
utomated reasoning
A valuable tool in validating our work

Automated reasoning is the attempt
to prove statements with a computer in
a law-like way. Applications include
mathematical theorem proving; circuit
design, validation, and diagnosis; pro-
gram verification and validation; expert
systems, and term rewriting systems.

Automated reasoning requires a
very precise representation for the
expressions being reasoned over. One
such representation is the first-order
predicate calculus. Expressions in this
language are formed from predicates,
arguments, quantifiers. and variables of
quantification.

A theorem prover is an automated
reasoning program which tries to deter-
mine if a sentence follows logically
from a set of axioms. If it does, it is
considered a theorem. Most theorem
provers are based on unification and the
resolution principle. Given a set of
clauses, they try to determine whether a
set of clauses, which include the
axioms and negation of what we are
trying to prove, is unsatisfiable, that is,
not true under any interpretation. Such
unsatisfiability is shown by deriving
the empty clause via resolution.
Proving theorems this way is called a
resolution refutation.

In order for a computer to reason
efficiently, the syntax must be simpli-
fied. That is, the predicate calculus
expressions must be translated into a
form that allows the use of a single
inference rule known as the resolution
principle.

The two most desirable features of
an inference procedure are soundness
and completeness. Soundness means
that the inference procedure never
draws false conclusions from true
premises, and completeness means that
the inference method is capable of
drawing all possible conclusions which
follow from the premises.

A third feature which is extremely
desirable, but can never be attained by
any inference procedure for the predi-
cate calculus, is decidability. An infer-
ence procedure is decidable if an
effective procedure exists for determin-
ing if an arbitrary sentence follows from
a given set of premises. Saying that no
such decidable procedure exists for the
predicate calculus is the same as saying
there is no way of knowing if any proof
procedure for the predicate calculus will
ever terminate. Such proof procedures
are called semi-decidable.

The basic resolution principle is
sound, but not complete or decidable. It
can be made complete by adding the
feature of factoring. Losing complete-
ness is a common result of trying to
speed up resolution but is acceptable

One example of diagnosis from first
principles is Reiter’s theory where the
diagnosis of a faulty device is made
based on the system description (SD) of
a device featuring a finite set of system
components, and a set of obsenations
(OBS) of the device. SD and OBS are
finite sets of sentences in first-order
predicate logic where SD describes the
system components and OBS describes
the symptoms of the device. A diugno-
sis for (SD, COMPONENTS, OBS) is
a minimal set of faulty COMPO-
NENTS. A COMPONENT is only a
member of this diagnosis set if consid-
ering it non-faulty would cause a con-
tradiction in the collection of logical
statements describing the system (SD),
the symptoms (OBS), and the other
COMPONENTS which are considered

Fig. la

unlike the loss of soundness.

Diagnosis from
first principles

One alternative to heuristic classifi-
cation is diagnosis from first principles.
Rather than relying on an expert’s gen-
eral rules (heuristics) about how a set
of symptoms are usually associated
with a certain fault(s), diagnosis from
first principles relies on a device
description to reason out how a device
actually works. Such an approach elim-
inates the difficult task of eliciting
knowledge from an expert. Also, it
only requires a detailed description of
how the device should behave.

Fig. lb

non-faulty.

noses of a faulty device could be con-
structed. One way of searching for
diagnoses is to have an algorithm
which generates possible diagnoses and
tests them. A more efficient algorithm
for finding diagnoses is made possible
by considering the notion of a conflict
set. A conflict set is a set of COMPO-
NENTS (C l , C2, ..., C n) which, if
NOT considered faulty, causes a con-
tradiction in the collection of logical
statements describing the system (SD)
and the symptoms (OBS). Reiter shows
how to compute all diagnoses of (SD,
COMPONENTS, OBS) given a theo-
rem prover that will generate conflict

Obviously, many different diag

10 0278-6648/92/$3.00 0 1992 IEEE IEEE POTENTIALS

sets for (SD, COMPONENTS, OBS).
The key idea is to form minimul hitting
sets which consist of a member(s) of
each conflict set. The failure of the
COMPONENTS in a hitting set would
explain the faulty behavior of the
device making the hitting set a possible
diagnosis. Some diagnoses can be ruled
out if they predict observations which
have not actually been made.

The approaches to diagnosis from
first principles developed so far are
limited. They require a complete device
description in order to be sound and
complete. They assume connections
between components of a device are
working properly, and they rely on rea-
soning done over diagnosis theories
formulated in full first-order logic
which is only semi-decidable.

Logic circuit design
and validation

We can also use automated reason-
ing to help us design and validate logic
circuits. One problem circuit designers
can face is to take a circuit specification
in terms of ANDs, ORs, and NOTs and
produce a circuit using only the more
common, but less intuit ive, gate
NAND. For example, we might like to
transform the circuit in Fig. l a into the
circuit in Fig. 1 b which only uses
NANDs.

We can do this by first defining our
outputs in terms of our inputs: 01 =
or(and(i1, i2), not (i3)) and 02 =
and(not(i3),i2). Next, we define the
relations between ANDs, ORs. and
NOTs and NANDs with:

not(x) + nand(x,x)
or(x, y) -+ nand(not(x),not(y))
and(x,y) -+ not(nand(x,y))

We will also simplify our results with:

nand(nand(x,x),nand(x,x)) -+ x.

With these equalities and our origi-
nal specification of our output, we use
demodulation to produce the desired
circuit containing only NANDs.
Demodulation is the substituting or
rewriting of one term by another equiv-
alent one, such as not(x) by nand(x,x).
Demodulators are applied when the
first clause unifies with the term we are
attempting to rewrite. The resulting
term is the unifier applied to the second
clause of the demodulator.

By repeatedly applying the demodu-
lators to our given circuit we can pro-
duce circuits containing only NANDs
such as in Figure lb.

If. on the other hand, the specifica-
tion is given as a table such as:

xo 1

then we can represent it as table(i1,
table(i2,0,l),table(i2,1 ,O)) where
table(input,x,y) is interpreted as: if
input is 1 retum x else retum y.

Using the demodulator table(input,
x,y)+and(or(not(input),x)or(input,y))
and others listed in Figure 2 we can
produce a circuit with ANDs, ORs and
NOTs through demodulation. We can
then also use the previous demodula-
tors to put the circuit in terms of
NANDs. Circuit validation is the
process of assuring that a circuit per-
forms as desired. For example, we
might want to validate that the circuit
nand(nand(x,y),nand(x,y)) is equivalent
to and(x,y). Part of this is accomplished
by using the previous equalities for
NAND but rewriting in the other direc-
tion. Validation, however, is harder
than circuit design where we can sim-
ply stop when all terms are NANDs.
Terms in validation must have a canon-
ical form to assure that all equivalen-
cies are found. Subtle equalities such as
or(x,or(x,y)) + or(x,y) must be added.
In validation we must also assure that
we never loop in trying to find our
proof such as infinitely rewrit ing
or(x,y) -+ or(y,x) + or(x,y) +

Program verification
and validation

Computer software’s growing com-
plexity makes proving the correctness
of the software extremely complicated.
Traditionally, programs are proven
“correct” by running the program on

Fig. 2

many sets of data and showing that the
output is correct. Data is chosen to rep-
resent normal values and values at the
extremes. The choosing of this data is
not always straightforward; and, even
when it is, this is not enough to show
that the software is correct for all data.
We can instead attempt to formally
prove program correctness using auto-
mated reasoning techniques.

A procedure is proved correct if all
inputs satisfying the input assumptions
yield results satisfying the exiting
requirements. Note that program cor-
rectness implies nothing more than this.
Thus, the burden is placed on the pro-
grammer to give the complete specifi-
cations for a procedure. If an
incomplete specification is given, then
the proof that the procedure is “correct”
means only that the procedure meets
the specification given. It does not nec-
essarily mean that the procedure pro-
duces the desired result.

For example, if we give the exit con-
dition that an absolute value procedure
returns a value greater than or equal to
zero, we are not being complete. A
function that always retums “ I ” meets
that specification. We obviously need
to add that the output is equal to the
input or the negative of the input.

Hantler and King give a method for
symbolic execution of a procedure.
Symbolic execution does not use exact
values, such as testing when x=3, but
instead keeps track of variables and
how they are manipulated. In their
method, constraints are added to vari-
ables as warranted by execution of the
procedure and all possible paths are
considered. For example, if the state-
ment

IF x<O THEN

ELSE
y=3*z

y=2*x

is executed, then two branches of exe-
cution must be considered with x<O as
a constraint on one branch and x>=O
on the other. Also y will be modified
accordingly for each branch.

The symbolic execution of assign-
ment statements is handled in the obvi-
ous way. Statements are executed
similar to “while” statements except
that the enclosed statements may be
executed any number of times. To take

DECEMBER 1992 11

this into consideration. we add a “cut”
statement to the beginning of the loop.
This cut statement has a specification
which acts as both input and output
requirements. We test that the value
coming in meets these specifications
and continues to do so after the loop is
performed. If this is shown. we know no
matter how many times the loop is per-
formed the requirements will be met.

Procedure calls could be handled by
inserting the code where it is called
from (and renaming variables) but this
would mean repeatedly verifying the
same code if it were called several
times in the program. Instead we prove
correctness once for the procedure sep-
arately and then use an abbreviated pro-
cedure at all other times. The procedure
checks input assumptions, adds its exit
conditions to the constraints, and gives
new symbols to modified variables.

Automated reasoning is used in
proving a program’s correctness by
having demodulation rules defining
how each type of statement affects the

. Camp, s y s t e m Architecture
Control & Robotics
Electromagnetics - I-^-

program state (variable values, position
i n the program, and current con-
straints). We then type in our program
with the input assumptions and our
demodulators work on it from the ini-
tial state trying to prove that all exit
conditions are met. If this happens. the
program is proved correct.

Automated reasoning can be applied
to many area5 which most often have a
common need: solving problems with
unification and a tedious and repetitious
proof procedure. The field is expanding
and is being used either as integral or
peripheral parts of different fields.

Read more about it
Hantler, S. and King, J. (1976).

“An Introduction to Proving the
Correctness of Programs,” ACM
Computing Surveys. September 1976,
pp33 1-35 1.

Jackson. P. (1990). Introduction to
E.xpert SXJtms. Addison Wesley.

Reiter. R. (19x7). “A Theory of
Diagnosis from First Principles.”

I Program i s an opportunity for
outstanding Master’s graduates with
excellent academic records to compete
for 12-month Ph.D. research

Artificial Intelligence, Volume 32, pp.
57-95.

Robinson. J. A . , (1965). “A
Machine-oriented Logic Based on the
Resolution Principle,” Journal of the
Association for Computing Machinery,
Volume 12, pp. 23-41.

Wos, L.. Overbeek, R., et. al.,
(1984). Automated Reasoning:
Introduction and A p p lica t ion s,
Prentice-Hall, Inc.

W O \ , L.. (1988). Automated
Reasoning: 33 Basic Research
Problems, Prentice-Hall, Inc.

I co“/usr assistantships worth 913,oMl. plus a

Power 93,OM) to95.000 supplementforthree
Electronics years. To qualify. students must rank

About the authors
Daniel P. Murphy recently received

his Ph.D. in computer science at the
University of Missouri-Rolla. His
research interests include artificial
intelligence, automated reasoning, and
expert systems. Christopher J. Merz is a
Ph.D. student in computer science at
the University of California-Irvine. His
research interests include neural net-
work5 and machine learning.

I For More Infomation, Contact: the upper of undergrad class

ECE Graduate Coordinator
Dr. James F. Leathrum

We’re V p and Coming”

Riggs Hall, Clemson University I

Consider Graduate Studies in Electrical
and Computer Engineering at Clemson!

COME AND STUDY: . Computer ~ ~ ~ ~ i ~ ~ t i ~ ~
New Assistantship Announced!
The Dean’s Graduate Scholars I

GRADUATE STUDY at

ARIZONA STATEUNIVERSITY
Tempe, Arizona

MU, located in the Phoenix metropolitan am,
offers the M.S., M.S.E., and Ph.D. d e w s in Electrical
Engineering. Over 350 Masters students and 100 Ph.D.
students participate incourses andmajorresearch projects
in the following areas: solid state electronics, power
engineering, control systems, electromagnetics, commu-
nications, coherent optics and signal processing.

ASUElectricalEngineeringhasmodemresearch
facilities, excellent computer resources, and a world
famous faculty ensuring a rewarding educational experi-
ence.

Graduate assistantships are available for qualified
C a n d i d a t e S .

For further information, write to:
Professor Joseph Palais
Director of Graduate Studies
Department of Electrical Engineering
Tempe, AZ 85287-5706

12

-
IEEE POTENTIALS

