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, it is important to locate the edge position with subpixel precision. For instance, in com-

! mercial laser scanners (Chapter 2) an accuracy of about 0.25mm is a common target,

: and half a pixel may correspond to less than 0.5mm. The easiest way to achieve subpixel
resolution is to locate the peak of a parabola interpolating three values in the output of
CANNY_ENHANCER, namely at the edge pixel and at its two neighbours along the
edge normal. Of course, any information available on edge profiles and noise should be
exploited to improve on the parabola method.

4.3 Point Features: Corners

Although the mathematics of edge detection may seem involved, edges can be char-
acterized intuitively in geometric terms: they are the projection of object boundaries,
surface marks, and other interesting elements of a scene. We now give an example of
image features that can be characterized more easily than edges in mathematical terms,
but do not correspond necessarily to any geometric entities of the observed scene. These
features can be interpreted as corners, but not only in the sense of intersections of im-
age lines; they capture corner structures in patterns of intensities. Such features prove
stable across sequences of images, and are therefore interesting to track objects across
sequences (Chapter 8).

How do we detect corner features? Consider the spatial image gradient, [Ex, E y}T
(the subscripts indicate partial differentiation, .., Ex = %—’-x?—). Consider a generic image
point, p, a neighbourhood Q of p, and a matrix, C, defined as
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where the sums are taken over the neighbourhood Q. This matrix characterizes the
structure of the grey levels. How?

The key to the answer is in the eigenvalues of C and their geometric interpretation.
Notice that C is symmetric, and can therefore be diagonalized by a rotation of the
coordinate axes; thus, with no loss of generality, we can think of C as a diagonal matrix:

M 0
C*{O Xz]'

The two eigenvalues, A1 and A, are both nonnegative (why?); let us assume A = A2.
The geometric interpretation of Ay and i, can be understood through a few particular
cases. First, consider a perfectly uniform Q: the image gradient vanishes everywhere, C
becomes the null matrix, and we have Ay =2 = 0. Second, assume that Q contains an
ideal black and white step edge: we have 1o = 0,41 >0, and the eigenvector associated
with A is parallel to the image gradient. Note that C is rank deficient in both cases,
with rank 0 and 1 respectively. Third, assume that Q contains the corner of a black
square against a white background: as there are two principal directions in Q, we
expect A1 > Ay > 0, and the larger the eigenvalues, the stronger (higher contrast) their
corresponding image lines. At this point, you have caught on with the fact that the
eigenvectors encode edge directions, the eigenvalues edge strength. A corner is identified
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(a) (b)
Figure 4.8 Corners found in a 8-bit, synthetic checkerboard image, corrupted by two

realizations of synthetic Gaussian noise of standard deviation 2. The corner is the bottom right
point of each 15 x 15 neighbourhood (highlighted).

by two strong edges; therefore, as k1 > Ay, a corner is a location where the smaller
eigenvalue, iy, is large enough.

Time for examples. Figure 4.8 shows the corners found in a synthetic image of a
checkerboard, with and without additive noise. Figure 4.9 shows the corners found in
the image of a building, and the histogram of the i, values. The shape of this histogram
is rather typical for most natural images. If the image contains uniform regions, or many
almost ideal step edges, the histogram has a second peak at A» = 0. The tail (right) of the
histogram is formed by the points for which A, is large, which are precisely the points
(or, equivalently, the neighbourhoods) we are interested in. Figure 4.10 shows another
example with a road scene.
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Figure 4.9 (a): original image of a building. (b): the 15 x 15 pixel neighbourhoods of some of
the image points for which 4, > 20. (¢): histogram of A, values across the image.
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() (b)
Figure 4.10 (a):image of an outdoor scene. The corner is the bottom right point of each 15 x 15
neighbourhood (highlighted). (b): corners found using a 15 x 15 neighbourhood.

We reiterate that our feature points include high-contrast image corners and T-
junctions generated by the intersection of object contours (as the corners in Figure 4.8),
but also corners of the local intensity pattern not corresponding to obvious scene
features (as some of the corners in Figure 4.10). In general terms, at corners points the
intensity surface has two well-pronounced, distinctive directions, associated to eigenvalues
of C both significantly larger than zero.

We now summarize the procedure for locating this new type of image features.

Algorithm CORNERS

The input is formed by an image, I, and two parameters: the threshold on Ay, 7, and the linear
size of a square window (neighbourhood), say 2N + 1 pixels.

[an

. Compute the image gradient over the entire image /;

™

. For each image point p:

(a) form the matrix C of (4.9) over a 2N + 1) x (2N + 1) neighbourhood Q of p;
(b) compute Xy, the smaller eigenvalue of C;
(¢) if Ay > 7, save the coordinates of p into a list, L.

e

. Sort L in decreasing order of ;.

£

. Scanning the sorted list top to bottom: for each current point, p, delete all points appearing
further on in the list which belong to the neighbourhood of p.

The output is a list of feature points for which A; > v and whose neighbourhoods do not
overlap.
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Algorithm CORNERS has two main parameters: the threshold, v, and the size of
the neighbourhood, (2N + 1). The threshold, 7, can be estimated from the histogram
of A (Exercise 4.6), as the latter has often an obvious valley near zero (Figure 4.9).

&  Notice that such valley is not always present (Exercise 4.7).

Unfortunately, there is no simple criterion for the estimation of the optimal size of the
neighbourhood. Experience indicates that choices of N between 2 and 10 are adequate
in most practical cases.

1= Inthe case of corner points, the value of N is linked to the location of the corner within the
neighbourhood. As you can see from Figure 4.9, for relatively large values of N the corner
tends to move away from the neighbourhood center (see Exercise 4.8 for a quantitative
analysis of this effect).

4.4 Surface Extraction from Range Images

Many 3-D objects, especially man-made, can be conveniently described in terms of the
shape and position of the surfaces they are made of. For instance, you can describe a
cone as an object formed by two surface patches, one conical and one planar, the latter
perpendicular to the axis of the former. Surface-based descriptions are used for object
classification, pose estimation, and reverse engineering, and are ubiquitous in computer
graphics.

As we have seen in Chapter 2, range images are basically a sampled version of the
visible surfaces in the scene. Therefore, ignoring the distortions introduced by sensor
imperfections, the shape of the image surface® and the shape of the visible scene surfaces
are the same, and any geometric property holding for one holds for the other too. This
section presents a well-known method to find patches of various shapes composing the
visible surface of an object. The method, called HK segmentation, partitions a range
image into regions of homogeneous shape, called homogeneous surface patches, or just
surface patches for short.® The method is based on differential geometry; Appendix,
section A.5 gives a short summary of the basic concepts necessary.

w  The solution to several computer vision problems involving 3-D object models are simpler
when using 3-D features than 2-D features, as image formation must be taken into account
for the latter.

“That is, the image values regarded as a surface defined on the image plane.

10Notice that surface patches are the basic ingredients for building a surface-based CAD model of an object
automatically.



