Sauple Final

CS474/674 Image Processing and Interpretation Sample Final Exam

10

Name:
1. [20 points – 4pts each] True/False Questions – To get credit, you must give brief reasons for each answer!
T F The lower the frequency of a sinusoidal, the more samples must be taken to gain an accurate representation of the wave. From Nyquist Theorem: $\Delta x \in \frac{1}{2}w$ W: Wxx freq. If WICN2 $\Rightarrow \frac{1}{2}w$, $\frac{1}{2}w$ $\Rightarrow \frac{1}{2}w$
T F Arithmetic coding requires knowledge of pixel intensity frequencies.
The interval [0,1) is subdivided based on the probability of the Pixel intensities probability
T F The Fourier transform of the product of two functions is the product of the Fourier

transforms of the functions (i.e., F[f(x)g(x)] = F[f(x)] F[g(x)]) $F \left\{ f(x) g(x) \right\} = F[f(x)] + F \left\{ f(x) \right\}$

> convalution

T F Inverse filtering will yield as good results as Wiener filtering when processing an image which has been degraded by motion blurring **only** .

1 If there is no noise, both filter, will yield equally good results.

T F Median filtering can be implemented efficiently using convolution.

(F) Median-filtering is non-linear

2. [15 points] Prove the following property of the Fourier Transform:

$$f(x)e^{j2\pi u_0x} \longleftrightarrow F(u-u_0)$$

1 see class notes >

aliasing cannot be avoided in general, even if the Nyquist criterion is satisfied. Explain why this is the case and justify your answer. - The DFT of a swapled fix) is periodic: - Choosing the saupling step using $\Delta x = \frac{1}{2}w$ ensures that the previous do not overlap - However, since the spectful representation how inkinite of a board-liwited function his inkinite duration, we need to truncate the duration, by multiplyins fex) with a surple, by multiplyins fex) with a surple, by multiplyins fex) with a surple, by multiplyins fex) with a surple. f(x) rect(x) \iff F(u) * Sinc(u)which implies convolution with a sinc() i.e., cannot reparate a "single" period anywere!

3. [15 pts] When sampling a band-limited function, aliasing can be avoided by obtaining a sufficient number of samples, as stated by the Nyquist criterion. In practice, however,

4	F4 E	4-1	The	سواني دام	:	:-	
4.	LIO	ptsj	HIE	following	iiiiaye	12	given:

21 2	1 21	95	169	243	243	243
21 2	1 21	95	169	243	243	243
21 21	1 21	95	169	243	243	243
21 21	1 21	95	169	243	243	243

Gray level		Prob
	12	3/8
15	4	1/8
169	4	V8
243	12	3/8

(b) Construct the Huffman code for this image.

Construct the Huffman code for this image.

$$3/8$$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$
 $3/8$

(c) What is the average number of bits/pixel in this case? Is this a good code?

What is the average number of bits/pixel in this case? Is this a good code?

$$| \int_{1}^{3} \int_{1}^{3} \left(\left(V_{E} \right) \right) \left(V_{E} \right) = 1 \times \frac{3}{8} + 2 \times \frac{3}{8} + 3 \times \frac{1}{8} + 3 \times \frac{1}{$$

5. [15 points] Explain how homomorphic filtering works. What is the reason that we first apply the log() function on the image?

6. [20 points] How does progressive JPEG work? Discuss at least two different progressive JPEG methods.

Progressive JPEG: encode iourge in multiple scans (instead of sequentially)

(1) Progressive spectral selection

(2) Progressive squessive approximation

(2) Progressive squessive approximation

- 7. (Graduate Students Only) This problem is on image restoration.
- (a) [10 points] What do we mean in image restoration when we say that the degradation function H is linear and shift-invariant?

Linearity:
$$H[f_1+f_2]=H[f_1]+H[f_2]$$

 $H[af]=aH[f]$

84. Et invoridace:

If H[f(x,y)]=g(x,y) +len H[f(x-a,y-b)]=g(x-a,y-b)

(b) [10 points] How is the degradation process modeled assuming linearity and shift invariance? Prove it.

H[f(x,y)] = f(x,y) * h(ax,y) where all h(x,y) = H[s(x,y)) (iupulse response) Proof: see class ruses