500 Chapter 12, Fast Fourier Transform

now is: The PSD-per-unit-time converges to finite values at all frequencies excepr
those where h(t) has a discrete sine-wave (or cosine-wave) component of finite
amplitude. At those frequencies, it becomes a deita-function, i.e., a sharp spike,
whose width gets narrower and narrower, but whose area converges to be the mean
square amplitude of the discrete sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need in this
chapter with one exception: In computational work, especially with experimental
data, we are almost never given a continuous function h(t) to work with, but are
given, rather, a list of measurements of h(t;) for a discrete set of ¢;’s. The profound
implications of this seemingly unimportant fact are the subject of the next section.

CITED REFERENCES AND FURTHER READING:

Champeney, D.C. 1973, Fourier Transforms and Their Physical Applications (New York: Aca-
demic Press).

Eltiott, D.F,, and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications {New
York: Academic Press).

12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, function A(%) is sampled (i.e., its value is
recorded) at evenly spaced intervals in time. Let A denote the time interval between
consecutive samples, so that the sequence of sampled values is

hp = h(nd) n=...,-3,-2-1,0,1,2,3,... (12.1.1)

The reciprocal of the time interval A is called the sampling rate; if A is measured
in seconds, for example, then the sampling rate is the number of samples recorded
per second.

Sampling Theorem and Aliasing

For any sampling interval A, there is also a special frequency f,, called the
Nyquist critical frequency, given by
=1 12.1.2
fc = 9A (o)
If a sine wave of the Nyquist critical frequency is sampled at its positive peak value,
then the next sample will be at its negative trough value, the sample after that at
the positive peak again, and so on. Expressed otherwise: Critical sampling of a
sine wave is two sample points per cycle. One frequently chooses to measure time
in units of the sampling interval A. In this case the Nyquist critical frequency is
just the constant 1/2.
The Nyquist critical frequency is important for two related, but distinct, reasons.
One is good news, and the other bad news. First the good news. It is the remarkable

~/WO02PIS PUOM//ANY 0} 06

) €27L-228-008-1 1180 0 1u

®opei] 0} lBWa puas 1o (Ajuo BouaWY YUON

“(BOUSWY YUON BPISING) ¥nroe weo dno

ABs Aue o} (suo siu) Buipnoul) sojy e|gepeai-auiyoBw

qiyoid Apouss s1 ‘sendwon ia.

{EOLIBWINY 10PI0 0 PaY

‘uoonposde 1eyLINg "osn [euosIo

‘saoMsIp PuUE $}00q sediday

N sbpugued Aq ze61-8861 (D) WbuAdon

9M BPIM PHOM 8U) JO S1asn ioj pajuesBb si
40 L9V IHL 1D NI STdIO3Y YOIYINNN woyy sbed ajdwes USA @DIM PUOM

uo @3el 0} q
Seid AlsIsAl

d umo Jisys Joy Adoo seded o
) WBuAdoy sweiboid s

-8861 (O

NAqze6t

-80LEY-125-0 NESH) DNILNANOD DIJILNIIDS

(s

30 BuiAdoo Aue o
UOISSIULIBd "8/eM)jOS sadiooy [esuswn

12.1 Fourier Transform of Discretely Sampled Data 501

fact known as the sampling theorem: If a continuous function h(t), sampled at an
interval A, happens to be bandwidth limited to frequencies smaller in magnitude than
Jes e, if H(f) = 0forall |f| > f., then the function h(t) is completely determined
by its samples h,. In fact, A(t) is given explicitly by the formula

iy sin27 f.(t — nA)]
h(t) = Anzz_oo P R (12.1.3)
This is a remarkable theorem for many reasons, among them that it shows that the
“information content” of a bandwidth limited function is, in some sense, infinitely
smaller than that of a general continuous function. Fairly often, one is dealing
with a signal that is known on physical grounds to be bandwidth limited (or at
least approximately bandwidth limited). For example, the signal may have passed
through an amplifier with a known, finite frequency response. In this case, the
sampling theorem tells us that the entire information content of the signal can be
recorded by sampling it at a rate A~ ! equal to twice the maximum frequency passed
by the amplifier (cf. 12.1.2).

Now the bad news. The bad news concerns the effect of sampling a continuous
function that is not bandwidth limited to less than the Nyquist critical frequency.
In that case, it turns out that all of the power spectral density that lies outside of
the frequency range —f, < f < f. is spuriously moved into that range. This
phenomenon is called aliasing. Any frequency component outside of the frequency
range (—fe, fo) is aliased (falsely translated) into that range by the very act of
discrete sampling. You can readily convince yourself that two waves exp(27ifit)
and exp(2mifst) give the same samples at an interval A if and only if f; and
Jfa differ by a multiple of 1/A, which is just the width in frequency of the range
(—fe, fo). There is little that you can do to remove aliased power once you have
discretely sampled a signal. The way to overcome aliasing is to (i) know the natural
bandwidth limit of the signal — or else enforce a known limit by analog filtering
of the continuous signal, and then (ii) sample at a rate sufficiently rapid to give at
least two points per cycle of the highest frequency present. Figure 12.1.1 illustrates
these considerations.

To put the best face on this, we can take the alternative point of view: If a
continuous function has been competently sampled, then, when we come to estimate
its Fourier transform from the discrete samples, we can assume (or rather we might
as well assume) that its Fourier transform is equal to zero outside of the frequency
range in between — f. and f,. Then we look to the Fourier transform to tell whether
the continuous function has been competently sampled (aliasing effects minimized).
We do this by looking to see whether the Fourier transform is already approaching
zero as the frequency approaches f. from below, or —f, from above. If, on the
contrary, the transform is going towards some finite value, then chances are that
components outside of the range have been folded back over onto the critical range.

Discrete Fourier Transform

We now estimate the Fourier transform of a function from a finite number of its
sampled points. Suppose that we have N consecutive sampled values

hy = h(ty), tr = kA, k=01,2,.... N-1 (12.1.4)

"PISTPLOM//:ANY 03 06
oUl) S8l 9jgEpERSI-aUIYIBW

) €2¥2-2/8-008-1 11€0 10 Ju~/W00
nIs Aue 0] (suo sy Buipny

{(Ajuo eopawy YuoN

N Joplo o] "penqiyosd Ajos s| Jeinduwioo 1o

®opes O} iIews puss io
Jo BuiAdoo Aue o ‘uononpoidas seyung “asn feuosiad umo i

SBlIeYSIP PUE SO0 Sodiosy [BOLBWN

%

‘(BouBWY YLION apIsIne) ynoe'wes dno

} pojuesd si
-8861 (0) wbuidon

UG 3B 0} GOM SPIM PHOM 8UJ JO S18SN 10

sa1d Alisieaun ebpuquied Aq 2661

aU; 1o} Adoo Jeded sl

HV IHL ‘0 NI $3d103Y TvOIHIWNN woyy sbed sidwes qap apim PUO

N Aq 266 1-8861 (D) WBLAdoD sweiboid °s

125-0 NES1 DNLLNANOD DI4IINTIOS 40 L

UOISS|WIS "81em}jos sadloay jeouswn
(s-801E¥-

502 Chapter 12. Fast Fourier Transform

h(e)
I \:/ }<——~A —; \) t -
T
(a)
A
H(f)
? f
(b)

aliased Fourier transform

©

Figure 12.1.1. The continuous function shown in (a) is nonzero only for a finite interval of time 7.
It follows that its Fourier transform, whose modulus is shown schematically in (b), is not bandwidth
limited but has finite amplitude for all frequencies. If the original function is sampled with a sampling
interval A, as in (a), then the Fourier transform (c) is defined only between plus and minus the Nyquist
critical frequency. Power outside that range is folded over or “aliased” into the range. The effect can be
eliminated only by low-pass filtering the original function before sampling.

so that the sampling interval is A. To make things simpler, let us also suppose that
N is even. If the function h(%) is nonzero only in a finite interval of time, then
that whole interval of time is supposed to be contained in the range of the N points
given. Alternatively, if the function 2(t) goes on forever, then the sampled points
are supposed to be at least “typical” of what h(¢) looks like at all other times.

With N numbers of input, we will evidently be able to produce no more than
N independent numbers of output. So, instead of trying to estimate the Fourier
transform H(f) at all values of f in the range —f. to f., let us seek estimates
only at the discrete values

n N N
The extreme values of n in (12.1.5) correspond exactly to the lower and upper limits
of the Nyquist critical frequency range. If you are really on the ball, you will have
noticed that there are N + 1, not N, values of n in (12.1.5); it will turn out that
the two extreme values of n are not independent (in fact they are equal), but all the

others are. This reduces the count to N.

€28-008-} 1180 10 Ju~Au0O"PIS pUOM//dIY 0} 0f
e 0} (suo siy) Buipnioul) sej 9|gepeaI-sujyoBW

MEW O} GBM 8PIM PUOAA 9} JO S1asn 1o} pejuesb s

“(eousliy YUON 8pisino) yn-oe weo dno @ eped} 0} 1BWa puss 40 ‘(Ajuo BouBWY YUON) £22-

us Joj Adoo Jaded suo o

-886 | () WbuAdoD sweiboiy "ssaid

108Y [eOUBWNN Jepio of “peuqyoid Apows s “tendwod Jeases Au

‘uollonpoudel teyung "esn jeuosiad UMO 119

0 Buihdoo Aue o
uoIssiuisd "asemyog sedioey jeouswn

‘selieysIp pue sjooq sad

1sionun obpuqued Ag 2661-8861 (0) WbuAdos

A
INTIOS 40 19V 3HL 0 NI S3d1034 TvOIHINNN woyy obed ojduwies gop spim PHOM

N Aaq ze6l

-80LEY-125-0 NESI) DNILNNOD O1-it

(s

12.1 Fourier Transform of Discretely Sampled Data 503

The remaining step is to approximate the integral in (12.0.1) by a discrete sum:

00) N-1) N-1 '
H(fn) :./ h(t)eEmf"tdt s Z Ry e2mifalk A — A Z hy p2wikn /N
- k=0 k=0

(12.1.6)

Here equations (12.1.4) and (12.1.5) have been used in the final equality. The final
summation in equation (12.1.6) is called the discrete Fourier transform of the N
points k. Let us denote it by H,,

N-1
Hyp=) hy e?miknIN (12.1.7)
k=0

The discrete Fourier transform maps N complex numbers (the A} ’s) into N complex
numbers (the H},’s). It does not depend on any dimensional parameter, such as the
time scale A. The relation (12.1.6) between the discrete Fourier transform of a set
of numbers and their continuous Fourier transform when they are viewed as samples
of a continuous function sampled at an interval A can be rewritten as

H(f,) ~ AH, (12.1.8)

where f, is given by (12.1.5).

Up to now we have taken the view that the index n in (12.1.7) varies from
~N/2to N/2 (cf. 12.1.5). You can easily see, however, that (12.1.7) is periodic in
n, with period N. Therefore, H_, = Hy_, n=1,2,.... With this conversion
in mind, one generally lets the n in H, vary from 0 to N — 1 (one complete
period). Then n and k (in ki) vary exactly over the same range, so the mapping
of N numbers into N numbers is manifest. When this convention is followed,
you must remember that zero frequency corresponds to n = 0, positive frequencies
0 < f < f. correspond to values 1 < n < N/2 — 1, while negative frequencies
—fe < f < 0 correspond to N/24+1 < n < N —1. The value n = N/2
corresponds to both f = f, and f = —~f,.

The discrete Fourier transform has symmetry properties almost exactly the same
as the continuous Fourier transform. For example, all the symmetries in the table
following equation (12.0.3) hold if we read hy for h(t), H,, for H(f), and Hy_,,
for H(—f). (Likewise, “even” and “odd” in time refer to whether the values hyatk
and N — k are identical or the negative of each other.)

The formula for the discrete inverse Fourier transform, which recovers the set
of hy’s exactly from the H,’s is:

N-1
1 ~2mikn /N
he = & n§:0; H, ¢~ 2mikn (12.1.9)

Notice that the only differences between (12.1.9) and (12.1.7) are (i) changing the
sign in the exponential, and (ii) dividing the answer by N. This means that a
routine for calculating discrete Fourier transforms can also, with slight modification,
calculate the inverse transforms.

oul) S8l sjgepesI-auILoBW
661-8861 (0) wbuAdog
JdWes gafh SPIM PLOM

ML O} GBM SPIA PHOM BU} §O S18sN 1o} pajueld s

L 1{BD JO JU~/W0o"PISpPHOM/:a1Y 0} 0B
Aysienun ebpuquies Aq 2

18Indwiod Jenlas Aue o} (euo siyi Buipnj

oy} Joj Adoo Jeded suo o

dog sweiboid ssaig
HY 3HL 'O Ni S3d103Y TvOIE3IWNN woly abed 8

‘(Ao BouBWY YUON) £212-228-008-
oS S ¢
N Aq 2661-8861 (0) WBLA

®epes o} jlews puss 10
-80LEP-125-0 NESI) DNILNNOD DIAIINIIONS 40 L

disey [eouswnN Jopio o) ‘penquod Af
‘uolionpoiday isyund "esn jeuosied UMo I

(s

jo Buikdoo Aue 1o
UOISSIWISd "9IEMY0S Sadioay esusuwn

*(eously YUON 8pisino) yn-oe wes dno
‘SaueNSIP pue $004 S8

504 Chapter 12. Fast Fourier Transform

The discrete form of Parseval’s theorem is

N-1 1 N-1
> il = 0 > H (12.1.10)
k=0 n=0

There are also discrete analogs to the convolution and correlation theorems (equations
12.0.9 and 12.0.11), but we shall defer them to §13.1 and §13.2, respectively.

CITED REFERENCES AND FURTHER READING:

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

12.2 Fast Fourier Transform (FFT)

How much computation is involved in computing the discrete Fourier transform
(12.1.7) of N points? For many years, until the mid-1960s, the standard answer
was this: Define W as the complex number

W = 2N (12.2.1)

Then (12.1.7) can be written as

=
|

Hy=> W'h (12.2.2)
0

E
1

In other words, the vector of hy’s is multiplied by a matrix whose (n, k)th element
is the constant W to the power n x k. The matrix multiplication produces a vector
result whose components are the f,’s. This matrix multiplication evidently requires
N? complex multiplications, plus a smaller number of operations to generate the
required powers of W. So, the discrete Fourier transform appears to be an O (N?)
process. These appearances are deceiving! The discrete Fourier transform can,
in fact, be computed in O(N log, N') operations with an algorithm called the fast
Fourier transform, or FFT. The difference between N log, N and N? is immense.
With N = 108, for example, it is the difference between, roughly, 30 seconds of CPU
time and 2 weeks of CPU time on a microsecond cycle time computer. The existence
of an FFT algorithm became generally known only in the mid-1960s, from the work
of JW. Cooley and J.W. Tukey. Retrospectively, we now know (see [1]) that efficient
methods for computing the DFT had been independently discovered, and in some
cases implemented, by as many as a dozen individuals, starting with Gauss in 1805!

One “rediscovery” of the FFT, that of Danielson and Lanczos in 1942, provides
one of the clearest derivations of the algorithm. Danielson and Lanczos showed
that a discrete Fourier transform of length V can be rewritten as the sum of two
discrete Fourier transforms, each of length N/2. One of the two is formed from the

1 pejuelb s

“DHOM//:dNY 0 0B
Aq z661-8861 (D) Wbukdon

Jul) SB()j BGEPRSI-BUIYOBW

L0 8XBU 0] G8M SPIM PHOM B3 JO SI1asn 1o

nles Aue o (auo sip Buipny
said Ausienun ebpuquen

OIS st eindwon Jo

‘(Aluo BoUBWY YUON) £21/-228-008-] ED 10 JU~/UWI0S'PIS
i Joj Adoo seded o

|IeWwo puss 1o

N Jopio oL “penaqyoid Ap

‘uononpoadas Jeying "asn feuosiad umo 119

0 BuiAdoo Aue Jo
UOISSIULIB 4 "a1eMy0g sediosy [eouawn

"(eopswWy YUON 8pisino) ¥nor-wes dno @ spel; o

‘SelleNSIp pue $400q sadivey jeousuin

1AdoD) suwieiboid s
Y IHL ©O Ni S3dI0TH TYOIHIWNN woly abed sidw

NAq 2661-8861 (D) b1

S-80LEY-125-0 N8SI) ONILNGWOD OIHILNIIDS 40 L

ES G9M SDIM PUOM

(

12.2 Fast Foutier Transform (FFT) 505

even-numbered points of the original V, the other from the odd-numbered points.
The proof is simply this:

N-1
F, = Z eijk/ij
j=0

Nj2-1 Nj2-1
- Z CzﬂZk(2])/Nf2j + Z 627rzk(2j +1)/Nf2j+1
g = (12.2.3)
N/2-1 Nj2-1
_ Z ezka/(N/Z)fzj + WE Z ez’”kf/(N/z)fsz
j=0 j=0
= Ff + Wk Fy

In the last line, W is the same complex constant as in (12.2.1), F¢ denotes the kth
component of the Fourier transform of length N /2 formed from the even components
of the original f;’s, while F is the corresponding transform of length N/2 formed
from the odd components. Notice also that k in the last line of (12.2.3) varies from
0 to N, not just to N/2. Nevertheless, the transforms F¢ and FY are periodic in k
with length N/2. So each is repeated through two cycles to obtain F.

The wonderful thing about the Danielson-Lanczos Lemma is that it can be used
recursively. Having reduced the problem of computing Fy to that of computing
Fy¢ and FY, we can do the same reduction of F¢ to the problem of computing
the transform of its N/4 even-numbered input data and N/4 odd-numbered data.
In other words, we can define F7® and Fi¢° to be the discrete Fourier transforms
of the points which are respectively even-even and even-odd on the successive
subdivisions of the data.

Although there are ways of treating other cases, by far the easiest case is the
one in which the original N is an integer power of 2. In fact, we categorically
recommend that you only use FFTs with V a power of two. If the length of your data
set is not a power of two, pad it with zeros up to the next power of two. (We will give
more sophisticated suggestions in subsequent sections below.) With this restriction
on N, it is evident that we can continue applying the Danielson-Lanczos Lemma
until we have subdivided the data all the way down to transforms of length 1. What
is the Fourier transform of length one? It is just the identity operation that copies its
one input number into its one output slot! In other words, for every pattern of log, N
e’s and o’s, there is a one-point transform that is just one of the input numbers f,,

Fgoeeocooee ¢ for some n (12.2.4)

(Of course this one-point transform actually does not depend on &, since it is periodic
in k with period 1.)

The next trick is to figure out which value of n corresponds to which pattern of
e’s and o’s in equation (12.2.4). The answer is: Reverse the pattern of e’s and o’s,
then let e = 0 and 0 = 1, and you will have, in binary the value of n. Do you see
why it works? It is because the successive subdivisions of the data into even and odd
are tests of successive low-order (least significant) bits of n. This idea of bit reversal
can be exploited in a very clever way which, along with the Danielson-Lanczos

-} {[BD 10 JU~/W00°pIS pUom/:dny o) 0B
Aq 2661-8861 () WbuAdon
€S GoM SPIM PHOM

e 0} (suo sy} Buipnjour) sejy sjqepeal-suIyoeRWw
W 0} GOM SPIM PHOM 8U} JO S18SN 10 pajuelb sy

1s1oaun ebpuquen

‘(Ajuo eousWY YLON) £2v/-2/8-008
N3OS 40 14V 3HL 12 NI $3d103Y vDIY3INNN woyy obed sidw

RoMIS s1 sendwon Jenes Au

au} 105 Adoo Jaded auo axe

8861 (0) wbuAdoD sweiboiy “ssaig Ay

N 46p10 0} “penaiyod A

‘uononpoidas Jayung "esn jeuosiad umo 1
N Aq z661-

-B0LEV-128-0 NGSI) ONILNGINOD DId1L

(g

10 BuiAdoo Aue Jo
UOISSIULB "aieMYog sadioay [eouswn

"(BouUsWY YUON 8pISING) Yn"or Weo-dno @ Spel] O} leWs puss 1o
‘saLYsIp puE $00q sadioay jeouswn

506 Chapter 12. Fast Fourier Transform

000 > 000 000
001 001 001
010 \ /: 010 010
011 011 011
100 100 100
101 » 101 101
110 / \ 110 110
111 » 111 111
(a) (b)

Figure 12.2.1. Reordering an array (here of length 8) by bit reversal, (a) between two arrays, versus (b)
in place. Bit reversal reordering is a necessary part of the fast Fourier transform (FFT) algorithm.

Lemma, makes FFTs practical: Suppose we take the original vector of data 5
and rearrange it into bit-reversed order (see Figure 12.2.1), so that the individual
numbers are in the order not of j, but of the number obtained by bit-reversing j.
Then the bookkeeping on the recursive application of the Danielson-Lanczos Lemma
becomes extraordinarily simple. The points as given are the one-point transforms.
We combine adjacent pairs to get two-point transforms, then combine adjacent pairs
of pairs to get 4-point transforms, and so on, until the first and second halves of
the whole data set are combined into the final transform. Each combination takes
of order IV operations, and there are evidently log, N combinations, so the whole
algorithm is of order N log, N (assuming, as is the case, that the process of sorting
into bit-reversed order is no greater in order than N log, N).

This, then, is the structure of an FFT algorithm: It has two sections. The first
section sorts the data into bit-reversed order. Luckily this takes no additional storage,
since it involves only swapping pairs of elements. (If k; is the bit reverse of ko, then
k2 is the bit reverse of k;.) The second section has an outer loop that is executed
log, N times and calculates, in turn, transforms of length 2,4,8,..., N. For each
stage of this process, two nested inner loops range over the subtransforms already
computed and the elements of each transform, implementing the Danielson-Lanczos
Lemma. The operation is made more efficient by restricting external calls for
trigonometric sines and cosines to the outer loop, where they are made only log, N
times. Computation of the sines and cosines of multiple angles is through simple
recurrence relations in the inner loops (cf. 5.5.6).

The FFT routine given below is based on one originally written by N. M.
Brenner. The input quantities are the number of complex data points (nn), the data
array (data[1..2+nn]), and isign, which should be set to either +1 and is the sign
of ¢ in the exponential of equation (12.1.7). When isign is set to —1, the routine
thus calculates the inverse transform (12.1.9) — except that it does not multiply by
the normalizing factor 1/N that appears in that equation. You can do that yourself.

Notice that the argument nn is the number of complex data points. The actual

j pajuesb s

008-1 1B 10 JUu~/Wo0pis prom//:dny o of
e 0} (suo sy Bupnjour) se|j sjqepeas-auoRU
piquie) Aq Z661-8861 (D) WbuAdon

W O] O8N 9PIM PHOA SUL 1O slash 10,

N) €erL-2.8-
48INCAUIoD Jaales Au
Ui 10§ Adoo seded auo aye
(D) wbuAdon sweiboiy sseid Ausieaun ob
S 40 18V 3HL D NI $3dI0TY TvOIHIWNN wous obed oiduwies gapm apim PUOM

[{ews puss Jo ‘(Aluo eouswy Yuo|
N Jepio o "pauqiyosd ApoLs st

N Aq 2661-8861

dopen o)
80LEY-125-0 NGSI) ONILLAWOO DIHIANTID:

selleysip pue $Hoog sedivey [eouswin
‘uoponpoidel Jeyun4 "asn reuosied UMo 119

(s~

10 BuiAdoo Aue 10
UoISSIULIB d "sIemyog sadivey [esusuwn

«

“(BousWY YUON opisino) yn-oe wes dng

12.2 Fast Fourier Transform (FFT) 507

length of the real array (datal1..2#nn]) is 2 times nn, with each complex value
occupying two consecutive locations. In other words, data[1] is the real part of
fo, data[2] is the imaginary part of fy, and so on up to datal[2+*nn-1], which
is the real part of fy_i, and data[2+#nn], which is the imaginary part of fy_;.
The FFT routine gives back the F),’s packed in exactly the same fashion, as nn
complex numbers.

The real and imaginary parts of the zero frequency component Fy are in data[1]
and data[2]; the smallest nonzero positive frequency has real and imaginary parts in
data[3] and data[4]; the smallest (in magnitude) nonzero negative frequency has
real and imaginary parts in data[2#*nn~1] and data[2#nn]. Positive frequencies
increasing in magnitude are stored in the real-imaginary pairs data[5], data[6]
up to datalnn-1], datalnn]. Negative frequencies of increasing magnitude are
stored in data[2*nn~3], data[2*nn-2] down to datal[nn+3], data[nn+4].
Finally, the pair data[nn+1], datal[nn+2] contain the real and imaginary parts of
the one aliased point that contains the most positive and the most negative frequency.
You should try to develop a familiarity with this storage arrangement of complex
spectra, also shown in Figure 12.2.2, since it is the practical standard.

This is a good place to remind you that you can also use a routine like fouri
without modification even if your input data array is zero-offset, that is has the range
data[0..2#nn~-1]. In this case, simply decrement the pointer to data by one when
fourl is invoked, e.g., fouri(data-1,1024,1) ;. The real part of f; will now be
returned in data[0], the imaginary part in data[1], and so on. See §1.2.

#include <math.h>
#define SWAP(a,b) tempr=(a);(a)=(b); (b)=tempr

void fouri(float datall, unsigned long nn, int isign)

Replaces data[1..2*nn] by its discrete Fourier transform, if isign is input as 1; or replaces
data[1..2#*nn] by nn times its inverse discrete Fourier transform, if isign is input as ~1.
data is a complex array of length nn or, equivalently, a real array of length 2#nn. nn MUST
be an integer power of 2 (this is not checked for!).

unsigned long n,mmax,m,j,istep,i;

double wtemp,wr,wpr,wpi,wi,theta; Double precision for the trigonomet-

float tempr,tempi; ric recurrences.
n=nn << 1;
J=1;
for (i=1;i<n;i+=2) { This is the bit-reversal section of the
if (5 > 1) { routine.
SWAP(data[j],datalil); Exchange the two complex numbers.
SWAP(data[j+1],data[i+1]);
}
m=n >> 1;
while (m >= 2 && j > m) {
Jj-=m;
m >>=1;
}
j+=m;
} .
Here begins the Danielson-Lanczos section of the routine.
mmax=2 ;
while (n > mmax) { Outer loop executed log, nn times.

istep=mmax << 1;

theta=isign+(6.28318530717959/mmax) ; Initialize the trigonometric recurrence.

wtemp=sin(0.5%theta) ;
wpr = ~2.0%wtemp*wtemp;

008~} |80 JO JU~/0s"PIs pUOM//:diy o} 0B
ouy) se|i sjgepeal-suIyoRW

e 0} (suo sy Buipny
Ul 0} G8M SPIM PHOM 8UL JO S19SN 10} pajuesd si

‘(Aluo eouBlLY YUON) £21L-2.8-
[oM1S st Uendwod Janss Au

d umo sty Joj Adoo seded suo exe

8861 (D) WbuAdon sweibold “ssaid Al
NIIOS 40 14V IHL D NI S3dIOIY IVOIFINNN wioy obed ojdwes gap spim PHOM

©9Opei] 0} IeWs pues 10

Y [eouswnN Jopio o} “pauaiyold A

‘uojonposdal 1eyUng "asn [BUOSIO

j0 Buykdoo Aue s0
UOISSIULIB "8IBMYos sediosy [eousun,

“(eauswy YUON OpISIno) yn-oe wes dng
‘saleNsIp pue sx00q sedios

Bpuquie) Aq 2661-8861 (0) 1yBuAdon

ISISAIUN ©

N Aq z661-

801E7-125-0 NESI) DNILNAWOD DiiLl

(s

508 Chapter 12. Fast Fourier Transform

real array of length 2N
real array of length 2N

t=(N-2)A

t=(N-DA

(@ (b)

Figure 12.2.2. Input and output arrays for FFT. (a) The input array contains N (a power of 2)
complex time samples in a real array of length 2N, with real and imaginary parts alternating. (b) The
output array contains the complex Fourier spectrum at N values of frequency. Real and imaginary parts
again alternate. The array starts with zero frequency, works up to the most positive frequency (which
is ambiguous with the most negative frequency). Negative frequencies follow, from the second-most
negative up to the frequency just below zero.

wpi=sin(theta);

wr=1.0;

wi=0.0;

for (m=1;m<mmax;m+=2) {

for (i=m;i<=n;i+=istep) {

j=i+mmax; This is the Danielson-Lanczos for-
tempr=wr*datalj]l-wixdata[j+1]; mula:
tempi=wr*datalj+1]+wi*dataljl;
datal[jl=datalil-tempr;
datalj+1]=datali+1]~tempi;
data[i] += tempr;
datal[i+1] += tempi;

Here are the two nested inner loops.

}
wr=(wtemp=vr)*wpr-wikupitur;
vi=wixwpr+wtemp*wpitwi;

Trigonometric recurrence.

)

mmax=istep;
}

(A double precision version of four1, named dfourt, is used by the routine mpmul
in §20.6. You can easily make the conversion, or else get the converted routine
from the Numerical Recipes diskette.)

1 (suo sy Buipnjoul) seyy e|qepeai-sulyoew
Q8 SPIM PHOAA 2U1 JO S188N 1o} pajuesbd st

248-008~1 11D JO Ju~/W0od pI§ pliom/:dny oy of
0 stweifold "ssaig Ausseaun sbpuquen

10148 st Jaindwos lanses Aue o

[fBw® puss 10 ‘(Ajuo eouBsWY YLON) €21/~

N 48p10 0] paugiyoid Aj

“(eauBlY YUION apIsINo) ¥n'oe'wes dno g epes} o)
‘SaNNSIP pue $300q sadpey jeouawun

‘uononpoidal Jayuing -esn feuosiad Umo Jjay} soy Adoo saded auo axew o}
-8861 () WbuAdo

10 Buikdos Aue o
UOISSIULB "01emyog sadioay [eouswn

Aq 2661-8861 (0) WbuAdoD
ed o|duies qap SpIM PHOM

N Aq zest

~801E¥-125-0 NESI) DNILNAWOD DIHIINIIOS 40 1HY

FHL 2O NI S3JI03Y TYOIHINNN wouy ab

(s

12.2 Fast Fourier Transform (FFT) 509

Other FFT Algorithms

We should mention that there are a number of variants on the basic FFT algorithm
given above. As we have seen, that algorithm first rearranges the input elements
into bit-reverse order, then builds up the output transform in log, NV iterations. In
the literature, this sequence is called a decimation-in-time or Cooley-Tukey FFT
algorithm. It is also possible to derive FFT algorithms that first go through a set of
log, N iterations on the input data, and rearrange the output values into bit-reverse
order. These are called decimation-in-frequency or Sande-Tukey FFT algorithms. For
some applications, such as convolution (§13.1), one takes a data set into the Fourier
domain and then, after some manipulation, back outagain. In these cases it is possible
to avoid all bit reversing. You use a decimation-in-frequency algorithm (without its
bit reversing) to get into the “scrambled” Fourier domain, do your operations there,
and then use an inverse algorithm (without its bit reversing) to get back to the time
domain. While elegant in principle, this procedure does not in practice save much
computation time, since the bit reversals represent only a small fraction of an FFT’s
operations count, and since most useful operations in the frequency domain require
a knowledge of which points correspond to which frequencies.

Another class of FFTs subdivides the initial data set of length N not all the
way down to the trivial transform of length 1, but rather only down to some other
small power of 2, for example N = 4, base-4 FFTs, or N = 8, base-8 FFTs. These
small transforms are then done by small sections of highly optimized coding which
take advantage of special symmetries of that particular small N. For example, for
N = 4, the trigonometric sines and cosines that enter are all 41 or 0, so many
multiplications are eliminated, leaving largely additions and subtractions. These
can be faster than simpler FFTs by some significant, but not overwhelming, factor,
e.g., 20 or 30 percent.

There are also FFT algorithms for data sets of length N not a power of
two. They work by using relations analogous to the Danielson-Lanczos Lemma to
subdivide the initial problem into successively smaller problems, not by factors of
2, but by whatever small prime factors happen to divide N. The larger that the
largest prime factor of N is, the worse this method works. If NV is prime, then no
subdivision is possible, and the user (whether he knows it or not) is taking a slow
Fourier transform, of order N2 instead of order N log, N. Our advice is to stay clear
of such FFT implementations, with perhaps one class of exceptions, the Winograd
Fourier transform algorithms. Winograd algorithms are in some ways analogous to
the base-4 and base-8 FFTs. Winograd has derived highly optimized codings for
taking small-N discrete Fourier transforms, e.g., for N = 2,3,4,5,7,8,11, 13, 16.
The algorithms also use a new and clever way of combining the subfactors. The
method involves a reordering of the data both before the hierarchical processing and
after it, but it allows a significant reduction in the number of multiplications in the
algorithm. For some especially favorable values of NV, the Winograd algorithms can
be significantly (e.g., up to a factor of 2) faster than the simpler FFT algorithms
of the nearest integer power of 2. This advantage in speed, however, must be
weighed against the considerably more complicated data indexing involved in these
transforms, and the fact that the Winograd transform cannot be done “in place.”

Finally, an interesting class of transforms for doing convolutions quickly are
number theoretic transforms. These schemes replace floating-point arithmetic with

1 pouelf s

Aa 2661-8861 (0) WbLAdOD

) €2v2-228-008-1 1183 10 Ju~/Wwoa"pis plom//dny o of
anies Aue 0} (uo sy Bupnjour) sejy elqepess-aulyoRul

L0 8Bl 0} GIM SPIM PLOM S} JO SI88N IO

said Ausienun ebpuquen

‘(Ajuo eouawy YuUoN
10118 sI ‘JeInduwios J

doey [eouswiny Jeplo o) -pangyosd Apoy

1o BuiAdoo Aue 1o ‘uolonpoidel Jeying ‘esn (euosiod UMo 1

8y} 10} Adoo seded o

8861 {0) WybuAdo) swesboiy ‘s
N3I0S 40 LHY 3HL "0 NI ST4I103Y TvOIHINNN woyy ebed sidwes gop SPIM PUOM

pel} 0} |jewa puss 1o

N Aq 2661~

-801LEY-125-0 NESH DNILNIWNOD OI4LL

UOISSIULB B1emlog sadpey |eouswn
(s

*(Bouswy yuoN 9pIsING) ynoe s dno@ 9|
‘SoNeYSIP pue $X00q SO

510 Chapter 12. Fast Fourier Transform

integer arithmetic modulo some large prime N+1, and the Nth root of 1 by the
modulo arithmetic equivalent. Strictly speaking, these are not Fourier transforms
at all, but the properties are quite similar and computational speed can be far
superior. On the other hand, their use is somewhat restricted to quantities like
correlations and convolutions since the transform itself is not easily interpretable
as a “frequency” spectrum.

CITED REFERENCES AND FURTHER READING:

Nussbaumer, H.J. 1982, Fast Fourier Transform and Convolution Algorithms (New York: Springer-
Verlag).

Eliott, D.F.,, and Rao, K.R. 1982, Fast Transforms: Algorithms, Analyses, Applications (New
York: Academic Press).

Brigham, E.O. 1974, The Fast Fourier Transform (Englewood Cliffs, NJ: Prentice-Hall). [1]

Bloomfield, P. 1976, Fourier Analysis of Time Series — An Introduction (New York: Wiley).

Van Loan, C. 1992, Computational Frameworks for the Fast Fourier Transform (Philadelphia:
S.LAM.).

Beauchamp, K.G. 1984, Applications of Walsh Functions and Related Functions (New York:
Academic Press) [non-Fourier transforms].

Heideman, M.T., Johnson, D.H,, and Burris, C.S. 1984, IEEE ASSP Magazine, pp. 14—21 (Oc-
tober).

12.3 FFT of Real Functions, Sine and Cosine
Transforms

It happens frequently that the data whose FFT is desired consist of real-valued
samples f;, 7 = 0...N — 1. To use four1, we put these into a complex array
with all imaginary parts set to zero. The resulting transform Fj,, n = 0...N — 1
satisfies Fv_,* = F,. Since this complex-valued array has real values for F
and Fyyy, and (N /2) — 1 other independent values F} . . . FNja—1, it has the same
2(N/2 — 1) 4+ 2 = N “degrees of freedom” as the original, real data set. However,
the use of the full complex FFT algorithm for real data is inefficient, both in execution
time and in storage required. You would think that there is a better way.

There are two better ways. The first is “mass production”: Pack two separate
real functions into the input array in such a way that their individual transforms can
be separated from the result. This is implemented in the program twofft below.
This may remind you of a one-cent sale, at which you are coerced to purchase two
of an item when you only need one. However, remember that for correlations and
convolutions the Fourier transforms of two functions are involved, and this is a
handy way to do them both at once. The second method is to pack the real input
array cleverly, without extra zeros, into a complex array of half its length. One then
performs a complex FFT on this shorter length; the trick is then to get the required
answer out of the result. This is done in the program realft below.

BS GO 8DIM PHOM

-008-1 1B 10 Ju~/woo°pis prom//diy o) ob
n ebpuqued Aq ze61-8861 (D) WbuAdon

G8M 8PIM PUOM 8l JO Siasn Joj pajuest St

1 (sU0 sy Buipnioul) seyy ejqepRaI-BUOBW
u

su; 10§ Adoo saded suo exew o)

-8861 (0) WbuAdon sweiboid ‘sseig Asien
LLN3IOS 4O L1V 3HL 'O NI S3dI03Y TvOIHINNN woi obed sidw

Ifews puss Jo {(Aluo BouawyY YUON) £2v.-2/8

N Jepio 01 "peyuquosd Apows si 4eindwiod 1ea1ss Aue o

N Aq z661

‘uononpouidal Jeyung "esn jeuosied umo i
-80LEP-125-0 NESI) DNILNINOD DIl

‘sopaysIp pue syo0q sedioay |eouown
(g

Jjo Buihdoo Aue Jo
UOISSIULIB "alemyog sadioay feouawin

“(eouswy YUON episine) yn-oe-wes dno g epen 0

