
iscrete mathematics and
abstract algebra courses
are frequently required for
computer science and

engineering undergraduates. One
could say these subjects define the
mathematical basis for computing.
Unfortunately, interest in the topics
discussed in these courses frequently
ends with the final exam! This work
presents a reason to continue looking
and exploring.

One common means for describing
programs is to use algebraic specifica-
tions. As one might infer, algebraic
specifications center on using alge-
bras to describe abstract data types.
Formally, an algebra consists of a set
(frequently called a sort) and a collec-
tion of operators defined over that set.
An example is the set of natural num-
bers and the common addition, sub-
traction, multiplication and division
operators. Here the sort is the set of
natural numbers { 0, 1, 2, . . .} and the
operators are +, -, x, and +. Each
operator is defined over two elements
of the sort. An algebra is multi-sorted
if it includes multiple sorts.

The mathematical concept of a
multi-sorted algebra corresponds
directly with the Abstract Data Type
(ADT) based programming style.
Recall that when defining an abstract
data type, one defines: 1) a collection
of types, and 2) a set of functions
and procedures that manipulates
those types. The correspondence
with algebras is obvious. Types from
ADTs correspond to sorts while the
functions and procedures correspond
to operators.

Figure 1 shows a simple algebraic
specification for a stack written in the
Larch Shared Language (LSL). The
structure of the specification parallels

that of an ADT written in C or C++.
The introduces section defines
operator names and sorts used in the
specification. The definition of each
operator is called its signature. It con-
sists of the operator’s name, the sorts
in its domain and the sort in its range
separated by a function symbol. For
example, the push operator is

Fig. 1 An algebraic specification for
a stack written in Larch
Shared Language

defined as accepting an element of
type E, a stack of type S and produc-
ing another stack of type S.

Note the special operator empty
has no domain. This is known as a
nullary function and represents a con-
stant. Because all operators in LSL
are mathematical functions, empty
must always “return” the same value.

The signatures of all operators
together define the signature of the
specification. They denote all sorts
and operations visible outside the
specification. As such, the i n t r o -
duces section corresponds to the
public part or the interface of an
abstract data type.

Just as the implementation of an
ADT defines behaviors of functions
and procedures, the asserts

defines the behaviors of operators.
Traditional programming languages
use an operational approach to define
behaviors. The operational approach
defines how each function’s execu-
tion and data structure is organized.
The operational style has the advan-
tage of being efficiently executable.
However, it is difficult to manipu-
late mathematically.

Algebraic specifications use a
declarative approach to define behav-
iors. The declarative approach defines
what each operator does without say-
ing how. The declarative style is easy
to manipulate mathematically and is
more abstract. However, it is difficult
or nearly impossible to execute
declarative representations.

The asserts section of Fig. 1
specifies operators by defining when
terms are equal using axioms. For
example, the axiom pop (push
(e, s)) == s states that after a pushed
element on a stack is popped, the
result is equal to the original stack.

Besides specifying behavior of
operators, the asserts section
defines constructors for the sort s in
the statement S generated by
empty, push. This specification
states that all elements of type S can
be generated by the operators empty
and push. Furthermore, the gener-
ated by clause states that induction
can be used to prove things about all
stacks. Such information is extremely
useful when attempting to prove char-
acteristics of stacks.

Every behavior that a stack should
exhibit must either be expressed as an
axiom in the asserts section, or be
provable as a theorem from the specifi-
cation. The implies section defines
theorems that must be provable from
the axioms in the asserts section.
As such, the implies section defines
conditions that must be true for the
specifcation to be correct or for theo-
rems that might be useful later.

OCTOBEWNOVEMBER 1997 0278-6648/97/$10.00 0 1997 IEEE 5

Imagine a computer program existed
that would take an algebraic specification
and generate from it all its implications.
The program would take a single theory
and from it generate every theorem prov-
able from its axioms. The resulting set of
statements says everything that can be
said about the specification. This set of
true statements is the theory associated
with the algebraic specification.

The mapping between an algebraic
specification and its associated theory is
a function. Only one theory can be asso-
ciated with a single specification. How-
ever, many specifications may generate
the same theory. Just as one can imple-
ment functions using many techniques,
one can describe a single theory using
many algebraic specifications. Given an
algebraic specification and its associat-
ed theory, the specification is called a
presentation of the theory. Any given
theory may have many presentations.

A theory models or is a model of a
system if: 1) every observable behavior
of the system is a theorem in the theory,
and 2) every theorem in the theory cor-
responds to a behavior in the system.
The first condition is called complete-
ness; the second is called consistency.
For example, the Theory of Relativity is
a model of the interaction between mass
and energy. This is because every result
obtained from it is a correct description,
and because it says everything neces-
sary about the interaction.

Why should software developers care
at all about algebras and theories? Soft-
ware development is all about changing
models. One starts with a requirements
model. One verifies that model and
transforms, or morphs, that model into an
architecture model. The architecture
model is then morphed into a collection
of module specifications. Continued
morphism generates a model that is exe-

Homomorphism between A and B.
A rs more abstract than B
B I S inore general lhan A

cutable. Effectively, the morphing
process generates a program that satisfies
the initial model. Understanding specifi-
cations as theories and the morphing of
theories enables profound understanding
of software and system development.

A specification morphism represents
the transformation of one specification
into another. Specifically, a specifica-
tion morphism: 1) renames existing
operators and sorts; 2) adds new opera-
tors, sorts and axioms, and 3) deletes
operators, sorts and axioms.

Assume that A and B are specifica-
tions and that 4 is a morphism. The
notation A 3 B denotes that a mor-
phism exists between specification A
and specification B. By examining the
theories TA and TB associated with A
and B, special properties of the mor-
phism and theories can be defined.

One desirable outcome is that every
theorem TA is also a theorem in TB. This
situation is called logical containment.
If the theories are viewed as sets, then
TA c_ TB. If such a characteristic holds,
then + defines a homomorphism. If a
second homomorphism, t, exists such
that TA t TB, then TB c_ TA because a
subset is antisymmetric: TA = TB. In this
situation, an isomorphism exists
between A and B. Exploring homo and
isomorphisms reveals much about the
software development process.

When a homomorphism exists
between specification A and specifica-
tion B, everything true in TA is true in
TB. Intuitively, the system B models
exhibit every behavior the system A
models exhibit. It is possible that some
behaviors of B are not present in A
because TA c_ TB holds. If A and B are
specifications of software systems, and
B exhibits every behavior from A at a
lower abstraction level, then B could be
a correct refinement of A.

Verification is a process of determin-

No detined relationship
N o isomorphism
No homomorphism

B rs more general rhan A or C
B represents both A and C

Homomorphrsm befvi een C A and B

relafionships between fheories

ing that a morphism is in fact a homo-
morphism. When a representation is
transformed, the desired behaviors of
the original should be present in the
new representation. Thus, if it can be
shown that the subset relationship holds,
then all the behaviors in the first repre-
sentation are present in the second.

This activity precisely describes test-
ing. Tests are developed that represent
an important subset of behaviors. Those
tests are then evaluated to determine if
the new representation does in fact
exhibit those behaviors. Effectively,
testing determines if the behaviors are
theorems in the new theory.

Synthesis finds a function that imple-
ments a homomorphism and uses it to
generate a new theory. Instead of start-
ing with two representations, synthesis
starts with an abstract representation. It
then attempts to transform it into a new
representation. If a transformation can
be found that guarantees a homomor-
phism, then that transformation can be
used to automatically generate a new,
correct representation.

Compilers are an excellent example
of a synthesis algorithm. Here the initial
representation is a computer program.
The result is an executable model guar-
anteed to perform the task described by
the high level program.

Informally, one description is more
abstract than another if it contains less
detail. When a homomorphism exists
between A and B and none exists
between B and A , then A is more
abstract than B.

Consider a stack structure and a
sequence type. It is possible to define a
homomorphism between stacks and
sequences: Push becomes the catenation
to the beginning, top becomes the head
and pop becomes the tail. Intuitively,
stacks are more abstract than arrays
because they specify less detail.

For example, sequences allow ran-
dom catenation and random access
where stacks do not. The behaviors for
a stack are a subset of the behaviors of a
sequence. Thus, T s r a c k c_ Tseq and a
homomorphism exists.

One description is more general than
another if it can be used for more tasks.
When a homomorphism exists between
A and B and none exists between B and
A, B may be more general than A.

Consider a queue structure and a

6 IEEE POTENTIALS

sequence type. It is possible to define a
homomorphism between queues and
sequences: Push becomes the catenation
to the end, first becomes the head and
rest becomes the tail. This implies that
both queues and stacks have homomor-
phisms defined with sequences. Also,
that the behaviors for both queues and
stacks are a subset of the behaviors of
sequences. No homomorphism exists
between queues and stacks. This results

The homomorphism concept gives
us several useful results. First, it
defines verification and synthesis.
Finding a homomorphism assures us
that one theory exhibits all the behav-
iors of another. Generating a homomor-
phism allows correct transformation of
one theory into another. Second, it
defines traditionally fuzzy concepts
such as abstraction and generality. One
theory is more abstract than another if a
homomorphism exists between them.
The complement of an abstraction is
generally where a theory can be used in
more circumstances.

in Tstack C_ Tseq, Tqueue C Tseq,

When an isomorphism exists
between A and B, the two specifications
represent the same theory. In certain

applications, it is necessary to demon-
strate that two systems implement
exactly the same behaviors. In such
situations, an isomorphism is the goal.
Intuitively, two theories that are iso-
morphic are also equivalently abstract
and general. Isomorphisms tend to be
used less often in software develop-
ment because they are too strong.

As software engineering evolves into
a true engineering discipline, mathemat-
ics will play an increasingly large role.
Mathematics hopefully will approach
the role played in other engineering dis-
ciplines. It is difficult to say for certain
if algebras, theories and morphisms all
will play roles in that mathematics.
However, these concepts do represent
important tools in today’s advanced
software development activities. And it
is a safe bet their roles will continue to
blossom further.

J. Wing, “A Specifier’s Introduc-
tion to Formal Methods,” IEEE Com-
puter, 23(9):8-24, Sept. 1990.

John V. Guttag and James J.
Horning, Larch: Languages and Tools
for Formal Specification, Springer-

1-800-678-IEEE

IEEE
Networking the WorlcP

Verlag, New York, NY, 1993.
I. Van Horebeek and J. Lewi, Alge-

braic Specifications in Software Engi-
neering: An Introduction, Springer-
Verlag, Berlin, 1989.

Douglas R. Smith, “Construct-
ing specification morphism,” Jour-
nal of Symbolic Computa t ion ,

Douglas R. Smith, “KIDS: A
Semiautomatic Program Develop-
ment System,” IEEE Transactions on
Software Engineering, 16(9): 1024-
1043, 1990.

M. Lowry, A. Philpot, T. Press-
burger and I. Underwood, “A Formal
Approach to Domain-Oriented Software
Design Environments,” In Proceedings
of the 9th Knowledge-Based Software
Engineering Conference, pages 48-57,
Monterey, CA, September 1994 IEEE
Computer Society Press.

r

151571-606, 1993.

Dr. Perry Alexander received his
PhD in ECE, and his MSEE, BSEE and
BSCS from the University of Kansas,
Lawrence. He is an assistant professor
of ECE and CS and director of the
Knowledge-Based Software Engineer-
ing Laboratory at the University of
Cincinnati (OH).

The Department of Electrical Engineering at the University
of Virginia offers graduate study and research programs
leading to the M.S., M.E., and Ph.D. degrees.
Current research areas in the department include:

+ Computer engineering, + Fault-tolerant computing, + Embedded systems, + Parallel algorithms for test, + VLSl microinstruments, + Low-power CMOS VLSI, + Rapid prototyping, + System modelling, + MEMS,

+ Communication systems, + Wireless communications, + Information theory, + Signal and image processing, + Control systems and robotics, + Millimeter wave technology, + Optics and quantum electronics, + Solid-state electronics, + Superconductors.

Fellowships, research, and teaching assistantships are
available to qualified applicants. Please contact: /I

Ms. Lisa Sites eegradQvirginia.edu
Department of Electrical Engineering

University of Virginia
Charlottesville, VA 22903
http://www.ee.virginia.edu

http://eegradQvirginia.edu
http://www.ee.virginia.edu

