184

WT ith the procedures for displaying output primitives and their attributes

we can create a variety of pictures and graphs. In many applications
there is also a need for altering or manipulating displays. Design application
and facility layouts are created by arranging the orientations and sizes of th
component parts of the scene. And animations are produced by moving th
“camera” or the abjects in a scene along animation paths. Changes in orientation
size, and shape are accomplished with geometric transformations that atter the;
coordinate descriptions of objects. The basic geometric transformations are trans
lation, rotation, and scaling. Other transformations that are often applied to ob
jects include reflection and shear. We first discuss methods for performing geo
metric transformations and then consider how transformation functions can b
incorporated into graphics packages.

5-1
BASIC TRANSFORMATIONS

Ry
Here, we first discuss general procedures for applying translation, rotation, and 3
scaling parameters to reposition and resize two-dimensional objects. Then, in
Section 3-2, we consider how transformation equations can be expressed in a f
more convenient matrix formulation that allows efficient combination of object =
transformations. 4

Transtation

A translation is applied to an object by repositioning it along a straight-line path%‘%
from one coordinate location to another. We translate a two-dimensional point by ™
adding translation distances, ¢, and ¢, to the original coordinate position (x,to 4§

move the point to a new position (x", ¥} (Fig. 5-1). 3

=x+t, Y=yt (5-1)2‘

The translation distance pair {t,, ¢,) is called a translation vector or shift vector.
We can express the translation equations 5-1 as a single matrix equation by &

using column vectors to represent coordinate positions and the translation vec j

tor: ‘

; Xy £
o[e[T[] .
X5 Xq fb'

This allows us to write the two-dimensional translation equations in the matrix

form.
/
PP=P+T {3-3)

ig Sometimes matrix-transformation equations are expressed In terms of coordinate
. row vectors instead of column vectors. In this case, we would write the matrix [
representations as P = [x y] and T = (¢, t]. Since the column-vector representa-
tion for a point is standard mathematical notation, and since many graphics Figyre 5.1
packages, for example, GKS and PHIGS, also use the column-vector representa- Translating a point from
tion, we will follow this convention. " position P t0 position P' with
Translation is a rigid-body transformation that moves objects without defor- translation vector T.
mation. That is, every point on the object is translated by the same amount. A
straight line segment is translated by applying the transformation equation 5-3 to
gach of the line endpoints and redrawing the line between the new endpoint po-
. sitions. Polygons are translated by adding the translation vector to the coordinate
position of each vertex and regenerating the polygon using the new set of vertex
' coordinates and the current attribute settings. Figure 5-2 illustrates the applica-
tion of a specified translation vector to move an object from one position to an-
other.
similar methods are used to translate curved objects. To change the position
of a circle or ellipse, we translate the center coordinates and redraw the figure in
the new location. We translate other curves (for example, splines) by displacing
the coordinate positions defining the objects, then we reconstruct the curve paths i -
l

using the translated coordinate points. yii
g P .

‘I
{a} : &4
ke El.;
J
i
14 i r
10 ~— H
T ! I
T i a
5 T =1!]
s h i
T Figure 5-2 i ! ﬂ[
5 o e o Moving a polygon from position (a) i
8 10 1 20 ¥ ¢0 position (b) with the translation i
(b vector (-5.50, 3.75). it

|
e
!

T e s,
- I
. i

|

i

J AR Lt
1

|

!

Figure 5-3

Rotation of an object through
angle & about the pivot point
X, y.).

Figure 5-4

Rotation of a point from
position (¥, y) to pesition
(x’, ¥) through an angle 9
relative to the coordinate
origin. The original angular
displacement of the point
from the x axis ig ¢.

186

Raotation

A two-dimensional rotation is applied to an object by repositioning it along a cjr3 .
cular path in the xy plane. To generate a rotation, we specify a rotation angle 1
and the position (x,, y,) of the rotation point (or pivot point) about which the ob il
ject is to be rotated (Fig. 5-3). Positive values for the rotation angle define couny
terclockwise rotations about the pivot point, as in Fig. 5-3, and negative valyedd
rotate objects in the clockwise direction. This transformation can also be dp
scribed as a rotation about a rotation axis that is perpendicular to the xy plane}. ¥
and passes through the pivot point, :

We first determine the transformation equations for rotation of a point posj é
tion P when the pivot point is at the coordinate origin. The angular and coord;.
nate relationships of the original and transformed point positions are shown ip
Fig. 5-4. In this figure, r is the constant distance of the point from the origin, angle
¢ is the original angular position of the point from the horizontal, and 4 is the ro-
tation angle. Using standard trigonometric identities, we can express the {rang”
formed coordinates in terms of angles fand ¢ as 3

X' =rcos{d+ B = rcos ¢ cos 8 — rsin bsing

i

Yy =rsinid+ 8 =rcps @ sin 8 + rsin ¢ cos #
The original coordinates of the point in polar coordinates are

X = rcos ¢, Y = rsin qb (5-5]‘,

Substituting expressions 5-5 into 3-4, we obtain the transformation equations ford
rotating a point at position (x, y) through an angle # about the origin:

¥ =Xxcosf#—ysin g

’

Y =xsinf+ycosd

With the column-vector representations 5-2 for coordinate positions, we can writel
the rotation equations in the matrix form:
P'=R-P

where the rotation matrix is

cos 8 —sin §
sin # Cos 8

When coordinate positions are represented as row vectors instead of col-
umn vectors, the matrix product in rotation equation 3-7 is transposed so that thel
transtormed row coordinate vector [x° y'}is calculated as

PT=(R-P)Y
= PT.RT
where PT = [x y], and the transpose R” of matrix R is obtained by interchanging§ |

rows and columns. For a rotation matrix, the transpose is obtained by simply}
changing the sign of the sine terms. k:

19
K

el oo a-hu B i

W

Rotation of a point about an arbitrary pivot position is lustrated in Fig. 5-5.
{sing the trigonometric telationships in this figure, we can generalize Egs. 5-6 to
obtain the transformation equations for rotation of a point about any specified ro-
tation position (x,, y.J:

x'=ox ok {x—- x)cos 8= (y — y)sin &

]

¥

Yot le—x)sin @+ (y ~y)cos (5-9)

These general rotation equations differ from Egs. 5-6 by the inclusion of additive
rerms, as well as the multiplicative factors on the coordinate values. Thus, the
matrix expression 5-7 could be modified to include pivot coordinates by matrix
addition of a column vector whose elements contain the additive (translational)
terms in £gs. 3-9. There are better ways, however, to formulate such matrix equa-
tons, and we discuss in Section 5-2 a more consistent scheme for representing the
transformation equations,

As with translations, rotations are rigid-body transformations that move
objects without deformation. Every point on an cbject is rotated through the
same angle. A straight line segment is rotated by applying the rotation equations
5-9 to each of the line endpoints and redrawing the line between the new end-
point positions. Polygons are rotated by displacing each vertex through the speci-
fied rotation angle and regenerating the polygon using the new vertices. Curved
lines are rotated by repositioning the defining points and redrawing the curves.
A circle or an ellipse, for instance, can be rotated about a noncentral axis by mov-
ing the center position through the arc that subtends the specified rotation angtle.
An ellipse can be rotated about its center coordinates by rotating the major and
MinoT axes.

B ing

A scaling transformation alters the size of an object. This operation can be car-
ried out for polygons by multiplying the coordinate values (x, y) of each vertex
by scaling factors s, and s, to produce the transformed coordinates (x”, y'):

x¥=x-s5., Y =y-s, (5-10)

Scaling factor s, scales objects in the x direction, while s, scales in the y direction.
The transformation equations 5-10 can also be written in the matrix form:

NN (3-11)
|y’ 0 s, i

or
PP=S-P 5-1)

where § is the 2 by 2 scaling matrix in Eq. 5-11.

Any positive numeric values can be assigned to the scaling factors s, and s,
Values less than 1 reduce the size of objects; values greater than 1 produce an en-
largement. Specifying a value of 1 for both s, and s, leaves the size of objects un-
changed. When s, and s, are assigned the same value, a uniform scaling is pro-

Section 5-1

Basic Transformations

Figure 5-5

Rotating a point from
position (x, ¥} to position
{x,)y"} through an angle 6
about rotation point (x,, 1.},

187

Chapter 5 duced that maintains relative object proportions. Unequal values for s, and s, red
Two-Dimensional Geometric sult in a differential scaling that is often used in design applications, where pig
franstormations yres are constructed from a few basic shapes that can be adjusted by scaling an QM
positioning transformations (Fig. 5-6).
Objects transformed with Eq. 5-11 are both scaled and repositioned. Sgalm
factors with values less than | move objects closer to the coordinate origin, whl}
values greater than 1 move coordinate positions farther from the origin. Fi‘bure
3-7 illustrates scaling a line by assigning the value 0.5 to both s, and s, N E
5-11. Both the line fength and the dibtame from the origin are raducnd by
factor of 1/2,
We can control the location of a scaled object by choosing a position, called 3
the fixed point, that is to remain unchanged after the scaling transformation. Co 38
ordinates for the fixed point (x; y) can be chosen as one of the vertices, the object,
centroid, or any other position (Fig. 5-8). A polygon is then scaled relative to th
fixed point by scaling the distance from each vertex to the fixed point. For a ver
tex with coordinates (v, yJ, the scaled coordinates (x', y') are calculated as

{a)

Figure 5-6

Turning a square (a} into a
rectangle (b} with scaling
factorss, = Zand s, = 1.

X=X oxs,, yoE Ay ys, (3-13)% j

We can rewrite these scaling transformations to separate the multiplicative and§
additive terms: ;

= x5, Fxdl s

I yi=y sty

\\

x' X where the additive terms x,(1 — s5,) and y,(1 ~ 5,) are constant for all puoints in the
object. '
Fioure 5-7 Including coordinates for a fixed point in the scaling equations is similar to
4 line scaled with Eq. 512 inciuding coordinates for a pivot point in the rotation equations. We can set up i
usings, = s, = 0.5 is reduced column vector whose elements are the constant terms in Egs. 5-14, then we add § g
in size and moved closer to this column vector to the product S - P in Eq. 3-12. In the next section, we discuss &
the coordinate origin. a matrix formulation for the transformation equations that invoives only matrix $#
multiplication.
Polygons are scaled by applying transformations 3-14 to each vertex and

y then regenerating the polygon using the transformed vertices. QOther objects are

I scaled by applying the scaling transformation equations to the parameters defin
ing the objects. An ellipse in standard position is resized by scaling the semima
jor and semiminor axes and redrawing the ellipse about the designated center co-
ordinates. Uniform scaling of a circle is done by simply adjusting the radius
Then we redisplay the circle about the center coordinates using the transformed
Py radius.

5-2
Figure 5-8 MATRIX REPRESENTATIONS AND HOMOGENEOUS

Scaling relative to a chosen o
fixed point (x, y). Distances COORDINATES

from each polygon vertex to] L . . . 4
the fixed point are scaled by Many graphics applications involve sequences of geometric transformations. An
transformation equations animation, for example, might require an object to be franslated and rotated at
3-13. each increment of the motion. In design and picture construction applications,

188

and :

vhere pt

taling ang
L

o

VRS a0 it PALENR 1% 5 W % T ey <ot

S i B SRINRS. 35 o

A bl Rk i b b

i
i
g

we Pezform translations, rotations, and scalings to fit the picture compongnts into
their proper positions. Here we consider how the matrix representations dis-
cussed in the previous sections can be reformulated so that such transformation
sequences can be efficiently processed.

We have seen in Section 5-1 that each of the basic transformations can be ex-
pressed in the general matrix form

P'l=M, P+ M, (5-15)

with coordinate positions P and P’ represented as column vectors, Matrix M, isa
2 by 2 array containing multiplicative factors, and M; is a two-element column
maltrix containing translational terms. For translation, M; is the identity matrix.
For rotation or scaling, M, contains the translational terms associated with the
pivot point or scaling fixed point. To produce a sequence of transformations with
these equations, such as scaling followed by rotation then transiation, we must
calculate the transformed coordinates one step at a time. First, coordinate posi-
tions are scaled, then these scaled coordinates are rotated, and finally the rotated
coordinates are translated. A more efficient approach would be to combine the
transformations so that the final coordinate positions are obtained directly from
the initial coordinates, thereby eliminating the calculation of intermediate coordi-
nate values. To be able to do this, we need to reformuiate Eq. 5-15 to eliminate the
matrix addition associated with the translation terms in M.

We can combine the multiplicative and translational terms for two-dimen-
sional geometric transformations into a single matrix representation by expand-
ing the 2 by 2 matrix representations to 3 by 3 matrices. This allows us to express
all transformation equations as matrix multiplications, providing that we also ex-
pand the matrix representations for coordinate positions. To express any two-di-
mensional transformation as a matrix multiplication, we represent each Cartesian
ceordinate position (x, y) with the homogeneous coordinate triple (x,, v, 1),
where

xz%, y="1 (5-16)

Thus, a general homogeneous coordinate representation can also be written as (h -
%, iy, h). For two-dimensional geometric transformations, we can choose the ho-
mogeneous parameter k to be any nonzero value. Thus, there is an infinite num-
ber of equivalent homogeneous representations for each coordinate point (x, y).
A convenient choice is simply to set & = 1. Each two-dimensional position is then
represented with homogeneous coordinates (x, Y, 1). Other values for parameter k
are needed, for example, in matrix formulations of three-dimensional viewing
transformations.

The term homogeneous coordinates is used in mathematics to refer to the ef-
fect of this representation on Cartesian equations. When a Cartesian point (x, y) is
converted to a homogeneous representation (xy, v, k), equations containing x
and y, such as flx, y) = 0, become homogeneous equations in the three parame-
ters x,,, yy, and k. This just means that if each of the three parameters is replaced
by any value v times that parameter, the value v can be factored out of the equa-
tions.

Expressing positions in homogeneous coordinates allows us to represent all
Seometric transformation equations as matrix multiplications. Coordinates are

Section 5-2

Matrix Representations and
Homogeneous Coordinates

189

Chapter 5

190

Twao-Dimensional Geometric
Transformations

represented with three-element column vectors, and transformation operations

are written as 3 by 3 matrices. For translation, we have 4
X’ T 0 & X
¥y i=10 1 ¥
1 o ¢ 1 1

which we can write in the abbreviated form
P =T, t)- P (5-18)

with Tit,, £} as the 3 by 3 transiation matrix in Eq. 5-17. The inverse of the trans-
lation matrix is obtained by replacing the translation parameters t, and f, with
their negatives: —¢, and —f,. '

Similarly, rotation transformation equations about the coordinate origin are
now written as

x cosf —sinf 0 X ‘
y' | =] sind costt O ¥ (5-19)
i 0 0 1 1
or as
Pr=R(6 P {3-20)

The rotation transformation operator R{#} is the 3 by 3 matrix in Eq. 5-19 with

rotation parameter 6. We get the inverse rotation matrix when #§ is replaced

with — 8.

Finally, a scaling transformation refative to the coordinate origin is now ex-

pressed as the matrix multiplication

x’ s, 0 0 X
y =10 s 0] (5-21)
1 ¢ o 1 i
or
P'=S5(,,s,)-P (5-22) .

where S(s,, s,) is the 3 by 3 matrix in Eq. 5-21 with parameters s, and s, Replac-
ing these parameters with their multiplicative inverses (I/s, and 1/s,) yields the
inverse scaling matrix.

Matrix representations are standard methods for implementing transforma-
tions in graphics systems. In many systems, rotation and scaling functions pro-
duce transformations with respect to the coordinate origin, as in Egs. 5-19 and
5-21. Rotations and scalings relative to other reference positions are then handled
as a succession of transformation operations. An alternate approach in a graphics
package is to provide parameters in the transformation functions for the scaling
fixed-point coordinates and the pivot-point coordinates. General rotation and
scaling matrices that include the pivot or fixed point are then set up directly
without the need to invoke a succession of transformation functions.

wht
can

gEO
lati

Qr

wh

Tw

By

tie

5.3 Section 5-3

CLMPOSITE TRANSFORMATIONS Composite Transformations

with the matrix representations of the previous section, we can set up a matrix
for any sequence of transformations as a composite transformation matrix by
calculating the matrix product of the individual transformations. Forming prod-
ucts of transformation matrices is often referred to as a concatenation, or compo-
sition, of matrices. For column-matrix representation of coordinate positions, we
form composite transformations by multiplying matrices in order from right to
left. That is, each successive transformation matrix premultiplies the product of
the preceding transformation matrices.

Translations

[f two successive translation vectors (t,,, t,)) and (ty, ty,) are applied to a coordi-
nate position P, the final transformed location P' is calculated as

P = Tltyg, t) + {T(ty, t,) - P}
= 1Tt t) - Tty 4,0) - P

(5-23)

where P and P' are represented as homogeneous-coordinate column vectors, We
can verify this result by calculating the matrix product for the two associative

groupings. Also, the composite transformation matrix for this sequence of trans-
lations is

T{tx?.f tyz)) T(‘fr]r fyl) = T(t:c] + fo; tyI + fyz) {5'25)

which demonstrates that two successive translations are additive.

Rotations

Two successive rotations applied to point P produce the transformed position

P' = R(4,) - {R(G) - P}
= (R(6;) - R(8,)} - P (5-26)

By multiplying the two rotation matrices, we can verify that two successive rota-
tions are additive:

R(8) - R{6;) = R(8, + 8, (5-27}

S0 that the final rotated coordinates can be calculated with the composite rotation
matrix as

P' = R(6, + 6,) - P (5-28)

Chapter 5

Two-Dimensional Geometric
Transformations

Scatings
Concatenating transformation matrices for two successive scaling operations pro-
duces the following composite scaling matrix:

s, 0 0 s 000 S 7 Bya 0 0
0 s. 0 0 s, 0= 0 g1 52 O
0 0 1 0 0 1 0 0 1
or
55, Syz) "S5, Siﬂ) = 55,1 " 5. Sy 5;;2) 15-30) W

The resulting matrix in this case indicates that successive scaling operations are
multiplicative. That is, if we were to triple the size of an object twice in succes
sion, the final size would be nine times that of the original

General Pivor-Point Rotation

With a graphics package that only provides a rotate function for revolving objects |
about the ccordinate origin, we can generate rotations about any selected pivot 3% §
point (x,, y,) by performing the following sequence of translate~rotate—transiate 3% § r
operations: -

1. Translate the object so that the pivot-point position is moved to the coordi-
nate origin.

2. Rotate the object about the coordinate origin,

3. Translate the object so that the pivot point is returned to its originai posi-4

tion.
This transformation sequence is illustrated in Fig. 5-9. The composite transforma C
2
o
T
{a) (o) ich () 6
Original Position Transtation of Rotation Transiation of '
of Cbject and Obieqt so that about Object so that
Pivat Point Pivot Point Qrigin the Pivot Point
(X, v} lsat ‘ is Returned {
Origin 1o Position
X, v.) P
i€
Figure 5-9 t

A transformation sequence for rotating an object about a specified pivot point using the
rotation matrix R(&) of transformation 5-19.

192

on matrix for this sequence is obtained with the concatenation Section 5-3 iy
Composite Transformations

1 0 x cos 8 —sinf 0 1 0 -—x _5

Loy | fsing coso 0|0 1 -y

0 0 1 0 0 1 c 0 1 g
cosf —sinf® x(i—cosf) +y,sind

=| sinf cos® y{l-cos® — xsin8 (5-31) 4

which can be expressed in the form

T, y) R - T(~x, ~y) = Rz, y,, 0 (5-32)

cept parameters for pivot-point coordinates, as well as the rotation angle, and to

where T(—x,, —y) = T ', y). In general, a rotate function can be set up to ac- !
generate automatically the rotation matrix of Eq. 5-31. r
l

General Fixed-Point Scaling

Figure 5-10 illustrates a transformation sequence to produce scaling with respect i
to a selected fixed position (x;, ¥ using a scaling function that can only scale rela-
tive to the coordinate origin. ‘ ;

1. Translate object so that the fixed point coincides with the coordinate origin.
2. Scale the object with respect to the coordinate origin,
3. Use the inverse translation of step 1 to return the object to its original posi-

. .—aw;u-z-,u.W-.A_-mwwm.m-‘......_u...._;;..-...,,..,.‘J:W,.___,m.ﬂmw._.ﬂm-,mu_.~.:.,-.,H._,__ e o

i tion.
Concatenating the matrices for these three operations produces the required scal-
ing matrix
3 1 0 x s 0 0 10 -x s; 0 x(l-sy)
091 y 0 s, 0O 0 1 =y f={ 0 5, yl=-s) (5-33)
1 0 0 1 0 ¢ 1 0 ¢ 1 0 0 1
T(JCf, yf) . S(Sx, Sy) ! T{ ”‘xf’, '""yf) = S(Xf, yf’ Sy, Sy) (5"'34}

This transformation is automatically generated on systems that provide a scale : ;‘
function that accepts coordinates for the fixed point. ' d

General Scaling Directions

Parameters s, and sy scale objects along the x and y directions. We can scale an ob- :
: ject in other directions by rotating the object to align the desired scaling direc- !
= tions with the coordinate axes before applying the scaling transformation.
Suppose we want to apply scaling factors with values specified by parame-
ters s; and s, in the directions shown in Fig. 5-11. To accomplish the scaling with-

193

!

{a)

Qriginal Position
of Object and
Fixad Point

{ (s v

() {c) {eh)
Transiate Object Scale Object Translate Objact
sa that Fixed Point with Respact 50 that the Fixed Point
{x,, ;) 1s at Origin to Origin Is Returnad to

Pasition {x, v

Figure 3-10

A transformation sequence for scaling an object with respect to a specified fixed position

using the scaling matrix 8(s,, 5,) of transformation 3-21.

5
/ T
\KK

3

Figure 5-11

Scaling parameters s, and
sy are to be applied in
orthogonal directions
defined by the angular
displacement 8,

194

out changing the orientation of the object, we first perform a rotation so that ¢
directions for s; and s, coincide with the x and y axes, respectivelv. Then the sca
ing transformation is applied, followed by an opposite rotation to return poinfs
to their original orientations. The composite matrix resulting from the product f
these three transformations is

1) - Sisy, 300 - R{B)

5, co8° -+ 5, 8in” @ (5, — 5,) cos #sin f

[-]

=] (8;—s)cos fsin g s sin® 6+ 5,c08°8

0 0

(5-3

fu—y

As an example of this scaling transformation, we turn a unit square into 2
parallelogram (Fig. 5-12) by stretching it along the diagonal from (0, O) to (1, 1)
We rotate the diagonal onto the y axis and double its length with the transform
tion parameters 8 = 45%,5; = 1,and 5, = 2. 5

In Eq. 5-35, we assumed that scaling was to be performed relative to the ori
gin, We could take this scaling operation one step further and concatenate the
matrix with translation operators, so that the compesite matrix would include
parameters for the specification of a scaling fixed position. "

Concatenation Properties

Matrix multiplication is associative. For any three matrices, A, B, and C, the ma

trix product A B - C can be performed by first multiplying A and B or by first |
multiplying B and C:

A-B-C={A-B)-C=A-(B-O

L=

Therefore, we can evaluate matrix products using either a left-to-right or a right- ¢
to-left associative grouping.

On the other hand, transformation products may not be commutative: The 2
matrix product A - B is not equal to B+ A, in general. This means that if we wan

1]
1]
f,
Kt
i
.!;
I3
3
.
!
!

{2, 2}

{112, 3/2}

@ n

{312, 1/2)

{0, 0 (1, O x (0, 0} x
{a} (b

Figure 5-12
A square (@) is converted to a parallelogram (b} using the composite
transformation matrix 5-35, with s; = 1,5, = 2, and 8 = 45°,

to translate and rotate an object, we must be careful about the order in which the
composite matrix is evaluated (Fig. 5-13). For some special cases, such as a se-
quence of transformations all of the same kind, the multiplication of transforma-
tion matrices is commutative. As an example, two successive rotations could be
performed in either order and the final position would be the same. This commu-
rative property holds also for two successive translations or two successive scal-
ings. Another commutative pair of operations is rotation and uniform scaling

{5, = 8,)-

General Composite Transformations and Computational Efficiency

A general two-dimensional transformation, representing a combination of trans-
lations, rotations, and scalings, can be expressed as

?

TS TSy trs, X
= s 1Sy 7Sy Y (5-37)
1 0 0 1 1

The four elements rs; are the multiplicative rotation-scaling terms in the transfor-
mation that involve only rotation angles and scaling factors. Elements trs, and
trs, are the translational terms containing combinations of translation distances,
pivot-point and fixed-point coordinates, and rotation angles and scaling parame-
ters. For example, if an object is to be scaled and rotated about its centroid coordi-
nates (x., y.) and then translated, the values for the elements of the composite
transformation matrix are

T(txf ty) . R{xc, Yer 9) ’ S(Ic, Yer Sau Sy)

s,cos 8 —s,sind x(l —s,cos & + y.5,5in 6+ ¢,
5, sin 8 s,c08 6y {1l —s,cos 8) — x5, sin 6+ 4, {5-38)

Q 9 1

 Although matrix equation 5-37 requires nine multiplications and six addi-
tions, the explicit calculations for the transformed coordinates are

Section 53-3

Composite Transformations

195

g i b i

Chapter 5

Two-Dimensionat Georetric
Transformations

Final
Position

Fiyure 5-13

Reversing the order in which a sequence of transformations is
performed may affect the transformed position of an object. In (a), an
object is first translated, then rotated. In (b}, the object is rotated first,
then translated.

X' XSt Y Sy, T IEs,, Y= xes, vy s, botrs,

Thus, we actually only need to perform four multiplications and four add1t1ons
to transform coordinate positions. This is the maximum number of Lomput”zuons
required for any transformation sequence, once the individual matrices have
been concatenated and the elements of the composite matrix evaluated. Without
concatenation, the individual transformations would be applied one at a time
and the nwmber of calculations could be significantly increased. An efficient im-
plementation for the transformation operations, therefore, is to formulate trans-
formation matrices, concatenate any transformation sequence, and calculate
transformed coordinates using Eq. 5-39. On parallel systems, direct matrix multi-
plications with the composite transformatzon matrix of Eq. 5-37 can be equally efﬁ
ficient.

A general rigid-body transformation matrix, involving only translations
and rotations, can be expressed in the form

’P‘CT r.‘(!/‘ h‘.t‘
Fee Ty tr 4
0 0 1

where the four elements r; are the multiplicative rotation terms, and elements try
and fr, are the translalional terms. A rigid-body change in coordinate position is’
also sometimes referred to as a rigid-motion transformation. All angles and dis-’
tances between coordinate positions are unchanged by the transformation. In ad-
dition, matrix 5-40 has the property that its upper-left 2-by-2 submatrix is an o
thogonal matrix. This means that if we consider each row of the submatrix as a
vector, then the two vectors {ry, r,) and {(r,,, r,)) form an orthogonal set of unit
vectors: Each vector has unit length ‘

P T 7R = R b, =1 (5-41)

and the vectors are perpendicular (their dot product is 0):

Frx yr + rtyrmi =0

Therefore, if these unit vectors are transformed by the rotation submatrix, (ry,, ty) Section 5-3 ‘
is converted to a unit vector along the x axis and (r,, r,,) is transformed into a Comgosite Transformations i
unit vector along the y axis of the coordinate system:

Tee Ty O Fox 1 ;
T T O] {ry =10 (5-43)
0 0 1 1 1 :
T Tny O yx 0 ‘
P Ty O]l r, {=11 (5-44) 0
g o0 ¢ 1 1L 1] mld i

As an example, the following rigid-body transformation first rotates an object
through an angle # about a pivot point (x,, ¥, and then transiates:

Tit, t) - Rix, v, & ;
cos 8 ~sind x(l—cos 8+ ysind+ i

=1 sin 4§ cos f y(l —cos8) —xsind+t, {5-45) i
0 0 1

Here, orthogonal unit vectors in the upper-left 2-by-2 submatrix are (cos 8,
~sin #) and (sin §, cos 8), and

cos . —sinfd 0 cos ¢ 1
sin® cosf O -] -sing =10 (5-46) ‘;
0 o 1 1 1]

Similarly, unit vector (sin 6, cos 9) is converted by the transformation matrix in
Eq. 5-46 to the unit vector (0, 1) in the v direction.

The orthogonal property of rotation matrices is useful for constructing a ro- i
tation matrix when we know the final orientation of an object rather than the *
amount of angular rotation necessary to put the object into that position. Direc-
tions for the desired orientation of an object could be determined by the align-
ment of certain objects in a scene or by selected positions in the scene. Figure 5-14
shows an object that is to be aligned with the unit diréction vectors u' and v'. As-
suming that the original object orientation, as shown in Fig. 5-14(a), is aligned !
with the coordinate axes, we construct the desired transformation by assigning {
the elements of u' to the first row of the rotation matrix and the elements of v' to
the second row. This can be a convenient method for obtaining the transforma-
ffon matrix for rotation within a local {or “object”) coordinate system when we
know the final orientation vectors. A similar transformation is the conversion of
obiect descriptions from one coordinate system to another, and in Section 3-3, we |
consider how to set up transformations to accomplish this coordinate conversion.

Since rotation calculations require trignometric evaluations and several
Muitiplications for each transformed point, computational efficiency can become
an important consideration in rotation transformations. In animations and other
applications that involve many repeated transformations and small rotation an-
gles, we can use approximations and iterative calculations to reduce computa-

197

Chapter 3

Twa-limensiondl Geomatric
Translormations

198

{a) (i

Figure 53-14

The rotalion matrix for revalving an object from position {a) to position
{b) can be constructed with the values of the unit orientation vectors u'
and v' relative to the original orientation.

tions in the composite transformation equations. When the rotation angle is.
small, the trigonometric functions can be replaced with approximation values |
based on the first few terms of their power-series expansions. For small enough
angles (less than 10°), cos 8 is approximately 1 and sin # has a value very close ko
the value of 8 in radians. If we are rotating in small angular steps about the ori-
gin, for instance, we can set <os #ro 1 and reduce transformation calculations at;
each step to two multiplications and two additions for each set of coordinates to
be rotated:

x'=x-—ysind, y'=xsnd+y (-7}

where sin 4 is evaluated once for all steps, assuming the rotation angle does not
change. The error introduced by this approximation at each step decreases as the.
rotation angle decreases. But even with small rotation angles, the accumulated
error over many steps can become quite large. We can control the accumulated
error by estimating the error in x’ and y” at each step and resetting object post :
tions when the error accumulation becomes too great.

Composite transformations often involve inverse matrix calculations, Trans-
formation sequences for general scaling directions and for retlections and shears
{Section 5-4), for example, can be described with inverse rotation components. As
we have noted, the inverse matrix representations for the basic geometric trans-
formations can be generated with simple procedures. An inverse translation ma-
trix is obtained by changing the signs of the translation distances, and an inverse
rotation matrix is obtained by performing a matrix transpose (or changing the
sign of the sine terms). These operations are much simpler than direct inverse
matrix calculations.

An implementation of composite transformations is given in the following
procedure. Matrix M is initialized to the identity matrix. As each individual
transformation is specified, it is concatenated with the total transformation ma-
trix M., When all transformations have been specified, this composite transforma-
tion is applied to a given object. For this example, a polygon is scaled and rotated
about a given reference point. Then the object is translated. Figure 5-15 shows the
original and final positions of the polygon transformed by this sequence.

T e —

i
%

ST Al A wm <o

oo AR

q y
200+ 200+ "“@
150+ 1864
ref pt 1 . ref ot

196+ 7« (100, 100) 100 refp
504 50—

et S E——

50 100 150 200 X 50 100 150 200 X

{a)

=1

Figure 5-15

A polygon (a) is transformed into
{b) by the composite operations in
the following procedure.

Section 5-3

Composite Transformations

$¢include <math.n>
tinclude "graphics.h"

typedel float Matrix3x3{3][3]
Matrix3xl theMatrix;

’

void matrix3x35&t£d@ntity (Matrix3ix3 m)
{
int i,3;

for (i=0; i<3;
H

i++} for (3=0; j§<3;

/* Multiplies matrix a times b, putting resulc in b */
void matrixdxdPreMultiply (Matrix3x3 a, Matrix3dx3 b)
{

int r,c;

Matrixix3 tmp;

for (r = 0; r <
for {¢ = 0; ¢
tmp(rlie] =

alrlf0]*bi0]lc] + alrl{l1*bllllc] + alrl{2]*b(2]ic];

3; r+ae)
< 3; cr+)

for (r = 0. <
for (¢ =z 0; ¢
birl{c] = tmp[

I

+]}
S+)
cl;

’

| vold translatel (int tx, int ty}
{

Matrix3xd m;

matrix3x3Setidentity (m);
m[0][2] = &x:
m{1i12] = ty:

Matrix3IxdPreMuleiply (m, theMabrix):

J++) m{i}{3d] = {1 == §);

199

gigure 5-22 shows the original and final positions for an object transformed with ~ Section 5-4

this reflection matrix. Other Transformations
Reflections about any line y = mx + b in the xy plane can be accomplished

with a combination of translate-rotate-reflect transformations. In general, we first

ianslate the line so that it passes through the origin. Then we can rotate the line N

onto one of the coordinate axes and reflect about that axis. Finally, we restore the '

line fo its original position with the inverse rotation and translation transforma-

fgons.

We can implement reflections with respect to the coordinate axes or coordi- \
nate origin as scaling transformations with negative scaling factors. Also, ele-
ments of the reflection matrix can be set to values other than =1, Values whose
magnitudes are greater than 1 shift the mirror image farther from the reflection ta)
axis, and values with magnitudes less than 1 bring the mirror image closer to the
reflection axis.

\
|
| |

S U

A transformation that distorts the shape of an object such that the transformed r
shape appears as if the object were composed of internal layers that had been !
caused to slide over each other is called a shear. Two common shearing transfor- !
mations are those that shift coordinate x values and those that shift y values.

An x-direction shear relative to the x axis is produced with the transtorma-
tion mMatrix

a-

()

which transforms coordinate positions as s |

x'=mxt+shoy, =y (5-54) {c)

Any real number can be assigned to the shear parameter sh,. A coordinate posi- Figure 5-21
tion {x, y) is then shifted horizontally by an amount proportional to its distance (y Se.quen ce of transformations
value) from the x axis (y = 0). Setting sk, to 2, for example, changes the squarein produce reflection about

, Fig. 5-23 into a parallelogram. Negative values for si, shift coordinate positions theliney = x: (a) clockwise
i to the left. rotation of 45°, (b) reflection
] We can generate x-direction shears relative to other reference lines with about the x axis, and ()

: counterclockwise rotation

1 sh, =sh, Y by 45°.

0 1 0 {5-53)
0 0 1

with coordinate positions transformed as
x"=x+shiy — Y. ¥y =y {5-58)

An example of this shearing transformation is given in Fig. 5-24 for a shear para-
meter value of 1/2 relative to the line y = —1.

Reflacted
Position

1 3
Lammmmm -1
N i
e ;
Original \'\\ i
Position g
y=-x

Figurg 3-22

Reflection with respect to the

liney = —x

204

2, 1 3,1}

Figure 5-23
A unit square (a) is converted toa paralielogram (b using the x-
direction shear matrix 5-33 with sk, = 2.

A y~direction shear relative to the line ¥ = Yo 18 generated with the trang
formation matrix

10 0
shy b —=sh oy,
g 0 1

which generates transformed coordinate positions

= ¥ = SIAY =~ X) + y
This transformation shifts a coordinate position vertically by an amount propo
tional to its distance from the reference line x = Yoo Figure 5-25 illustrates the
conversion of a square into a parallelogram with shy=1/2and x, = 1.

Shearing operations can be expressed as sequences of basic transformation
The x-direction shear matrix 5-33, for example, can be written as 4 composife
fransformation involving a series of rotation and scaling matrices that would
scale the unit square of Fig. 5-23 along its diagonal, while maintaining the origi-
nal lengths and orientations of edges parallet fo the x axis. Shifts in the positions
of objects relative to shearing reference lines are equivalent to translations.

X {12, 0)

(32,00 X

yrel‘z_‘gl?w
|

{a} [}

Figure 53-24
A unit square (&) is transformed to a shifted parallelogram (b}
with sl = 1/2 and y, = —1 in the shear matrix 3-33.

Section 5-5

Transformations between
Coordinate Systems

Figure 5-25 '
A unit square (a) is turned into a shifted parailelogram {b) with
parameter values s, = 1/2 and x,,; = —1 in the y-direction using

shearing transformation 5-57.

5-5
TRANSFORMATIONS BETWEEN COORDINATE SYSTEMS

Graphics applications often require the transformation of obiect descriptions
from one coordinate system to another, Sometimes objects are described in non-
Cartesian reference frames that take advantage of object symmetries. Coordinate
descriptions in these systems must then be converted to Cartesian device coordi-
nates for display. Some examples of two-dimensional non-Cartesian systems are
polar coordinates, eiliptical coordinates, and parabolic coordinates. In other
cases, we need to transform between two Cartesian systems. For modeling and
design applications, individual objects may be defined in their own local Carte-
sian references, and the local coordinates must then be transformed to position
the objects within.the joverall scene coordinate system.|A facility management
program for office layouts, for instance, his individual coordinate reference de-
scriptions for chairs and tables and other furniture that can be placed into a floor
plan, with multiple copies of the chairs and other items in different positions. In
other applications, we may simply want to reorient the coordinate reference for
displaying a scene. Relationships between Cartesian reference systems and some
J‘ommon non-Cartesian systems are given in Appendix A. Here, we consider
" transformations between two Cartesian frames of reference.
Figure 5-26 shows two Cartesian systems, with the coordinate origins at (0,
0) and {x, ¥) and with an orientation angle § between the x and x” axes. To trans-
form object descriptions from xy coordinates to x'y’ coordinates, we need to set

up a transformation that superimposes the x'y" axes onto the xy axes. This is
done in two steps:

58}

.

153

L. Translate so that the origin (x,, Yo) of the x'y” system is moved to the origin
of the xy system.

2. Rotate the x” axis onto the x axis,

Translation of the coordinate origin is expressed with the matrix operation

0 ““xO
1 "'yg (5—59)
¢ 1

T(~xy, ~Yo) =

D QO

