
Number theory 
Manfred R. Schroeder The paradigm of abstract mathematics 

has many applications in science, 
engineering, even artistic design 

the recent past, however, the “higher 
arithmetic” has provided highly use- 
ful answers to numerous real-world 
problems. These include the de- 
sign of new musical scales, pow- 
erful cryptographic systems, and 
diffraction gratings of acoustic and 
electromagnetic waves with unusu- 
ally broad scatter, with applica- 
tions in radar camouflage, laser 
speckle removal, noise abatement, 
and concert hall acoustics. An- 
other prime domain of number the- 
ory is the construction of very ef- 
fective error-correction codes, such 
as those used for picture trans- 
mission from space vehicles and 
in compact discs (CDs). Other 
new applications include schemes 
for spread-spectrum communica- 
tion, “error-free” computing, fast 
computational algorithms, and pre- 
cision measurements (of inter- 
planetary distances, for example) at 
extremely high signal-to-noise ra- 
tios. In this manner the “fourth pre- 
diction” of general relativity (the 
slowing of electromagnetic radia- 
tion in gravitation fields, predicted 
by Einstein as early as 1907) has 
been fully confirmed. In contempo- 
rary physics the quasiperiodic route 
to chaos of nonlinear dynamical 
systems (the double-pendulum and 
the three-body problem, to mention 
two simple examples) are being an- 
alyzed in terms of such number- 
theoretic concepts as continued frac- 
tions, Fibonacci numbers, the golden 
mean, and Farey trees. Even the re- 
cently discovered new state of mat- 
ter, christened quasicrystals, is most 
effectively described in terms of 
arithmetic principles. And last but 
not least, prime numbers, whose dis- 
tribution combines predictable regu- 

larity and surprising randomness, are 
a rich source of pleasing artistic de- 
sign. 

The queen of math 
According to Carl Friedrich Gauss, 

in the Princeps Mathematicorurn, 
“mathematics is the queen of sci- 
ence-and number theory is the 
queen of mathematics.” In fact, in 
Chinese the name of mathematics 
is number science. What could be 
more beautiful than a deep, satis- 
fying relation between whole num- 
bers? (One is almost tempted to call 
them wholesome numbers.) Indeed, 
it is hard to come up with a more 
appropriate designation than their 
learned name: the integers, meaning 
the “untouched ones.” 

Yet the theory of integers can pro- 
vide totally unexpected answers to 
real-world problems. In fact, discrete 
mathematics is taking on an ever 
more important role. If nothing else, 
the advent of the digital computer 
and digital communication has seen 
to that. But even earlier, in physics, 
the emergence of quantum mechan- 
ics and discrete elementary particles 
put a premium on the methods and 
the spirit of discrete mathematics. 

In mathematics proper, Hermann 
Minkowski, in the preface to his 
introductory book on number the- 
ory Dwphantische Approximationen, 
published in 1907 (the year he gave 
special relativity its proper four- 
dimensional clothing in preparation 
for its journey into general covari- 
ance and cosmology), expressed his 
conviction that the “deepest inter- 
relationships in analysis are of an 
arithmetical nature.” 

Yet much of our schooling con- 
centrates on analysis and other 
branches of continuum mathematics 
to the virtual exclusion of number 
theory, group theory, combinatorics, 
and graph theory. As an illustration, 
at a recent symposium on informa- 

tion theory, the author met several 
young mathematicians, working in 
the field of primality testing, who, in 
all their studies up to the Ph.D., had 
not heard a lecture on number the- 

Or, to give an earlier example, 
when Werner Heisenberg discovered 
matrix mechanics in 1925, he didn’t 
know what a “matrix“ was (Max 
Born had to tell him), but neither 
Heisenberg nor Born knew what to 
make of the appearance of matrices 
in the context of the atom. (David 
Hilbert is reported to have told them 
to go look for a differential equation 
with the same eigenvalues, if that 
would make them happier. They did 
not follow Hilbert’s well-meant ad- 
vice and thereby may have missed 
discovering the Schrodinger wave 
equation.) 

Integers have repeatedly played a 
crucial role in the evolution of the 
natural sciences. Thus, in the 18th 
century, Lavoisier discovered that 
chemical compounds are composed 
of fixed proportions of their con- 
stituents which, when expressed in 
proper weights, correspond to the ra- 
tios of small integers. This was one of 
the strongest hints to the existence of 
atoms; but chemists, for a long time, 
ignored the evidence and continued 
to treat atoms merely as a concep- 
tual convenience devoid of physical 
meaning. Ironically, it was from the 
statistical laws of large numbers, in 
Einstein’s analysis of Brownian mo- 
tion at the beginning of our century, 
that the irrefutable reality of atoms 
and molecules finally emerged. 

In the analysis of optical spec- 
tra, certain integer relationships be- 
tween the wavelengths of spectral 
lines emitted by excited atoms gave 
early clues to the structure of atom, 
culminating in the creation of ma- 
trix mechanics in 1925, an impor- 
tant year in the growth of integer 
physics. Later, the near-integer ra- 

ory! 

0278-6648/89/0010-0014$01 .OO 0 1989 IEEE IEEE POTENTIALS 14 



tios of atomic weights suggested to 
physicists that the atomic nucleus 
must be made up of an inreger num- 
ber of similar nucleons. And the de- 
viations from integer ratios led to the 
discovery of elemental isotopes. 

And finally, small divergencies in 
the atomic weight of pure isotopes 
from exact integers constituted an 
early confirmation of Einstein's fa- 
mous equation E = mc', long be- 
fore the "mass defects" implied by 
these integer descrepancies blew up 
into the widely noticed and infamous 
mushroom clouds. 

On a more harmonious theme, 
the role of integer ratios in musi- 
cal scales has been appreciated ever 
since Pythagoras first pointed out 
their importance. The occurrence of 
integers in biology-from plant mor- 
phology to the genetic code-is per- 
vasive. It has even been hypothesized 
that the North American 17-year 
cicada (type of insect) selected its 
life cycle because 17 is a prime 
number, prime cycles offering better 
protection from predators than non- 
prime cycles. The suggestion that the 
17-year cicada "knows" that 17 is a 
Fermat prime (a prime of the form 
22" + 1) has yet to be touted though. 

Another reason for the resurrec- 
tion of the integers is the pen- 
etration of our lives achieved by 
that 20th-century descendant of the 
abacus, the digital computer. An 
equally important reason for the re- 
cent revival of the integer is the 
congruence of congruentiul urirh- 
metic with numerous modern devel- 
opments in the natural sciences and 
digital communications-especially 
"secure" communication by crypto- 
graphic systems. Last, but not least, 
the proper protection and security of 
computer systems and data files rests 
largely on "keys" based on congru- 
ence relationships. 

In congruential arithmetic, what 
counts is not a numerical value per 
se, but rather its remainder or reszdue 
after division by a modulus. Simi- 
larly, in wave interference (be it of 
ripples on a lake or of electromag- 
netic fields on a hologram plate) it is 
not path differences that determine 
the resulting interference pattern, but 
rather the residues after dividing by 
the wavelength. For perfectly peri- 
odic events, there is no difference 
between a path difference of half a 
wavelength or one-and-a-half wave- 
lengths: in either case the interfer- 
ence will be destructive. 

One of the most dramatic conse- 
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auences of conmential arithmetics usual notation. E = Ms moddr . (4) i’s the existenceof the chemical el- Breaking the expansion off as Decrypting is accomplished by 
ements as we know them. In 1913, shown after the second 2, yields the calculating Et mod 66r,,, where the Niels Bohr postulated that certain in- close approximation m = 12, n = 19. 
tegrals associated with electrons in In other words, if we want to make decrypting exponent ‘%” is given by 
“&bit” around the atomic nucleus a good fifth with an equal tempered ts = 1 mod$@) , ( 5 )  
should have integer values, a re- (equal frequency ratio) scale, the ba- i.e., ts = (r) + for k. With 
quirement that ten years later be- sic interval 1:2l’I2, the semitone, rec- 
came comprehensible as a wave in- ommends itself. In fact, the semitone such a ,,t,” 
terference Dhenomenon of the newly interval has come to dominate much Et = MSt = Mk$(r)+l mod r, 
discovered-de Broglie matter waves: 
In essence, integer-valued integrals 
meant that path differences are di- 
visible by the electron’s wavelength 
without leaving a remainder. 

Music and numbers 
Ever since Pythagoras, small inte- 

gers and their ratios have played a 
fundamental role in the construction 
of musical scales. There are good 
reasons for this preponderance of 
small integers both in the production 
and perception of music. String in- 
struments, as abundant in antiquity 
as today, produce simple frequency 
ratios when their strings are short- 
ened by integer fractions. Reducing 
the length of a string by one half 
produces the frequency ratio 1:2, the 
octave; and shortening by one third 
produces the frequency ratio 3:2, the 
perfect fifth 

For the human ear, ratios of small 
integers avoid unpleasant beats be- 
tween harmonics. Apart from the 
frequency ratio 1 : 1 (“Unison”), the 
octave is the most easily perceived 
interval. Next in importance comes 
the perfect fifth. Unfortunately, as 
a consequence of the fundamental 
theorem of number theory, musical 
scales exactly congruent modulo the 
octave cannot be constructed from 
the fifth alone because there are no 
positive integers “k” and “m” such 
that 

In fact, number theory tells us that 
3m = 2” f 1, except for m = 1, n 
= 1 and m = 2, n = 3. However, 
there are good approximations: if we 
write 3” - 2”, or log23 - n/m. To 
find n/m, we expand log23 into a 
continued fraction 

log23 = 1.58496.. . 
= 1 +  1 

1 +  1 

or log23 =[1; 1, 1, 2, 2, . . .I in the 

of music. The e ual tempered fifth 
comes out as 2$12 = 1.498 . . . , 
which equals 3:2 with an error of 
only one part in one thousand! 

Another fortunate number-theo- 
retic coincidence is the fact that the 
7 in the exponent is coprime with 12. 
As a consequence, we can reach all 
12 notes of the octave interval by re- 
peating the fifth (modulo the octave). 
This is the famous Circle of Fifths. 

Euler totients and cryptography 
One of the most spectacular appli- 

cations of number theory in recent 
times is public-key cryptography in 
which each potential recipient of a 
secret message publishes his encryp- 
tion key, thereby avoiding the (of- 
ten substantial) problems of secure 
secret-key distribution. But how can 
a key be public and yet produce se- 
cret messages? The answer is based 
on Euler’s totient function (r) and 
the role it plays in inverting modular 
exponentiation. The public key con- 
sists of a modulus “r” and an expo- 
nent “s,” coprime to (r). The mes- 
sage is represented by an integer “ M  
in the range 1 < M < r, and the 
encrypted message “E” is given by 
a number in the same range, calcu- 
lated as follows 

Fig. 1. A Venn diagram can illustrate the 
single-error correcting property of the origi- 
nal Hamming code, which has four informa- 
tion bits (bold Os and l s) and three check 
bits (light Os and 1 s). The parity in each of 
the three circles must be even. A single er- 
ror, which entails one or several odd pari- 
ties, can thus be uniquely detected and cor- 
rected. 

which, according to Euler’s theorem, 
give the message “ M  back. 

So far, so good and-theoretic- 
ally-trivial. The trick in public-key 
encryption is to choose “r” as the 
product of two very large primes, 
each say 200 digits long. (There is no 
paucity of such primes, and enough 
for all foreseeable purposes can be 
easily ferreted out from the jungle 
of composites in the 10200 neighbor- 
hood.) 

Now, with a composite “r,” pre- 
scription (3, so easily written down, 
becomes practically impossible to 
apply because (r) can be calcu- 
lated only if the factors of “r” are 
known-and this knowledge is not 
published. In modem parlance, the 
mapping (4) is a trap-doorfunction. 

A trap-door function is, as the 
name implies, a (mathematical) 
function that is easy to calculate in 
one direction but very hard to cal- 
culate in the opposite direction. For 
example, it takes a modem com- 
puter only microseconds to multiply 
two 100-digit numbers. By contrast, 
to decompose a 200-digit number, 
having two 100-digit factors, into 
its factors can take “forever,” even 
on the fastest computers available in 
1989 and using the most efficient 
factoring algorithms known today. 

On the other hand, knowing the 
factors of “r,” as the legitimate re- 
cipient of the encrypted message 
E does, (r) can be easily calcu- 
lated and decrypting becomes pos- 
sible. The decrypting exponent “t” is 
obtained by Euclid’s algorithm or by 
solving ( 5 )  directly: 

t =s$(@@))-~ mod @ r  . 
Not so long ago, the most ef- 

ficient factoring algorithms on a 
very fast computer were estimated 
to take trillions of years. But al- 
gorithms get more efficient by the 
month and computers become faster 
and faster every year. So there is 
no guarantee that one day a so- 
called “polynomial-time’’ algorithm 
will not emerge that will allow fast 
factoring of even 1000-digit num- 
bers. Few mathematicians believe 
that a true polynomial-time algo- 
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Designing for better sound 

Extensive physical tests and psychophysical evaluation of the 
acoustic qualities of concert halls around the world have estab- 
lished the importance of lateral sound waves. Such waves pro- 
duce dissimilar signals of a listener’s two ears, a kind of stereo- 
phonic condition that is widely preferred for music listening. 

In order to convert sound waves travelling longitudinally (from 
the stage via the ceiling to the back wag into lateral waves, the 
author has recommended ceiling structures that scatter sound 
waves, without absorption, into broad lateral panerns. 

How should one go about designing such an ideal scatterer 
for sound (or light or radar) waves? Curiously, the answers come 
from number theory. 

Consider a surface structure whose reflection coefficient r,, 
varies in equidistant steps along one axis according to 

where p is a prime and n2 may be replaced by (n2)mod p, its 
least nonnegative residue modulo p. 

It is easy to show that the Discrete Fourier Transform (DfT) 
of r ,  has constant magnitude. As a physical consequence, the 
intensities of the wavelets scattered into different directions from 
a surface with reflection coefficients (7) will be equal (in the 
customary Kirchhoff approximation of diffraction theory). 

The different reflection coefficients are realized by “wells” of 

r, = exp(2rrinZ/p), n = 0, f 1, f 2, ... (1) 

different depihs 
A 

d, = - (n2) mod p 
2P 

as illustrated in Fig. A for p = 7 7. Such wells give a roundtrip 
phase change of 2d, - 2 ~ /  in accordance with the phase 
requirement of Equation (1). In Equation (2), is the longest 
wavelength to be scattered. For any integral submultiple of that 
wavelength, /m, the reflection coefficients (1) are changed 
to r;, which for m = 0 (mod p) has the same flat Fourier 
property as r, for  the width of the wells “w” one chooses 
typically half the smallest wavelength to be scattered over 
f r / 2 .  figure B shows the diffraction pattern of the grating in 
fig. A. Note how well the broad scattering of sound is realized. 

-. 

fig, A. fig. B 

rithm is just around the comer, but 
there also seems to be little prospect 
of proving that this will never oc- 
cur. This is the Achilles heel of 
public-key cryptography. 

Error correction codes from 
Galois fields 

Galois sequences, with periods n = 
pm - 1, are constructed with the help 
of an irreducible polynomial g(x) of 
degree “m” with coefficients from 
GF(p), such that g(x) is a factor of 
xn - 1 but not a factor of xr - 1 for 
r < n. Such polynomials are called 
primitive. 

Binary Galois sequences (p = 2) 
with elements 0 and 1 (or, in certain 
other applications, 1 and -1) are the 
most important practical case. For p 
= 2 and m = 4, a primitive polyno- 
mial with the stated property is 

g(x) = 1 + x + x4, 
from which the recursion 

ak+4 = ak+l + ak (6) 
is obtained. Beginning with the ini- 
tial condition 1000 (or almost any 
other tuple, except the all-zero tu- 
ple), Equation (6) generates the bi- 
nary Galois sequence of periodic 
length 24 - 1 = 15: 

1000, 1001 10101 11; etc. 
(repeated periodically). 

The error correcting properties of 
codes based on such sequences result 
from the fact that the 24 = 16 dif- 
ferent initial conditions generate 16 
different code words of length 15, 
that form a “linear code” (i.e., the 
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sum of two code words is another 
code word). These code words define 
therefore a 4-dimensional linear sub- 
space of the 15-dimensional space 
with coordinates 0 and 1. In fact, 
the 16 code words describe a sim- 
plex in that space (in three dimen- 
sions a simplex is a tetrahedron) and 
the resulting code is therefore called 
a Simplex Code. 

Its outstanding property is that ev- 
ery pair of code words of length n 
= 2” - 1 = 15 (for m = 4) bits 
(of which “m” bits are information 
bits and n - m = 11 are check bits) 
has the same Hamming distance (the 
number of 0, 1 disparities), namely 
2m-1 = 8. Thus, the code can recog- 
nize up to 2m-2 = 4 errors and cor- 
rect up to 2”-2 - 1 = 3 errors. The 
price for this error correcting prop- 
erty is a reduced signaling efficiency, 
namely m/n = 4/15. 

Several other codes can be de- 
rived from the simple Simplex Code. 
For example, the famous (and his- 
torically early) Hamming Codes, The 
code words of a Hamming Code are 
given by the orthogonal subspace of 
the Simplex Code of the same length. 
Hamming codes of length n = 2m - 
1 carry n - m information bits and 
“m” check bits, and can correct pre- 
cisely one error. The functioning of 
the Hamming Code for m = 3, n = 
7, is illustrated in Fig. 1. 

The n - m = 4 information bits, 
say 1001, are entered into the four 
inner areas of the Venn diagram (in- 
dicated by fat characters in Fig. 1). 
The m = 3 check bits (light charac- 
ters) are entered into the three outer 

areas such that the sum in each cir- 
cle is even. 

The receiver of a code word, 
which may have been contaminated 
in transmission, checks the parity in 
each circle and marks all circles with 
odd sum. The intersection of these 
circles then specifies uniquely a sin- 
gle bit error (including in the check 
bits themselves). These three parity 
checks allow the receiver to distin- 
guish between precisely 23 = 8 dif- 
ferent possibilities: a single error in 
any of the seven transmitted bits or 
no error. No wonder the Hamming 
Code is called a perfect code. 

Epilog 
Just a sprinkling of the numerous 

applications of number theory out- 
side mathematics proper have been 
mentioned here. What riddle will be 
solved next by number theory? Is this 
effectiveness of the higher arithmetic 
completely unreasonable? Or are we 
witnessing here a “pre-established 
harmony” a la Leibniz (and his the- 
ory of monads) between mathemat- 
ics and the real world? 
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