
Can you trust your computer?
Khalil Kalbasi Floating-point formats, round-off,

and machine constants-they could
be making liars out of your data

omputers are a part of
daily life in areas from
banking, game playing,
reservation systems,
traffic control and busi-

ness to science and engineering. Their
use, in the latter, requires much more
diligence and care than is usually ex-
tended, especially when performing
many arithmetic operations, such as
solving differential equations or a sys-
tem of algebraic equations. In such
instances, the computer, which is per-
ceived as an “exact” tool, can turn out
to be a monster number cruncher that
delivers nothing but “garbage.” This is
due to the way computers handle real
numbers.

For example, consider the determi-
nation of the following sum.

+ 914 - + +
615 - = 1529.

By summing from left to right, most
digital computers will return zero as the
answer. This gross error is the result of
floating-point formats in these comput-
ers. What can be done about these
problems? Are they machine depen-
dent? If so, what are the characteristics
of different computers, and if not, what
algorithms would eliminate or reduce
these errors?

Real vs. floating point
The real number system is one of the

triumphs of the human mind, underly-
ing calculus and higher analysis. In
spite of the infinite span of the real
number system, computers deal with a
finite numbering system called the
floating-point number system. A float-
ing-point number system consists of a
finite number of elements having the
appearance of a screen placed over the
real numbers. Indeed, the expression
floating-point screen is sometimes
used. Thus for an approximation of the
real numbers on a computer, floating-
point numbers are used.

A t-digit base b floating-point num-
ber is one of the form

k.dld2d3 d, b’.

Here .d1d2d, d, is the mantissa,
b is the base of the number system in
use (an integer greater than unity) and e
is the exponent. The exponent is an
integer between two fixed integer
bounds el , e2 and, in general,
el d 0 d e2. With the condition
dl = 0, floating-point numbers are said
to be normalized. The set of normalized
floating-point numbers does not con-
tain zero. (For a unique representation
of zero, we assume a positive (+) sign,
a mantissa of 0.0000. . . 0 (t zeros
after the radix point) and e = e l .)

Therefore, a floating-point system de-
pends on the constants b , r , el and e2.
Let’s denote it by R = R(b, t , e l , e2).
The base b is usually 2 and the length t
of the mantissa is typically 24 bits for
single precision arithmetic.

A floating-point system R consists of
a finite number of elements spaced
between successive powers of base b
and their negatives. It has exactly
2(b - 1)bt-’(e2 - el + I) + I num-
bers in it. Figure 1 shows a simple
floating-point system R = R(2, 3 , - 1 ,
2) consisting of 33 elements. These are

0278-664819010004-0015$01 .OO 0 1990 I EEE

APRIL 1990

not equally spaced throughout their
range. but only between successive
powers of b and their negatives.

Rounding and chopping, over-
and under-flow

Because of the structure of floating-
point numbers, the arithmetic opera-
tions for real numbers are only approx-
imated by floating-point numbers. If x
and y are floating-point numbers, the
exact point x X y will have more than t
digits of mantissa and therefore the
least significant digits in excess of t are
either “chopped” or “rounded,” leading
to error. The same is true for exact sum
of x + y . Since a computer has to rep-
resent the results of its own operations
as a floating-point number, it rounds
(or chops) the exact result into a float-
ing-point number screen and takes the
outcome as the definition of floating-
point operation.

We say that a number x is chopped to
t digits or figures when all the digits
following the rth digit are discarded and

e 2e ml m2

-1 112 0.100 0.101

0 1 0.100 0.101
1 2 0.100 0.101

2 4 0.100 0.101

ping and rounding, respectively. This
implies that if you have a relative error
of say lo-’ in calculating a number,
you expect to have about 6 digits of
accuracy.

Let JZ(x) represent the floating-point
representation of a real number x. Fur-
thermore, let JZ(x + y) represent the
floating-point addition of two real num-
bers x and y. In the 33-point system
described above, letx = %andy = Yx.
The operation x + y on a computer is
simulated via a JZouting-point uddi-
tion approximation. We would like
P(x + y) to be closest to the true x t y ,
but in most computers this does not
happen. For instance, in our 33-point
floating point number system the result
ofJZ(Y4 + Yx) would be either Y2 or 774
instead of 1%. The difference between
x + y andJZ(x + y) is called rounding
errur in addition. When the result of
some floating-point operation is greater
than the largest floating-point number
available in a given floating-point sys-
tem (772 in our toy system), the phenom-

m3 m4

0.110 0.111
0.110 0.111
0.110 0.111
0.110 0.111

Nonzero Elements of r~-- Least Absolute Value
1- Greatest Element 1 Least Element

-4 -3 -2 -1-1120 1/21 2 3 4
t t t 11 t t t t ’ Powers o f 2

f i g 1 A simple f/oating-point system

none of the remaining t digits is
changed. Conversely, x is rounded to t
digits or figures when x is replaced by a
t-digit number that approximates x with
minimum error. The question of round-
ing up or down a (t + 1)-digit decimal
number that ends with a 5 is best han-
dled by always selecting the rounded
t-digit number with even tth digit.

The relative error of representing a
number in floating-point format is at
most equal to b’-‘and !/2b’-‘for chop-

enon of overflow occurs. Underflow
happens in floating-point multiplica-
tion when two non-zero numbers have a
non-zero product that is smaller in mag-
nitude than the smallest number in R
(i.e., V4 in our 33-point system). When
overflow occurs, almost all computers
signal an error message, but underflow
happens unnoticed in some computers
because the machine quietly sets the
number equal to zero. How great is the
relative error when this happens?

An example
To show the implications of round-

off in a very common type of calcula-
tion, let’s look at an example. The
following Fortran and Pascal Programs
are roughly equivalent. Predict how
many lines of output you would expect
from running one of them on a com-
puter that uses binary, rounded arith-
metic.

program derno(output);
var

i : inte er
h : reay; real h
x : real; real x

i := 0; i = O
x := 0.0; x = 0.0
h := 0.1; h = 0.1
repeat 10 continue

i := i + 1; i = i + l
x : = x + h x = x + ~
writeln(i , x) print* i , x

integer i

begin

until x<l; if(x .le. 1 .O)

end
end. go to 10

If your answer to this question is “1 1
lines” run the program and see for
yourself. Now, if the statement
x = x + h is replaced with x = i * h,
are there going to be any changes in the
printed output? If your answer is “no,”
try the program with the modification
again and see what happens. If you
could not see what is happening ex-
actly, here is an explanation: Using
exact arithmetic, the program should
print eleven lines in either case. But
using 24-digit base 2 arithmetic with
rounding (such as single precision
VAX arithmetic), the program prints
only 10 lines when the x=x+h version
is used. The sequence of values at-
tained by x (in double-precision for-
mat) is

1 X

1
2
3
4
5
6
7
8
9

10

0.1000000014901 161
0.2000000029802322
0.3000000 1 19209290
0.4000000059604645
0.5000000000000000
0.600000023341 8579
0.7000000476837158
0.80000007 15255737
0.90000009536743 16
1.0000001 19209290

Why did this happen? The fraction
1/10 cannot be represented exactly by
24 binary digits. The nearest 24-binary-
digit number is slightly larger than
1/10. Observe the direction of the
rounding errors. In particular, when
i = 10, x is slightly greater than 1, and
the loop stops.

16 IEEE POTENTIALS

With the modification x=i*h, the
results are as follows:

1 X

1
2
3
4
5
6
7
8
9
10
11

O.l~oooO14901161
0.2000oooO29802322
0.30000001 19209290
0.4oooOOOO59604645
0.5000000000000000
0.6OOOOO02384 18579
0.69999998807907 10
0 . 8 0 ~ ~ 1 1 9 2 0 9 2 9 0
0.9000000357627869
1.000000000000000
1.1-23841 858

Computer
~~

CDC CYBER 170

CDC CYBER 205

Cray-1

DEC VAX (single)

DEC VAX (double)

HP-llC,15C

IBM 3033 (single)

IBM 3033 (double)

IBMlPC (single)

IBMlPC (double)

PRIME 850 (single)

PRIME 850 (double)

Table 7

RIC

R

C

C

R

R

R

C

C

R

R

C

C

present themselves during the course of
computation in one or more ways. For
instance, in order to quantify the round-
off errors in the computation, we need a
round-off unit. This unit, which is
called machine epsilon or machinepre-
cision (E) , is, roughly speaking, the
fractional accuracy to which floating-
point numbers are represented and cor-
responds to a change of one in the least
significant bit of the mantissa. In other
words, machine epsilon is a positive
floating-point number for which

Note that E is not the smallest floating-
J(1 + E) 3 1.

the integer, real and double-precision
constants of different computers. These
constants represent values checked by
extensive testing and are not naive
counts of “how many bits in a word.”
Because some machines use extended
precision registers, trying to calculate
such quantities directly is problemati-
cal. Here is the list of constants that can
be obtained by running these codes for
integer and floating-point (single- and
double-precision) arithmetic:

The number of bits per integer
storage unit;
The number of characters per
character storage unit;

P

2

2

2

2

2

10

16

16

2

2

2

2

The closest floating-point number to
J(l0 X 0.10000000149012) is 1, so
the loop runs eleven times. The moral
of the story is that round-off error could
alter the results completely without any
“apparent” reason and that care must be
taken to avoid pitfalls like this.

Machine constants
Table 1 shows that round-off de-

pends on the floating-point format of
your computer. Therefore, one needs to
know the machine constants of his or
her favorite computer before beginning
to do serious work on it. By machine
constants we mean the set of numbers
related to the floating-point format de-
scribed in Table l . Obviously, different
computer hardware and architecture
implementations would result in differ-
ent machine constants. These constants

t

48

47

48

24

56

10

6

14

24

53

23

47

L

-976

-28,626

-8.1 92

-1 27

-1,023

-99

-64

-64

-1 26

-1,022

-1 28

-32,896

point number on a given machine. That
number depends on the number of bits
in the exponent, while E depends on the
number of bits in the mantissa.

Table 1 depicts the more important
machine constants of some common
computers both for single- and double-
precision arithmetic. Note that ex-
tended precision is not implemented on
hardware in these machines and is nor-
mally done via an internal algorithm,
thereby requiring much more CPU
usage.

If you need to know some of the
machine constants of your favorite
computer (without having to read the
manuals), a set of programs on the
Netlib public library are very helpful.
In particular, the programs IlMACH,
RlMACH and DlMACH are very
handy. These programs will give you

U

1071

28,718

8,191

127

1,023

99

63

63

127

1023

127

32,639

e

3.55 x 1045

1.42 x 10‘‘

7.11 x 1015

5.96 x 109

1.11 x 10-16

5.00 x 10-10

9.54 x 10-7

2.22 x 10-16

5.96 x 104

1.11 x 10-16

2.38 x l o 7
1.42 x io44

The base for integer and floating-
point numbers;
The number of digits in the inte-
ger and floating-point base;
The largest magnitude integer
and floating-point number;
The smallest and largest exponent
(single- and double-precision);
The smallest positive magnitude
number (single- and double-pre-
cision);
The smallest relative spacing
(single- and double-precision);
The largest relative spacing
(single- and double-precision),

To get a copy of these codes, and the
list of computers you can run them on,
use the Machine or Core library from
Netlib. Instructions on how to use
Netlib are in the February 1989 issue of
Potentials.

APRIL 1990 17

If you are not interested in all those
constants and just need to know an
approximate value for your machine
epsilon, a quick and efficient way is to
write a couple of lines of code. It is
usually sufficient to know E within a
factor of two. The following short pro-
gram in FORTRAN will do the job:

implicit double precision

eps = 1.0
10 continue

(a-h ,o-z)

eps = epsI2.0
t = 1.0 + eps
if (t .gt. 1 .O) go to 10
eps = 2.0 eps
print *, eps,’ .le. machine

epsilon .le. ’,2.0 eps

The value of E will become handy,
especially when you want to terminate
an iteration. Suppose you are finding
the root of a nonlinear equation using
the Newton method. You want the
value you get to be as close as possible
to the actual value, but at the same time
you do not want the iteration process to
continue forever by expecting the com-
puter to give you absolutely no error.
Therefore, you need a stopping crite-
rion. This is when you need the value of
E . You use this value of E to compare
your error bounds or termination crite-
rion.

Error propagation and analysis
An optimistic value for the round-off

accumulation in performing N arith-
metic operations is roughly NE
where the square root is for the random
walk. In many instances, the round-off
error could grow to NE or even more.
For instance, when subtracting two
large numbers that are nearly equal, the
result depends only on the few less
significant digits in which the two num-
bers differed. Thus, once the result is
normalized, the rest of the digits in the
mantissa other than those few ones are
lost. This phenomenon is called sub-
tractive cancellation and occurs every
now and then, introducing considerable
round-off error. For example, in 4-digit
base 10 arithmetic, fZ[(lOOOO + 1) -
100001 = 0 but (10000 + 1) -
(10000) = 1 (exactly). The finite pre-
cision result has no correct significant
digit. Subtractive cancellation happens
when we attempt to compute the reia-
tively small quantity 1 by subtracting
the relatively large numbers 10001 and
10000.

The introduction of floating-point
when combined with the enormous
gains in speed of computers mandates
methods of controlling the round-off
errors. Traditionally, two techniques of
error analysis called forward error

end

analysis and backward error analysis
have been used. In forward error anal-
ysis, the floating-point representation
of error is subjected to the same mathe-
matical operations as the data them-
selves, resulting in an equation for the
accumulated error. In backward error
analysis, attempts are made to regener-
ate the original mathematical problem
from the computed solutions. Both of
these methods are analytic, and, for
large scale computations, a large num-
ber of error estimates will be needed in
addition to their propagation through-
out the computation process. For in-
stance, in multiplying two complex
matrices of order 100, about 8 million
of such estimates are required. It is
clear that one prefers to avoid such
analysis. Instead, one should adopt one
of the following techniques:

1. Compute a residual; i .e., feed the
computed solution into the orig-
inal problem and evaluate the
remainder. A small remainder
usually indicates a good solu-
tion. This process is sometimes
referred to as defect correction.

2. Repeat the calculation in double
or extended precision to verify a
good agreement. In fact, avoid
single precision arithmetic if you
can; because, as my numerical
analysis instructor used to say,
“Single precision computing is
only good for writing checks! ”

3. Rerun your problem with slightly
perturbed input data and notice
the change in the results. Usu-
ally, small variations in the re-
sults indicate stability in the com-
putational process.

One can dream of examples that show
the above methods to be completely
unreliable, but they frequently are a
good indication of the quality of your
computations.
New ideas for computer
arithmetic

With the increased capability of
computers and enormous growth and
ramification of the problems that are
dealt with in scientific computations,
there remains no alternative but to fur-
nish the computer with the capability of
control and validation of the computa-
tional process. Recently developed
concepts and methods of floating-point
arithmetic provide a superior capability
for modern digital computers with far-
reaching consequences for scientific
computation. For example, they go a
long way toward eliminating errors of
the type described in this article. There
are also nonfloating-point arithmetic
implementations for eliminating errors

in scientific computation. Examples of
these are rational arithmetic, the use of
multiple and the full precision arith-
metic found in such systems as
SCRATCHPAD and MACSYMA.

The basic feature of advanced com-
puter arithmetic is to augment the four
basic operations +, - , x , / for float-
ing-point numbers by another operation
referred to as the scalar or dot product
of two vectors. The new scalar product
must be implemented with only one
rounding. The augmented set of five
basic operations is sufficient for the
execution with maximum accuracy.
The availability of exact scalar prod-
ucts, as well as matrix and matrix-
vector operations with maximum accu-
racy, combined with defect correction
and interval arithmetic concepts make
it possible to verify or validate a given
computational process.

Conclusions
Understanding the limitations of

computers is the key step in their utili-
zation. Although progress is being
made to reduce the limitations of float-
ing-point formats of modern comput-
ers, we are still a long way away from
eliminating the negative effects of
round-off in extensive computations.
Therefore, the user is left with no alter-
native but to exercise care. This in-
volves efficient algorithm and pro-
gramming, verification of results, and
keeping an eye on the specifi-
cations of the computers being used.

Read more about it
New York, 1981.

0 Jack Dongarra and Iain Duff, “Ad-
vanced Computer Architectures,”
Argonne National Laboratory,
ANLIMCS-TM-57, (Revision I),
January 1987.

0 U. W. Kulisch and L. Miranker,
“The Arithmetic of the Digital
Computer: A New Approach,”
SIAM Review Vol. 28, No. 1,
March 1986.

0 G. E. Forsythe, “Pitfalls in Compu-
tation, or Why a Math Book Isn’t
Enough,” Computer Science De-
partment, Stanford Univ., Stan-
ford, CA, 1970.

About the author
K. Kalbasi is a Ph.D. student at the

Electrical and Computer Engineering
Department of the University of Kan-
sas, Lawrence, and a Graduate Re-
search Assistant at the Radar Systems
& Remote Sensing Laboratory (RSL)
of the Center for Research Inc. His
research interests include computa-
tional electromagnetics, digital signal
processing, and radar systems. 0

18 IEEE POTENTIALS

