or over 40 years, artificial

intelligence (AI) has not full-

filled its promise of truly

intelligent machines for gen-
eral use. As early as the 1950s and
1960s, scientists developed compu-
tational models of intelligence.
They then excitedly coded these
models into the best computers of
the day. At first the scientists were
puzzled by the machines’ inability
to produce reasoned output. Bewil-
derment became frustration when
they realized they had banged into
an unforeseen brick wall. This wall
had stopped them in their tracks and
continues to do so today.

Al also has stymied scientists and
engineers in other fields such as oper-
ations research (the field concerned
with determining efficient manufac-
turing and scheduling protocols),
VLSI chip design and testing, and
data base management. The brick
wall exists because many combinator-
ial problems that are fundamentally
important are NP-complete. (NP
stands for Nondeterministic Polyno-
mial time.)

The thick brick wall

We illustrate the problem NP-com-
pleteness causes with an example
taken from manufacturing. A general
purpose welding device is to be used
on an assembly line. It will make
numerous welds at predetermined
positions on a particular kind of patrt.
The positions will be welded in a spe-
cific sequence called a schedule. This
schedule is programmed into the
welder before a “run.”

Possibly as many as 1000 welds
can be scheduled for each part that
passes on the assembly line. Clearly
the speed, and thus the cost, of pro-
ducing a product depends on how fast
the welder can finish all its welds on
each part and return to its starting
point. But the welder’s speed depends

OCTOBER/NOVEMBER 1997

LLER (G IE NP-completeness

Coping with problems computers can’t solve

John Franco

on the distances traversed from one
position to the next. What is needed is
an optimal schedule for the posi-
tioning of the weld-head: that is, a
schedule that minimizes the total
distance traversed by the weld-head
to finish each part.

Let’s consider how we might find
such an optimal schedule. A simple
algorithm is the following: tabulate

all possible schedules along with the
total distance traversed and search
for the schedule offering the least
total distance. This seems like a per-
fectly reasonable approach. But
when we try to implement it we run
into the thick brick wall.

The number of schedules that we
have to tabulate can easily be seen to
be the factorial of the number of posi-
tions needing welds. (From now on 7!
will denote this number where 7 is the
number of positions needing welds.)
If we need even as few as 30 welds,
n! is 30! which is greater than 103°.
On a supercomputer that can tabulate

0278-6648/97/$10.00 © 1997 |IEEE

schedules at the rate of one per 1012
seconds (which is very, very fast!!),
we can tabulate our task involving 30
welds in no less than 10%° x 1012 sec-
onds. But this is about 30 years.

Jackhammers don’t work
Before we search for a better algo-

rithm, we must understand what is

holding us back. The problem we

have with tabulating possible solu-
tions is that, if # is increased by 1, the
size of the table, and therefore the
amount of time needed to find an
optimal schedule, more than doubles.
This phenomenon is known as the
exponential explosion of complexity.
(Here, the word complexity refers to
the running time of an algorithm.) An
algorithm suffering from this phe-
nomenon has a complexity at least 2=,

‘What we need is an algorithm with
a complexity n? or, better yet, n. If we
had a scheduling algorithm of com-
plexity n?, we could solve our sched-
uling problem for 1000 welds in less

37

- O
)
‘o
[\
-]
T o
e
P2
=
o
=
12
=1
=3
[
0
Do
=}
e
..
-
T ®
=
]
=

on © 1996 PhotoDisc, inc. stock art.

Fig. 1 Finding an optimal weld
schedule.

than 1 second with a Pentium processor.
With a complexity of n we could get a result
in less than 1 second on an IBM XT.

How can we find an algorithm of
complexity n? or n? We can achieve
this complexity if there is a way to
iteratively extend a partial solution in
such a way that the extensions do not
deviate from the optimal solution.

Let’s try the obvious algorithm,
called the greedy method (because it
always chooses a next weld point based
on some minimum weld value), for
extending a weld schedule: start with
a partial schedule of one weld posi-
tion chosen arbitrarily; repeatedly
append to the partial schedule the
weld position that is closest to the last
position in the partial schedule and
that has not yet been added to the par-
tial schedule; when all positions are
in the partial schedule, return the par-
tial schedule as a full schedule. The
complexity of this algorithm is »n?
since the distance between all pairs of
positions must be considered. The
question is whether this algorithm
always produces an optimal schedule.

We investigate this question by con-
sidering the simple example of Fig. 1,
which represents five weld positions
denoted A, B, C, D, and E. Lines and
numbers are used to show distances: a
line designates a pair of positions, and
the number associated with that line
gives the distance between that pair.
(Note: the numbers given cannot repre-
sent Euclidean distances if the five
points are in the same plane. It is typical-
ly the case that the time needed to move
an object is not proportional to Euclid-
ean distance because it depends on other
factors such as direction of movement.)

e

38

R R R R

We will apply the greedy method to
Fig. 1 starting at point A. We create a
partial schedule containing A, then
append D to the schedule since the dis-
tance to D from A is 18. Also, this is
less than the distance from A to any
other unscheduled point.

Next we append E because the low-
est distance from D to an unscheduled
point is 14 (to E). Next C and finally B
are scheduled and the algorithm returns
the schedule A-D-E-C-B. The total dis-
tance covered by this schedule is
18+14+14+22+25=93. However, a bet-
ter schedule would be A-D-C-E-B
which covers a distance of
18+15+14+18+25=90. This shows that
our greedy method does not necessarily
produce an optimal schedule.

Can some other n? complexity algo-
rithm for obtaining optimal schedules
be found? For this problem, no nZ, or
n3, or n!% or even n!% algorithm has
been found despite decades of search-
ing. In fact, many believe no »n* algo-
rithm, where k is a constant, will ever
be found for this problem. (An algo-
rithm of complexity n*, where k is a
constant, is said to be efficient.)

This pessimism extends to all NP-
complete problems. Unfortunately, most
interesting real-world problems are NP-
complete. Therefore, this is a very seri-
ous situation and something must be
done about it.

&oing around the wall

The astute reader may be wondering
whether parallel processors are the
answer. Pethaps we can achieve real-
time solutions to NP-complete problems
by dividing the computation required
over many, many processors.

Parallelization can help but cannot
solve the problem altogether. The rea-
son is there are not enough atoms in
the universe. Assume that every
processor requires at least one atom
and that there are fewer than 2200
atoms in the universe. (This is just a
guess.) A weld scheduling algorithm of
complexity 2" distributed evenly over
2200 processors (the maximum possi-
ble) operating at supercomputer speed
would compute for more than one cen-
tury if » is only 235. Clearly, another
approach is needed.

Another possibility is to make
machines faster. Unfortunately, we seem
to run into a barrier here, too. For sever-
al reasons, it is unlikely that computers,
as we know them, will ever be able to

perform even an elementary operation in
less than 10! seconds. (This is just 1000
times faster than the time we assumed
for the supercomputer.)

A major reason has to do with the
impedance of the interconnections
between semiconductor devices. But,
even if this problem is solved, the fol-
lowing simple argument shows what we
are up against. The time it takes for a
signal to cross a silicon-based transistor
is given roughly by #p = d/sy where sy is
101 um/sec, and d is the distance the
signal must travel. With current technol-
ogy, distances of.18pm are just now
being reached successfully. This trans-
lates to about 2 X 10712 seconds.

To reach 1015 seconds, features
would have to be 2000 times smaller
than current technology allows. But,
that would require features to be
much less than 1 atom thick. If
speeds are limited to 10715 seconds,
the optimal weld scheduling algo-
rithm given earlier could just handle
almost 20 more weld positions than it
can with current computers.

These arguments show that improved
hardware will probably do little to help
us cope with NP-completeness. Howev-
er, there is a software solution that often
works. Use an algorithm of »n? or n com-
plexity to find an answer that approxi-
mates the optimal solution.

We saw with Fig. 1 that the greedy
method returned a solution totaling 93
while the optimal solution’s distance
value was 90. Thus, the greedy method’s
solution was only slightly more than 3%
away from the optimal value. If we can
guarantee a solution that is less than 4%
away from the value of the optimal solu-
tion, then the greedy method might have
tremendous practical use.

Unfortunately, the best we can guar-
antee for optimal schedules, assuming
distances are Euclidean, is to be within
50% of the optimal value; this is, by the
way, accomplished by an algorithm
other than the greedy method. In the
general case, when distances are not
necessarily BEuclidean, efficiently find-
ing an approximation that is guaranteed
to be within a fixed percentage of the
optimal is impossible. (Unless, there
exists an efficient algorithm for finding
the optimal solution.)

Fortunately, good approximation
algorithms exist for many NP-com-
plete problems. For example, consider
the bin packing problem (described in
the following example). The tele-

e

IEEE POTENTIALS

phone company needs to store tele-
phones of various sizes in a ware-
house. The warehouse contains a
number of bins of identical capacity.
The question is how to organize the
telephones in the bins so as to use the
minimum number of bins.

An efficient approximation algo-
rithm for this problem is known as the
First-Fit Decreasing (FFD) heuristic.
The idea is this: number bins 1,2,3,...
arbitrarily; repeatedly put the largest
sized, unstored telephone into the low-
est number bin with the remaining
capacity greater than the size of the
telephone. (That is, the phone is placed
in the first bin in which it fits.) It can be
shown that FFD will never cause more
than 22% extra bins to be used. Figure
2 shows that we can be off by as much
as 22% when the number requiring
storage is large.

Before continuing, let’s answer a
question that frequently pops up at this
time: how can you prove an approxi-
mation algorithm guarantees a certain
performance if you don’t know what
the optimal solution is? Or, asking the
question another way: if you can prove
a performance guarantee, can’t you
then find the optimal solution?

The answer is no. We illustrate
using the First-Fit (FF) heuristic,
which is FFD. However, it does not
force consideration of largest sized

Input
Type Size Quantity
A 501 6000
B 252 6000
€ 251 6000
D 248 12000

D]
- This Way
A

1 Approximation Using FFD:

6000 Bins Packed
Thts Way

F 1

: Bin Capacity:

Optimal Solution: 2000 Bins Needed

6000 Bihs Packed E 3000 Bins Packed

E This Way
SR e

telephones first. For FF, no more than
one bin can be less than half full. If
this were not the case, we could identi-
fy the first two bins, { and j, with i < J,
that are less than half full; but, then FF
would have put the telephones of bin j
into bin 7 (or possibly some other bins).

On the other hand, an optimal solu-
tion just completely fills all the bins
needed for a solution. Therefore, FF
produces a solution requiring no more
than twice the number of bins taken by
the optimal solution plus 1. Not all per-
formance arguments are this simple;
some require more than 50 pages. But
this argument shows you can compute
performance guarantees without know-
ing the optimal solution.

Probabilistic
and empirical results

Sometimes, the performance
guarantees of approximation algo-
rithms are much worse than is actual-
ly encountered in practice. Often,
this is because locally optimal com-
ponents can be constructed and put
together to produce optimal or near-
optimal solutions.

The bin packing problem provides
a great example of this. Suppose tele-
phone sizes are uniformly distributed
from size O to the bin’s capacity.
That means any one size is as likely
to exist as any other from size 0 up to

1000

11000 Bins Used

2000 Bins Packed ﬂ 3000 Bins Packed

This Way

This Way E

Fig. 2 A bin packing example showing optimal solution

ond FFD approximation.

R R B R e R

FaYas e == oY Yol Winl Wi tale SRR St

the bin’s capacity. (This is not rea-
sonable, but the idea can be general-
ized to support similar results under
more reasonable distributions.)
Then, for any size greater than the
mean, there is~—with high probabili-
ty—a size below the mean such that
the sum of the two sizes is either
exactly the bin’s capacity or
extremely close. Each such pairing
can fill a bin nearly or exactly to
capacity. Probabilistically, we can
find such pairings filling nearly all
bins to capacity or just below
capacity. We can prove that under a
uniform distribution only a constant
number of bins are wasted, with
probability tending to 1, using FFD.
The same results hold for a very
wide variety of distributions.
Therefore, bin packing is regarded
to be an easily solved problem.

However, many NP-complete prob-
lems do not present an obvious way to
combine locally optimal components.
Algorithms for these may show good
performance sometimes and poor per-
formance other times.

To illustrate, we return to the field
of artificial intelligence and consider
the Satisfiability (SAT) problem. An
instance of SAT is a Boolean formula
in Conjunctive Normal Form (CNF);
that is, an “AND” of expressions

which are “OR”s of Boolean variables

and their complements. Figure 3 gives
a sample CNF formula.

In this example, the Boolean vari-
ables are x1, xp, X3, X4, x5, and xg. Each
can be assigned only one of two val-
ues: true or false. If variable x is
assigned value true (false), then its
complement x has value false (true).
For any variable x, both x and x are
called literals where (and if) they
appear in a formula.

Expressions such as (x; v x Vv x3) are
called clauses. A clause has value true
if and only if one of its literals has
value true. A formula has value true,
or is satisfiable, if and only if all its
clauses have value true for some
assignment of values to its variables.

The SAT problem is to determine
whether or not a given formula is sat-
isfiable. The assignment x; = xy = x4 =
Xs = xg = true, and x3 = false causes all
clauses of the formula in Fig. 3 to
have value frue. On the other hand,
any assignment with x; = x3 = false,
and x; = true causes the first clause to
have value false.

S R R R R R R R R

SAT is probably the most well-
known NP-complete problem of all.
SAT was the first problem shown to
be NP-complete and has been used to
show others are NP-complete. In real
life, it shows up in VLSI testing and
design, in theorem proving, in pre-
venting catastrophic machine shut-
downs in case of part failure. SAT
also shows up in many other aspects
of science, engineering, operations
research and artificial intelligence.

There is no known way to combine
locally optimum components to solve a
general SAT problem; there seems to
be a deep interdependence between
large subsets of clauses, especially
when formulas are not satisfiable. SAT
is further handicapped by the fact that
the concept of approximation algo-
rithm is meaningless: either an input
formula is satisfiable or not. We must
determine precisely which it is or we
have made a big mistake. Therefore,
SAT is not regarded as an easy prob-
lem in general, and current research
aims to improve this situation.

One research direction attempts to
uncover special classes of SAT that can
be solved provably by an efficient algo-
rithm. Remarkably, there are many such
classes. Here we mention a few.

If a formula is restricted so that
every clause contains at most two liter-

als, it can be solved in time proportional .

to the size of the formula by a special
algorithm. Such formulas are called 2-
SAT formulas. Interestingly, formulas
containing at most three literals per
clause (3-SAT) are NP-complete. No
one really understands why adding one
more literal to each 2-SAT clause has
such an effect on complexity. Adding a
literal to clauses containing one literal
changes nothing in this regard.

If a formula is restricted so that at
most one literal in every clause is not
negated, then the formula can be solved
in time proportional to the size of the
formula. Such formulas are called Horn
formulas. Several efficiently solved
classes are extensions of Horn formulas.
There are also hierarchies of formulas
such that a formula at level k in the hier-
archy can be solved in time 2F times the
square of the length of the formula.

If there is an efficient way to check
whether a formula belongs to such a
special class of SAT, this check can be
applied before using a general purpose
SAT solver. In case the check succeeds,
a special purpose and efficient algo-

T ——

rithm can be brought to bear.

It seems that identifying efficiently
solved special classes of SAT helps
some but not much. In particular, this
approach usually fails when input formu-
las are not satisfiable. This is illustrated
by probabilistic and empirical results
obtained on random 3-SAT formulas
with m clanses and » variables. Random
3-SAT formulas contain m clauses
selected uniformly and independently
from the set of all possible clauses that
can be constructed from n variables.
There are such possible clauses.

Experiments have shown a ran-
dom 3-SAT formula is satisfiable, in
probability, if m and n are set so that
m/n < 4.2, and is not satisfiable, with
probability tending to 1 with increas-
ing m, n, if m/n > 4.3. We know,
through probabilistic analysis, that a
searching algorithm finds a satisfy-
ing assignment efficiently, with
probability tending to 1, when m/n <
3.003. But, so far, a random 3-SAT
formula is known to be a member of
some efficiently solved special class
of SAT, with high probability, only
if m/mn < 1.

No one has been able to find a good
algorithm (in some probabilistic sense)
for verifying unsatisfiability for a vast
range of formula types. Specifically,
there is no known algorithm that effi-
ciently verifies the unsatisfiability of a
random formula, with probability
tending to 1, when m/n is a constant
greater than 4.3 or even when m/n
grows as fast as n®, e < 1.

This seems to be a consequence of
the following statement which can be
proven by induction: a minimally unsat-
isfiable set of p clauses must contain
fewer than p distinct variables. (Negated
or unnegated occurrences are treated the
same.) A set of clauses is minimally
unsatisfiable if it is unsatisfiable and
removal of any clause from the set
leaves a satisfiable set of clauses.

Even resolution fails to do a good
job in this range. Resolution is a
process that iteratively creates new
clauses that do not change the satisfia-
bility of a formula if added to it. If the
empty clause is created during resolu-

(v vaha s B Ay s vl v B v EVE)

Fig. 3 A boolean formula in conjunctive normal form

tion, the formula is unsatisfiable. Reso-
lution of some form is commonly used
in SAT algorithms.

One achievement of probabilistic
analysis is that it shows exactly why
resolution fails: this has to do with the
“sparsity” of random 3-SAT formulas.
However, probabilistic analysis has yet
to help find a method that succeeds.
Research on this question is ongoing
and involves people from all over the
world. If a fast method, in some proba-
bilistic sense, is found, it may greatly
impact artificial intelligence and other
fields. But with all the thought already
given to this, a successful algorithm will
probably be unlike any other.

Acknowledgmenis
Supported in part by the Office of
Naval Research, Nooo14-94-1-0382.

Read more about it

* A very good discussion of the
theory of NP-completeness and
approximation algorithms is Michael
R. Garey and David S. Johnson, Com-
puters and Intractability: A Guide to
the Theory of NP-completeness, W. H.
Freeman, San Francisco (1979),
ISBN:0-7167-1045-5.

» For a discussion of the physical
limits of devices see Robert W.
Keyes, “Power dissipation in informa-
tion processing,” in Science, Volume
168 (May 15,1970).

» For a discussion of Satisfiability
algorithms see Jun Gu, Paul W. Pur-
dom, John Franco, Ben Wah, Satisfia-
bility Algorithms, Cambridge
University Press (1998).

About the author

Dr. John Franco in 1981 received a
Ph.D. in Computer Science from Rut-
gers University (NJ). He was a member
of the Digital Signal Processing group
at Bell Telephone Laboratories from
1969 to 1976. There he invented a mul-
tiple FSK digital demodulator. He has
served at the University of Cincinnati
(OH) since 1990. He is best known for
his seminal work on the probabilistic
analysis of algorithms for the Satisfia-
bility problem.

40

IEEE POTENTIALS

AT RS SRR

T

T b e R P B A e 2T,

- st

SRR

R

2 Bt et

o S i

T

—

- S

AT T A e,

R S S R S TRt 4 e M

SR

e

Global implications

A survey taken in the spring of
1996 by NACE (National Associa-
tion of Colleges and Employers)
showed that computer science majors
were more likely to have chosen their
field for its earning potential; more
than one-third (37%) of these stu-
dents who responded said that money
was the deciding factor. Their aver-
age starting salary with a bachelor’s
degree then was $34,565 (US).

Well, things only got better for the
Class of ‘97. NACE reports in its
recent September Salary Survey that
computer science undergrads have seen
their average offer rise 1o $37,215
(US). They were sought after by
employers of all types and sizes.

Computer enginecring under-
grads also continue to do excep-
tionally well. Their average offer
jumped 6.8 percent to $40,093
(US). Computer and business
equipment manufacturers account-
ed for 22 percent of the offers; but
computer software/data processing
employers (part of the service sec-
tor) were next with 18 percent of
the offers.

However, electrical engineers
shouldn’t fcel bad. BSEEs saw a 4
percent increase in their average
offer, which now stands at
$39,546 (US). Half their offers
came from: electrical/electronics
manufacturers (27%); computet
and business equipment manufac-
turers (13%); and aerospace com-
panies (10%). Another third came
from the service sector, primarily
those rclated to computers and
technology, e.g., communication
service companies, computer soft-
ware/data processing firms and
consulting services organizations.

These good times are far reach-
ing. In India, Bangalore is now con-
sidered South Asia’s “Silicon
Valley.” Foreign software invest-
ment in India has grown from $150
million in 1992 to $2 billion in 1996.
The first reason is a change in gov-
ermment tax and ownership regula-
tions. The second big reason is the
technical talent. After the United
States and Japan, India has the
largest scientific and technical pool

OCTOBER/NOVEMBER 1997

of talent. And it is growing. The best
and the brightest who use to head to
the United States are starting to
return or just plain stay put. What's
more, salarics for software engineers
are rising along with opportunities
to do advance technical work.

Suraj Shenoy, 24, works at Digital
Housc in Bangalore, India. He
raoved from Freehold, New Jersey,
USA, back to India for the cos-
mopolitan lifestyle, and economic
and career opportunities in Banga-
lore. “If you’re young and moving
up. this place is tops,” Shenoy states
(The Star-Ledger. 4 Aug. *97).

With annual sales of 2.1 million
personal computers for 1996, China’s
market has become number two in
Asia passing South Korea, which
previously was number two. (Japan
remains pumber one in the region.)
This growth spurt for personal com-
puters and peripherals is rellected
also in publication sales. Computer
publications in China have a com-
bined readership of 18 million. This
is a bigger circulation than China’s
People’s Daily. IDG (International
Data Group), in partnership with the
Chinese government, puts out this
highly sought information. China
Computerworld is their flagship
moneymaker with 70% of each
issue’s pages carrying advertise-
ments (source: Forbes, 25 Aug. 97).
These kind of numbers show the
still-growing market for computers
and their many rclated products.
This, in turn, shows why the hiring
market is so strong.

However, a cornerstone to this
job market is “virtual manufactur-
ing.” Manufacturers who represent-
ed 51 percent of the companies
offering computer engineering grad-
uate jobs are trying to take expen-
sive guesswork out of the picture.
CAD (computer-aided design)
allows designers for manufacturers
to fine tune their ideas. Thus, the
likelihood that the dreamed up prod-
uct and procedurce will succeed in a
reality-based environment are higher
with less cost and frustration.

However, more importantly, huge
amounts of data now can be easily

stored and transferred around the
world. This way many designers as
well as many coiputer programs can
all be working on a given project.
When Boeing engineers designed the
777 jetliner, they uscd a software sys-
tem called CATIA developed by
DASSAULT Systémes in France.

Therc are even systems, such
as DMAPS by DASSAULT and a
suite of programs {rom Tecno-
matix Technologies based in
Israel, that can simulate entire
factories. The goal is to be able
to computer model the entire
production process (source: The
Economist).

Shifting back to job opportunities,
the continuing resurgence of the man-
ufacturing sector’s portion of new
grad offers hit 36 percent in 1997.
(For this decade, 1990 was the high
with 45.3% of the job offers [or new
grads coming from the manulacturing
sector, However, it then proceeded to
stcadily dip to 28.8% for 1994 before
again going up.)

3]
£

o
2
[=]
]

©
£
o
@
-1
]
=

©Image Bank/P. Ridenoul

According to NACE, the 1997-
1998 recruitment cycle should be a
financially rewarding replay of last
year. Technology and computer-
related disciplines should continue
to enjoy multiple offcrs. signing
bonuses and the limelight. This is
all mainly thanks to the manulac-
turing sector- -the engine that dri-
ves the economy- as it continues
its comeback.

— MKC

Ergonomics

1t s 3:00 a:m. as you pull another all-
nighter to finish a research paper.
You're getting your umpteenth cup-of
. coffee when you realize that your wrists
feel tight and sore. There’s also a slight
tingling and coldness in your hands.
Dawnbreaks-and your paper is final-
ly done. After a little shut-eye, you
decide to give yourself a mental break;
50 you surf the Web: But you discover
that annoying soreness- in-your fingers
-and wrists s still there. Even your neck;
back and shoulders are still bothersome.

What is it?

- If this sounds familiar, you're proba-
bly suffering froni the early symptoms of
a:Repetitive: Stress Injury (RSI). ‘Accord-
ing to' Dr. Emil Pascarelli (from. his book,
Repetitive Strain Injury:-A. Computer
User's Guide, Wiley, 1992), an'RSI is
defined as “a comulative trauma disorder
stemming. from prolonged repetitive,
forceful or ‘awkward hand movements,”
¢.g, strenuous keyboard use.

Poor posture and: typing habits, ill-
adapted furniture ‘and keyboards, and a
fast—paced, heavy workload are all con-
tributing factors-to-an: RSL. The: result,
Pascarelli states, 1S “damage o the mus-
cles; tendons and nerves-of the neck,
shoulder; forearm and hand which can
cause pain, weakness, numbuness or
~impairment of motor control.”

< But if you stay away from the com-
puter-for ‘a couple of days, your wiists,
-~ hands and fingers will start to feel bet-
ter. So why worry?

Well, a few days sans keyboard use
will ease the discomfort somewhat. But if
your typing habits remain the same,
you’re setting yourself up for:some
potentially. serious problems. RSI in its
worst form can mvolve tightness or stiff-
ness-in hands and/or wrists, tingling or
numbness in fingers, the need to-con-
stantly massage your hands/wiists, hyper-
sensitivity in‘hands after mimimal use,
loss ‘of coordination and: pain. This can
prevent. you from turning a door knob,
- holding & telephone. ot ‘even holding a
- pewspaper—let alone using a Keyboatd,

RSl is: a preventable condition. Even

if you’te only experiencinga few symp-

toms, ot if they go away easily, yow are
at risk. Ienoring: this problem can lead
to severe; long-term disability.

What can you-do toprevent an

-~ RSI? Change your work
habits. Pay attention to your body.

When something tingles or hurts, stop

and rest. Structare your workload so
that you're not forcing yourself to
work for long; uninterrupted sessions.
Take a break—manyof them. And
adopt some simple practices.

Sit up straight

Your mother was right; you should
sit-up straight: Maintaining proper
alignment of the spine is the corner-
stone of RSI preventative measures.

Slouching or slumping in your chair
compresses the spine which can lead to
lower back pain-and/or neck and shoul-
der stiffness and discomfort. To correct-
ly align your 'spine, keep your head up

" with your-“ears in line with the shoul-

ders-and hips your-shoulders should
hold your chest open and ‘your arm sup-
porting your-hands ‘over the keyboard”

(Repetitive Strain Injury, Wiley, 1992).

Get your hands up

Poor:posture contributes:to improper
armand wrist positioning. Slouchers
tend to test their elbows and wrists on
the. work: surface while typing. This
forces the tendons-in the wrists to bend
in awkward and unnatural positions that
can lead t6 nerve damage.

Position the wrists above the key-
board in:a.slightly ‘arched position. (Se
they are raised higher than the hands.)
They should not rest on anything (espe-
cially wrist rests) while typing.

The wrists should also be held in-a
stationary and neutral position. Pivot-
ing at the wrist to.reach a key puts
strain on the tendons. The entire arm
should be-used to:guide the fingers
across.the keyboard.

A light fouch

Many computer users pound the
keys .as they type. Pressure and anxiety
due to.deadlines; workload and job/aca-
demic performance can-lead to this
behavior. But taking out-your frustra-
tions on-the keyboard: will only cause
sttain-or injury.

Pace yourself. Realize that you
will not finish the work any faster if
you:slam your fingers down on the
keyboard. A light touch is just as
effective. '

And stay off the mouse as much as

possible. Using it is conducive to
wrist pivoting.

Take five

Take a five- to.ten-minute break
every hour or so. Not only will this
allow you to stretch your muscles (very
important), it will prompt you to
reassess your posture-and wrist/arm/
hand positions. Even if you don’t have
the time to get up, mini-stretch breaks at
your desk will also help.

Proper setup

A user-friendly workstation can also
help you maintain-these practices. Any
one of the fellowing can help keep your
posture in good shape:

* Position your monitor at eye level
(or close to it) and keep it directly above
the keyboard.

» Make sure your keyboard is at a level
so that your arms are bent at a 45% angle.

» Use a chair that has good lower
back support.

* Use a footrest to-help alleviate
pressure on your-spine.

Additional help

An ergonomic aid such as a split
keyboard may be helpful. It is designed
to keép your hands'in-a more natural
position while typing. There are also
monitoring programs -designed to
remind the user to take periodic breaks
during a work session. Voice-activated
software allows the‘user to dictate to
the computer instead of typing.

‘While helpful, these aids should not
be the only preventative methods taken.
According to Paul Marxhausen, RS
sufferer and author of the Computer
Related Repetitive Strain Injury
website (http://www.engr.unl.edu/
ee/eeshop/rsi.html), “correct typing
technique and posture, the right equip-
ment: setup, and good work habits are
much more important for prevention”
than ergonomic aids.

FYI

For further information: on RSIs, how
to prevent them ‘and treatment options,
we recommend starting with -Marx-
hausen’s: web. site. It is informative. and
provides excellent references to other
material onthe subject.

— Lisa Dayne

IEEE POTENTIALS

