CS365 – Final Exam Review Spring 2007

Sequences and Summations

- Sequences/Summations Notation
- Useful summation manipulations
 - o Take constants out of the summation
 - o Split into two summations
 - Index shifting
 - o Order reversal
 - \circ Grouping

$$\sum_{x} cf(x) = c \sum_{x} f(x)$$

$$\sum_{x} f(x) + g(x) = \left(\sum_{x} f(x)\right) + \sum_{x} g(x)$$

$$\sum_{i=j}^{k} f(i) = \sum_{l=j+n}^{k+n} f(l-n)$$

$$\sum_{i=j}^{k} f(i) = \left(\sum_{i=j}^{m} f(i)\right) + \sum_{i=m+1}^{k} f(i) \quad \text{if } j \le m < k$$

$$\sum_{i=j}^{k} f(i) = \sum_{l=0}^{m} f(k-l)$$

$$\sum_{i=0}^{n} f(i) = \sum_{i=0}^{n} f(n-i)$$

$$\sum_{i=0}^{2k} f(i) = \sum_{i=0}^{k} f(2i) + f(2i+1)$$

- Important series
 - Arithmetic series (know proof)
 - Geometric series (know proof both finite and infinite)

$$\sum_{k=0}^{n} a r^{k} = a (r^{n+1} - 1) / (r - 1), r \neq 1$$
$$\sum_{k=1}^{n} k = n (n + 1) / 2$$

$$\sum_{k=0}^{\infty} x^{k} = 1/(1-x), |x| < 1$$
$$\sum_{k=1}^{\infty} k x^{k-1} = 1/(1-x)^{2}, |x| < 1$$

Algorithms

- Analysis of algorithms (goal/objectives, how, why?)
- Linear Search/Binary search (example)
- Order of growth VERY IMPORTANT!
 - Understand very well, both intuitively and mathematically.
 - What does it mean that two algorithms have the same rate of growth?
 - Running time of various statements (while-loop, for-loop, if-then-else, block of statements).
- big-O, big- Ω , Θ , small- σ , small- ω (properties, relations)
 - Understand their relation VERY WELL!
 - Need to use mathematical definitions in proofs.
- Common orders of magnitude
 - Understand their relation VERY WELL!
- Algorithmic/Problem complexity
 - Know how to analyze the complexity of simple algorithms (e.g., linear search and binary search).
 - What is the complexity of a problem?
- Tractable/Intractable problems (know the definitions)
- P/NP problems (know the definitions)

Matrices

- Matrix notation
- Matrix properties
 - Equality
 - o Sums
 - o Products
 - \circ Inverse
 - o Transpose
 - o Symmetry

Mathematical Induction (Study VERY WELL!)

• Predicate-logic inference rule

$$P(0)
∀n≥0 (P(n)→P(n+1))
∴∀n≥0 P(n)$$

- Why is induction valid? (i.e., proofs)
- Main steps of induction
- Weak vs Strong induction (know both!)
- Do as many examples as you can!

Combinatorics

- Main rules
 - $\circ \quad \text{Sum rule} \quad$
 - o Product rule
 - o Combinations of Sum and Product Rules
- Inclusion-Exclusion Principle
- Pigeonhole Principle
- Generalized Pigeonhole Principle
- Permutations (with or without repetitions)
- Combinations (with or without repetitions)
- Permutations (assuming indistinguishable Objects)
- Distributing distinguishable Objects into distinguishable Boxes