CS365 – Midterm Exam Review

Propositional Logic

- Proposition definition
- Logical Operators
 - o NOT, AND, OR, X-OR
 - o Implication, Contrapositive, Biconditional (study very well)
- Precedence of logical operators
- Tautologies, Contradictions
- Propositional Equivalence, Equivalence laws
- Proving equivalences (truth table, symbolic derivations using equivalence laws)

Predicate Logic

- Predicate definition predicates are not propositions!
- The Universal Quantifier ∀
- The Existential Quantifier ∃
- Quantifier Equivalence Laws
- Scope of quantifiers, free and bound variables, how to bind a variable
- Order of quantifiers is VERY important!

Proofs

- What is a proof?
- Rules of inference prove theorems using rules of inference
- Fallacies (e.g., affirming the conclusion, denying the hypothesis, circular reasoning)
- Methods of proof for implications
 - o Direct
 - o Indirect
 - o Vacuous, Trivial
 - Proof by Contradiction
 - Proof by Cases
 - Proof of Equivalence
 - Proof by counterexample
 - Proving existentials (constructive, non-constructive proofs)

Set Theory

- Definitions, Vein Diagrams, Membership Notation, Empty Set
- Subsets, Supersets, Set equality
- Cardinality, Power Set, Cartesian Product
- Set Operations
 - o Union
 - o Intersection
 - o Difference
 - o Complement
- Proving Set Identities (mutual subsets, membership tables)

Functions

- Definitions, Terminology (domain, co-domain, range, image, pre-image), Graphs
- Function composition
- One-to-One functions
- Onto functions, Sufficient Conditions
- Bijections
- Inverse of a function, Identity function
- Floor and Ceiling functions

Propositional Logic - Equivalence Laws

• Identity:
$$p \land T \Leftrightarrow p \quad p \lor F \Leftrightarrow p$$

• Domination:
$$p \lor T \Leftrightarrow T$$
 $p \land F \Leftrightarrow F$

• Idempotent:
$$p \lor p \Leftrightarrow p$$
 $p \land p \Leftrightarrow p$

• Double negation:
$$\neg\neg p \Leftrightarrow p$$

• Commutative:
$$p \lor q \Leftrightarrow q \lor p$$
 $p \land q \Leftrightarrow q \land p$

• Associative:
$$(p \lor q) \lor r \Leftrightarrow p \lor (q \lor r)$$

 $(p \land q) \land r \Leftrightarrow p \land (q \land r)$

• Distributive:
$$p \lor (q \land r) \Leftrightarrow (p \lor q) \land (p \lor r)$$

 $p \land (q \lor r) \Leftrightarrow (p \land q) \lor (p \land r)$

$$\neg(p \land q) \Leftrightarrow \neg p \lor \neg q$$
$$\neg(p \lor q) \Leftrightarrow \neg p \land \neg q$$

• Absorption:

$$p \lor (p \land q) \Leftrightarrow p$$

 $p \land (p \lor q) \Leftrightarrow p$

• Trivial tautology/contradiction:

$$p \lor \neg p \Leftrightarrow \mathsf{T}$$
 $p \land \neg p \Leftrightarrow \mathsf{F}$

•
$$p \rightarrow q \Leftrightarrow \neg q \rightarrow \neg p$$

•
$$p \rightarrow q \Leftrightarrow \neg p \lor q$$

Predicate Logic - Equivalence Laws

- $\forall x P(x) \Leftrightarrow P(a) \land P(b) \land P(c) \land ...$ $\exists x P(x) \Leftrightarrow P(a) \lor P(b) \lor P(c) \lor ...$
- $\forall x P(x) \Leftrightarrow \exists \neg x \neg P(x)$ $\exists x P(x) \Leftrightarrow \neg \forall x \neg P(x)$
- $\exists \neg x \ P(x) \Leftrightarrow \forall x \neg P(x)$ $\neg \forall x \ P(x) \Leftrightarrow \exists x \neg P(x)$
- $\forall x \forall y \ P(x,y) \Leftrightarrow \forall y \ \forall x \ P(x,y)$ $\exists x \exists y \ P(x,y) \Leftrightarrow \exists y \ \exists x \ P(x,y)$
- $\forall x (P(x) \land Q(x)) \Leftrightarrow (\forall x P(x)) \land (\forall x Q(x))$ $\exists x (P(x) \lor Q(x)) \Leftrightarrow (\exists x P(x)) \lor (\exists x Q(x))$

Inference Rules

- p Rule of Addition
 - ∴ *p*∨*q*
- $p \land q$ Rule of Simplification
 - ∴ *p*
- p
 - $\therefore p \land q$ Rule of Conjunction
- p Rule of modus ponens
 - <u>p→q</u> ∴q
- ¬q
 <u>p→q</u> Rule of modus tollens
 ∴¬p
- $p \rightarrow q$ Rule of hypothetical $q \rightarrow r$ syllogism
 - *∴ p*→*r*
- $p \lor q$ Rule of disjunctive $\neg p$ syllogism $\therefore q$
- ∀x P(x)
 ∴ P(o) (substitute any object o)
- P(g) (for g a general element of u.d.)
 ∴ ∀x P(x)
- ∃*x P*(*x*)
 - $\therefore P(c)$ (substitute a new constant c)

• *P*(*o*) (substitute any extant object *o*) ∃∴*x P*(*x*)

Set Identities

• Identity: $A\varnothing \cup = A \quad A \cap U = A$

• Domination: $A \cup U = U$ $A \varnothing \cap = \varnothing$

• Idempotent: $A \cup A = A = A \cap A$

• Double complement: $\overline{(\overline{A})} = A$

• Commutative: $A \cup B = B \cup A$ $A \cap B = B \cap A$

• Associative: $A \cup (B \cup C) = (A \cup B) \cup C$

 $A \cap (B \cap C) = (A \cap B) \cap C$

DeMorgan's Laws

$$\overline{A \cup B} = \overline{A} \cap \overline{B}$$

$$\overline{A \cap B} = \overline{A} \cup \overline{B}$$