
or over 40 years, artificial 
intelligence (AI) has not full- 
filled its promise of truly 
intelligent machines for gen- 

eral use. As early as the 1950s and 
1960s, scientists developed compu- 
tational models of intelligence. 
They then excitedly coded these 
models into the best computers of 
the day. At first the scientists were 
puzzled by the machines’ inability 
to produce reasoned output. Bewil- 
derment became frustration when 
they realized they had banged into 
an unforeseen brick wall. This wall 
had stopped them in their tracks and 
continues to do so today. 

AI also has stymied scientists and 
engineers in other fields such as oper- 
ations research (the field concerned 
with determining efficient manufac- 
turing and scheduling protocols), 
VLSI chip design and testing, and 
data base management. The brick 
wall exists because many combinator- 
ial problems that are fundamentally 
important are NP-complete. ( N P  
stands for Nondeterministic Polyno- 
mial time.) 

We illustrate the problem NP-com- 
pleteness causes with an example 
taken from manufacturing. A general 
purpose welding device is to be used 
on an assembly line. It will make 
numerous welds at predetermined 
positions on a particular kind of part. 
The positions will be welded in a spe- 
cific sequence called a schedule. This 
schedule is programmed into the 
welder before a “run.” 

Possibly as many as 1000 welds 
can be scheduled for each part that 
passes on the assembly line. Clearly 
the speed, and thus the cost, of pro- 
ducing a product depends on how fast 
the welder can finish all its welds on 
each part and return to its starting 
point. But the welder’s speed depends 

on the distances traversed from one 
position to the next. What is needed is 
an optimal schedule for the posi- 
tioning of the weld-head: that is, a 
schedule that minimizes the total 
distance traversed by the weld-head 
to finish each part. 

Let’s consider how we might find 
such an optimal schedule. A simple 
algorithm is the following: tabulate 

schedules at the rate of one per 10”’ 
seconds (which is very, very fast!!), 
we can tabulate our task involving 30 
welds in no less than 1030 x lo-” sec- 
onds. But this is about 30 years. 

. 

Before we search for a better algo- 
rithm, we must understand what is 
holding us back. The problem we 

all possible schedules along with the 
total distance traversed and search 
for the schedule offering the least 
total distance. This seems like a per- 
fectly reasonable approach. But 
when we try to implement it we run 
into the thick brick wall. 

The number of schedules that we 
have to tabulate can easily be seen to 
be the factorial of the number of posi- 
tions needing welds. (From now on n! 
will denote this number where IZ is the 
number of positions needing welds.) 
If we need even as few as 30 welds, 
n! is 30! which is greater than 
On a supercomputer that can tabulate 

.o 
have with tabulating possible solu- 
tions is that, if n is increased by 1, the 
size of the table, and therefore the 
amount of time needed to find an 
optimal schedule, more than doubles. 
This phenomenon is known as the 

(Here, the word complexity refers to 
the running time of an algorithm.) An 
algorithm suffering from this phe- 
nomenon has a complexity at least 2”. 

What we need is an algorithm with 
a complexity n2 or, better yet, n. If we 
had a scheduling algorithm of com- 
plexity n2, we could solve our sched- 
uling problem for 1000 welds in less 
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Fig. 1 Finding an optimal weld 
schedule. 

than 1 second with a Pentium processor. 
With a complexity of n we could get a result 
in less than 1 second on an IBM XT. 

How can we find an algorithm of 
complexity n2 or n? We can achieve 
this complexity if there is a way to 
iteratively extend a partial solution in 
such a way that the extensions do not 
deviate from the optimal solution. 

Let's try the obvious algorithm, 
called the greedy method (because it 
always chooses a next weld point based 
on some minimum weld value), for 
extending a weld schedule: start with 
a partial schedule of one weld posi- 
tion chosen arbitrarily; repeatedly 
append to the partial schedule the 
weld position that is closest to the last 
position in the partial schedule and 
that has not yet been added to the par- 
tial schedule; when all positions are 
in the partial schedule, return the par- 
tial schedule as a full schedule. The 
complexity of this algorithm is n2 
since the distance between all pairs of 
positions must be considered. The 
question is whether this algorithm 
always produces an optimal schedule. 

We investigate this question by con- 
sidering the simple example of Fig. 1, 
which represents five weld positions 
denoted A, B, C, D, and E. Lines and 
numbers are used to show distances: a 
line designates a pair of positions, and 
the number associated with that line 
gives the distance between that pair. 
(Note: the numbers given cannot repre- 
sent Euclidean distances if the five 
points are in the same plane. It is typical- 
ly the case that the time needed to move 
an object is not proportional to Euclid- 
ean distance because it depends on other 
factors such as direction of movement.) 

We will apply the greedy method to 
Fig. 1 starting at point A. We create a 
partial schedule containing A, then 
append D to the schedule since the dis- 
tance to D from A is 18. Also, this is 
less than the distance from A to any 
other unscheduled point. 

Next we append E because the low- 
est distance from D to an unscheduled 
point is 14 (to E). Next C and finally B 
are scheduled and the algorithm returns 
the schedule A-D-E-C-B. The total dis- 
tance covered by this schedule is 
18+14+14+22+25=93. However, a bet- 
ter schedule would be A-D-C-E-B 
which covers a distance of 
18+15+14+18+25=90. This shows that 
our greedy method does not necessarily 
produce an optimal schedule. 

Can some other n2 complexity algo- 
rithm for obtaining optimal schedules 
be found? For this problem, no n2, or 
n3, or do or even nloo algorithm has 
been found despite decades of search- 
ing. In fact, many believe no nk algo- 
rithm, where k is a constant, will ever 
be found for this problem. (An algo- 
rithm of complexity nk, where k is a 
constant, is said to be efficient.) 

This pessimism extends to all NP- 
complete problems. Unfortunately, most 
interesting real-world problems are NP- 
complete. Therefore, this is a very seri- 
ous situation and something must be 
done about it. 

The astute reader may be wondering 
whether parallel processors are the 
answer. Perhaps we can achieve real- 
time solutions to NP-complete problems 
by dividing the computation required 
over many, many processors. 

Parallelization can help but cannot 
solve the problem altogether. The rea- 
son is there are not enough atoms in 
the universe. Assume that every 
processor requires at least one atom 
and that there are fewer than 2200 
atoms in the universe. (This is just a 
guess.) A weld scheduling algorithm of 
complexity 2" distributed evenly over 
2200 processors (the maximum possi- 
ble) operating at supercomputer speed 
would compute for more than one cen- 
tury if rz is only 235. Clearly, another 
approach is needed. 

Another possibility is to make 
machines faster. Unfortunately, we seem 
to run into a barrier here, too. For sever- 
al reasons, it is unlikely that computers, 
as we know them, will ever be able to 

perform even an elementary operation in 
less than 10-1 seconds. (This is just 1000 
times faster than the time we assumed 
for the supercomputer.) 

A major reason has to do with the 
impedance of the interconnections 
between semiconductor devices. But, 
even if this problem is solved, the fol- 
lowing simple argument shows what we 
are up against. The time it takes for a 
signal to cross a silicon-based transistor 
is given roughly by to = dlso where SO is 
10llym/sec, and d is the distance the 
signal must travel. With current technol- 
ogy, distances of.18ym are just now 
being reached successfully. This trans- 
lates to about 2 x 

To reach seconds, features 
would have to be 2000 times smaller 
than current technology allows. But, 
that would require features to be 
much less than 1 atom thick.  If 
speeds are limited to 10-15 seconds, 
the optimal weld scheduling algo- 
rithm given earlier could just handle 
almost 20 more weld positions than it 
can with current computers. 

These arguments show that improved 
hardware will probably do little to help 
us cope with NP-completeness. Howev- 
er, there is a software solution that often 
works. Use an algorithm of n2 or n com- 
plexity to find an answer that upproxi- 
mutes the optimal solution. 

We saw with Fig. 1 that the greedy 
method returned a solution totaling 93 
while the optimal solution's distance 
value was 90. Thus, the greedy method's 
solution was only slightly more than 3% 
away from the optimal value. If we can 
guarantee a solution that is less than 4% 
away from the value of the optimal solu- 
tion, then the greedy method might have 
tremendous practical use. 

Unfortunately, the best we can guar- 
antee for optimal schedules, assuming 
distances are Euclidean, is to be within 
50% of the optimal value; this is, by the 
way, accomplished by an algorithm 
other than the greedy method. In the 
general case, when distances are not 
necessarily Euclidean, efficiently find- 
ing an approximation that is guaranteed 
to be within a fixed percentage of the 
optimal is impossible. (Unless, there 
exists an efficient algorithm for finding 
the optimal solution.) 

Fortunately, good approximation 
algorithms exist for many NP-com- 
plete problems. For example, consider 
the bin packing problem (described in 
the following example). The tele- 

seconds. 
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phone company needs to store tele- 
phones of various sizes in a ware- 
house. The warehouse contains a 
number of bins of identical capacity. 
The question is how to organize the 
telephones in the bins so as to use the 
minimum number of bins. 

An efficient approximation algo- 
rithm for this problem is known as the 
First-Fit Decreasing (FFD) heuristic. 
The idea is this: number bins 1,2,3, ... 
arbitrarily; repeatedly put the largest 
sized, unstored telephone into the low- 
est number bin with the remaining 
capacity greater than the size of the 
telephone. (That is, the phone is placed 
in the first bin in which it fits.) It can be 
shown that FFD will never cause more 
than 22% extra bins to be used. Figure 
2 shows that we can be off by as much 
as 22% when the number requiring 
storage is large. 

Before continuing, let’s answer a 
question that frequently pops up at this 
time: how can you prove an approxi- 
mation algorithm guarantees a certain 
performance if you don’t know what 
the optimal solution is? Or, asking the 
question another way: if you can prove 
a performance guarantee, can’t you 
then find the optimal solution? 

The answer is no. We illustrate 
using the First-Fit (FF) heuristic, 
which is FFD. However, it does not 
force consideration of largest sized 

telephones first. For FF, no more than 
one bin can be less than half full. If 
this were not the case, we could identi- 
fy the first two bins, i and j ,  with i < j ,  
that are less than half full; but, then FF 
would have put the telephones of bin j 
into bin i (or possibly some other bins). 

On the other hand, an optimal solu- 
tion just completely fills all the bins 
needed for a solution. Therefore, FF 
produces a solution requiring no more 
than twice the number of bins taken by 
the optimal solution plus 1. Not all per- 
formance arguments are this simple; 
some require more than 50 pages. But 
this argument shows you can compute 
performance guarantees without know- 
ing the optimal solution. 

Sometimes, the performance 
guarantees of approximation algo- 
rithms are much worse than is actual- 
ly encountered in practice. Often, 
this is because locally optimal com- 
ponents can be constructed and put 
together to produce optimal or near- 
optimal solutions. 

The bin packing problem provides 
a great example of this. Suppose tele- 
phone sizes are uniformly distributed 
from size 0 to the bin’s capacity. 
That means any one size is as likely 
to exist as any other from size 0 up to 

Fig. 2 A bin packing example showing optimal solution 
and FFD approximation. 

the bin’s capacity. (This is not rea- 
sonable, but the idea can be general- 
ized to support similar results under 
more reasonable distributions.)  
Then, for any size greater than the 
mean, there is-with high probabili- 
ty-a size below the mean such that 
the sum of the two sizes is either 
exactly the bin’s capacity or  
extremely close. Each such pairing 
can fill a bin nearly or exactly to 
capacity. Probabilistically, we can 
find such pairings filling nearly all 
bins  to capaci ty  or  j u s t  below 
capacity. We can prove that under a 
uniform distribution only a constant 
number of bins are wasted, with 
probability tending to 1, using FFD. 
The same results hold for a very 
wide var ie ty  of dis t r ibut ions.  
Therefore, bin packing is regarded 
to be an easily solved problem. 

However, many NP-complete prob- 
lems do not present an obvious way to 
combine locally optimal components. 
Algorithms for these may show good 
performance sometimes and poor per- 
formance other times. 

To illustrate, we return to the field 
of artificial intelligence and consider 
the Satisfiability (SAT) problem. An 
instance of SAT is a Boolean formula 
in Conjunctive Normal Form (CNF); 
that is, an “AND” of expressions 
which are “OR’s of Boolean variables 
and their complements. Figure 3 gives 
a sample CNF formula. 

In this example, the Boolean vari- 
ables are x ~ ,  x ~ ,  x3, x4, x5, and Xg. Each 
can be assigned only one of two val- 
ues: true or f a l se .  If variable x is 
assigned value true valse) ,  then its 
complement x has value false (true). 
For any variable x, both x and x are 
called literals where (and if) they 
appear in a formula. 

Expressions such as (XI v x v x3) are 
called clauses. A clause has value true 
if and only if one of its literals has 
value true. A formula has value true, 
or is satisfiable, if and only if all its 
clauses have value true for some 
assignment of values to its variables. 

The SAT problem is to determine 
whether or not a given formula is sat- 
isfiable. The assignment XI = x2 = x4 = 
x5 = X6 = true, and x3 =false causes all 
clauses of the formula in Fig. 3 to 
have value true. On the other hand, 
any assignment with x1 = x3 =false ,  
and x2 = true causes the first clause to 
have value false. 



SAT is probably the most well- 
known NP-complete problem of all. 
SAT was the first problem shown to 
be NP-complete and has been used to 
show others are NP-complete. In real 
life, it shows up in VLSI testing and 
design, in theorem proving, in pre- 
venting catastrophic machine shut- 
downs in case of part failure. SAT 
also shows up in many other aspects 
of science, engineering, operations 
research and artificial intelligence. 

There is no known way to combine 
locally optimum components to solve a 
general SAT problem; there seems to 
be a deep interdependence between 
large subsets of clauses, especially 
when formulas are not satisfiable. SAT 
is further handicapped by the fact that 
the concept of approximation algo- 
rithm is meaningless: either an input 
formula is satisfiable or not. We must 
determine precisely which it is or we 
have made a big mistake. Therefore, 
SAT is not regarded as an easy prob- 
lem in general, and current research 
aims to improve this situation. 

One research direction attempts to 
uncover special classes of SAT that can 
be solved provably by an efficient algo- 
rithm. Remarkably, there are many such 
classes. Here we mention a few. 

If a formula is restricted so that 
every clause contains at most two liter- 
als, it can be solved in time proportional 
to the size of the formula by a special 
algorithm. Such formulas are called 2- 
SAT formulas. Interestingly, formulas 
containing at most three literals per 
clause (3-SAT) are NP-complete. No 
one really understands why adding one 
more literal to each 2-SAT clause has 
such an effect on complexity. Adding a 
literal to clauses containing one literal 
changes nothing in this regard. 

If a formula is restricted so that at 
most one literal in every clause is not 
negated, then the formula can be solved 
in time proportional to the size of the 
formula. Such formulas are called Horn 
formulas. Several efficiently solved 
classes are extensions of Horn formulas. 
There are also hierarchies of formulas 
such that a formula at level k in the hier- 
archy can be solved in time 2k times the 
square of the length of the formula. 

If there is an efficient way to check 
whether a formula belongs to such a 
special class of SAT, this check can be 
applied before using a general purpose 
SAT solver. In case the check succeeds, 
a special purpose and efficient algo- 

Fig, 3 A boolean formula in conjunctive normal form 

rithm can be brought to bear. 
It seems that identifying efficiently 

solved special classes of SAT helps 
some but not much. In particular, this 
approach usually fails when input formu- 
las are not satisfiable. This is illustrated 
by probabilistic and empirical results 
obtained on random 3-SAT formulas 
with m clauses and n variables. Random 
3-SAT formulas contain m clauses 
selected uniformly and independently 
from the set of all possible clauses that 
can be constructed from n variables. 
There are such possible clauses. 

Experiments have shown a ran- 
dom 3-SAT formula is satisfiable, in 
probability, if m and n are set so that 
m/n < 4.2, and is not satisfiable, with 
probability tending to 1 with increas- 
ing m, n,  if m/n > 4.3.  We know, 
through probabilistic analysis, that a 
searching algorithm finds a satisfy- 
ing assignment efficiently,  with 
probability tending to 1, when m/n < 
3.003. But, so far, a random 3-SAT 
formula is known to be a member of 
some efficiently solved special class 
of SAT, with high probability, only 
ifm/n < 1. 

No one has been able to find a good 
algorithm (in some probabilistic sense) 
for verifying unsatisfiability for a vast 
range of formula types. Specifically, 
there is no known algorithm that effi- 
ciently verifies the unsatisfiability of a 
random formula, with probability 
tending to 1, when m/n is a constant 
greater than 4.3 or even when m/n 
grows as fast as ne, e < 1. 

This seems to be a consequence of 
the following statement which can be 
proven by induction: a minimally unsat- 
isfiable set of p clauses must contain 
fewer than p distinct variables. (Negated 
or unnegated occurrences are treated the 
same.) A set of clauses is minimally 
unsatisfiable if it is unsatisfiable and 
removal of any clause from the set 
leaves a satisfiable set of clauses. 

Even resolution fails to do a good 
job in this range. Resolution is a 
process that iteratively creates new 
clauses that do not change the satisfia- 
bility of a formula if added to it. If the 
empty clause is created during resolu- 

tion, the formula is unsatisfiable. Reso- 
lution of some form is commonly used 
in SAT algorithms. 

One achievement of probabilistic 
analysis is that it shows exactly why 
resolution fails: this has to do with the 
“sparsity” of random 3-SAT formulas. 
However, probabilistic analysis has yet 
to help find a method that succeeds. 
Research on this question is ongoing 
and involves people from all over the 
world. If a fast method, in some proba- 
bilistic sense, is found, it may greatly 
impact artificial intelligence and other 
fields. But with all the thought already 
given to this, a successful algorithm will 
probably be unlike any other. 
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A survey taken in the spring of 
1996 by NACE (National Associa- 
tion of Colleges and Employers) 
showed that computer science majors 
werc more likely to havc chosen their 
field for its earning potential; more 
than one-third (37%) of these stu- 
dents who respondcd said that money 
was the deciding factor. Their aver- 
age starting salary with a bachelor’s 
degree then was $34,565 (US). 

Wcll, things only got better for the 
Class of ‘97. NACE reports in its 
recent September Sulury S’ziivey that 
coinputer science undergrads havc seen 
their avcragc offer rise to $37,2 15 
(US). They were sought aftcr by 
employers ofall types and sizes. 

Computer en g i n ec r i n g under- 
grads also continue to do excep- 
tionally well. Their average offer 
jumped 6.8 percent to S40:093 
(US).  Computer and business 
equipment manufacturers account- 
ed for 22 percent of the offers; but 
computer sol‘tware/data processing 
employers (part of the service sec- 
tor) were next with 18 percent of 
the offers. 

Howcver, electrical engineers 
shouldn‘t feel bad. RSEEs saw a 4 
perccnt increase i n  their average 
offer,  which now stands at 
$39,546 (US) .  Half their offers 
came from: electrical/electronics 
manufacturers (2 7 5%) ; compute r 
and business cquipment manufac- 
turers ( 13%); and aerospace com- 
panies ( I  0%). Another third came 
from the service sector, primarily 
those rclalcd to computers and 
techno I og y , e. g . , c om mu n ic at io n 
service companies, computer soft- 
ware/data processing firms and 
consulting services organizations. 

These good times are far reach- 
ing. In India, Bangalore is now con- 
sidered South Asia’s “Silicon 
Valley.” Foreign software invcst- 
ment in lndia has grown from $150 
million in I992 to $2 billion in 1996. 
Thc first reason is a changc in gov- 
crnment tax and ownership regula- 
tions. The second big reason is the 
technical tnlent. After the United 
States and Japan, India has the 
largest scientific and technical pool 

of talent. And it is growing. The best 
and the brighlest who use to hcad to 
the United States are starting to 
return or just plain stay put. What’s 
more, salarics for software en&’ meers 
are rising along with opportunities 
to do advance technical work. 

Suraj Slieiioy, 24, works at Digital 
HOUSC i n  Bangalore, India. He 
moved from Freehold, Ncw Jcrsey, 
USA, back to India for the cos- 
mopolitan lifestyle, and economic 
and career opportunities in Banga- 
lore. “If you’re young and moving 
upI this place is tops,“ Shenoy states 
(The Star-Ledger? 4 Aug. ‘97). 

With annual sales of 2.1 million 
personal computers for 1996, China’s 
market has become numbcr two in 
Asia passing South Korea? which 
previously was number two. (Japan 
remains number one in the region.) 
This growth spurt for personal com- 
puters and peripherals is rellected 
also in publication sales. Computer 
publications in China have a com- 
bined readership of 18 million. This 
is a bigger circulation than China‘s 
People ’.s Duilj. LDG (International 
Data Group), in partnership with the 
Chinese government, puts out this 
highly sought information. China 
Corizputerrvorld is their flagship 
moneymaker with 70% of each 
issue’s pages carrying advertise- 
ments (source: Furhes, 25 Aug. 97). 
These kind of numbers show the 
still-growing market for computers 
and their many rclatcd products. 
This. in turn, shows why thc hiring 
market is so strong. 

However, a cornerstone to this 
job market is “virtual manufactur- 
ing.” Manufacturers who represent- 
ed 51 perccnt of the companies 
offering computer engineering grad- 
uate jobs are trying to take expen- 
sive guesswork out of the picture. 
C AD ( c o inp u t  e r - a i de d des i g n ) 
allows designers lor manufacturers 
to fine tune their ideas. Thus, the 
likelihood that the drearned up prod- 
uct and proccdurc will succeed in a 
reality-based environment are higher 
with lcss cost and fruskation. 

However: more importantly, huge 
amounts of data now can bc easily 

stored and transferred around the 
world. This way many dcsigners as 
well as many computer programs can 
all be working on a given project. 
When Boeing engineers designcd the 
777 jetliner, they uscd a software sys- 
tem called CATTA developed by 
DASSAULT Systkmes in France. 

Therc are cven systems, such 
as DMAPS by DASSAULT and a 
suite of programs from Tecno- 
matix Technologies based in 
Israel, that can simulate entire 
Factories. The goal is to be able 
to computcr  model the entire 
production process (source: The 
Economist). 

Shifting back to job opporlunities, 
the continuing resurgence of h e  man- 
ufacturing sector’s portion of new 
grad offers hit  36 pcrcent in 1997. 
(For this decade. 1990 was the high 
with 45.3% of the job offers for new 
grads coming from the manuhcturing 
sector. However, it then proceedcd to 
stcadily dip to 28.8% for 1994 before 
again going up.) 

According to NACE, the 1997- 
1998 recruitnienl cycle should be a 
financially rewarding replay of last 
year. Technology and computer- 
related disciplines should continue 
to enjoy multiple orfcrs. signing 
bonuses and the limelight. This is 
all mainly thanks Lo the manurac- 
turing sector- -thc cngine that dri- 
ves the economy- as i t  continues 
its comeback. 

- MKC 
’ .  . . .  
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rists above the key- 
hed position. (So re 
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