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Abstract. We describe an approach to object retrieval which searches
for and localizes all the occurrences of an object in a video, given a query
image of the object. The object is represented by a set of viewpoint
invariant region descriptors so that recognition can proceed successfully
despite changes in viewpoint, illumination and partial occlusion. The
temporal continuity of the video within a shot is used to track the regions
in order to reject those that are unstable.

Efficient retrieval is achieved by employing methods from statistical
text retrieval, including inverted file systems, and text and document
frequency weightings. This requires a visual analogy of a word which
is provided here by vector quantizing the region descriptors. The final
ranking also depends on the spatial layout of the regions. The result is
that retrieval is immediate, returning a ranked list of shots in the manner
of Google.

We report results for object retrieval on the full length feature films
‘Groundhog Day’ and ‘Casablanca’.

1 Introduction

The aim of this work is to retrieve those key frames and shots of a video con-
taining a particular object with the ease, speed and accuracy with which Google
retrieves text documents (web pages) containing particular words. This chapter
investigates whether a text retrieval approach can be successfully employed for
this task.

Identifying an (identical) object in a database of images is now reaching some
maturity. It is still a challenging problem because an object’s visual appearance
may be very different due to viewpoint and lighting, and it may be partially
occluded, but successful methods now exist [7,8,9,11,13,14,15,16,20,21]. Typi-
cally an object is represented by a set of overlapping regions each represented
by a vector computed from the region’s appearance. The region extraction and
descriptors are built with a controlled degree of invariance to viewpoint and illu-
mination conditions. Similar descriptors are computed for all images in the data-
base. Recognition of a particular object proceeds by nearest neighbour matching
of the descriptor vectors, followed by disambiguating using local spatial coher-
ence (such as common neighbours, or angular ordering), or global relationships
(such as epipolar geometry or a planar homography).
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We explore whether this type of approach to recognition can be recast as text
retrieval. In essence this requires a visual analogy of a word, and here we provide
this by vector quantizing the descriptor vectors. However, it will be seen that
pursuing the analogy with text retrieval is more than a simple optimization over
different vector quantizations. There are many lessons and rules of thumb that
have been learnt and developed in the text retrieval literature and it is worth
ascertaining if these also can be employed in visual retrieval.

The benefits of this approach is that matches are effectively pre-computed
so that at run-time frames and shots containing any particular object can be
retrieved with no-delay. This means that any object occurring in the video (and
conjunctions of objects) can be retrieved even though there was no explicit inter-
est in these objects when descriptors were built for the video. However, we must
also determine whether this vector quantized retrieval misses any matches that
would have been obtained if the former method of nearest neighbour matching
had been used.

Review of text retrieval: Text retrieval systems generally employ a number of
standard steps [2]: the documents are first parsed into words, and the words are
represented by their stems, for example ‘walk’, ‘walking’ and ‘walks’ would be
represented by the stem ‘walk’. A stop list is then used to reject very common
words, such as ‘the’ and ‘an’, which occur in most documents and are therefore
not discriminating for a particular document. The remaining words are then
assigned a unique identifier, and each document is represented by a vector with
components given by the frequency of occurrence of the words the document
contains. In addition the components are weighted in various ways (described
in more detail in section 4), and in the case of Google the weighting of a web
page depends on the number of web pages linking to that particular page [4]. All
of the above steps are carried out in advance of actual retrieval, and the set of
vectors representing all the documents in a corpus are organized as an inverted
file [22] to facilitate efficient retrieval. An inverted file is structured like an ideal
book index. It has an entry for each word in the corpus followed by a list of all
the documents (and position in that document) in which the word occurs.

A text is retrieved by computing its vector of word frequencies and returning
the documents with the closest (measured by angles) vectors. In addition the
degree of match on the ordering and separation of the words may be used to
rank the returned documents.

Chapter outline: Here we explore visual analogies of each of these steps. Sec-
tion 2 describes the visual descriptors used. Section 3 then describes their vector
quantization into visual ‘words’, and sections 4 and 5 weighting and indexing
for the vector model. These ideas are then evaluated on a ground truth set of
six object queries in section 6. Object retrieval results are shown on two feature
films: ‘Groundhog Day’ [Ramis, 1993] and ‘Casablanca’ [Curtiz, 1942].

Although previous work has borrowed ideas from the text retrieval literature
for image retrieval from databases (e.g. [19] used the weighting and inverted file
schemes) to the best of our knowledge this is the first systematic application of
these ideas to object retrieval in videos.
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Fig. 1. Object query example I. (a) Top row: (left) a frame from the movie ‘Ground-
hog Day’ with an outlined query region and (right) a close-up of the query region de-
lineating the object of interest. Bottom row: (left) all 1039 detected affine covariant
regions superimposed and (right) close-up of the query region. (b) (left) two retrieved
frames with detected regions of interest and (right) a close-up of the images with affine
covariant regions superimposed. These regions match to a subset of the regions shown
in (a). Note the significant change in foreshortening and scale between the query image
of the object, and the object in the retrieved frames. For this query there are four
correctly retrieved shots ranked 1, 2, 3 and 9. Querying all the 5,640 keyframes of the
entire movie took 0.36 seconds on a 2GHz Pentium.

2 Viewpoint Invariant Description

Two types of viewpoint covariant regions are computed for each frame. The first
is constructed by elliptical shape adaptation about a Harris [5] interest point. The
method involves iteratively determining the ellipse centre, scale and shape. The
scale is determined by the local extremum (across scale) of a Laplacian, and the
shape by maximizing intensity gradient isotropy over the elliptical region [3,6].
The implementation details are given in [11,15]. This region type is referred to
as Shape Adapted (SA).

The second type of region is constructed by selecting areas from an intensity
watershed image segmentation. The regions are those for which the area is ap-
proximately stationary as the intensity threshold is varied. The implementation
details are given in [10]. This region type is referred to as Maximally Stable (MS).

Two types of regions are employed because they detect different image areas
and thus provide complementary representations of a frame. The SA regions tend
to be centred on corner like features, and the MS regions correspond to blobs
of high contrast with respect to their surroundings such as a dark window on a
grey wall. Both types of regions are represented by ellipses. These are computed
at twice the originally detected region size in order for the image appearance to
be more discriminating. For a 720 x 576 pixel video frame the number of regions
computed is typically 1,200. An example is shown in Figure 1.

Each elliptical affine invariant region is represented by a 128-dimensional vec-
tor using the SIFT descriptor developed by Lowe [7]. In [12] this descriptor was
shown to be superior to others used in the literature, such as the response of a set
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of steerable filters [11] or orthogonal filters [15], and we have also found SIFT to
be superior (by comparing scene retrieval results against ground truth [18]). One
reason for this superior performance is that SIFT, unlike the other descriptors,
is designed to be invariant to a shift of a few pixels in the region position, and
this localization error is one that often occurs. Combining the SIFT descriptor
with affine covariant regions gives region description vectors which are invariant
to affine transformations of the image. Note, both region detection and the de-
scription is computed on monochrome versions of the frames, colour information
is not currently used in this work.

To reduce noise and reject unstable regions, information is aggregated over a
sequence of frames. The regions detected in each frame of the video are tracked
using a simple constant velocity dynamical model and correlation. Any region
which does not survive for more than three frames is rejected. This ‘stability
check’ significantly reduces the number of regions to about 600 per frame.

3 Building a Visual Vocabulary

The objective here is to vector quantize the descriptors into clusters which will be
the visual ‘words’ for text retrieval. The vocabulary is constructed from a subpart
of the movie, and its matching accuracy and expressive power are evaluated on
the entire movie, as described in the following sections. The running example is
for the movie ‘Groundhog Day’.

The vector quantization is carried out here by K-means clustering, though
other methods (K-medoids, histogram binning, etc) are certainly possible.

3.1 Implementation

Each descriptor is a 128-vector, and to simultaneously cluster all the descriptors
of the movie would be a gargantuan task. Instead a random subset of 437 frames
is selected. Even with this reduction there are still 200K descriptors that must
be clustered.

The Mahalanobis distance is used as the distance function for the K-means
clustering. The distance between two descriptors @y, @2, is then given by

d(:cl, (BQ) = \/((Bl — (EQ)Tzfl(CB1 — (BQ).

The covariance matrix I is determined by (i) computing covariances for descrip-
tors throughout tracks within several shots, and (ii) assuming I is the same for
all tracks (i.e. independent of the region) so that covariances for tracks can be
aggregated. In this manner sufficient measurements are available to estimate all
elements of I. Details are given in [18]. The Mahalanobis distance enables the
more noisy components of the 128-vector to be weighted down, and also decor-
relates the components. Empirically there is a small degree of correlation. As is
standard, the descriptor space is affine transformed by the square root of £ so
that Euclidean distance may be used.
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Fig. 2. Samples of normalized affine covariant regions from clusters corresponding to a
single visual word: (a,c,d) Shape Adapted regions; (b) Maximally Stable regions. Note
that some visual words represent generic image structures, e.g. corners (a) or blobs (b),
and some visual words are rather specific, e.g. an eye (c) or a letter (d).

About 6K clusters are used for Shape Adapted regions, and about 10K clusters
for Maximally Stable regions. The ratio of the number of clusters for each type
is chosen to be approximately the same as the ratio of detected descriptors of
each type. The number of clusters was chosen empirically to maximize matching
performance on a ground truth set for scene retrieval [18]. The K-means algo-
rithm is run several times with random initial assignments of points as cluster
centres, and the lowest cost result used.

Figure 2 shows examples of regions belonging to particular clusters, i.e. which
will be treated as the same visual word. The clustered regions reflect the proper-
ties of the SIFT descriptors which penalize intensity variations amongst regions
less than cross-correlation. This is because SIFT emphasizes orientation of gra-
dients, rather than the position of a particular intensity within the region.

The reason that SA and MS regions are clustered separately is that they
cover different and largely independent regions of the scene. Consequently, they
may be thought of as different vocabularies for describing the same scene, and
thus should have their own word sets, in the same way as one vocabulary might
describe architectural features and another the material quality (e.g. defects,
weathering) of a building.

4 Visual Indexing Using Text Retrieval Methods

In text retrieval each document is represented by a vector of word frequencies.
However, it is usual to apply a weighting to the components of this vector [2],
rather than use the frequency vector directly for indexing. Here we describe the
standard weighting that is employed, and then the visual analogy of document
retrieval to frame retrieval.
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The standard weighting is known as ‘term frequency—inverse document fre-
quency’, tf-idf, and is computed as follows. Suppose there is a vocabulary of V'
words, then each document is represented by a vector

vy = (t1, .y tiyety)

of weighted word frequencies with components

t; = id log N
ng T
where n;q4 is the number of occurrences of word ¢ in document d, ng is the total
number of words in the document d, n; is the number of documents containing
term ¢ and NV is the number of documents in the whole database. The weighting
is a product of two terms: the word frequency niq/nq, and the inverse document
frequency log N/n;. The intuition is that word frequency weights words occurring
often in a particular document, and thus describes it well, whilst the inverse
document frequency downweights words that appear often in the database.
At the retrieval stage documents are ranked by their normalized scalar product
(cosine of angle)
’UqT’Ud

T T
\/’Uq Vq \/'Ud Vyq

between the query vector v, and all document vectors v4 in the database.

In our case the query vector is given by the visual words contained in a
user specified sub-part of an image, and the frames are ranked according to the
similarity of their weighted vectors to this query vector.

fa= (1)

4.1 Stop List

Using a stop list analogy the most frequent visual words that occur in almost
all images are suppressed. The top 5% and bottom 5% are stopped. In our
case the very common words are due to large clusters of over 3K points. These
might correspond to small specularities (highlights), for example, which occur
throughout many scenes. The stop list boundaries were determined empirically
to reduce the number of mismatches and size of the inverted file while keeping
sufficient visual vocabulary.

Figure 4 shows the benefit of imposing a stop list — the very common visual
words occur at many places in the image and are responsible for mis-matches.
Most of these are removed once the stop list is applied. The removal of the
remaining mis-matches is described next.

4.2 Spatial Consistency

Google increases the ranking for documents where the searched for words appear
close together in the retrieved texts (measured by word order). This analogy is
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Frame1 Frame2

Fig. 3. Illustration of spatial consistency voting. To verify a pair of matching regions
(A,B) a circular search area is defined by the k (=5 in this example) spatial nearest
neighbours in both frames. Each match which lies within the search areas in both frames
casts a vote in support of match (A,B). In this example three supporting matches are
found. Matches with no support are rejected.

especially relevant for querying objects by an image, where matched covariant
regions in the retrieved frames should have a similar spatial arrangement [14,16]
to those of the outlined region in the query image. The idea is implemented here
by first retrieving frames using the weighted frequency vector alone, and then
re-ranking them based on a measure of spatial consistency.

Spatial consistency can be measured quite loosely simply by requiring that
neighbouring matches in the query region lie in a surrounding area in the re-
trieved frame. It can also be measured very strictly by requiring that neighbour-
ing matches have the same spatial layout in the query region and retrieved frame.
In our case the matched regions provide the affine transformation between the
query and retrieved image so a point to point map is available for this strict
measure.

We have found that the best performance is obtained in the middle of this
possible range of measures. A search area is defined by the 15 nearest spatial
neighbours of each match, and each region which also matches within this area
casts a vote for that frame. Matches with no support are rejected. The final score
of the frame is determined by summing the spatial consistency votes, and adding
the frequency score f; given by (1). Including the frequency score (which ranges
between 0 and 1) disambiguates ranking amongst frames which receive the same
number of spatial consistency votes. The object bounding box in the retrieved
frame is determined as the rectangular bounding box of the matched regions
after the spatial consistency test. The spatial consistency voting is illustrated
in figure 3. This works very well as is demonstrated in the last row of figure 4,
which shows the spatial consistency rejection of incorrect matches. The object
retrieval examples presented in this chapter employ this ranking measure and
amply demonstrate its usefulness.
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Fig. 4. Matching stages. Top row: (left) Query region and (right) its close-up. Second
row: Original matches based on visual words. Third row: matches after using the stop-
list. Last row: Final set of matches after filtering on spatial consistency.
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1. Pre-processing (off-line)

— Detect affine covariant regions in each keyframe of the video. Represent each
region by a SIFT descriptor (section 2).

— Track the regions through the video and reject unstable regions (section 2).

— Build a visual dictionary by clustering stable regions from a subset of the
video. Assign each region descriptor in each keyframe to the nearest cluster
centre (section 3).

— Remove stop-listed visual words (section 4.1).

— Compute tf-idf weighted document frequency vectors (section 4).

— Build the inverted file indexing structure (section 5).

2. At run-time (given a user selected query region)
— Determine the set of visual words within the query region.
— Retrieve keyframes based on visual word frequencies (section 4).

— Re-rank the top N,(= 500) retrieved keyframes using the spatial consistency
check (section 4.2).

Fig. 5. The Video Google object retrieval algorithm

Other measures which take account of the affine mapping between images
may be required in some situations, but this involves a greater computational
expense.

5 Object Retrieval Using Visual Words

We first describe the off-line processing. A feature length film typically has 100K-
150K frames. To reduce complexity one keyframe is used per second of the
video. Descriptors are computed for stable regions in each keyframe (stability
is determined by tracking as described in section 2). The descriptors are vector
quantized using the centres clustered from the training set, i.e. each descriptor
is assigned to a visual word. The visual words over all frames are assembled into
an inverted file structure where for each word all occurrences and the position
of the word in all frames are stored.

At run-time a user selects a query region. This specifies a set of visual words
and their spatial layout. Retrieval then proceeds in two steps: first frames are re-
trieved based on their tf-idf weighted frequency vectors (the bag of words model),
then they are re-ranked using spatial consistency voting. The frequency based
ranking is implemented using the Matlab sparse matrix engine. The spatial con-
sistency re-ranking is implemented using the inverted file structure. The entire
process is summarized in figure 5.

It is worth examining the time complexity of this retrieval architecture and
comparing it to that of a method that does not vector quantize the descriptors.
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The huge advantage of the quantization is that all descriptors assigned to the
same visual word are considered matched. This means that the burden on the
run-time matching is substantially reduced as descriptors have effectively been
pre-matched off-line.

In detail, suppose there are N frames, a vocabulary of V' visual words, and each
frame contains R regions and M distinct visual words. M < R if some regions are
represented by the same visual word. Each frame is equivalent to a vector in RV
with M non-zero entries. Typical values are N = 10,000, V' = 20,000 and M =
500. At run time the task is to compute the score of (1) between the query frame
vector v, and each frame vector v, in the database (another situation might be
to only return the n closest frame vectors). The current implementation exploits
sparse coding for efficient search as follows. The vectors are pre-normalized (so
that the denominator of (1) is unity), and the computation reduces to one dot
product for each of the N frames. Moreover, only the m < M entries which
are non-zero in both v, and vy need to be examined during each dot product
computation (and typically there are far less than R regions in v, as only a
subpart of a frame specifies the object search). In the worst case if m = M for
all documents the time complexity is O(MN).

If vector quantization is not used, then two architectures are possible. In the
first, the query frame is matched to each frame in turn. In the second, descriptors
over all frames are combined into a single search space. As SIFT is used the
dimension D of the search space will be 128. In the first case the object search
requires finding matches for each of the R descriptors of the query frame, and
there are R regions in each frame, so there are R searches through R points of
dimension D for N frames, a worst case cost of O(NR?D). In the second case,
over all frames there are N R descriptors. Again, to search for the object requires
finding matches for each of the R descriptors in the query image, i.e. R searches
through N R points, again resulting in time complexity O(N R?D).

Consequently, even in the worst case, the vector quantizing architecture is
a factor of RD times faster than not quantizing. These worst case complex-
ity results can, of course, be improved by using efficient nearest neighbour or
approximate nearest neighbour search [9].

6 Experiments

In this section we evaluate object retrieval performance over the entire movie.
The object of interest is specified by the user as a sub-part of any keyframe.
In part this retrieval performance assesses the expressiveness of the visual vo-
cabulary, since invariant descriptors from the test objects (and the frames they
appear in) may not have been included when clustering to form the vocabulary.

Baseline method: The performance is compared to a baseline method implement-
ing standard frame to frame matching. The goal is to evaluate the potential loss
of performance due to the descriptor quantization. The same detected regions
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(4)

Object # of keyframes # of shots # of query regions
1 Red Clock 138 15 31
2 Black Clock 120 13 29
3 Frames sign 92 14 123
4 Digital clock 208 23 97
5 Phil sign 153 29 26
6 Microphone 118 15 19

Fig. 6. Query frames with outlined query regions for the six test queries with manually
obtained ground truth occurrences in the movie Groundhog Day. The table shows the
number of ground truth occurrences (keyframes and shots) and the number of affine
covariant regions lying within the query rectangle for each query.

and descriptors (after the stability check) in each keyframe are used. The de-
tected affine covariant regions within the query area in the query keyframe are
sequentially matched to all 5,640 keyframes in the movie. For each keyframe,
matches are obtained based on the descriptor values using nearest neighbour
matching with a threshold on the distance. Euclidean distance is used here.
Keyframes are ranked by the number of matches and shots are ranked by their
best scoring keyframes.

Comparison on ground truth: The performance of the proposed method is eval-
uated on six object queries in the movie Groundhog Day. Figure 6 shows the
query frames and corresponding query regions. Ground truth occurrences were
manually labelled in all the 5,640 keyframes (752 shots). Retrieval is performed
on keyframes as outlined in section 4 and each shot of the video is scored by its
best scoring keyframe. Performance is measured using a precision-recall plot for
each query. Precision is the number of retrieved ground truth shots relative to the
total number of shots retrieved. Recall is the number of retrieved ground truth
shots relative to the total number of ground truth shots in the movie. Precision-
recall plots are shown in figure 7. Results are summarized using Average
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Precision
Precision
Precision

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Recall Recall Recall

Precision
Precision
Precision

0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6
Recall Recall Recall

(4) () (6)

Object 1 Object 2 Object 3 Object 4 Object 5 Object 6 Average
AP freq+spat (a) 0.70 0.75 0.93 0.50 0.75 0.68 0.72
AP freq only (b) 0.49 0.46 0.91 0.40 0.74 0.41 0.57
AP baseline (c) 0.44 0.62 0.72 0.20 0.76 0.62 0.56
Average precision (AP) for the six object queries.

Fig. 7. Precision-recall graphs (at the shot level) for the six ground truth queries on the
movie Groundhog Day. Each graph shows three curves corresponding to (a) frequency
ranking followed by spatial consensus (circles), (b) frequency ranking only (squares),
and (c) baseline matching (stars). Note the significantly improved precision at lower
recalls after spatial consensus re-ranking (a) is applied to the frequency based ranking
(b). The table shows average precision (AP) for each ground truth object query for
the three different methods. The last column shows mean average precision over all six
queries.

Precision (AP) in the table in figure 7. Average Precision is a single valued
measure computed as the area under the precision-recall graph and reflects per-
formance over all recall levels.

It is evident that for all queries the average precision of the proposed method
exceeds that of using frequency vectors alone — showing the benefits of the spatial
consistency in improving the ranking. On average (across all queries) the frequency
ranking method performs comparably to the baseline method. This demonstrates
that using visual word matching does not result in a significant loss in performance
against the standard frame to frame matching.

Figures 1, 8 and 9 show example retrieval results for three object queries
for the movie ‘Groundhog Day’, and figure 10 shows example retrieval results
for black and white film ‘Casablanca’. For the ‘Casablanca’ retrievals, the film
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Fig. 8. Object query example II: Groundhog Day. (a) Keyframe with user speci-
fied query region in yellow (phil sign), (b) close-up of the query region and (c) close-up
with affine covariant regions superimposed. (d-g) (first row) keyframes from the 1st,
4th, 10th, and 19th retrieved shots with the identified region of interest shown in yel-
low, (second row) a close-up of the image, and (third row) a close-up of the image with
matched elliptical regions superimposed. The first false positive is ranked 21st. The
precision-recall graph for this query is shown in figure 7 (object 5). Querying 5,640
keyframes took 0.64 seconds.

is represented by 5,749 keyframes, and a new visual vocabulary was built as
described in section 3.

Processing time: The region detection, description and visual word assignment
takes about 20 seconds per frame (720 X 576 pixels) but can be done off-line.
The average query time for the six ground truth queries on the database of 5,640
keyframes is 0.82 seconds with a Matlab implementation on a 2GHz pentium.
This includes the frequency ranking and spatial consistency re-ranking. The spa-
tial consistency re-ranking is applied only to the top Ny = 500 keyframes ranked
by the frequency based score. This restriction results in no loss of performance
(measured on the set of ground truth queries).

The query time of the baseline matching method on the same database of
5,640 keyframes is about 500 seconds. This timing includes only the nearest
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d e f g

Fig.9. Object query example III: Groundhog Day. (a) Keyframe with user
specified query region in yellow (tie), (b) close-up of the query region and (c) close-
up with affine covariant regions superimposed. (d-g) (first row) keyframes from the
1st, 2nd, 4th, and 19th retrieved shots with the identified region of interest shown in
yellow, (second row) a close-up of the image, and (third row) a close-up of the image
with matched elliptical regions superimposed. The first false positive is ranked 25th.
Querying 5,640 keyframes took 0.38 seconds.

neighbour matching performed using linear search. The region detection and
description is also done off-line. Note that on this set of queries our proposed
method has achieved about 600-fold speed-up.

Limitations of the current method: Examples of frames from low ranked shots
are shown in figure 11. Appearance changes due to extreme viewing angles, large
scale changes and significant motion blur affect the process of extracting and
matching affine covariant regions. The examples shown represent a significant
challenge to the current object matching method.

Searching for objects from outside the movie: Figure 12 shows an example of
searching for an object outside the ‘closed world’ of the film. The object (a Sony
logo) is specified by a query image downloaded from the internet. The image was
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Fig. 10. Object query example IV: Casablanca. (a) Keyframe with user specified
query region in yellow (hat), (b) close-up of the query region and (c) close-up with affine
covariant regions superimposed. (d-g) (first row) keyframes from the 4th, 5th, 11th,
and 19th retrieved shots with the identified region of interest shown in yellow, (second
row) a close-up of the image, and (third row) a close-up of the image with matched
elliptical regions superimposed. The first false positive is ranked 25th. Querying 5,749
keyframes took 0.83 seconds.

(1,2)
Fig. 11. Examples of missed (low ranked) detections for objects 1,2 and 4. In the left
image the two clocks (object 1 and 2) are imaged from an extreme viewing angle and
are barely visible — the red clock (object 2) is partially out of view. In the right image

the digital clock (object 4) is imaged at a small scale and significantly motion blurred.
Examples shown here were also low ranked by the baseline method.
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Fig. 12. Searching for a Sony logo. First column: (top) Sony Discman image (640 x
422 pixels) with the query region outlined in yellow and (bottom) close-up with detected
elliptical regions superimposed. Second and third column: (top) retrieved frames from
two different shots of ‘Groundhog Day’ with detected Sony logo outlined in yellow and
(bottom) close-up of the image. The retrieved shots were ranked 1 and 4.

preprocessed as outlined in section 2. Searching for images from other sources
opens up the possibility for product placement queries, or searching movies for
company logos, or particular types of vehicles or buildings.

7 Conclusions

We have demonstrated a scalable object retrieval architecture by the use of a
visual vocabulary based on vector quantized viewpoint invariant descriptors. The
vector quantization does not appear to introduce a significant loss in retrieval
performance (precision or recall) compared to nearest neighbour matching.

The method in this chapter allows retrieval for a particular visual aspect of
an object. However, temporal information within a shot may be used to group
visual aspects, and enable object level retrieval [17].

A live demonstration of the ‘Video Google’ system on a publicly available
movie (Dressed to Kill) is available on-line at [1].
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