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Prior to our understanding of DNA and
molecular sequence information, paleon-
tologists inferred the history of life on
Earth by comparing morphological charac-
teristics (preserved phenotypic traits)
found in fossils. Accurate estimation of this
history of life or “phylogeny” was general-
ly only possible for those organisms that
had “hard parts” capable of preservation,
died in a “fossilization-friendly” context,
and were unearthed over time only to be
discovered by a very fortunate paleontolo-
gist. According to Newton and Laporte,
paleontologists are the first to recognize
the incompleteness of the fossil record and
the resulting difficulty of formulating evo-
lutionary relationships between extant
organisms. It is a shame that many of
Earth’s organisms have very likely left no
trace of their existence.

Our ability to infer evolutionary histo-
ries changed significantly following the
discovery of the genetic code. Fitch and
Margoliash were the first to offer a com-
puter process for the construction of
phylogenetic trees from protein sequence
information, specifically for 20
cytochrome C protein sequences (the
most for any protein to that date) that
had been elucidated from humans to

yeast. This publication provided a
tremendous opportunity for the use of
biological sequence information as “mol-
ecular fossils” of information that could
be compared between extant organisms
to determine their evolution. Seemingly
all that was required was additional
sequence information and better comput-
ers and algorithms for their interpreta-
tion. Assessing the reliability of phyloge-
nies involves difficult statistical and com-
putational problems, including the NP-
complete problems of sequence align-
ment and discovering the best phyloge-
netic tree that fits the data. 

Given modern databases filled with
sequence information, interest has turned
from one of generating sequence to
rapid interpretation and discovery of
“true” phylogenies for their application in
not only the resolution of the history of
life but also for epidemiology as it relates
to human disease. Three developments
have been essential in this progression:
1) the development of criteria and algo-
rithms for discriminating among potential
phylogenies, 2) increased computational
power over time, and 3) the rapid
increase in sequence data availability. An
assortment of algorithms has been

offered to solve the phylogenetic recon-
struction problem, some using evolution-
ary algorithms. 

Challenges in phylogenetics
The phylogenetics problem can be

loosely defined as the search for a tree-
like structure that defines ancestral rela-
tionships between related objects over
time. The related objects can be any-
thing from biological sequence informa-
tion to morphological characters. The
divergence over evolutionary time rep-
resented is captured in a treelike struc-
ture termed a “phylogeny” (Fig. 1). The
number of unrooted, birfurcating tree
topologies T for n taxa is given by

T = (2n − 5)!
(
(n − 3)!2n−3

) . (1)

In general, three possible methods
are used to search for the best topolo-
gy from this set of possible trees: 1)
exhaustive methods, 2) branch and
bound methods, and 3) heuristic meth-
ods. In analogy to the traveling sales-
man problem (TSP), exhaustive meth-
ods are useful when the number of
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possible tree topologies (TSP routes) is
low. This is possible when the number
of n taxa being compared is low (on
the order of ≤12) but rapidly becomes
infeasible with larger numbers of taxa.
Branch and bound methods exclude
trees that do not meet specific criteria,
reducing the search space to a more
reasonable size and increasing the
probability of an exact solution of
merit. However, there are still limita-
tions on the upper number of taxa that
can be used with this approach. 

Heuristic searches commonly are
used to build tree topologies either by
changing the order in which the trees
are built or via branch swapping with
some metric of scoring (such as a parsi-
mony) being used to determine which
changes are more useful than others. It
is easy to envision how evolutionary
computation can be applied in this
regard as a method of global optimiza-
tion where the best resulting tree topol-
ogy is estimated after searching only a
small fraction of the search space. An
unfortunate consequence of this approx-
imation is that the resulting tree topolo-
gy cannot be guaranteed to be optimal;
however, it does allow the researcher to

efficiently search large numbers of char-
acter states and infer “reasonable” his-
torical relationships between organisms.
Additional confidence in a proposed
phylogeny results from overlap of “best”
trees generated from different sequence
or character sets.

It should be noted that one key dis-
covery of 20th century evolutionary biol-
ogy was the determination of a “tree of
life” based purely on molecular
sequences for a set of genes (ribosomal
RNA genes) that are common to essen-
tially all forms of extant life. According to
Pace, the tree of life has reshaped our
thinking of the evolution of life on Earth
and helped us identify the three major
kingdoms of life (eukarya, bacteria, and
archaea). Phylogenetic methods are now
integral parts of almost every major area
of evolutionary biology and several parts
of ecology. Those interested in learning
more about recent discoveries in this
area are referred to Assembling the Tree
of Life and the Tree of Life web project
<http://tolweb.org/tree/phylogeny.html>.

Phylogenetic methods
Correct alignment of the sequence

information is generally a critical first
component of phyloge-
netic analysis and can
be difficult when there
are large numbers of
sequences to be com-
pared, when the
sequences are long, and
when the sequences
have limited evolution-
ary conservation.

Parsimony is a com-
mon method used to
infer phylogenetic trees.
This method is based
on the hypothesis that
the “best” tree in the
space of all possible
trees is the one that
explains the relation-
ship between the extant
taxa with the fewest
number of evolutionary
changes throughout the
tree. The principle of
inheritance implies that
when a characteristic
state is modified in a
species, the descen-
dents of that species
will have a high proba-
bility of sharing that
characteristic. Thus the
most parsimonious tree

is the one that groups taxa together with
similar characteristics and minimizes the
number of observed overall changes in
the tree. There are several statistical
inconsistencies with this approach, most
notably long-branch attraction and
unequal rates of evolution. 

Distance methods are a second com-
mon method to infer phylogeny. These
methods use pairwise distance calcula-
tions for characters (e.g., a pairwise cal-
culation of mismatches measured across
all positions of a nucleotide sequence
alignment). A model of sequence evolu-
tion is then applied to the distance matrix
to correct for unobserved changes and
chance similarities. If the model of
sequence evolution is accurate, then the
correct tree can be recovered. These
models may be specific to the characters
that are being investigated. It is clear that
models of sequence evolution do not
work equally well over all character sets.
Thus, this approach works maximally as
well as the model of sequence evolution.

Maximum likelihood methods repre-
sent a third common method of phyloge-
netic inference. This approach is general-
ly similar to maximum parsimony. How-
ever, maximum likelihood methods use a
specified model of sequence evolution to
assign a value of confidence to ancestral
states. Maximum parsimony methods
assume that a shared character between
two extant taxa must have also existed in
the ancestor of those two taxa. Maximum
likelihood methods assign a confidence
to the existence of that ancestral charac-
ter based on the distance (or length of
time) that exists between the two extant
taxa. As a result, maximum likelihood
methods tend to be more computational-
ly intensive than parsimony methods.
They also share the same requirements
as distance methods for a model of
sequence evolution specific to the char-
acter set under investigation. However,
maximum likelihood approaches can
improve tree inference when the
sequences are not closely related. All
three of the above approaches are the
subject of considerable investigation in
the literature and are the subject of opti-
mization with simulated evolution.

Applications of evolutionary
computation to phylogenetics

Evolutionary computation has been
applied to phylogenetic reconstruction
for 10 years. Matsuda was the first to
use evolutionary algorithms for phylo-
genetic reconstruction, doing so with
protein sequences. Since that time,

Fig. 1 Phylogenetic reconstruction. The nucleotide sequences
for four organisms are aligned and in this simple example are
highly similar except for six positions noted as (“|”). At each of
these informative positions (characters), change has occurred
over evolutionary time. All other nucleotide positions are
invariant and not required for proper phylogenetic
reconstruction. Combining key characters and resolving the
true phylogeny is challenging when the number and type of
characters/taxa increases.

Human AATAATATTCTTTATGACAACTCATTTGATTT

Monkey AATAATATTCTTTATGACAATTCATTTGATTT

Mouse AATAATATTCTTTATCGCAACTCATTTGATTT

Kangaroo AATAAAATTCTTTATCGCAATTCATTTGAAAT

Human

Monkey

Mouse

Kangaroo
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these strategies have been extended for
use with different character sets,
including Lewis who used evolutionary
algorithms for phylogenetic reconstruc-
tion with nucleotide sequence informa-
tion. For this purpose, individuals in
the population were representations of
phylogenetic tree topologies along with
all branch lengths and values of other
parameters regarding the model of
sequence evolution used. Mutation and
recombination operators were defined
to generate new offspring solutions and
fitness was scored with respect to the
natural log likelihood (lnL) score. High-
er lnL scores were favored over time
(using ranked selection) until conver-
gence on a solution was observed. The
best resulting individual from this evo-
lutionary search was believed to repre-
sent the best phylogenetic topology.
This approach was applied to a phylo-
genetic reconstruction problem with 55
taxa involving sequences of the chloro-
plast rbcL gene in plants. In each of
three runs, the evolutionary algorithm
converged on a different tree topology
(most likely as a result of premature
convergence to local optima and/or
insufficient parameter tuning). A com-
parison of the approach to a more stan-
dard heuristic method (PAUP v.4.0) on
the same data set using the same com-
puter and model of sequence evolution
was made. The best resulting tree from

PAUP was the same as
one of the trees discov-
ered with the evolution-
ary algorithm but required
783 hours to do this cal-
culation. In comparison,
the evolutionary approach
only required 42.4 hours.
Similar results and com-
parisons to standard
methods were made by
Reijmers et al. who cou-
pled an evolutionary algo-
rithm to a neighbor-join-
ing approach to reduce
the number of trees in the
search space with suc-
cessful evaluation relative
to the FITCH algorithm. 

Congdon and Greenfest developed
a program called “Gaphyl” for phylo-
genetic reconstruction with evolution-
ary algorithms. This was first used
with binary character states using par-
simony as a guide for optimal tree
topology discovery. Gaphyl makes use
of several intuitive variation operators
for successful search. First, a crossover
strategy is used as follows:

1. A species is selected at random
from a parent phylogeny.

2. A subtree is selected at random
that includes the species from 1 above
(excluding the subtree that represents
the entire tree itself and the subtree that

represents only the direct lineage to the
species in 1 above).

3. In a second parent phylogeny, the
smallest subtree containing all the
species from the subtree obtained in 2
above is found.

4. Two offspring trees are formed by
swapping these two subtrees.

5. Any duplicate species found in
the resulting offspring solutions are
pruned.
Second, a mutation operator is used:

1. Select two species at random from
within one parent and swap their posi-
tions in the tree.

2. Select a subtree at random within
a parent phylogeny. Rearrange the
evolutionary history of the species
within that subtree.

The approach was extended in Cong-
don and Septor for use with DNA
sequence information, and the early indi-
cations are that the Gaphyl program can
outperform a common program called
Phylip on datasets with l63 species with
1,588 nucleotides each in terms of CPU
time, but both tools are able to find four
equally parsimonies phylogenies for this
data. A common theme in this work was
that as the problem sets became more
complex, Gaphyl was able to find more
complete sets of phylogenies than Phylip,
even when making use of the fitness func-
tion from Phylip. Gaphyl commonly
demonstrated a wider variety of resulting
“best” phylogenies than Phylip, suggesting
that Gaphyl could search the space of pos-
sible solutions more effectively. Congdon
presents a nice survey of the importance
of variation operators in this problem area
and suggested that as the number of
species and attributes increases, the effec-
tive of Gaphyl over Phylip appeared to
increase. Shen and Heckendorn have con-
tinued experimentation in this area.

Fig. 2 Example of two parent phylogenies with five species
each. (a) A subtree with species B is identified in the first
parent solution. (b) A subtree that contains species B. The
two circled branches would then be the subject of crossover
(adapted from Congdon, 2002).
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Computational Intelligence in Bioinformatics
Advances in computational intelligence provide us with the opportunity to

explore ways in which these methods can be applied to problems in bioinformat-

ics, such as the phylogenetic reconstruction problem. However, this interdiscipli-

nary research requires understanding the biological data, methods for optimal

search, and where and how these can be applied. To bring these researchers

from computer science and biology closer together, a number of workshops and

special sessions have been organized at IEEE Computational Intelligence Society

sponsored events and activities including:

• the IEEE Symposium on Computational Intelligence in Bioinformatics and

Computational Biology (IEEE CIBCB), sponsored by the IEEE Computational

Intelligence Society <http://www.cibcb.org>

• a variety of special sessions on bioinformatics applications at IEEE sponsored

conferences such as the Congress on Evolutionary Computation (CEC)

<http://www.wcci2006.org>, International Joint Conference on Neural Net-

works (IJCNN) www.ijcnn.org, and FUZZ-IEEE <http://www.fuzzieee2005.org>

• IEEE/ACM Transactions on Computational Biology and Bioinformatics is a rel-

atively new IEEE publication that serves this community.

In particular the IEEE CIS Bioinformatics and Bioengineering Technical Committee

(IEEE BBTC) <http://ieee-cis.org/page/?sec=5&sub=6> promotes the research,

development, education, and understanding of computational intelligence

methods in computational biology.
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Katoh et al., Lemmon and
Milinkovitch, and Brauer et al. have all
recently published in mainstream biology
journals, using evolutionary algorithms for
phylogenetic reconstruction. In particular,
Brauer et al. focused on a parallelization
of the evolutionary search, where a mas-
ter process created a population of indi-
viduals and sent each of them to another
single processor to be scored. Thus the
population size of the evolutionary algo-
rithm was equal to the number of slave
nodes plus the master node. This method
combined mutation of the branch lengths
and tree topology, recombination, migra-
tion, and selection using a maximum-like-
lihood approach. Search-time improve-
ment was roughly linear with respect to
the number of processors that were used.
Also of note was the use of both real bio-
logical data (288 plant taxa each with
4,822 nucleotides of sequence informa-
tion) in addition to simulated data (a
Monte Carlo simulation of 5,000
nucleotide characters across a model tree
of the same 228 taxa, derived from the
most parsimonious previously known
answer for this data set. Use of simulated
data provided a means of interrogating all
of the “correct” ancestral states that are
commonly missing in real data and
proved to be very valuable in assaying
the overall worth of the approach.

Future applications 
Sequence data availability is no longer

an issue for phylogenetics studies. Rather
than simply compare genes from differ-
ent organisms, the problem has trans-
formed into complete genome compari-
son. Computational power continues to
increase over time but the problem sizes
of interest continue to expand as well.
Development of better algorithms and
methods for discriminating among poten-
tial phylogenies will continue to play a
central role in this area. 

Testing algorithm performance
requires knowledge of a “ground truth”
set of data from a known evolutionary
history. This is difficult to obtain from
the fossil record but can be generated
artificially in the computer, in the labo-
ratory with bacterial lineages or nucleic
acids, or from particularly fast-evolving
forms such as viruses. From each of
these processes, ancestral states can be
identified and stored as the evolution-
ary divergence unfolds. These data sets
make particularly interesting examples
for the evaluation of phylogenetic
methods and are likely to be used more
often in that manner in the future.

Pond and Frost utilized a genetic algo-
rithm approach to assign lineages in a
phylogeny to different rates of nonsynony-
mous and synonymous substitution (muta-
tion rate) at the protein level. Very com-
monly, researchers assume a particular
substitution/mutation rate exists over an
entire phylogeny, when it is rather clear
that the rate of mutation may vary signifi-
cantly by lineage. The Pond and Frost
study was the first to search for models of
substitution in a phylogenetic context.
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