MATRIX ALGEBRA REVIEW
(

PRELIMINARIES
A matrix isaway of organizing information.

It isarectangular array of elements arranged in rows and columns. For example, the following matrix
A has m rows and n columns.

&y &, &3 . Ay
& Gy Ay .. Ay,
A=la, @, a5 - &,

a'ml am2 am3 T amn

All elements can be identified by atypica element &, where i=1,2,...,m denotes rows and j=1,2,...,n
denotes columns.

A matrix is of order (or dimension) m by n (also denoted as (m x n)).
A matrix that has a single column is called a column vector.
A matrix that has asingle row is called arow vector.

TRANSPOSE
Thetranspose of amatrix or vector is formed by interchanging the rows and the columns. A matrix of
order (m x n) becomes of order (n x m) when transposed.

For example, if a (2 x 3) matrix is defined by

A:[au a, als]

& Gy 8y

Then the transpose of A, denoted by A’, isnow (3 X 2)
all aZl

A= A,
a13 a23

[} (A’)’ = A

e (kA =KA", wherek isascalar.



SYMMETRIC M ATRIX
When A = A, the matrix is called symmetric. That is, a symmetric matrix is a square matrix, in that it
has the same number of rows as it has columns, and the off-diagonal elements are symmetric (i.e.

a;=a; foraliand j).

For example,
4 5 -3
A=|5 7 2
-3 2 10

A special caseisthe identity matrix, which has 1's on the diagona positions and O’'s on the off-
diagonal positions.

01 - 0
=, .

The identity matrix is a diagonal matrix, which can be denoted by diag(a,,a,,...,a,) , where a, isthe
i element on the diagonal position and zeros occur elsewhere. So, we can write the identity matrix as

| =diag(11,...]) .

ADDITION AND SUBTRACTION

Matrices can be added and subtracted as long as they are of the same dimension. The addition of
matrix A and matrix B is the addition of the corresponding elementsof A and B. So, C=A+B
impliesthat ¢; =a; +b, foralliandj.

ofs 4

For example, if
2 —
A=
[6 10]
Then

2 3
C=
n
e AXrB=BX A

e (A+B)+C=A+(B+C)
e (AtB/=A+B



M ULTIPLICATION
If kisascalar and A isamatrix, then the product of k times A is called scalar multiplication. The
product isk times each element of A. That is, if B=KA, then b, =kg; for al i andj.

In the case of multiplying two matrices, such as C = AB, where neither A nor B are scalars, it must be
the case that

the number of columns of A =the number of rows of B

So, if A isof dimension (m x p) and B of dimension (p x n), then the product, C, will be of order (m x
n) whose ij'" element is defined as

p
G = Zaikbkj
k=1

In words, the ij™" element of the product matrix is found by multiplying the elements of the it row of A,
the first matrix, by the corresponding elements of the j column of B, the second matrix, and summing
the resulting product. For thisto hold, the number of columns in the first matrix must equal the
number of rows in the second.

For example,

(6 8][3 -8 1
F=AD=
-2 4]9 2 5

[ 6%3+8*9  6*(-8)+8*2  6*1+8*5
|(-2)*3+4%9 (-2)*(-8)+4*2 (-2)*1+4*5

(90 -32 46
30 24 18

e A (mx 1) column vector multiplied by a (1 x n) row vector becomes an (m x n) matrix.
e A (1xm)row vector multiplied by a (m x 1) column vector becomes a scalar.
e Ingenerd, AB# BA.

But, kA= Ak if kisascalar and A is a matrix.
And, Al =1A if A isamatrix and | isthe identity matrix and conformable for multiplication.

The product of arow vector and a column vector of the same dimension is called the inner product
(also called the dot product), its value is the sum of products of the components of the vectors. For
example, if jisa (T x 1) vector with elements 1, then the inner product, j’j, is equal to a constant T.

Note: two vectors are orthogonal if their inner product is zero.

e AB+C)=AB+AC.
e (A+B)C=AC+BC.



e ABC)=(AB)C.
A matrix with e ements al zero is caled a null matrix.

e (AB)=BA.
e (ABC)Y=CBA.

TRACE OF A SQUARE M ATRIX
Thetrace of a square matrix A, denoted by tr(A), is defined to be the sum of its diagona elements.

tr(A)=a,+a,,+a,+..+a,,

o tr(A=A,ifAisasclar.

e tr(A)=tr(A), because A is square.

o tr(kA=k-tr(A), wherek isascadar.

e tr(l,)=n, thetrace of an identity matrix is its dimension.
e tr(A£B)=tr(A=tr(B).

e tr(AB)=tr(BA).

o tr(AA)=tr(A'A = iiaﬁ .

i=1 j=1

DETERMINANT OF A SQUARE M ATRIX
The determinant of a square matrix A, denoted by det(A) or W , Isauniquely defined scalar number

associated with the matrix.

1) for asingle element matrix (ascalar, A=a ), det(A) = a,;.

i) inthe (2 x 2) case,
A:[an alz}
&
the determinant is defined to be the difference of two terms as follows,

|A4 =ay,8y, —a;,a,,

which is obtained by multiplying the two elements in the principal diagonal of A and then subtracting
the product of the two off-diagonal elements.

i) inthe (3 x 3) case,



a; 8, a

A= a, d, ay
a3 83 Qg
a22 a23 aZl a23 a21 a22
=3 -3 +a,
A B P T e VO T e R

iv) for general cases, we start first by defining the minor of element &; asthe determinant of the
submatrix of A that arises when the i row and the j" column are deleted and is usually denoted as
|A,j|. The cofactor of the element a; is ¢; = (-1)**! A,j|. Finaly, the determinant of an n x n matrix

]
can be defined as

|A= iaﬂcij for any rowi=12,...,n.
j=1

=Y a,c; forany column j=12,...,n.
i=1

|AT=[A
a kc |ka c a ¢
b kd |kb d b d

o |kA=K"|A, for scalar k and n x n matrix A.
e If any row (or column) of a matrix is amultiple of any other row (or column) then the determinant

is zero, e.g.

k
& kP Y=k@b-ab)=0
b k b b

e If Aisadiagonal matrix of order n, then |A=a,a,, -a

nn

e If A and B are square matrices of the same order, then |AB|=|A|B|.
e Ingenerd, |A+B|=|A+|B|

RANK OF A M ATRIX AND L INEAR D EPENDENCY

Rank and linear dependency are key concepts for econometrics. The rank of any (m x n) matrix can be
defined (i.e., the matrix does not need to be square, as was the case for the determinant and trace) and
isinherently linked to the invertibility of the matrix.

The rank of amatrix A is egual to the dimension of the largest square submatrix of A that has a
nonzero determinant. A matrix is said to be of rank r if and only if it has at |east one submatrix of
order r with a nonzero determinant but has no submatrices of order greater than r with nonzero
determinants.

For example, the matrix



4 5 2 14
3 9 6 21
A=
8 10 7 28
1 2 9 5
4 5 2
has rank 3 because |[A=0,but 3 9 6=63=0
8 10 7

That is, the largest submatrix of A whose determinant is not zero is of order 3.

The concept of rank also can be viewed in terms of linear dependency. A set of vectorsis said to be
linearly dependent if there is a nontrivial combination (i.e., a least one coefficient in the combination
must be nonzero) of the vectors that is equal to the zero vector. More precisely, denote n columns of
the matrix A as a,,a,,...,a,. Thisset of these vectorsislinearly dependent if and only if there exists

aset of scaars {c,c,,...,C.}, a least one of which is not zero, such that ca, +C,a, +...+C,a, =0.

In the above example, the columns of the matrix A are linearly dependent because,

4 5 2 14
3 6 21
+2 + - =0
8 10 7 28
1 2 9 5

If aset of vectorsis not linearly dependent, then it is linearly independent. Also, any subset of a
linearly independent set of vectors is linearly independent.

In the above example, the first three columns of A are linearly independent, as are the first two
columns of A. That is, we cannot find a set of scalars (with at least one nonzero) such that the linear
combination of scalars and columns equals the zero vector.

The connection between linear dependency and the rank of a matrix isasfollows: therank of a
matrix A may be defined as the maximum number of linearly independent columns or rows of A.

In other words, the maximum number of linearly independent columns is equal to the maximum
number of linearly independent rows, each being equal to the rank of the matrix. If the maximum
number of linearly independent columns (or rows) is equal to the number of columns, then the matrix
has full column rank. Additionaly, if the maximum number of linearly independent rows (or
columns) is equal to the number of rows, then the matrix has full row rank. When a square matrix A
does not have full column/row rank, then its determinant is zero and the matrix is said to be singular.
When a sguare matrix A has full row/column rank, its determinant is not zero, and the matrix is said to
be nonsingular (and therefore invertible).

e Full rank (nonsingular matrix) < |A|#20 < Aisinvertible.



Furthermore, the maximum number of linearly independent (m x 1) vectorsism. For example,
consider the following set of two linearly independent vectors,

A

If there is a third vector,

N

where b, and b, can be any numbers, then the three unknown scalars c,,c,, and c, can always be
found by solving the following set of equations,

1 3 b, 0
c| _|+¢,| |+c, =| 1.

2 4 b, 0
In other words, the addition of any third vector will result in a (2 x 3) matrix that is not of full rank and
therefore not invertible.

Generally speaking, thisis because any set of m linearly independent (m x 1) vectors are said to span
m-dimensional space. This means, by definition, that any (m x 1) vector can be represented as alinear
combination of the m vectors that span the space. The set of m vectors therefore is also said to form a
basis for m-dimensional space.

rank(l,)=n

rank(kA =rank(A), where k is a nonzero constant

e rank(A)=rank(A)

e If Alisan (m x n) matrix, then rank(A) <min{m,n} .

e If A and B are matrices, then rank(AB) < min{rank(A),rank(B)} .

e If Alisan (nxn) matrix, then rank(A)=n if and only if A isnonsingular; rank(A) <n if and
only if A issingular.

There are operations on the rows/columns of a matrix that leave its rank unchanged:

e Multiplication of arow/column of a matrix by a nonzero constant.
e Addition of ascalar multiple of one row/column to another row/column.
e |Interchanging two rows/columns.

INVERSE OF A M ATRIX
The inverse of a nonsingular (n x n) matrix A is another (n x n) matrix, denoted by A%, that satisfies
the following equaities. A*A= AA™ = | . Theinverse of anonsingular (n x n) matrix is unique.

The inverse of amatrix A in terms of its elements can be obtained from the following formula:
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<

A

Note that C' is the transpose of the matrix of cofactors of A as defined in the section on determinants.
C isaso cdled the adjoint of A.

e Al-= whereC’ = [Cij ], and C, = (_1)”]

Al

For example, let

)

det(A) = -2 and the cofactorsare ¢, =4, c,, =1,¢,,=-3,C,, =—2. S0, theinverse is calculated as,

A—lzi[ 4 —3] :[—2 1 }

-2[-2 1 15 -05

o |1=|

° (A—l)—l — A

o (A)T=(AYY

e If Aisnonsingular, then A™ is nonsingular.

e If A and B arenonsingular, then (AB) ' =B 'A™".

SOLUTIONSFOR SYSTEMSOF SIMULTANEOUSL INEAR EQUATIONS
Consider the following system of linear equations. Ax=bwhere A isa(m x n) matrix of known
coefficients, x isa (n x 1) vector of unknown variables, and b isa (m x 1) vector of known coefficients.

We want to find the conditions under which: 1) the system has no solution, 2) the system has infinitely
many solutions, 3) the system has a unique solution. Define the matrix Alb as the augmented matrix of
A. Thisisjust the matrix A with the b vector attached on the end. The dimension of Alb is therefore
(m x (n+1)).

Succinctly put, the conditions for the three types of solutions are as follows. (Note: there are numerous
ways of characterizing the solutions, but we will stick to the simplest representation):

1. The system has no solution if rank(A|b) > rank(A).
2. The system has infinitely many solutions if rank(A|b) = rank(A) and rank(A) < n.
3. The system has a unique solution if rank(A|b) = rank(A) and rank(A) = n.

Let’slook at examples for each case.
Case 1. No Solution

Intuition: if rank(A|b) > rank(A), then b is not in the space spanned by A; so b cannot be represented as
alinear combination of A; so thereis no x that solves (Ax = b); so there is no solution.




Consider the system,

2 3][x] [8 o 2x, +3x,=8
4 6][x,| |9 4%, +6x, =9

23 0 sngular
=0 =
4 6 e
(2 3
rank =1
_4 6]
(2 3 8
rank =2 = rank(A|b)>rank(A)
4 6 9

If we attempt to solve for x; in the first equation and substitute the result into the second equation, the
resulting equality is 16= 9, which is a contradiction.

Case 2: Infinitely Many Solutions

Intuition: if rank(Alb) = rank(A), then b isin the space spanned by A; so b can be represented as a
linear combination of A; so there exists an x that solves (Ax = b). But because rank(A) < n, there are
more variables than equations. This gives us “free variables’ and therefore multiple solutions, one
associated with each choice of values for the free variables.

Consider the following system of equations

2 4 8 2% +4x, =38

3 6[)):1}: 12 or 3x +6x,=12
4 8|-* |16 4x +8x, =16
(2 4
rank|3 6|=1
|4 8
(2 4 8
rank|3 6 12|=1
|4 8 16

In this case, rank(A|b) = rank(A), but the rank is less than the number of unknown variables (n). Also
notice that each equation is just some linear combination of the other two, so we really have only one
equation and two unknowns. There are infinitely many solutions that can solve this system, including
(40,21, (02



Case 3:_Unique Solution

Intuition: if rank(Alb) = rank(A), then b isin the space spanned by A; so b can be represented as a
linear combination of A; so there exists an x that solves (Ax = b). Because rank(A) = n, there are equal
numbers of variables and equations. This gives us no “free variables’ and therefore a single solution.

Consider the following system,

2 3 7 2% +3X, =7
3 s[xl}: 11 or  3x +5x, =11
X
4 6|-% |14 4x, +6x, =14
[2 3
rank|3 5|=2
|4 6
(2 3 7 2 3 7 )
rank|3 5 11|=2 because (3 5 11=0 and ‘3 jzlio
|4 6 14 4 6 1

So, rank(A|b) =rank(A) =2=n<m. Thereis full column rank, and the system can be uniquely
solved. In fact, any two independent equations can be used to solve for the x’s. The solution is
X, =2, X, =1L

In econometrics, we often deal with square matrices, so the following is important for us.
e If Aisasquarematrix (m = n) and nonsingular, then x= A isthe unique solution.
KRONECKER PRODUCT

Let A bean (M x N) matrix and B be a (K x L) matrix. Then the Kronecker product (or direct
product) of A and B, written as A® B, isdefined as the (MK x NL) matrix

ailB alZB aiNB
a21B azzB aZNB

C=A®B=
aMlB aMZB aMNB
For example if
1 3 2 20
A= and B=
2 0 1 0 3
Their Kronecker product is
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1[220}3{220]
10 3 1 0 3
A®B_220 2 20
1 0 3 1 0 3
2 206 60
|1 033009
14 4 0000
2 06 000
Note that
26 2600
4 0 4000
B®A=
1300309
2 00060

e A®B#B®A,

e (A®B)=A®PB

e (A®B)(C®D)=AC®BD
e (A®B)'=A'®B™

e A®(B+C)=A®B+A®C

VECTORAND M ATRIX DIFFERENTIATION
In least squares and maximum likelihood estimation, we need to take derivatives of the objective
function with respect to a vector of parameters.

Let afunction relating y, ascalar, to a set of variables x,X,,..., X, be y=f(x,X,,...,X,) or
y = f(x), wherex isan (n x 1) column vector. (Notice that x isin bold to indicate a vector.)

The gradient of y is the derivatives of y with respect to each element of x as follows

Yo
o _| Vs
ox :

ay
X

n

Notice the matrix of derivatives of y is a column vector becausey is differentiated with respect to x, an
(n x 1) column vector.

The same operations can be extended to derivatives of an (m x n) matrix X, such as

11



” OXq1 a%xlz o %Xm
ﬂ — %le a%Xzz o %m

oX .
a%Xrnl a%me o a%Xn'n
Notice in this case, the matrix of derivativesisan (m x n) matrix (the same dimension as X).

If, instead, y isan (m x 1) column vector of y.,i =12,...,m and x isa(n x 1) column vector of
X;, j =12,...,n, then the first derivatives of y with respect to x can be represented as an (m x n)
matrix, called the Jacobian matrix of y with respect to x’:

Vo o o
ay:[al]: W Ve WA

ox” | ox : : .

J
Aside: when differentiating vectors and matrices, note the dimensions of the independent variable (y)
and the dependent variables (x). These will determine if the differentiation will entail the transpose of
amatrix. Inthe above example, the first column of the resulting (m x n) matrix is the derivative of the
vector of y,,i =1,2,...,m with respect to the first x,. The second column is the derivative with respect

to x, and so on. Also note that the first row isthe derivative of 'y, with respect to the vector x” (a (1 x
n) row vector). Therefore because x is a column vector, we need to transpose it to represent the
derivative of the m observations of y (down the column) with respect to the n unknown x variables
(across the row). They vector does not need to be transposed because y is represented aong the
column of the resulting Jacobian matrix.

If we turn back to the scalar case of y, the second derivatives of y with respect to the column vector x
are defined as follows.

[ 2%y 9%y LY ]
o 9%y 0%,

2 2 azy 2%y . azy

9%y :[ o7y :l_ o Jowg? x%,

y . .
oxox : ‘. :
2%y 2%y Ly
0X,0% OX 9%, axn2

This matrix is symmetric and is called the Hessian matrix of y.

X, 0X;

Note that the Hessian matrix is just the second derivative of the gradient with respect to the x vector.
We need to transpose the x vector when taking the second derivative because for the Hessian, we are
taking the derivative of the gradient (a vector) with respect to each x variable. So, the first columnis

the gradient differentiated with respect to x,, and the second column is the gradient differentiated with
respect to x, and so on. So, we need to differentiate the gradient with respect to X’ to order these
derivatives across the rows of the resulting matrix.

12



Based on the previous definitions, the rules of derivatives in matrix notation can be established for
reference. Consider the following function z=c'x, wherecisa(n x 1) vector and does not depend on
X, and x isan (n x 1) vector, and z isa scaar. Then

ox  Ox

Tou| |G
9z _acx || _|Ca

= : =C
a%xn Cn

If z=C%, where Cisan (nxn) matrix and x is an (n x 1) vector, then

07" dxC
= = (Cl

.. -C
ox ox < Cn)

where ¢, isthe i column (remember c is a vector) of C.

The following formula for the quadratic form z=x'Ax isaso useful (for any (n x n) matrix A),

% _ OX'AX
X Ox

= A'X+ Ax=(A"+ A)x. The proof of this result is given in the appendix.

If A isasymmetric matrix (A = A’), then

OX'AX

2AX
ox

For the second derivatives for any square matrix A,

0% (X’AX)

— = A+ A’
Ox0X

and if A = A’ (if A issymmetric), then

0% (X’AX)
oxox’

=2A

Some other rules (x is a scalar, unless noted otherwise):

ox'By
oB

otr(A)
oA

=xy’, wherex and y are (n x 1) column vectors and B is an (n x n) matrix

13



IA |t
* oA AR

8In|A{_ L
" oA W)

0AB 0B J0A
e AT HEB
ox A{&)x] (ax)

° aA_l — A—l % A—l
X oX

Since this review was by no means complete, if you want to learn more about matrix agebra, the
following are good references:
Anton, Howard (1994), Elementary Linear Algebra, 7" edition, New York: John Wiley & Sons.
The math behind it all. Check out chapters 1, 2, 5.6.
Judge, George G., R. Carter Hill, William E. Griffiths, Helmut Lutkepohl, and Tsoung-Chao Lee
(1988), Introduction to the Theory and Practice of Econometrics, 2" Edition, New Y ork: John
Wiley & Sons, Appendix A.
These notes follow the Appendix fairly closaly.
Leon, Steven J. (1994), Linear Algebra with Applications, 4™ edition, New Jersey: Prentice Hall.

Simon, Carl P. and Lawrence Blume (1994), Mathematics for Economists New York: W.W. Norton.

Look at chapters6—9, & 26.
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APPENDIX

Clam: %z = IXAX = A'X+ Ax=(A"+ A)X
ox ox

Proof:

Write out the quadratic form for an (n x n) matrix A,

A, &, - A, X

a a cee a2 X
’ 21 22 n 2
z=XAX=[x X, x0T
anl a'n2 a'nn Xn
X
- ]
=anX F a0 A%, BpX X T T X, X X, et A X, ]
X,

= [Xl(allxl+ aZlXZ +"'+anlxn)+ Xz(a12)<1 +a22X2 +"'+an2xn)+'“+ Xn(alnxl+ aZnXZ +"'+ aT1nXﬂ)]

(B B B X (B +800) XX, + (Byg +83) XX + (B 81X X+ (@, + B )X X,
+ (a23 + a32)X2X3 + (a24 + a‘42))(2)(4 Tt (aZn + anZ)XZ Xn Tt (an,n—l + an—l,n )Xn Xn—l

Now differentiate this with respect to the vector x,

2a11X1+(a21+ a12)X2 +(a31+a13)x3 ++(anl+a1n)xn
%: (a12 +a21)xl+2a22x2 +(a32 +a23)x3 ++(an2 +a2n)xn
ox :
(@, + )X +(ag, +a,.)%, + (8, +3,5) % +...+ 28, X,

But this can be rewritten as,

2311 (aZl + a12) (a31 + a13) (a‘nl + a‘.l.n) Xy
E _ (a:I.Z + aZl) 2azz (asz + azs) (anz + a2n) Xz
ox : : : E : :
(a:l.n + a'nl) (aZn + %) (a3n + an3) 2a,, X,

15



or

0z ,
—=A"+A
ox A"+ A)x

If A issymmetric, then a; =a; for al i,j,so

9z _

2A
~ X

Thisaso holdsif n=n +1, o, by induction, the result holds for any (n x n) matrix.
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