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Abstract. Traditional approaches to object detection only look at local
pieces of the image, whether it be within a sliding window or the regions
around an interest point detector. However, such local pieces can be
ambiguous, especially when the object of interest is small, or imaging
conditions are otherwise unfavorable. This ambiguity can be reduced by
using global features of the image — which we call the “gist” of the
scene — as an additional source of evidence. We show that by combining
local and global features, we get significantly improved detection rates.
In addition, since the gist is much cheaper to compute than most local
detectors, we can potentially gain a large increase in speed as well.

1 Introduction

The most common approach to generic1 object detection/ localization is to slide
a window across the image (possibly at multiple scales), and to classify each
such local window as containing the target or background. This approach has
been succesfully used to detect rigid objects such as faces and cars (see e.g.,
[26,24,27,35]), and has even been applied to articulated objects such as pedestri-
ans (see e.g., [20,36]). A natural extension of this approach is to use such sliding
window classifiers to detect object parts, and then to assemble the parts into
a whole object (see e.g., [19,20]). Another popular approach is to extract local
interest points from the image, and then to classify each of the regions around
these points, rather than looking at all possible subwindows (see e.g., [5,11]).

A weakness shared by all of the above approaches is that they can fail when
local image information is insufficient e.g. because the target is very small or
highly occluded. In such cases, looking at parts of the image outside of the
patch to be classified — that is, by using the context of the image as a whole —
can help. This is illustrated in Figure 1.
1 By generic detection, we mean detecting classes (categories) of objects, such as any

car, any face, etc. rather than finding a specific object (class instance), such as a
particular car, or a particular face. For one of the most succesful approaches to the
instance-level detection problem, see [18]. The category-level detection problem is
generally considered harder, because of the need to generalize over intra-class vari-
ation. That is, approaches which memorize idiosyncratic details of an object (such
as particular surface pattern or texture) will not work; rather, succesful techniques
need to focus on generic object properties such as shape.

J. Ponce et al. (Eds.): Toward Category-Level Object Recognition, LNCS 4170, pp. 382–400, 2006.
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Fig. 1. An image blob can be interpreted in many different ways when placed in dif-
ferent contexts. The blobs in the circled regions have identical pixel values (except for
rotation), yet take on different visual appearances depending on their context within
the overall image. (This image is best viewed online.)

An obvious source of context is other objects in the image (see e.g., [10,30],
[31,7,15] for some recent examples of this old idea), but this introduces a chicken-
and-egg situation, where objects are mutually dependent. In this chapter, we
consider using global features of the image — which we call the “gist” of the
image — as a source of context. There is some psychological evidence [22,3,28]
that people use such global scene factors before analysing the image in detail.

In [23,34], Oliva and Torralba showed how one can use the image gist to
predict the likely location and scale of an object. without running an object
detector. In [21], we showed that combining gist-based priming with standard
object detection techniques based on local image features lead to better accu-
racy, at negligible extra computational cost. This chapter is an extension of [21]:
we provide a more thorough experimental comparison, and demonstrate much
improved performance.2

2 These improvements are due to various changes: first, we use better local features;
second, we prepare the dataset more carefully, fixing labeling errors, ensuring the ob-
jects in the test set are large enough to be detected, etc; finally, we have subsantially
simplified the model, by focusing on single-instance object localization, rather than
pixel labeling i.e., we try to estimate the location of one object, P (X = i), rather
than trying to classify every pixel, P (Ci = 1); thus we replace N binary variables
with one N-ary variable. Note that in this chapter, in order to focus on the key issue
of local vs global features, we do not address the scene categorization problem; we
therefore do not need the graphical model machinery used in [21].
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We consider two closely related tasks: Object-presence detection and object
localization. Object-presence detection means determining if one or more in-
stances of an object class are present (at any location or scale) in an image. This
is sometimes called “image classification”, and can be useful for object-based
image retrieval. Formally we define it as estimating P (O = 1|f(I)), where O = 1
indicates the presence of class O and f(I) is a set of features (either local or
global or both) extracted from the image.

Object localization means finding the location and scale of an object in an im-
age. Formally we define this as estimating P (X = i|f(I)), where i ∈ {1, . . . , N}
is a discretization of the set of possible locations/ scales, so

∑
i P (X = i|·) = 1. If

there are multiple instances of an object class in an image, then P (X|·) may have
multiple modes. We can use non-maximal suppression (with radius r, which is
related to the expected amount of object overlap) to find these, and report back
all detections which are above threshold. However, in this chapter, we restrict
our attention to single instance detection.

Table 1. Some details on the dataset: number of positive (+) and negative (-) images
in the training, validation and testing sets (each of which had 668, 132 and 537 images
respectively). We also show the size of the bounding box which was used for training
the local classifier.

Train + Train - Valid + Valid - Test + Test - Size (hxw)
Screen 247 421 49 84 199 337 30x30

Keyboard 189 479 37 95 153 384 20x66
CarSide 147 521 29 104 119 417 30x80
Person 102 566 20 113 82 454 60x20

For training/testing, we used a subset of the MIT-CSAIL database of objects
and scenes3, which contains about 2000 images of indoor and outdoor scenes,
in which about 30 different kinds of objects have been manually annotated. We
selected images which contain one of the following 4 object classes: computer
screens (front view), keyboards, pedestrians, and cars (side view). (These classes
were chosen because they had enough training data.) We then cropped and scaled
these so that each object’s bounding box had the size indicated in Table 1. The
result is about 668 training images and 537 testing images, most of which are
about 320x240 pixels in size.

The rest of the chapter is structured as follows. In Section 2, we will discuss
our implementation of the standard technique of object detection using sliding
window classifiers applied to local features. In Section 3, we will discuss our
implementation of the ideas in [34] concerning the use of global image features
for object priming. In Section 4, we discuss how we tackle the object presence
detection problem, using local and global features. In Section 5, we discuss how
we tackle the object localization problem, using local and global features. Finally,
in Section 6, we conclude.

3 http://web.mit.edu/torralba/www/database.html
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2 Object Detection Using Local Image Features

The standard approach to object detection is to classify each image patch/ win-
dow as foreground (containing the object) or background. There are two main
decisions to be made: what kind of local features to extract from each patch,
and what kind of classifier to apply to this feature vector. We discuss both of
these issues below.

2.1 Feature Dictionary

Following standard practice, we first convolve each image with a bank of filters
(shown in Figure 2). These filters were chosen by hand, but are similar to what
many other groups have used. After filtering the images, we then extract image
fragments from one of the filtered outputs (chosen at random). The size and
location of these fragments is chosen randomly, but is constrained to lie inside
the annotated bounding box. (This approach is similar to the random intensity
patches used in [37], and the random filtered patches used in [29].) We record
the location from which the fragment was extracted by creating a spatial mask
centered on the object, and placing a blurred delta function at the relative offset
of the fragment. This process is illustrated in Figure 3. We repeate this process
for multiple filters and fragments, thus creating a large (N ∼ 150) dictionary of
features. Thus the i’th dictionary entry consists of a filter, fi, a patch fragment
Pi, and a Gaussian mask gi. We can create a feature vector for every pixel in
the image in parallel as follows:

vi = [(I ∗ fi) ⊗ Pi] ∗ gi

where ∗ represents convolution, ⊗ represents normalized cross-correlation and
vi(x) is the i’th component of the feature vector at pixel x. The intuition behind
this is as follows: the normalized cross-correlation detects places where patch Pi

occurs, and these “vote” for the center of the object using the gi masks (c.f.,
the Hough transform). Note that the D ∼ 10 positive images used to create the
dictionary of features are not used for anything else.

Fig. 2. The bank of 13 filters. From left to right, they are: a delta function, 6 oriented
Gaussian derivatives, a Laplace of Gaussian, a corner detector, and 4 bar detectors.

2.2 Patch Classifier

Popular classifiers for object detection include SVMs [20], neural networks [26],
naive Bayes classifiers [22], boosted decision stumps [26], etc. We use boosted
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Fig. 3. Creating a random dictionary entry consisting of a filter f , patch P and
Gaussian mask g. Dotted blue is the annotated bounding box, dashed green is the
chosen patch. The location of this patch relative to the bounding box is recorded in
the g mask.

decision stumps4, since they have been shown to work well for object detection
[26,17] they are easy to implement, they are fast to train and to apply, and
they perform feature selection, thus resulting in a fairly small and interpretable
classifier.

We used the gentleBoost algorithm [9], because we found that it is more
numerically stable than other confidence-rated variants of boosting; a similar
conclusion was reached in [14].

Our training data for the classifier is created as follows. We compute a bank
of features for each labeled image, and then sample the resulting filter “jets” at
various locations: once near the center of the object (to generate a positive training
example), and at about 20 random locations outside the object’s bounding box
(to generate negative training examples): see Figure 4. We repeat this for each
training image. These feature vectors and labels are then passed to the classifier.

We perform 50 rounds of boosting (this number was chosen by monitoring
performance on the validation set). It takes 3–4 hours to train each classifier
(using about 700 images); the vast majority of this time is spent computing the
feature vectors (in particular, performing the normalized cross correlation).5 The
resulting features which are chosen for one of the classes are shown in Figure 5.
(Each classifier is trained independently.)

Once the classifier is trained, we can apply it to a novel image at multiple
scales, and find the location of the strongest response. This takes about 3 seconds
for an image of size 240x320.

The output of the boosted classifier is a score bi for each patch, that approx-
imates bi ≈ log P (Ci = 1|Ii)/P (Ci = 0|Ii), where Ii are the features extracted
from image patch Ii, and Ci is the label (foreground vs background) of patch
i. In order to combine different information sources, we need to convert the
output of the discriminative classifier into a probability. A standard way to
do this [25] is by taking a sigmoid transform: si = σ(wT [1 bi]) = σ(w1 + w2bi),

4 A decision stump is a weak learner of the form h(v) = aδ(vi > θ)+ b, where vi is the
i’th dimension (feature) of v, θ is a threshold, a is a regression slope and b an offset.

5 All the code is written in matlab, except for normalized cross-correlation, for which
we use OpenCV, which is written in C++.
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Fig. 4. We create positive (X) and negative (O) feature vectors from a training image by
applying the whole dictionary of N = 150 features to the image, and then sampling the
resulting “jet” of responses at various points inside and outside the labeled bounding
box

. . .

1 2 3 M-1 M

Fig. 5. Some of the M = 50 features which were chosen from the dictionary for the
screen classifier. Within each group, there are 3 figures, representing (clockwise from
upper left): the filtered image data; the filter; the location of that feature within the
analysis region.

where the weights w are fit by maximum likelihood on the validation set, so that
si ≈ P (Ci = 1|Ii). This gives us a per-patch probability; we will denote this
vector of local scores computed from image I as L = L(I). Finally we convert
this into a probability distribution over possible object locations by normalizing:
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P (X = i|L) = si/(
∑N

j=1 sj), so that
∑

i P (X = i|L) = 1. (None of these oper-
ations affect the performance curves, since they are monotonic transformations
of the original classifier scores bi, but they will prove useful later.)

2.3 Results

To illustrate performance of our detector, we applied it to a standard dataset of
side views of cars6. In Figure 6, we show the performance of our car detector on
the single scale dataset used in [2] and the multiscale dataset used in [1]. (Note
that the multiscale dataset is much harder, as indicated by the decreased per-
formance of both methods.) This shows that our local features, and our boosted
classifier, provide a high quality baseline, which we will later extend with global
features.
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Fig. 6. Localization performance features on UIUC carSide data. (Left) Single scale.
(Right) Multi scale. Solid blue circles (upper line): our approach based on boosted clas-
sifiers applied to local features; Dashed black circles (lower line): Agarwal’s approach,
based on a different kind of classifier and different local features. See Section 5.1 for an
explanation of precision-recall curves.

3 Object Detection Using Global Image Features

3.1 The Gist of an Image

We compute the gist of an image using the procedure described in [32]. First
we compute a steerable pyramid transformation, using 4 orientations and 2
scales; second we divide the image into a 4x4 grid, and compute the average
energy of each channel in each grid cell, giving us 4 × 2 × 4 × 4 = 128 fea-
tures; finally, we reduce dimensionality by performing PCA, and taking the first
80 dimensions. We will denote the resulting global feature vector derived from
image I by G = G(I). Note that this procedure is similar to the one used in [34],
except in that chapter, Torralba used Gabor filters instead of steerable pyramids.
6 http://l2r.cs.uiuc.edu/∼cogcomp/Data/Car/
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We have found both methods to work equally well, and mainly chose steerable
pyramids because there is a good implementation available in Matlab/C.7 We
have also performed some preliminary experiments where we replace the steer-
able pyramids with the 13 filters in Figure 2; this has the advantage that some
of the work involved in computing L and G can be shared. Performance seems
to be comparable; however, the results in this chapter are based on the steerable
pyramid version of gist.

The gist captures coarse texture and spatial layout of an image. This is illus-
trated in Figure 7, where we show a real image I and a noise image J , both of
which have roughly the same gist, i.e., G(I) ≈ G(J). (J was created by initial-
izing it to a random image, and then locally perturbing it until ||G(I) − G(J)||
was minimized.)

Fig. 7. An illustration of the gist of an image. Top row: original image I ; bottom row:
noise image J for which gist(I) = gist(J). We see that the gist captures the dominant
textural features of the overall image, and their coarse spatial layout. (This figure is
best viewed online.)

3.2 Location Priming Using the Gist

As shown in [34], it is possible to predict the rough location and scale of ob-
jects based on the gist, before applying a local detector. We will denote this as
P (X |G). (Note that this is typically much more informative than the uncon-
ditional prior marginal, P (X): see Figure 9.) This information can be used in

7 http://www.cns.nyu.edu/∼eero/STEERPYR/
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two ways: We can either threshold P (X |G) and apply the local detector only
to the locations deemed probable by the gist (to increase speed), or we can can
apply the detector to the whole image and then combine P (X |L) and P (X |G)
(to increase accuracy). In this chapter, we adopt the latter approach. We will
discuss how we perform the combination in Section 5.2, but first we discuss how
to compute P (X |G).

Location priming learns a conditional density model of the form p(X =
x, y, s|G). Following [34], we assume scale and location are conditionally inde-
pendent, and learn separate models for p(x, y|G) and p(s|G). As shown in [34],
we can predict the y value of an object class from the gist reasonably well, but
it is hard to predict the x value; this is because the height of an object in the
image is correlated with properties which can be inferred from the gist, such as
the depth of field [33], location of the ground plane, etc., whereas the horizontal
location of an object is essentially unconstrained by such factors. Hence we take
p(x|G) to be uniform and just learn p(y|G) and p(s|G).

In [34], Torralba used cluster weighted regression to represent p(X, G):

p(X,G) =
∑

q

P (q)P (G|q)P (X|G, q)=
∑

q

π(q)N (G;μ(1)
q , Σ(1)

q )N (X; WqG+μ(2)
q , Σ(2)

q )

where π(q) are the mixing weights, Wq is the regression matrix, μ
(i)
q are mean

(offset) vectors, and Σ
(i)
q are (diagonal) covariance matrices for cluster q. These

parameters can be estimated using EM. A disadvantage of this model is that it
is a generative model of X and G. An alternative is a mixture of experts model
[16], which is a conditional model of the form

p(X |G) =
∑

q

P (q|G)P (X |G, q) =
∑

q

softmax(q; wT
q G)N (X ; WqG, Ψq)

This can also be fit using EM, although now the M step is slightly more com-
plicated, because fitting the softmax (multinomial logistic) function requires an
iterative algorithm (IRLS). In this chapter, we use a slight variant of the mix-
ture of experts model called mixture density networks (MDNs) [4]. MDNs use a
multilayer perceptron to represent P (q|G), E[X |G, q] and Cov[X |G, q], and can
be trained using gradient descent. The main reason we chose MDNs is because
they are implemented in the netlab software package.8 Training (using multiple
restarts) only takes a few minutes, and application to a test image is essentially
instantaneous. When applied to the dataset used in [34], we get essentially the
same results using MDN as those achieved with cluster weighted regression. (We
have also performed some preliminary experiments using boosted stumps for
regression [12]; results seem comparable to MDNs.)

To evaluate performance, the prior P (X |G) can be evaluated on a grid of
points for each scale: Gi = P (x, y|G)P (s|G), where i = (x, y, s). We then nor-
malize to get P (X = i|G) = Gi/(

∑
j Gj) so that

∑
i P (X = i|G) = 1. We can

visualize this density by multiplying it elementwise by the image: see Figure 8
8 http://www.ncrg.aston.ac.uk/netlab
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for an example. We can evaluate the performance of the density estimate more
quantitatively by comparing the predicted mean, EX =

∫
Xp(X |G)dX , with

the empirical mean X̂: see Figure 9. We see that we can predict the y value
reasonably well, but the scale is harder to predict, especially for pedestrians.

Fig. 8. Example of location priming for screens, keyboards, cars and people using
global features. In each group, the image on the left is the input image, and the image
on the right is the input image multiplied by the probability, given the gist, of the
object being present at a given location, i.e., I. ∗ P (x|G(I)).

4 Object Presence Detection

Object presence detection means determining if one or more instances of an
object class are present (at any location or scale) in an image. A very successful
approach to this problem, pioneered by [6], is as follows: first, extract patches
around the interest points in an image; second, convert them to codewords using
vector quantization; third, count the number of occurrences of each possible
codeword; finally, classify the resulting histogram. Unfortunately, if this method
determines the object is present, it is not able to say what its location is, since
all spatial information has been lost. We therefore use the more straightforward
approach of first running a local object detector, and then using its output as
input to the object presence classifier. More specifically, we define Lm = maxi Li

as the largest local detection score, and take P (O = 1|L) = σ(wT [1 Lm]), so
that 0 ≤ P (O = 1|L) ≤ 1.

As shown in [34], it is possible to use the gist to predict the presence of
objects, without needing to use a detector, since gists are correlated with ob-
ject presence. Torralba used a mixture of (diagonal) Gaussians as a classifier:j p ( g )

P (O = 1|G)=
P (G|O = 1)

P (G|O = 1) + P (G|O = 0)
= q π+

q N(G; μ+
q , Σ+

q )

q π+
q N(G; μ+

q , Σ+
q ) + q π−

q N(G; μ−
q , Σ−

q )

where each class-conditional density P (G|O = ±, q) is modeled as a Gaussian
with diagonal covariance. We have found that using a single mixture component
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Fig. 9. Localization performance of screens, keyboards, people and cars using global
features. Left column: vertical location of object; right column: scale of object. Vertical
axis = truth, horizontal axis = prediction. We see that the gist provides a coarse
localization of the object in vertical position and scale c.f., [34].

(i.e., a naive Bayes classifier) is sufficient, and has the advantage that EM is not
necessary for learning. (We have also performed preliminary experiments using



Object Detection and Localization Using Local and Global Features 393

boosted decisions stumps; results were slightly better, but in this chapter, we
stick to the naive Bayes classifier for simplicity.)

To combine the local and global features, we treat P (O = 1|G) and P (O =
1|L) as scalar features and combine them with logistic regression:

P (O = 1|L, G) = σ(wT [1 P (O = 1|L) P (O = 1|G)])

We estimate the weights w using maximum likelihood on the validation set, just
in case either P (O = 1|L) or P (O = 1|G) is overconfident. Applying one classifier
inside of another is a standard technique called “stacking”. Other approaches
to combining the individual P (O = 1|L) and P (O = 1|G) “experts” will be
discussed in Section 5.2.

We compare the performance of the 3 methods (i.e., P (O|L), P (O|G) and
P (O|L, G)) using ROC curves, as shown in Figure 10. We summarize these
results using the area under the curve (AUC), as shown in Table 2. We see
that the combined features always work better than either kind of feature alone.
What is perhaps surprising is that the global features often perform as well as,
and sometimes even better than, the local features. The reason for this is that
in many of the images, the object of interest is quite small; hence it is hard to
detect using a local detector, but the overall image context is enough to suggest
the object presence (see Figure 11).

Table 2. AUC for object presence detection

Screen Kbd Car Ped
L 0.93 0.81 0.85 0.78
G 0.93 0.90 0.79 0.79

L,G 0.96 0.91 0.88 0.85

5 Object Localization

Object localization means finding the location and scale of an object in an image.
Formally, we can define the problem as estimating P (X = i|·). We will compare
3 methods: P (X|L), P (X|G) and P (X |L, G).

5.1 Performance Evaluation

We evaluate performance by comparing the bounding box Bp corresponding to
the most probable location, i∗ = arg maxP (X = i|·), to the “true” bounding
box Bt in manually annotated data. We follow the procedure adopted in the
Pascal VOC (visual object class) competition9, and compute the area of overlap

a =
area(Bp ∩ Bt)
area(Bp ∪ Bt)

(1)

9 http://www.pascal-network.org/challenges/VOC/
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Fig. 10. Performance of object presence detection. (a) Screens, (b) keyboards, (c)
cars, (d) pedestrains. Each curve is an ROC plot: P (O|G): dotted blue, P (O|L):
dashed green, P (O|L, G): solid red. We see that combining the global and local features
improves detection performance.

If a > 0.5, then Bp is considered a true positive, otherwise it is considered a false
positive.10 (This is very similar to the criterion proposed in [1].)

We assign the best detection a score, s(i∗) = P (O = 1|·), which indicates
the the probability that the class is present. By varying the threshold on this
confidence, we can compute a precision-recall curve, where we define recall =
TP/nP and precision = TP/ (TP+FP), where TP is the number of true positives
(above threshold), FP is the number of false positives (above threshold), and nP
is the number of positives (i.e., objects) in the data set.

We summarize performance of the precision-recall curves in a single number
called the F1 score:

F =
2 · Recall · Precision
Recall + Precision

10 We used a slightly stricter criterion of a > 0.6 for the case of pedestrians, because
the variation in their height was much less than for other classes, so it was too easy
to meet the 0.5 criterion.
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We use precision-recall rather than the more common ROC metric, since the
latter is designed for binary classification tasks, not detection tasks. In particular,
although recall is the same as the true positive rate, the false positive rate,
defined as FP/nN where nN is the number of negatives, depends on the size of
the state space of X (i.e., the number of patches examined), and hence is not
a solution-independent performance metric. (See [1] for more discussion of this
point.)

5.2 Combining Local and Global Features

We combine the estimates based on local and global features using a “product
of experts” model [14]

P (X = i|L, G) =
1
Z

P (X = i|L)γP (X = i|G)

The exponent γ can be set by cross-validation, and is used to “balance” the rela-
tive confidence of the two detectors, given that they were trained independently
(a similar technique was used in [15]). We use γ = 0.5.

Another way to interpret this equation is to realise that it is just a log-linear
model:

P (X = i|L, G) ∝ eγψL(X=i)+ψG(X=i)

where the fixed potentials/features are ψL(X) = log P (X |L) and ψG(X) =
log P (X |G). Since Z =

∑N
i=1 P (X = i|L, G) is tractable to compute, we could

find the optimal γ using gradient descent (rather than cross validation) on the
validation set. A more ambitious approach would be to jointly learn the pa-
rameters inside the models P (X = i|L) and P (X = i|G), rather than fitting
them independently and then simply learning the combination weight γ. We
could optimize the contrastive divergence [14] instead of the likelihood, for speed.
However, we leave this for future work.

Note that the product of experts model is a discriminative model, i.e. it defines
P (X |I) rather than P (X, I). This gives us the freedom to compute arbitrary
functions of the image, such as G(I) and L(I). Also, it does not make any
claims of conditional independence: P (X |L) and P (X |G) may have features in
common. This is in contrast to the generative model proposed in [34], where the
image was partitioned into disjoint features, I = IG ∪IL, and the global features
were used to define a “prior” P (X |IG) and the local features were used to define
a “likelihood” P (IL|X):

P (X |I) =
P (IL, IG, X)

P (IL, IG)

=
P (IL|X, IG)P (X |IG)P (IG)

P (IL|IG)P (IG)
∝ P (IL|X, IG)P (X |IG)
≈ P (L(I)|X)P (X |G(I))
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Fig. 11. Examples of localization of screens, keyboards, cars and pedestrians. Within
each image pair, the top image shows the most likely location/scale of the object
given local features (arg max P (X|L)), and the bottom image shows the most likely
location/scale of the obhect given local and global features (arg max P (X|L, G)).
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Fig. 12. Localization performance for (a) screens, (b) keyboards, (c) cars, (d) pedestri-
ans. Each curve shows precision-recall curves for P (X|G) (bottom blue line with dots),
P (X|L) (middle green line with crosses), and P (X|L, G) (top red line with diamonds).
We see significant performance improvement by using both global and local features.

The disadvantage of a product-of-experts model, compared to using Bayes’
rule as above, is that the combination weights are fixed (since they are learned
offline). However, we believe the advantages of a discriminative framework more
than compensate.

The advantages of combining local and global features are illustrated qualita-
tively in Figure 11. In general, we see that using global features eliminates a lot of
false positives caused by using local features alone. Even when the local detector
has correctly detected the location of the object, sometimes the scale estimate is
incorrect, which the global features can correct. We see a dramatic example of
this in the right-most keyboard picture, and some less dramatic examples (too
small to affect the precision-recall results) in the cases of screens and cars. The
right-most pedestrian image is an interesting example of scale ambiguity. In this
image, there are two pedestrians; hence both detections are considered correct.
(Since we are only considering single instance detection in this chapter, neither
method would be penalized for missing the second object.)
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In Figure 12 we give a more quantitative assessement of the benefit using
precision-recall curves.11 (For the case of global features, we only measure the
peformance of P (y, s|G), since this method is not able to predict the x location
of an object.) We summarize the results using F1 scores, as shown in Table 3;
these indicate a significant improvement in performance when combining both
local and global features.

Table 3. F1 scores for object localization

Screen Kbd Car Ped
G 0.66 0.33 0.45 0.33
L 0.78 0.51 0.63 0.40

L,G 0.81 0.60 0.68 0.45

6 Discussion and Future Work

We have shown how using global features can help to overcome the ambiguity
often faced by local object detection methods. In addition, since global features
are shared across all classes and locations, they provide a computationally cheap
first step of a cascade: one only needs to invoke a more expensive local object
detector for those classes that are believed to be present; furthermore, one only
needs to apply such detectors in plausible locations/ scales.

A natural extension of this work is to model spatial correlations between
objects. One approach would be to connect the X variables together, e.g., as a
tree-structured graphical model. This would be like a pictorial structure model
[8] for scenes. However, this raises several issues. First, the spatial correlations
between objects in a scene are likely to be much weaker than between the parts of
an object. Second, some object classes might be absent, so Xc will be undefined;
we can set Xc to a special “absent” state in such cases (thus making the Oc

nodes unnecessary), but the tree may still become effectively disconnected (since
location information cannot propagate through the “absent” states). Third, some
objects might occur more than once in an image, so multiple Xc nodes will be
required for each class; this raises the problem of data association, i.e., which
instance of class c should be spatially correlated with which instance of class c′.

An alternative approach to directly modeling correlations between objects is
to recognize that many such correlations have a hidden common cause. This
suggests the use of a latent variable model, where the objects are considered
conditionally independent given the latent variable. In [21], we showed how we
could introduce a latent scene category node to model correlations amongst the
O variables (i.e., patterns of object co-occurrence). Extending this to model cor-
relations amongst the X variables is an interesting open problem. One promising
approach is to estimate the (approximate) underlying 3D geometry of the scene
11 Note that the results for the car detector in Figure 12 are much worse than in

Figure 6; this is because the MIT-CSAIL dataset is much harder than the UIUC
dataset.
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[13]. This may prove helpful, since e.g., the keyboard and screen appear close
together in the image because they are both supported by a (potentially hidden)
table surface. We leave this issue for future work.
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