
iscrete mathematics and 
abstract algebra courses 
are frequently required for 
computer science and 

engineering undergraduates. One 
could say these subjects define the 
mathematical basis for computing. 
Unfortunately, interest in the topics 
discussed in these courses frequently 
ends with the final exam! This work 
presents a reason to continue looking 
and exploring. 

One common means for describing 
programs is to use algebraic specifica- 
tions. As one might infer, algebraic 
specifications center on using alge- 
bras to describe abstract data types. 
Formally, an algebra consists of a set 
(frequently called a sort) and a collec- 
tion of operators defined over that set. 
An example is the set of natural num- 
bers and the common addition, sub- 
traction, multiplication and division 
operators. Here the sort is the set of 
natural numbers { 0, 1, 2, . . .} and the 
operators are +, -, x, and +. Each 
operator is defined over two elements 
of the sort. An algebra is multi-sorted 
if it includes multiple sorts. 

The mathematical concept of a 
multi-sorted algebra corresponds 
directly with the Abstract Data Type 
(ADT) based programming style. 
Recall that when defining an abstract 
data type, one defines: 1) a collection 
of types, and 2 )  a set of functions 
and procedures that manipulates 
those types. The correspondence 
with algebras is obvious. Types from 
ADTs correspond to sorts while the 
functions and procedures correspond 
to operators. 

Figure 1 shows a simple algebraic 
specification for a stack written in the 
Larch Shared Language (LSL). The 
structure of the specification parallels 

that of an ADT written in C or C++. 
The introduces section defines 
operator names and sorts used in the 
specification. The definition of each 
operator is called its signature. It con- 
sists of the operator’s name, the sorts 
in its domain and the sort in its range 
separated by a function symbol. For 
example, the push operator is  

Fig. 1 An algebraic specification for 
a stack written in Larch 
Shared Language 

defined as accepting an element of 
type E, a stack of type S and produc- 
ing another stack of type S. 

Note the special operator empty 
has no domain. This is known as a 
nullary function and represents a con- 
stant. Because all operators in LSL 
are mathematical functions, empty 
must always “return” the same value. 

The signatures of all operators 
together define the signature of the 
specification. They denote all sorts 
and operations visible outside the 
specification. As such, the i n t r o -  
duces section corresponds to the 
public part or the interface of an 
abstract data type. 

Just as the implementation of an 
ADT defines behaviors of functions 
and procedures, the asserts 

defines the behaviors of operators. 
Traditional programming languages 
use an operational approach to define 
behaviors. The operational approach 
defines how each function’s execu- 
tion and data structure is organized. 
The operational style has the advan- 
tage of being efficiently executable. 
However, it is difficult to manipu- 
late mathematically. 

Algebraic specifications use a 
declarative approach to define behav- 
iors. The declarative approach defines 
what each operator does without say- 
ing how. The declarative style is easy 
to manipulate mathematically and is 
more abstract. However, it is difficult 
or nearly impossible to execute 
declarative representations. 

The asserts section of Fig. 1 
specifies operators by defining when 
terms are equal using axioms. For 
example, the axiom pop (push 
( e, s ) ) == s states that after a pushed 
element on a stack is popped, the 
result is equal to the original stack. 

Besides specifying behavior of 
operators, the asserts section 
defines constructors for the sort s in 
the statement S generated by 
empty, push. This specification 
states that all elements of type S can 
be generated by the operators empty 
and push. Furthermore, the gener- 
ated by clause states that induction 
can be used to prove things about all 
stacks. Such information is extremely 
useful when attempting to prove char- 
acteristics of stacks. 

Every behavior that a stack should 
exhibit must either be expressed as an 
axiom in the asserts section, or be 
provable as a theorem from the specifi- 
cation. The implies section defines 
theorems that must be provable from 
the axioms in the asserts section. 
As such, the implies section defines 
conditions that must be true for the 
specifcation to be correct or for theo- 
rems that might be useful later. 
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Imagine a computer program existed 
that would take an algebraic specification 
and generate from it all its implications. 
The program would take a single theory 
and from it generate every theorem prov- 
able from its axioms. The resulting set of 
statements says everything that can be 
said about the specification. This set of 
true statements is the theory associated 
with the algebraic specification. 

The mapping between an algebraic 
specification and its associated theory is 
a function. Only one theory can be asso- 
ciated with a single specification. How- 
ever, many specifications may generate 
the same theory. Just as one can imple- 
ment functions using many techniques, 
one can describe a single theory using 
many algebraic specifications. Given an 
algebraic specification and its associat- 
ed theory, the specification is called a 
presentation of the theory. Any given 
theory may have many presentations. 

A theory models or is a model of a 
system if: 1) every observable behavior 
of the system is a theorem in the theory, 
and 2) every theorem in the theory cor- 
responds to a behavior in the system. 
The first condition is called complete- 
ness; the second is called consistency. 
For example, the Theory of Relativity is 
a model of the interaction between mass 
and energy. This is because every result 
obtained from it is a correct description, 
and because it says everything neces- 
sary about the interaction. 

Why should software developers care 
at all about algebras and theories? Soft- 
ware development is all about changing 
models. One starts with a requirements 
model. One verifies that model and 
transforms, or morphs, that model into an 
architecture model. The architecture 
model is then morphed into a collection 
of module specifications. Continued 
morphism generates a model that is exe- 

Homomorphism between A and B. 
A rs more abstract than B 
B I S  inore general lhan A 

cutable. Effectively, the morphing 
process generates a program that satisfies 
the initial model. Understanding specifi- 
cations as theories and the morphing of 
theories enables profound understanding 
of software and system development. 

A specification morphism represents 
the transformation of one specification 
into another. Specifically, a specifica- 
tion morphism: 1) renames existing 
operators and sorts; 2) adds new opera- 
tors, sorts and axioms, and 3) deletes 
operators, sorts and axioms. 

Assume that A and B are specifica- 
tions and that 4 is a morphism. The 
notation A 3 B denotes that a mor- 
phism exists between specification A 
and specification B. By examining the 
theories TA and TB associated with A 
and B,  special properties of the mor- 
phism and theories can be defined. 

One desirable outcome is that every 
theorem TA is also a theorem in TB. This 
situation is called logical containment. 
If the theories are viewed as sets, then 
TA c_ TB. If such a characteristic holds, 
then + defines a homomorphism. If a 
second homomorphism, t, exists such 
that TA t TB, then TB c_ TA because a 
subset is antisymmetric: TA = TB. In this 
situation, an isomorphism exists 
between A and B. Exploring homo and 
isomorphisms reveals much about the 
software development process. 

When a homomorphism exists 
between specification A and specifica- 
tion B, everything true in TA is true in 
TB. Intuitively, the system B models 
exhibit every behavior the system A 
models exhibit. It is possible that some 
behaviors of B are not present in A 
because TA c_ TB holds. If A and B are 
specifications of software systems, and 
B exhibits every behavior from A at a 
lower abstraction level, then B could be 
a correct refinement of A. 

Verification is a process of determin- 

No detined relationship 
N o  isomorphism 
No homomorphism 

B rs more general rhan A or C 
B represents both A and C 

Homomorphrsm befvi een C A and B 

relafionships between fheories 

ing that a morphism is in fact a homo- 
morphism. When a representation is 
transformed, the desired behaviors of 
the original should be present in the 
new representation. Thus, if it can be 
shown that the subset relationship holds, 
then all the behaviors in the first repre- 
sentation are present in the second. 

This activity precisely describes test- 
ing. Tests are developed that represent 
an important subset of behaviors. Those 
tests are then evaluated to determine if 
the new representation does in fact 
exhibit those behaviors. Effectively, 
testing determines if the behaviors are 
theorems in the new theory. 

Synthesis finds a function that imple- 
ments a homomorphism and uses it to 
generate a new theory. Instead of start- 
ing with two representations, synthesis 
starts with an abstract representation. It 
then attempts to transform it into a new 
representation. If a transformation can 
be found that guarantees a homomor- 
phism, then that transformation can be 
used to automatically generate a new, 
correct representation. 

Compilers are an excellent example 
of a synthesis algorithm. Here the initial 
representation is a computer program. 
The result is an executable model guar- 
anteed to perform the task described by 
the high level program. 

Informally, one description is more 
abstract than another if it contains less 
detail. When a homomorphism exists 
between A and B and none exists 
between B and A ,  then A is  more 
abstract than B. 

Consider a stack structure and a 
sequence type. It is possible to define a 
homomorphism between stacks and 
sequences: Push becomes the catenation 
to the beginning, top becomes the head 
and pop becomes the tail. Intuitively, 
stacks are more abstract than arrays 
because they specify less detail. 

For example, sequences allow ran- 
dom catenation and random access 
where stacks do not. The behaviors for 
a stack are a subset of the behaviors of a 
sequence. Thus, T s r a c k  c_ Tseq and a 
homomorphism exists. 

One description is more general than 
another if it can be used for more tasks. 
When a homomorphism exists between 
A and B and none exists between B and 
A, B may be more general than A. 

Consider a queue structure and a 
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sequence type. It is possible to define a 
homomorphism between queues and 
sequences: Push becomes the catenation 
to the end, first becomes the head and 
rest becomes the tail. This implies that 
both queues and stacks have homomor- 
phisms defined with sequences. Also, 
that the behaviors for both queues and 
stacks are a subset of the behaviors of 
sequences. No homomorphism exists 
between queues and stacks. This results 

The homomorphism concept gives 
us several useful results. First, it 
defines verification and synthesis. 
Finding a homomorphism assures us 
that one theory exhibits all the behav- 
iors of another. Generating a homomor- 
phism allows correct transformation of 
one theory into another. Second, it 
defines traditionally fuzzy concepts 
such as abstraction and generality. One 
theory is more abstract than another if a 
homomorphism exists between them. 
The complement of an abstraction is 
generally where a theory can be used in 
more circumstances. 

in Tstack C_ Tseq, Tqueue C Tseq, 

When an isomorphism exists 
between A and B, the two specifications 
represent the same theory. In certain 

applications, it is necessary to demon- 
strate that two systems implement 
exactly the same behaviors. In such 
situations, an isomorphism is the goal. 
Intuitively, two theories that are iso- 
morphic are also equivalently abstract 
and general. Isomorphisms tend to be 
used less often in software develop- 
ment because they are too strong. 

As software engineering evolves into 
a true engineering discipline, mathemat- 
ics will play an increasingly large role. 
Mathematics hopefully will approach 
the role played in other engineering dis- 
ciplines. It is difficult to say for certain 
if algebras, theories and morphisms all 
will play roles in that mathematics. 
However, these concepts do represent 
important tools in today’s advanced 
software development activities. And it 
is a safe bet their roles will continue to 
blossom further. 
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