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Abstract—In this paper, we compare the performance of descriptors computed for local interest regions, as, for example, extracted by

the Harris-Affine detector [32]. Many different descriptors have been proposed in the literature. It is unclear which descriptors are more

appropriate and how their performance depends on the interest region detector. The descriptors should be distinctive and at the same

time robust to changes in viewing conditions as well as to errors of the detector. Our evaluation uses as criterion recall with respect to

precision and is carried out for different image transformations. We compare shape context [3], steerable filters [12], PCA-SIFT [19],

differential invariants [20], spin images [21], SIFT [26], complex filters [37], moment invariants [43], and cross-correlation for different

types of interest regions. We also propose an extension of the SIFT descriptor and show that it outperforms the original method.

Furthermore, we observe that the ranking of the descriptors is mostly independent of the interest region detector and that the SIFT-based

descriptors perform best. Moments and steerable filters show the best performance among the low dimensional descriptors.

Index Terms—Local descriptors, interest points, interest regions, invariance, matching, recognition.

�

1 INTRODUCTION

LOCAL photometric descriptors computed for interest

regions have proven to be very successful in applica-

tions such as wide baseline matching [37], [42], object

recognition [10], [25], texture recognition [21], image

retrieval [29], [38], robot localization [40], video data mining

[41], building panoramas [4], and recognition of object

categories [8], [9], [22], [35]. They are distinctive, robust to

occlusion, and do not require segmentation. Recent work

has concentrated on making these descriptors invariant to

image transformations. The idea is to detect image regions

covariant to a class of transformations, which are then used

as support regions to compute invariant descriptors.

Given invariant region detectors, the remaining ques-

tions are which descriptor is the most appropriate to

characterize the regions and whether the choice of the

descriptor depends on the region detector. There is a large

number of possible descriptors and associated distance

measures which emphasize different image properties like

pixel intensities, color, texture, edges, etc. In this work, we

focus on descriptors computed on gray-value images.

The evaluation of the descriptors is performed in the

context of matching and recognition of the same scene or

object observed under different viewing conditions. We

have selected a number of descriptors, which have pre-

viously shown a good performance in such a context, and

compare them using the same evaluation scenario and the

same test data. The evaluation criterion is recall-precision,

i.e., the number of correct and false matches between

two images. Another possible evaluation criterion is the

ROC (Receiver Operating Characteristics) in the context of

image retrieval from databases [6], [31]. The detection rate is

equivalent to recall but the false positive rate is computed

for a database of images instead of a single image pair. It is

therefore difficult to predict the actual number of false

matches for a pair of similar images.

Local features were also successfully used for object

category recognition and classification. The comparison of

descriptors in this context requires a different evaluation

setup. It is unclear how to select a representative set of images

for an object category and how to prepare the ground truth

since there is no linear transformation relating images within

a category. A possible solution is to select manually a few

corresponding points and apply loose constraints to verify

correct matches, as proposed in [18].

In this paper, the comparison is carried out for different

descriptors, different interest regions, and for different

matching approaches. Compared to our previous work [31],

this paper performs a more exhaustive evaluation and

introduces a new descriptor. Several descriptors and

detectors have been added to the comparison and the data

set contains a larger variety of scenes types and transforma-

tions. We have modified the evaluation criterion and now

use recall-precision for image pairs. The ranking of the top

descriptors is the same as in the ROC-based evaluation [31].

Furthermore, our new descriptor, gradient location and

orientation histogram (GLOH), which is an extension of the

SIFT descriptor, is shown to outperform SIFT as well as the

other descriptors.

1.1 Related Work

Performance evaluation has gained more and more im-

portance in computer vision [7]. In the context of matching

and recognition, several authors have evaluated interest

point detectors [14], [30], [33], [39]. The performance is
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measured by the repeatability rate, that is, the percentage of

points simultaneously present in two images. The higher

the repeatability rate between two images, the more points

can potentially be matched and the better the matching and

recognition results are.

Very little work has been done on the evaluation of local

descriptors in the context of matching and recognition.

Carneiro and Jepson [6] evaluate the performance of point

descriptors using ROC (Receiver Operating Characteristics).

They show that their phase-based descriptor performs

better than differential invariants. In their comparison,

interest points are detected by the Harris detector and the

image transformations are generated artificially. Recently,

Ke and Sukthankar [19] have developed a descriptor similar

to the SIFT descriptor. It applies Principal Components

Analysis (PCA) to the normalized image gradient patch and

performs better than the SIFT descriptor on artificially

generated data. The criterion recall-precision and image

pairs were used to compare the descriptors.

Local descriptors (also called filters) have also been

evaluated in the context of texture classification. Randen

and Husoy [36] compare different filters for one texture

classification algorithm. The filters evaluated in this paper

are Laws masks, Gabor filters, wavelet transforms, DCT,

eigenfilters, linear predictors, and optimized finite impulse

response filters. No single approach is identified as best. The

classification error depends on the texture type and the

dimensionality of the descriptors. Gabor filters were in most

cases outperformed by the other filters. Varma and Zisser-

man [44] also compared different filters for texture classifi-

cation and showed that MRF perform better than Gaussian

based filter banks. Lazebnik et al. [21] propose a new

invariant descriptor called “spin image” and compare it with

Gabor filters in the context of texture classification. They

show that the region-based spin image outperforms the

point-based Gabor filter. However, the texture descriptors

and the results for texture classification cannot be directly

transposed to region descriptors. The regions often contain a

single structure without repeated patterns and the statistical

dependency frequently explored in texture descriptors

cannot be used in this context.

1.2 Overview

In Section 2, we present a state of the art on local

descriptors. Section 3 describes the implementation details

for the detectors and descriptors used in our comparison as

well as our evaluation criterion and the data set. In Section 4,

we present the experimental results. Finally, we discuss the

results in Section 5.

2 DESCRIPTORS

Many different techniques for describing local image regions

have been developed. The simplest descriptor is a vector of

image pixels. Cross-correlation can then be used to compute

a similarity score between two descriptors. However, the

high dimensionality of such a description results in a high

computational complexity for recognition. Therefore, this

technique is mainly used for finding correspondences

between two images. Note that the region can be subsampled

to reduce the dimension. Recently, Ke and Sukthankar [19]

proposed using the image gradient patch and applying PCA

to reduce the size of the descriptor.

2.1 Distribution-Based Descriptors

These techniques use histograms to represent different

characteristics of appearance or shape. A simple descriptor

is the distribution of the pixel intensities represented by a

histogram. A more expressive representation was intro-

duced by Johnson and Hebert [17] for 3D object recognition

in the context of range data. Their representation (spin

image) is a histogram of the point positions in the

neighborhood of a 3D interest point. This descriptor was

recently adapted to images [21]. The two dimensions of the

histogram are distance from the center point and the

intensity value.

Zabih and Woodfill [45] have developed an approach

robust to illumination changes. It relies on histograms of

ordering and reciprocal relations between pixel intensities

which are more robust than raw pixel intensities. The

binary relations between intensities of several neighboring

pixels are encoded by binary strings and a distribution of all

possible combinations is represented by histograms. This

descriptor is suitable for texture representation but a large

number of dimensions is required to build a reliable

descriptor [34].

Lowe [25] proposed a scale invariant feature transform

(SIFT), which combines a scale invariant region detector

and a descriptor based on the gradient distribution in the

detected regions. The descriptor is represented by a

3D histogram of gradient locations and orientations; see

Fig. 1 for an illustration. The contribution to the location

and orientation bins is weighted by the gradient magnitude.

The quantization of gradient locations and orientations

makes the descriptor robust to small geometric distortions

and small errors in the region detection. Geometric

histogram [1] and shape context [3] implement the same

idea and are very similar to the SIFT descriptor. Both

methods compute a histogram describing the edge dis-

tribution in a region. These descriptors were successfully

used, for example, for shape recognition of drawings for

which edges are reliable features.

2.2 Spatial-Frequency Techniques

Many techniques describe the frequency content of an

image. The Fourier transform decomposes the image content

into the basis functions. However, in this representation, the

spatial relations between points are not explicit and the basis

functions are infinite; therefore, it is difficult to adapt to a

local approach. The Gabor transform [13] overcomes these

problems, but a large number of Gabor filters is required to

capture small changes in frequency and orientation. Gabor
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filters and wavelets [27] are frequently explored in the

context of texture classification.

2.3 Differential Descriptors

A set of image derivatives computed up to a given order

approximates a point neighborhood. The properties of local

derivatives (local jet) were investigated by Koenderink and

van Doorn [20]. Florack et al. [11] derived differential

invariants, which combine components of the local jet to

obtain rotation invariance. Freeman and Adelson [12]

developed steerable filters, which steer derivatives in a

particular direction given the components of the local jet.

Steering derivatives in the direction of the gradient makes

them invariant to rotation. A stable estimation of the

derivatives is obtained by convolution with Gaussian

derivatives. Fig. 2a shows Gaussian derivatives up to order 4.

Baumberg [2] and Schaffalitzky and Zisserman [37]

proposed using complex filters derived from the family

Kðx; y; �Þ ¼ fðx; yÞ expði�Þ, where � is the orientation. For

the function fðx; yÞ, Baumberg uses Gaussian derivatives

and Schaffalitzky and Zisserman apply a polynomial

(cf., Section 3.2 and Fig. 2b). These filters differ from the

Gaussian derivatives by a linear coordinates change in filter

response domain.

2.4 Other Techniques

Generalized moment invariants have been introduced by

Van Gool et al. [43] to describe the multispectral nature of

the image data. The invariants combine central moments

defined by Ma
pq ¼

R R
�x

pyq½Iðx; yÞ�adxdy of order pþ q and

degree a. The moments characterize shape and intensity

distribution in a region �. They are independent and can be

easily computed for any order and degree. However, the

moments of high order and degree are sensitive to small

geometric and photometric distortions. Computing the

invariants reduces the number of dimensions. These

descriptors are therefore more suitable for color images

where the invariants can be computed for each color

channel and between the channels.

3 EXPERIMENTAL SETUP

In the following, we first describe the region detectors used
in our comparison and the region normalization necessary
for computing the descriptors. We then give implementa-
tion details for the evaluated descriptors. Finally, we
discuss the evaluation criterion and the image data used
in the tests.

3.1 Support Regions

Many scale and affine invariant region detectors have been

recently proposed. Lindeberg [23] has developed a scale-

invariant “blob” detector, where a “blob” is defined by a

maximum of the normalized Laplacian in scale-space. Lowe

[25] approximates the Laplacian with difference-of-Gaus-

sian (DoG) filters and also detects local extrema in scale-

space. Lindeberg and Gårding [24] make the blob detector

affine-invariant using an affine adaptation process based on

the second moment matrix. Mikolajczyk and Schmid [29],

[30] use a multiscale version of the Harris interest point

detector to localize interest points in space and then employ

Lindeberg’s scheme for scale selection and affine adapta-

tion. A similar idea was explored by Baumberg [2] as well

as Schaffalitzky and Zisserman [37]. Tuytelaars and Van

Gool [42] construct two types of affine-invariant regions,

one based on a combination of interest points and edges

and the other one based on image intensities. Matas et al.

[28] introduced Maximally Stable Extremal Regions ex-

tracted with a watershed like segmentation algorithm.
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Fig. 2. Derivative based filters. (a) Gaussian derivatives up to fourth order. (b) Complex filters up to sixth order. Note that the displayed filters are not

weighted by a Gaussian, for figure clarity.

Fig. 1. SIFT descriptor. (a) Detected region. (b) Gradient image and location grid. (c) Dimensions of the histogram. (d) Four of eight orientation

planes. (e) Cartesian and the log-polar location grids. The log-polar grid shows nine location bins used in shape context (four in angular direction).



Kadir et al. [18] measure the entropy of pixel intensity

histograms computed for elliptical regions to find local

maxima in affine transformation space. A comparison of

state-of the art affine region detectors can be found in [33].

3.1.1 Region Detectors

The detectors provide the regions which are used to
compute the descriptors. If not stated otherwise, the
detection scale determines the size of the region. In this
evaluation, we have used five detectors:

Harris points [15] are invariant to rotation. The support

region is a fixed size neighborhood of 41� 41 pixels

centered at the interest point.

Harris-Laplace regions [29] are invariant to rotation and

scale changes. The points are detected by the scale-adapted

Harris function and selected in scale-space by the Lapla-

cian-of-Gaussian operator. Harris-Laplace detects corner-

like structures.

Hessian-Laplace regions [25], [32] are invariant to rotation

and scale changes. Points are localized in space at the local

maxima of the Hessian determinant and in scale at the local

maxima of the Laplacian-of-Gaussian. This detector is

similar to the DoG approach [26], which localizes points

at local scale-space maxima of the difference-of-Gaussian.

Both approaches detect similar blob-like structures. How-

ever, Hessian-Laplace obtains a higher localization accuracy

in scale-space, as DoG also responds to edges and detection

is unstable in this case. The scale selection accuracy is also

higher than in the case of the Harris-Laplace detector.

Laplacian scale selection acts as a matched filter and works

better on blob-like structures than on corners since the

shape of the Laplacian kernel fits to the blobs. The accuracy

of the detectors affects the descriptor performance.

Harris-Affine regions [32] are invariant to affine image

transformations. Localization and scale are estimated by the

Harris-Laplace detector. The affine neighborhood is deter-

mined by the affine adaptation process based on the second

moment matrix.

Hessian-Affine regions [33] are invariant to affine image

transformations. Localization and scale are estimated by the

Hessian-Laplace detector and the affine neighborhood is

determined by the affine adaptation process.

Note that Harris-Affine differs from Harris-Laplace by

the affine adaptation, which is applied to Harris-Laplace

regions. In this comparison, we use the same regions except

that, for Harris-Laplace, the region shape is circular. The

same holds for the Hessian-based detector. Thus, the

number of regions is the same for affine and scale invariant

detectors. Implementation details for these detectors as well

as default thresholds are described in [32]. The number of

detected regions varies from 200 to 3,000 per image

depending on the content.

3.1.2 Region Normalization

The detectors provide circular or elliptic regions of different

size, which depends on the detection scale. Given a detected

region, it is possible to change its size or shape by scale or

affine covariant construction. Thus, we can modify the set of

pixels which contribute to the descriptor computation.

Typically, larger regions contain more signal variations.

Hessian-Affine and Hessian-Laplace detect mainly blob-like

structures for which the signal variations lie on the blob

boundaries. To include these signal changes into the

description, the measurement region is three times larger

than the detected region. This factor is used for all scale and

affine detectors. All the regions are mapped to a circular

region of constant radius to obtain scale and affine

invariance. The size of the normalized region should not be

too small in order to represent the local structure at a

sufficient resolution. In all experiments, this size is arbitrarily

set to 41 pixels. A similar patch size was used in [19].

Regions which are larger than the normalized size are

smoothed before the size normalization. The parameter � of

the smoothing Gaussian kernel is given by the ratio

measurement/normalized region size. Spin images, differ-

ential invariants, and complex filters are invariant to

rotation. To obtain rotation invariance for the other

descriptors, the normalized regions are rotated in the

direction of the dominant gradient orientation, which is

computed in a small neighborhood of the region center. To

estimate the dominant orientation, we build a histogram of

gradient angles weighted by the gradient magnitude and

select the orientation corresponding to the largest histogram

bin, as suggested in [25].

Illumination changes can be modeled by an affine

transformation aIðxÞ þ b of the pixel intensities. To com-

pensate for such affine illumination changes, the image

patch is normalized with mean and standard deviation of

the pixel intensities within the region. The regions, which

are used for descriptor evaluation, are normalized with this

method if not stated otherwise. Derivative-based descrip-

tors (steerable filters, differential invariants) can also be

normalized by computing illumination invariants. The

offset b is eliminated by the differentiation operation. The

invariance to linear scaling with factor a is obtained by

dividing the higher order derivatives by the gradient

magnitude raised to the appropriate power. A similar

normalization is possible for moments and complex filters,

but has not been implemented here.

3.2 Descriptors

In the following, we present the implementation details for

the descriptors used in our experimental evaluation. We use

10 different descriptors: SIFT [25], gradient location and

orientation histogram (GLOH), shape context [3], PCA-SIFT

[19], spin images [21], steerable filters [12], differential

invariants [20], complex filters [37], moment invariants [43],

and cross-correlation of sampled pixel values. Gradient

location and orientation histogram (GLOH) is a new

descriptor which extends SIFT by changing the location

grid and using PCA to reduce the size.
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SIFT descriptors are computed for normalized image

patches with the code provided by Lowe [25]. A descriptor

is a 3D histogram of gradient location and orientation,

where location is quantized into a 4� 4 location grid and

the gradient angle is quantized into eight orientations. The

resulting descriptor is of dimension 128. Fig. 1 illustrates the

approach. Each orientation plane represents the gradient

magnitude corresponding to a given orientation. To obtain

illumination invariance, the descriptor is normalized by the

square root of the sum of squared components.

Gradient location-orientation histogram (GLOH) is an

extension of the SIFT descriptor designed to increase its

robustness and distinctiveness. We compute the SIFT

descriptor for a log-polar location grid with three bins in

radial direction (the radius set to 6, 11, and 15) and 8 in

angular direction, which results in 17 location bins. Note

that the central bin is not divided in angular directions. The

gradient orientations are quantized in 16 bins. This gives a

272 bin histogram. The size of this descriptor is reduced

with PCA. The covariance matrix for PCA is estimated on

47,000 image patches collected from various images (see

Section 3.3.1). The 128 largest eigenvectors are used for

description.
Shape context is similar to the SIFT descriptor, but is

based on edges. Shape context is a 3D histogram of edge
point locations and orientations. Edges are extracted by the
Canny [5] detector. Location is quantized into nine bins of a
log-polar coordinate system as displayed in Fig. 1e with the
radius set to 6, 11, and 15 and orientation quantized into
four bins (horizontal, vertical, and two diagonals). We
therefore obtain a 36 dimensional descriptor. In our
experiments, we weight a point contribution to the
histogram with the gradient magnitude. This has been
shown to give better results than using the same weight for
all edge points, as proposed in [3]. Note that the original
shape context was computed only for edge point locations
and not for orientations.

PCA-SIFT descriptor is a vector of image gradients in x

and y direction computed within the support region. The

gradient region is sampled at 39� 39 locations, therefore,

the vector is of dimension 3,042. The dimension is reduced

to 36 with PCA.

Spin image is a histogram of quantized pixel locations and

intensity values. The intensity of a normalized patch is

quantized into 10 bins. A 10 bin normalized histogram is

computed for each of five rings centered on the region. The

dimension of the spin descriptor is 50.

Steerable filters and differential invariants use derivatives

computed by convolution with Gaussian derivatives of � ¼
6:7 for an image patch of size 41. Changing the orientation

of derivatives as proposed in [12] gives equivalent results to

computing the local jet on rotated image patches. We use

the second approach. The derivatives are computed up to

fourth order, that is, the descriptor has dimension 14. Fig. 2a

shows eight of 14 derivatives; the remaining derivatives are

obtained by rotation by 90 degrees. The differential

invariants are computed up to third order (dimension 8).

We compare steerable filters and differential invariants

computed up to the same order (cf., Section 4.1.3).
Complex filters are derived from the following equation:

Kmnðx; yÞ ¼ ðxþ iyÞmðx� iyÞnGðx; yÞ. The original imple-
mentation [37] has been used for generating the kernels. The
kernels are computed for a unit disk of radius 1 and
sampled at 41� 41 locations. We use 15 filters defined by
mþ n � 6 (swapping m and n just gives complex conjugate
filters); the response of the filters with m ¼ n ¼ 0 is the
average intensity of the region. Fig. 2b shows eight of
15 filters. Rotation changes the phase but not the magnitude
of the response; therefore, we use the modulus of each
complex filter response.

Moment invariants are computed up to second order and

second degree. The moments are computed for derivatives

of an image patch with Ma
pq ¼ 1

xy

P
x;y x

pyq½Idðx; yÞ�a, where

pþ q is the order, a is the degree, and Id is the image

gradient in direction d. The derivatives are computed in x

and y directions. This results in a 20-dimensional descrip-

tor (2� 10 without Ma
00). Note that, originally, moment

invariants were computed on color images [43].

Cross correlation. To obtain this descriptor, the region is

smoothed and uniformly sampled. To limit the descriptor

dimension, we sample at 9� 9 pixel locations. The similarity

between two descriptors is measured with cross-correlation.

Distance measure. The similarity between descriptors is

computed with the Mahalanobis distance for steerable

filters, differential invariants, moment invariants, and

complex filters. We estimate one covariance matrix C for

each combination of descriptor/detector; the same matrix is

used for all experiments. The matrices are estimated on

images different from the test data. We used 21 image

sequences of planar scenes which are viewed under all the

transformations for which we evaluate the descriptors.

There are approximately 15,000 chains of corresponding

regions with at least three regions per chain. An indepen-

dently estimated homography is used to establish the chains

of correspondences (cf., Section 3.3.1 for details on the

homography estimation). We then compute the average

over the individual covariance matrices of each chain. We

also experimented with diagonal covariance matrices and

nearly identical results were obtained. The Euclidean

distance is used to compare histogram based descriptors,

that is, SIFT, GLOH, PCA-SIFT, shape context, and spin

images. Note that the estimation of covariance matrices for

descriptor normalization differs from the one used for PCA.

For PCA, one covariance matrix is computed from approxi-

mately 47,000 descriptors.

3.3 Performance Evaluation

3.3.1 Data Set

We evaluate the descriptors on real images with different

geometric and photometric transformations and for differ-

ent scene types. Fig. 3 shows example images of our data set1

used for the evaluation. Six image transformations are

evaluated: rotation (Figs. 3a and 3b); scale change (Figs. 3c
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and 3d); viewpoint change (Figs. 3e and 3f); image blur

(Figs. 3g and 3h); JPEG compression (Fig. 3i); and illumina-

tion (Fig. 3j). In the case of rotation, scale change, viewpoint

change, and blur, we use two different scene types. One

scene type contains structured scenes, that is, homogeneous

regions with distinctive edge boundaries (e.g., graffiti,

buildings), and the other contains repeated textures of

different forms. This allows us to analyze the influence of

image transformation and scene type separately.
Image rotations are obtained by rotating the camera

around its optical axis in the range of 30 and 45 degrees.
Scale change and blur sequences are acquired by varying
the camera zoom and focus, respectively. The scale changes
are in the range of 2-2.5. In the case of the viewpoint change
sequences, the camera position varies from a fronto-parallel
view to one with significant foreshortening at approxi-
mately 50-60 degrees. The light changes are introduced by
varying the camera aperture. The JPEG sequence is
generated with a standard xv image browser with the
image quality parameter set to 5 percent. The images are
either of planar scenes or the camera position was fixed
during acquisition. The images are, therefore, always
related by a homography (plane projective transformation).
The ground truth homographies are computed in two steps.
First, an approximation of the homography is computed
using manually selected correspondences. The transformed
image is then warped with this homography so that it is
roughly aligned with the reference image. Second, a robust
small baseline homography estimation algorithm is used to
compute an accurate residual homography between the
reference image and the warped image, with automatically
detected and matched interest points [16]. The composition
of the approximate and residual homography results in an
accurate homography between the images.

In Section 4, we display the results for image pairs from
Fig. 3. The transformation between these images is sig-
nificant enough to introduce some noise in the detected
regions. Yet, many correspondences are found and the
matching results are stable. Typically, the descriptor
performance is higher for small image transformations but
the ranking remains the same. There are few corresponding
regions for large transformations and the recall-precision
curves are not smooth.

A data set different from the test data was used to
estimate the covariance matrices for PCA and descriptor
normalization. In both cases, we have used 21 image
sequences of different planar scenes which are viewed
under all the transformations for which we evaluate the
descriptors.2

3.3.2 Evaluation Criterion

We use a criterion similar to the one proposed in [19]. It is
based on the number of correct matches and the number of
false matches obtained for an image pair.

Two regions A and B are matched if the distance
between their descriptors DA and DB is below a threshold t.
Each descriptor from the reference image is compared with

each descriptor from the transformed one and we count the
number of correct matches as well as the number of false
matches. The value of t is varied to obtain the curves. The
results are presented with recall versus 1-precision. Recall is
the number of correctly matched regions with respect to the
number of corresponding regions between two images of
the same scene:

recall ¼ # correctmatches

# correspondences
:

The number of correct matches and correspondences is

determined with the overlap error [30]. The overlap error

measures how well the regions correspond under a

transformation, here, a homography. It is defined by the

ratio of the intersection and union of the regions

�S ¼ 1� ðA \HTBHÞ=ðA [HTBHÞ, where A and B are

the regions and H is the homography between the images

(cf., Section 3.3.1). Given the homography and the matrices

defining the regions, the error is computed numerically.

Our approach counts the number of pixels in the union

and the intersection of regions. Details can be found in

[33]. We assume that a match is correct if the error in the

image area covered by two corresponding regions is less

than 50 percent of the region union, that is, �S < 0:5. The

overlap is computed for the measurement regions which

are used to compute the descriptors. Typically, there are

very few corresponding regions with larger error that are

correctly matched and these matches are not used to

compute the recall. The number of correspondences

(possible correct matches) are determined with the same

criterion.
The number of false matches relative to the total number

of matches is represented by 1-precision:

1� precision ¼ # falsematches

# correctmatchesþ# falsematches
:

Given recall, 1-precision and the number of correspond-
ing regions, the number of correct matches, can be
determined by #correspondences � recall and the number
of false matches by

#correspondences � recall � ð1� precisionÞ=precision:

For example, there are 3,708 corresponding regions between
the images used to generate Fig. 4a. For a point on the GLOH
curve with recall of 0.3 and 1-precision of 0.6, the number of
correct matches is 3; 708 � 0:3 ¼ 1; 112, and the number of
false matches is 3; 708 � 0:3 � 0:6=ð1� 0:6Þ ¼ 1; 668. Note that
recall and 1-precision are independent terms. Recall is
computed with respect to the number of corresponding
regions and 1-precision with respect to the total number of
matches.

Before we start the evaluation, we discuss the inter-
pretation of figures and possible curve shapes. A perfect
descriptor would give a recall equal to 1 for any precision.
In practice, recall increases for an increasing distance
threshold as noise which is introduced by image transfor-
mations and region detection increases the distance
between similar descriptors. Horizontal curves indicate
that the recall is attained with a high precision and is
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research/affine.



limited by the specificity of the scene, i.e., the detected
structures are very similar to each other and the descriptor
cannot distinguish them. Another possible reason for
nonincreasing recall is that the remaining corresponding
regions are very different from each other (partial overlap
close to 50 percent) and, therefore, the descriptors are
different. A slowly increasing curve shows that the
descriptor is affected by the image degradation (viewpoint
change, blur, noise, etc.). If curves corresponding to
different descriptors are far apart or have different slopes,
then the distinctiveness and robustness of the descriptors
is different for the investigated image transformation or
scene type.

4 EXPERIMENTAL RESULTS

In this section, we present and discuss the experimental
results of the evaluation. The performance is compared for
affine transformations, scale changes, rotation, blur, jpeg
compression, and illumination changes. In the case of affine

transformations, we also examine different matching

strategies, the influence of the overlap error, and the

dimension of the descriptor.

4.1 Affine Transformations

In this section, we evaluate the performance for viewpoint

changes of approximately 50 degrees. This introduces a

perspective transformation which can locally be approxi-

mated by an affine transformation. This is the most

challenging transformation of the ones evaluated in this

paper. Note that there are also some scale and brightness

changes in the test images, see Figs. 3e and 3f. In the

following, we first examine different matching approaches.

Second, we investigate the influence of the overlap error on

the matching results. Third, we evaluate the performance

for different descriptor dimensions. Fourth, we compare the

descriptor performance for different region detectors and

scene types.
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Fig. 3. Data set. Examples of images used for the evaluation: (a) and (b) rotation, (c) and (d) zoom+rotation, (e) and (f) viewpoint change, (g) and

(h) image blur, (i) JPEG compression, and (j) light change.



4.1.1 Matching Strategies

The definition of a match depends on the matching strategy.
We compare three of them. In the case of threshold-based
matching, two regions are matched if the distance between
their descriptors is below a threshold. A descriptor can have
several matchesand several of them maybe correct. In the case
of nearest neighbor-based matching, two regionsA andB are
matched if the descriptorDB is the nearest neighbor toDA and
if the distance between them is below a threshold. With this
approach, a descriptor has only one match. The third
matching strategy is similar to nearest neighbor matching,
except that the thresholding is applied to the distance ratio
between the first and the second nearest neighbor. Thus, the
regions are matched if jjDA �DBjj=jjDA �DCjj < t, where
DB is the first andDC is the second nearest neighbor toDA. All
matching strategies compare each descriptor of the reference
image with each descriptor of the transformed image.

Figs. 4a, 4b, and 4c show the results for the three matching
strategies. The descriptors are computed on Hessian-Affine
regions. The ranking of the descriptors is similar for all
matching strategies. There are some small changes between
nearest neighbor matching (NN) and matching based on the
nearest neighbor distance ratio (NNDR). In Fig. 4c, which

shows the results for NNDR, SIFT is significantly better than
PCA-SIFT, whereas GLOH obtains a score similar to SIFT.
Cross correlation and complex filters obtain slightly better
scores than for threshold based and nearest neighbor
matching. Moments perform as well as cross correlation
and PCA-SIFT in the NNDR matching (cf., Fig. 4c).

The precision is higher for the nearest neighbor-based
matching (cf., Figs. 4b and 4c) than for the threshold-based
approach (cf., Fig. 4a). This is because the nearest neighbor
is mostly correct, although the distance between similar
descriptors varies significantly due to image transforma-
tions. Nearest neighbor matching selects only the best
match below the threshold and rejects all others; therefore,
there are less false matches and the precision is high.
Matching based on nearest neighbor distance ratio is similar
but additionally penalizes the descriptors which have many
similar matches, i.e., the distance to the nearest neighbor is
comparable to the distances to other descriptors. This
further improves the precision. The nearest neighbor-based
techniques can be used in the context of matching; however,
they are difficult to apply when descriptors are searched in
a large database. The distance between descriptors is then
the main similarity criterion. The results for distance
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Fig. 4. Comparison of different matching strategies. Descriptors computed on Hessian-Affine regions for images from Fig. 3e. (a) Threshold-based

matching. (b) Nearest neighbor matching. (c) Nearest neighbor distance ratio matching. hes-lap gloh is the GLOH descriptor computed for

Hessian-Laplace regions (cf., Section 4.1.4).



threshold-based matching reflect the distribution of the
descriptors in the space; therefore, we use this method for
our experiments.

4.1.2 Region Overlap

In this section, we investigate the influence of the overlap
error on the descriptor performance. Fig. 5a displays recall
with respect to overlap error. To measure the recall for
different overlap errors, we fix the distance threshold for
each descriptor such that the precision is 0.5. Fig. 5b shows
the number of correct matches obtained for a false positive
rate of 0.5 and for different overlap errors.

The number of correct matches as well as the number of
correspondences is computed for a range of overlap errors,
i.e., the score for 20 percent is computed for an overlap error
larger that 10 percent and lower than 20 percent. As
expected, the recall decreases with increasing overlap error
(cf., Fig. 5a). The ranking is similar to the previous results.
We can observe that the recall for cross correlation drops
faster than for other high dimensional descriptors, which
indicates lower robustness of this descriptor to the region
detector accuracy. We also show the recall for GLOH
combined with scale invariant Hessian-Laplace detector
(hes-lap gloh). The recall is zero up to an overlap error of
20 percent as there are no corresponding regions for such
small errors. The recall increases to 0.3 at 30 percent overlap
and slowly decreases for larger errors. The recall for hes-

lap gloh is slightly above the others because the large
overlap error is mainly caused by size differences in the
circular regions, unlike for affine regions, where the error
also comes from the affine deformations which significantly
affect the descriptors.

Fig. 5b shows the actual number of correct matches for

different overlap errors. This figure also reflects the accuracy

of the detector. The bold line shows the number of

corresponding regions extracted with Hessian-Affine. There

are few corresponding regions with an error below 10 percent,

but nearly 90 percent of them are correctly matched with the

SIFT-based descriptors, PCA-SIFT, moments, and cross

correlation (cf., Fig. 5a). Most of the corresponding regions

are located in the range of 10 percent and 60 percent overlap

errors, whereas most of the correct matches are located in the

range 10 percent to 40 percent. In the following experiments,

the number of correspondences is counted between 0 percent

and 50 percent overlap error. We allow for 50 percent error

because the regions with this overlap error can be matched if

they are centered on the same structure, unlike the regions

which are shifted and only partially overlapping. If the

number of detected regions is high, the probability of an

accidental overlap of two regions is also high, although they

may be centered on different image structures. The large

range of allowed overlap errors results in a large number of

correspondences which also explains low recall.

4.1.3 Dimensionality

The derivatives-based descriptors and the complex filters
can be computed up to an arbitrary order. Fig. 6a displays
the results for steerable filters computed up to third and
fourth order, differential invariants up to second and
third order, and complex filters up to second and
sixth order. This results in 5, 9 dimensions for differential
invariants; 9, 14 dimensions for steerable filters; and 9,
15 dimensions for complex filters. We used the test images
from Fig. 3e and descriptors are computed for Hessian-
Affine regions. Note that the vertical axes in Fig. 6 are
scaled. The difference between steerable filters computed
up to third and up to fourth order is small but noticeable.
This shows that the third and fourth order derivatives are
still distinctive. We can observe a similar behavior for
different orders of differential invariants and complex
filters. Steerable filters computed up to third order perform
better than differential invariants computed up to the same
order. The multiplication of derivatives necessary to obtain
rotation invariance increases the instability.

Fig. 6b shows the results for high-dimensional, region-
based descriptors (GLOH, PCA-SIFT, and cross correlation).
The GLOH descriptor is computed for 17 location bins and
16 orientations and the 128 largest eigenvectors are used
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Fig. 5. Evaluation for different overlap errors. Test images are from Fig. 3e and descriptors are computed for Hessian-Affine regions. The descriptor

thresholds are set to obtain precision = 0.5. (a) Recall with respect to the overlap error. (b) Number of correct matches with respect to the overlap

error. The bold line shows the number of Hessian-Affine correspondences.



(gloh - 128). The performance is slightly lower if only
40 eigenvectors are used (gloh - 40) and much lower for all
272 dimensions (gloh - 272). A similar behavior is
observed for PCA-SIFT and cross correlation. Cross correla-
tion is evaluated for 36, 81, and 400 dimensions, i.e., 6� 6,
9� 9, and 20� 20 samples and results are best for 81 dimen-
sions (9� 9). Fig. 6b shows that the optimal number of
dimensions in this experiment is 128 for GLOH, 36 for PCA-
SIFT, and 81 for cross correlation. In the following, we use
the number of dimensions which gave the best results here.

Table 1 displays the sum of the first 10 eigenvalues and
the sum of all eigenvalues for the descriptors. These
eigenvalues result from PCA of descriptors normalized by
their variance. The numbers given in Table 1 correspond to
the amount of variance captured by different descriptors,
therefore, to their distinctiveness. PCA-SIFT has the largest
sum, followed by GLOH, SIFT, and the other descriptors.
Moments have the smallest value. This reflects the dis-
criminative power of the descriptors, but the robustness is
equally important. Therefore, the ranking of the descriptors
can be different in other experiments.

4.1.4 Region and Scene Types

In this section, we evaluate the descriptor performance for
different affine region detectors and different scene types.
Figs. 7a and 7b show the results for the structured scene
with Hessian-Affine and Harris-Affine regions and Figs. 7c
and 7d for the textured scene for Hessian-Affine and
Harris-Affine regions, respectively.

The recall is better for the textured scene (Figs. 7c and 7d)
than for the structured one (Figs. 7a and 7b). The number of
detected regions is significantly larger for the structured
scene, which contains many corner-like structures. This
leads to an accidental overlap between regions, therefore, a
high number of correspondences. This also means that the
actual number of correct matches is larger for the structured
scene. The textured scene contains similar motifs, however,
the regions capture sufficiently distinctive signal variations.
The difference in performance of SIFT-based descriptors
and others is larger on the textured scene which indicates
that a large discriminative power is necessary to match
them. Note that the GLOH descriptor performs best on the
structured scene and SIFT obtains the best results for the
textured images.

Descriptors computed for Harris-Affine regions (see
Fig. 7d) give slightly worse results than those computed
for Hessian-Affine regions (see Fig. 7c). This is observed for
both structured and textured scenes. The method for scale
selection and for affine adaptation is the same for Harris
and Hessian-based regions. However, as mentioned in
Section 3.1, the Laplacian-based scale selection combined
with the Hessian detector gives more accurate results.

Note that GLOH descriptors computed on scale invar-
iant regions perform worse than many other descriptors
(see hes-lap gloh and har-lap gloh in Figs. 7a and 7b),
as these regions and, therefore, the descriptors are only
scale and not affine invariant.

4.2 Scale Changes

In this section, we evaluate the descriptors for combined
image rotation and scale change. Scale changes lie in the
range 2-2.5 and image rotations in the range 30 degrees to
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TABLE 1
Distinctiveness of the Descriptors

Sum of the first 10 and sum of all eigenvalues for different descriptors.

Fig. 6. Evaluation for different descriptor dimensions. Test images are from Fig. 3e and descriptors are computed for Hessian-Affine regions. (a) Low-

dimensional descriptors. (b) High-dimensional, region-based descriptors.



45 degrees. Fig. 8a shows the performance of descriptors
computed for Hessian-Laplace regions detected on a
structured scene (see Fig. 3c) and Fig. 8c on a textured scene
(see Fig. 3d). Harris-Laplace regions are used in Figs. 8b and
8d. We can observe that GLOH gives the best results on
Hessian-Laplace regions. In the case of Harris-Laplace, SIFT
and shape context obtain better results that GLOH if 1-
precision is larger than 0.1. The ranking for other descriptors
is similar.

We can observe that the performance of all descriptors is
better than in the case of viewpoint changes. The regions are
more accurate since there are less parameters to estimate.
As in the case of viewpoint changes, the results are better
for the textured images. However, the number of corre-
sponding regions is 5 times larger for Hessian-Laplace and
10 times for Harris-Laplace on the structured scene than on
the textured one.

GLOH descriptors computed on affine invariant regions
detected by Harris-Affine (har-aff gloh) and Hessian-
Affine (hes-aff gloh) obtain slightly lower scores than
SIFT-based descriptors computed on scale invariant re-
gions, but they perform better than all the other descriptors.
This is observed for both structured and textured scenes.

This shows that affine invariant detectors can also be used

in the presence of scale changes if combined with an

appropriate descriptor.

4.3 Image Rotation

To evaluate the performance for image rotation, we used
images with a rotation angle in the range between 30 and
45 degrees. This represents the most difficult case. In Fig. 9a,
we compare the descriptors computed for standard Harris
points detected on a structured scene (cf., Fig. 3a). All
curves are horizontal at similar recall values, i.e., all
descriptors have a similar performance. Note that moments
obtain a low score for this scene type. The applied
transformation (rotation) does not affect the descriptors.
The recall is below 1 because many correspondences are
established accidentally. Harris detector finds many points
close to each other and many support regions accidentally
overlap due to the large size of the region (41 pixels).

To evaluate the influence of the detector errors, we
display the results for the GLOH descriptor computed on
Hessian-Affine regions (hes-aff gloh). The performance
is insignificantly lower than for descriptors computed of
fixed size patches centered on Harris points. The number of
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Fig. 7. Evaluation for a viewpoint changes of 40-60 degrees. (a) Results for a structured scene, cf., Fig. 3e, with Hessian-Affine regions. (b) Results
for a structured scene, cf., Fig. 3e, with Harris-Affine regions. (c) Results for a textured scene, cf., Fig. 3f, Hessian-Affine regions. (d) Results for a
textured scene, cf., Fig. 3f, Harris-Affine regions. har-lap gloh is the GLOH descriptor computed for Harris-Laplace regions. hes-lap gloh is the
GLOH descriptor computed for Hessian-Laplace regions.



correct matches is higher for the affine invariant detector.
There are three types of errors that influence the descriptors
computation: the region error, the localization error, and the

error of the estimated orientation angle. In the case of
standard Harris, the scale and, therefore, the patch size,
remains fixed. The only noise comes from the inaccuracy of
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Fig. 8. Evaluation for scale changes of a factor 2-2.5 combined with an image rotation of 30 to 45 degrees. (a) Results for a structured scene,

cf., Fig. 3c, with Hessian-Laplace regions. (b) Results for a structured scene, cf., Fig. 3c, with Harris-Laplace regions. (c) Results for a textured

scene, cf., Fig. 3d, with Hessian-Laplace regions. (d) Results for a textured scene, cf., Fig. 3d, with Harris-Laplace regions. hes-aff gloh is the

GLOH descriptor computed for Hessian-Affine regions and har-aff gloh is the GLOH descriptor computed for Harris-Affine regions.

Fig. 9. Evaluation for an image rotation of 30 to 45 degrees. Descriptors computed for Harris points. hes-aff gloh—GLOH descriptor computed for
Hessian-Affine regions. (a) Results for the structured images from Fig. 3a. There are 311 correspondences for Hessian-Affine. (b) Results for the
textured images from Fig. 3b. There are 1,671 correspondences for Hessian-Affine.



the localization and from the angle estimation. We notice in
Fig. 9a that these errors have less impact on descriptor
performance than the region error which occurs in the case
of Hessian-Affine. The error due to the orientation estima-
tion is small since the rotation invariant descriptors do not
perform better than the non-invariant ones.

Fig. 9b presents the results for scanned text displayed in
Fig. 3b. The rank of the descriptors changes. GLOH, SIFT,
and shape context obtain the best results. Moments,
differential invariants, cross correlation, and complex filters
fail on this example. The precision is low for all the
descriptors. The descriptors do not capture small variations
in texture which results in many false matches. GLOH
descriptor computed on affine invariant regions (hes-aff
gloh) performs well, i.e., lower than on Harris point, but
better than most of the other descriptors.

4.4 Image Blur

In this section, the performance is measured for images
with a significant amount of blur. Blur was introduced by
changing the camera focus. Fig. 10a shows the results for
the structured scene and Fig. 10b for the textured scene. The
images are displayed in Figs. 3g and 3h, respectively.
Results are presented for regions detected with Hessian-
Affine. We also show the results for GLOH computed on
Harris-Affine regions (har-aff gloh).

The results show that all descriptors are affected by this
type of image degradation, although there are no geometric
transformations in these images. The pixel intensities and
the shape of local structures change in an unpredictable
way and the descriptors are not robust to such deforma-
tions. It is difficult to model these deformations, therefore,
the comparisons on artificially generated data are fre-
quently overly optimistic.

GLOH and PCA-SIFT give the highest scores. The
performance of shape context, which is based on edges,
decreases significantly compared to geometric changes
(Sections 4.1 and 4.2). The edges disappear in the case of a
strong blur. GLOH computed on Harris-Affine regions
obtains a significantly lower score than on Hessian-Affine
regions. Blur has a larger influence on the performance of

the Harris-Affine detector than on the performance of the
Hessian-Affine detector. Similar observations were made
in [33].

The results for the textured scene (cf., Fig. 10b) are even
more influenced by blurring. The descriptors cannot
distinguish the detected regions since blurring makes them
nearly identical. SIFT gives the largest number of matches
in this scene. Cross-correlation obtains the lowest score
among the high dimensional descriptors but higher than
low dimensional ones.

4.5 JPEG Compression

In Fig. 11, we evaluate the influence of JPEG compression
for a structured scene (cf., Fig 3i). The quality of the
transformed image is 5 percent of the reference one. Results
are presented for regions detected with Hessian-Affine.

The performance of descriptors is better than in the case
of blur (cf., Section 4.4), but worse than in case of rotation
and scale changes of structured scenes (cf., Sections 4.3 and
4.2). The performance gradually increases with decreasing
precision for all descriptors, i.e., all descriptors are affected
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Fig. 10. Evaluation for blur. Descriptors are computed on Hessian-Affine regions. (a) Results for a structured scene, cf., Fig. 3g (har-aff
gloh—Harris-Affine regions, 1,125 correspondences). (b) Results for a textured scene, cf., Fig. 3h (har-aff gloh—Harris-Affine regions,
6,197 correspondences).

Fig. 11. Evaluation for JPEG compression, cf., Fig. 3i. Descriptors are

computed on Hessian-Affine regions (har-aff gloh—Harris-Affine

regions, 4,142 correspondences).



by JPEG artifacts. PCA-SIFT obtains the best score for a low
false positive rate and SIFT for a false positive rate above 0.2.
The results for GLOH lie in between those two descriptors.

4.6 Illumination Changes

Fig. 12 shows the results for illumination changes which
have been obtained by changing the camera settings. The
image pair is displayed in Fig. 3j. The descriptors are
computed for Hessian-Affine regions. Fig. 12a compares
two approaches to obtain affine illumination invariance for
differential descriptors: 1) based on region normalization
(steerable filters and diff. invariant used in all
our comparisons) and 2) based on the invariance of the
descriptors (invariant steerable filters and in-

variant differential invariants), see Section 3.1
for details. We observe that the descriptors computed on
normalized regions are significantly better. Theoretically,
the two methods are equivalent. However, the ratio of
derivatives amplifies the noise due to region and location
errors as well as nonaffine illumination changes. The
importance of affine illumination invariance is shown by
the comparison with descriptors which are not intensity

normalized (not invariant steerable filters, not
invariant differential invariants). These descrip-
tors obtain worse results. The score is not zero because these
descriptors are based on derivatives which eliminate the
constant factor from the intensity.

In Fig. 12b, the standard descriptors are compared in the
presence of illumination changes. All the descriptors are
computed on normalized image patches. GLOH obtains the
best matching score. The same descriptor computed on
Harris-Affine regions obtains an equivalent score.

4.7 Matching Example

This section illustrates a matching example for images with
a viewpoint change of more than 50 degrees, see Fig. 13.
Hessian-Affine detects 2,511 and 2,337 regions in the left
and right image, respectively. There are 747 correspon-
dences identified by the overlap criterion defined in
Section 3.3. For the 400 nearest neighbor matches obtained
with the GLOH descriptor, 192 are correct (displayed in
yellow in Fig. 13) and 208 are false (displayed in blue).

Table 2 presents recall, false positive rate, and the number
of correct matches obtained with different descriptors. These
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Fig. 12. Evaluation for illumination changes, cf., Fig. 3j. The descriptors are computed for Hessian-Affine regions (har-aff gloh—Harris-Affine

regions, 1,120 correspondences). (a) Illumination invariance of differential descriptors. steerable filters and differential invariants are

the standard descriptors computed on the intensity normalized regions. invariant steerable filters and invariant differential

invariants are the illumination invariants and not invariant steerable filters and not invariant differential invariants are not

intensity normalized. (b) Descriptors computed on illumination normalized regions.

Fig. 13. Matching example. There are 400 nearest neighbor matches obtained with the GLOH descriptor on Hessian-Affine regions. There are

192 correct matches (yellow) and 208 false matches (blue).



results are all based on a fixed number of 400 nearest neighbor
matches. GLOH obtains the highest recall of 0:25, a slightly
lower score is obtained by SIFT and shape context. Complex
filters achieve the lowest score of 0:06. The number of correct
matches vary from 192 to 44. There are approximately 4.4
times less correct matches for complex filters than for GLOH.
This clearly shows the advantage of SIFT-based descriptors.

5 DISCUSSION AND CONCLUSIONS

In this paper, we have presented an experimental evalua-
tion of interest region descriptors in the presence of real
geometric and photometric transformations. The goal was
to compare descriptors computed on regions extracted with
recently proposed scale and affine-invariant detection
techniques. Note that the evaluation was designed for
matching and recognition of the same object or scene.

In most of the tests, GLOH obtains the best results, closely
followed by SIFT. This shows the robustness and the
distinctive character of the region-based SIFT descriptor.
Shape context also shows a high performance. However, for
textured scenes or when edges are not reliable, its score is
lower.

The best low-dimensional descriptors are gradient
moments and steerable filters. They can be considered as
an alternative when the high dimensionality of the
histogram-based descriptors is an issue. Differential invar-
iants give significantly worse results than steerable filters,
which is surprising as they are based on the same basic
components (Gaussian derivatives). The multiplication of
derivatives necessary to obtain rotation invariance increases
the instability.

Cross correlation gives unstable results. The perfor-
mance depends on the accuracy of interest point and region
detection, which decreases for significant geometric trans-
formations. Cross correlation is more sensitive to these
errors than other high dimensional descriptors.

Regions detected by Hessian-Laplace and Hessian-Affine
are mainly blob-like structures. There are no significant

signal changes in the center of the blob therefore descriptors
perform better on larger neighborhoods. The results are
slightly but systematically better on Hessian regions than
on Harris regions due to their higher accuracy.

The ranking of the descriptors is similar for different
matching strategies. We can observe that SIFT gives
relatively better results if nearest neighbor distance ratio
is used for thresholding. Note that the precision is higher
for nearest neighbor based matching than for threshold
based matching.

Obviously, the comparison presented here is not
exhaustive and it would be interesting to include more
scene categories. However, the comparison seems to
indicate that robust region-based descriptors perform better
than point-wise descriptors. Correlation is the simplest
region-based descriptor. However, our comparison has
shown that it is sensitive to region errors. It would be
interesting to include correlation with patch alignment
which corrects for these errors and to measure the gain
obtained by such an alignment. Of course this is very time
consuming and should only be used for verification.

Similar experiments should be conducted for recognition
and classification of object and scene categories. An evalua-
tion of the descriptors in the context of texture classification
and classification of similar local structures will be a useful
and valuable addition to our work. This would probably
imply clustering of local structures based on the descriptors
and an evaluation of these clusters. It would be also
interesting to compare the SIFT-based descriptors in the
evaluation framework proposed in [21], [44].
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