum_{x} g(x) \\
& \sum_{i=j}^{k} f(i)=\sum_{l=j+n}^{k+n} f(l-n) \\
& \sum_{i=j}^{k} f(i)=\left(\sum_{i=j}^{m} f(i)\right)+\sum_{i=m+1}^{k} f(i) \quad \text { if } j \leq m<k \\
& \sum_{i=j}^{k} f(i)=\sum_{l=0}^{k-j} f(k-l) \\
& \sum_{i=0}^{n} f(i)=\sum_{i=0}^{n} f(n-i) \\
& \sum_{i=0}^{2 k} f(i)=\sum_{i=0}^{k} f(2 i)+f(2 i+1)
\end{aligned}
$$

- Important series
- Arithmetic series (know proof)
- Geometric series (know proof - both finite and infinite)

$$
\begin{aligned}
\sum_{k=0}^{n} a r^{k} & =a\left(r^{n+1}-1\right) /(r-1), r \neq 1 \\
\sum_{k=1}^{n} k & =n(n+1) / 2
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=0}^{\infty} x^{k}=1 /(1-x),|x|<1 \\
& \sum_{k=1}^{\infty} k x^{k-1}=1 /(1-x)^{2},|x|<1
\end{aligned}
$$

Algorithms

- Analysis of algorithms (goal/objectives, how, why?)
- Linear Search/Binary search (example)
- Order of growth - VERY IMPORTANT!
- Understand very well, both intuitively and mathematically.
- What does it mean that two algorithms have the same rate of growth?
- Running time of various statements (while-loop, for-loop, if-then-else, block of statements).
- big-O, big- Ω, Θ, small-o, small- ω (properties, relations)
- Understand their relation VERY WELL!
- Need to use mathematical definitions in proofs.
- Common orders of magnitude
- Understand their relation VERY WELL!
- Algorithmic/Problem complexity
- Know how to analyze the complexity of simple algorithms (e.g., linear search and binary search).
- What is the complexity of a problem?
- Tractable/Intractable problems (know the definitions)
- P/NP problems (know the definitions)

Matrices

- Matrix notation
- Matrix properties
- Equality
- Sums
- Products
- Inverse
- Transpose
- Symmetry

Mathematical Induction (Study VERY WELL!)

- Predicate-logic inference rule
$P(0)$
$\forall n \geq 0(P(n) \rightarrow P(n+1))$
$\therefore \forall n \geq 0 P(n)$
- Why is induction valid? (i.e., proofs)
- Main steps of induction
- Weak vs Strong induction (know both!)
- Do as many examples as you can!

Combinatorics

- Main rules
- Sum rule
- Product rule
- Combinations of Sum and Product Rules
- Inclusion-Exclusion Principle
- Pigeonhole Principle
- Generalized Pigeonhole Principle
- Permutations (with or without repetitions)
- Combinations (with or without repetitions)
- Permutations (assuming indistinguishable Objects)
- Distributing distinguishable Objects into distinguishable Boxes

