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Abstract—We study the problem of detecting objects in still, gray-scale images. Our primary focus is the development of a learning-

based approach to the problem that makes use of a sparse, part-based representation. A vocabulary of distinctive object parts is

automatically constructed from a set of sample images of the object class of interest; images are then represented using parts from this

vocabulary, together with spatial relations observed among the parts. Based on this representation, a learning algorithm is used to

automatically learn to detect instances of the object class in new images. The approach can be applied to any object with

distinguishable parts in a relatively fixed spatial configuration; it is evaluated here on difficult sets of real-world images containing side

views of cars, and is seen to successfully detect objects in varying conditions amidst background clutter and mild occlusion. In

evaluating object detection approaches, several important methodological issues arise that have not been satisfactorily addressed in

previous work. A secondary focus of this paper is to highlight these issues and to develop rigorous evaluation standards for the object

detection problem. A critical evaluation of our approach under the proposed standards is presented.

Index Terms—Object detection, image representation, machine learning, evaluation/methodology.
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1 INTRODUCTION

THE development of methods for automatic detection of
objects in images has been a central challenge in

computer vision and pattern analysis research. The main
difficulty in developing a reliable object detection approach
arises from the wide range of variations in images of objects
belonging to the same object class. Different objects
belonging to the same category often have large variations
in appearance. In addition, the same object can appear
vastly different under different viewing conditions, such as
those resulting from changes in lighting, viewpoint, and
imaging techniques [1]. A successful object detection
approach must therefore be able to represent images in a
manner that renders them invariant to such intraclass
variations, but at the same time distinguishes images of the
object class from all other images.

In this paper, we present an approach for learning to
detect objects in images using a sparse, part-based
representation. Part-based representations for object detec-
tion form the basis for a number of theories of biological
vision [2], [3], [4], [5], and have also been shown to offer
advantages in computational approaches [6]. In the ap-
proach presented here, the part-based representation is
acquired automatically from a set of sample images of the
object class of interest, thus capturing the variability in part
appearances across the sample set. A classifier is then
trained, using machine learning techniques, to distinguish
between object and nonobject images based on this
representation; this learning stage further captures the
variation in the part structure of object images across the

training set. As shown in our experiments, the resulting
algorithm is able to accurately detect objects in complex
natural scenes.

This paper also discusses several methodological issues
that arise when evaluating object detection approaches. For
an area that is increasingly becoming an active focus of
research, it is necessary to have standardized and mean-
ingful methods for evaluating and comparing different
approaches. We identify some important issues in this
regard that have not been satisfactorily addressed in
previous work, and propose possible solutions to them.

1.1 Related Work

A number of different approaches to object detection that
use some form of learning have been proposed in the past.
In most such approaches, images are represented using
some set of features, and a learning method is then used to
identify regions in the feature space that correspond to the
object class of interest. There has been considerable variety
in both the types of features used and the learning methods
applied; we briefly mention some of the main approaches
that have been proposed and then discuss some recent
methods that are most closely related to ours.

Image features used in learning-based approaches to
object detection have included raw pixel intensities [7], [8],
[9], features obtained via global image transformations [10],
[11], and local features such as edge fragments [12], [13],
rectangle features [14], Gabor filter-based representations
[15], and wavelet features [16]. On the learning side,
methods for classifying the feature space have ranged from
simple nearest-neighbor schemes to more complex ap-
proaches such as neural networks [8], convolutional neural
networks [17], probabilistic methods [11], [18], and linear or
higher degree polynomial classifiers [13], [16].

In our approach, the features are designed to be object
parts that are rich in information content and are specific to
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the object class of interest. A part-based representation was

used in [6], in which separate classifiers are used to detect

heads, arms, and legs of people in an image, and a final

classifier is then used to decide whether a person is present.

However, the approach in [6] requires the object parts to be

manually defined and separated for training the individual

part classifiers. In order to build a system that is easily

extensible to deal with different objects, it is important that

the part selection procedure be automated. One approach in

this direction is developed in [19], [20], in which a large set

of candidate parts is extracted from a set of sample images

of the object class of interest, an explicit measure of

information content is computed for each such candidate,

and the candidates found to have the highest information

content are then used as features. This framework is

appealing in that it naturally allows for parts of different

sizes and resolutions. However, the computational de-

mands are high; indeed, as discussed in [20], after a few

parts are chosen automatically, manual intervention is

needed to guide the search for further parts so as to keep

the computational costs reasonable. Our method for

automatically selecting information-rich parts builds on an

efficient technique described in [21], in which interest

points are used to collect distinctive parts. Unlike [21],

however, our approach does not assume any probabilistic

model over the parts; instead, a discriminative classifier is

directly learned over the parts that are collected. In

addition, the model learned in [21] relies on a small number

of fixed parts, making it potentially sensitive to large

variations across images. By learning a classifier over a

large feature space, we are able to learn a more expressive

model that is robust to such variations.
In order to learn to identify regions in the feature space

corresponding to the object class of interest, we make use of

a feature-efficient learning algorithm that has been used in

similar tasks in [13], [22]. However, [13], [22] use a pixel-

based representation, whereas in our approach, images are

represented using a higher-level, more sparse representa-

tion. This has implications both in terms of detection

accuracy and robustness, and in terms of computational

efficiency: The sparse representation of the image allows us

to perform operations (such as computing relations) that

would be prohibitive in a pixel-based representation.

1.2 Problem Specification

We assume some object class of interest. Our goal is to

develop a system which, given an image as input, returns as

output a list of locations (and, if applicable, corresponding

scales) at which instances of the object class are detected in

the image. It is important to note that this problem is

distinct from (and more challenging than) the commonly

studied problem of simply deciding whether or not an

input image contains an instance of the object class; the

latter problem requires only a “yes/no” output without

necessarily localizing objects, and is therefore really an

instance of an image classification problem rather than a

detection problem. Evaluation criteria for the detection

problem are discussed later in the paper.

1.3 Overview of the Approach

Our approach for learning to detect objects consists broadly

of four stages; these are outlined briefly below:

1. Vocabulary Construction. The first stage consists of
building a “vocabulary” of parts that can be used to
represent objects in the target class. This is done
automatically by using an interest operator to extract
information-rich patches from sample images of the
object class of interest. Similar patches thus obtained
are grouped together and treated as a single part.

2. Image Representation. Input images are represented in
terms of parts from the vocabulary obtained in the
first stage. This requires determining which parts
from the vocabulary are present in an image; a
correlation-based similarity measure is used for this
purpose. Each image is then represented as a binary
feature vector based on the vocabulary parts present
in it and the spatial relations among them.

3. Learning a Classifier. Given a set of training images
labeled as positive (object) or negative (nonobject),
each image is converted into a binary feature vector
as described above. These feature vectors are then
fed as input to a supervised learning algorithm that
learns to classify an image as a member or
nonmember of the object class, with some associated
confidence. As shown in our experiments, the part-
based representation captured by the feature vectors
enables a relatively simple learning algorithm to
learn a good classifier.

4. Detection Hypothesis Using the Learned Classifier. The
final stage consists of using the learned classifier to
form a detector. We develop the notion of a classifier
activation map in the single-scale case (when objects
are sought at a single, prespecified scale), and a
classifier activation pyramid in the multiscale case
(when objects are sought at multiple scales); these
are generated by applying the classifier to windows
at various locations in a test image (and, in the
multiscale case, at various scales), each window
being represented as a feature vector as above. We
present two algorithms for producing a good
detection hypothesis using the activation map or
pyramid obtained from an image.

The proposed framework can be applied to any object

that consists of distinguishable parts arranged in a

relatively fixed spatial configuration. Our experiments are

performed on images of side views of cars; therefore, this

object class will be used as a running example throughout

the paper to illustrate the ideas and techniques involved.
The rest of the paper is organized as follows: Section 2

describes each of the four stages of our approach in detail.

Section 3 presents an experimental evaluation of the

approach. In this section, we first discuss several important

methodological issues, including evaluation criteria and

performance measurement techniques, and then present

our experimental results. In Section 4, we analyze the

performance of individual components of our approach;

this gives some insight into the results described in
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Section 3. Finally, Section 5 concludes with a summary and
possible directions for future work.

2 APPROACH

As outlined in the previous section, our approach for
learning to detect objects consists broadly of four stages.
Below, we describe each of these stages in detail.

2.1 Vocabulary Construction

The first stage in the approach is to develop a vocabulary of
parts with which to represent images. To obtain an
expressive representation for the object class of interest,
we require distinctive parts that are specific to the object
class but can also capture the variation across different
instances of the object class. Our method for automatically
selecting such parts is based on the extraction of interest
points from a set of representative images of the target
object. A similar method has been used in [21].

Interest points are points in an image that have high
information content in terms of the local change in signal.
They have been used in a variety of problems in computer
vision, including stereo matching [23], object recognition,
and image retrieval [24]. Interest points have typically been
designed and used for properties such as rotation and
viewpoint invariance, which are useful in recognizing
different views of the same object, and not for the
“perceptual” or “conceptual” quality that is required for
reliably detecting different instances of an object class.
However, by using interest points in conjunction with a
redundant representation that is described below, we are
able to capture a certain degree of conceptual invariance.

We apply the Förstner interest operator [25], [21] to a set
of representative images of the object class; this detects
intersection points of lines and centers of circular patterns.
Small image patches are then extracted around the interest
points obtained. The goal of extracting a large set of patches
from different instances of the object class is to be able to
“cover” new object instances, i.e., to be able to represent
new instances using a subset of these patches.

In our experiments, the Förstner operator was applied to
a set of 50 representative images of cars, each 100� 40 pixels
in size. Fig. 1 shows an example of this process. Patches of
size 13� 13 pixels were extracted around each such interest
point, producing a total of 400 patches from the 50 images.
These patches are shown in Fig. 2.

As seen in Fig. 2, several of the patches extracted by this
procedure are visually very similar to each other. To
facilitate learning, it is important to abstract over these
patches by mapping similar patches to the same feature id
(and distinct patches to different feature ids). This is
achieved via a bottom-up clustering procedure. Initially,
each patch is assigned to a separate cluster. Similar clusters
are then successively merged together until no similar
clusters remain. In merging clusters, the similarity between
two clusters C1 and C2 is measured by the average
similarity between their respective patches:

similarityðC1; C2Þ ¼
1

jC1jjC2j
X

p12C1

X

p22C2

similarityðp1; p2Þ;

where the similarity between two patches is measured by
normalized correlation, allowing for small shifts of up to
two pixels. Two clusters are merged if the similarity
between them exceeds a certain threshold (0.80 in our
implementation). Using this technique, the 400 patches
were grouped into 270 “part” clusters. While several
clusters contained just one element, patches with high
similarity were grouped together. Fig. 3 shows some of the
larger clusters that were formed. Each cluster as a whole is
then given a single feature id and treated as a single
“conceptual” part. In this way, by using a deliberately
redundant representation that uses several similar patches
to represent a single conceptual part, we are able to extract a
higher-level, conceptual representation from the interest
points. The importance of the clustering procedure is
demonstrated by experiments described in Section 3.4.3.

2.2 Image Representation

Having constructed the part vocabulary above, images are
now represented using this vocabulary. This is done by
determining which of the vocabulary parts are present in an
image and then representing the image as a binary feature
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Fig. 1. (a) A sample object image used in vocabulary construction.

(b) Interest points detected by the Förstner operator. Crosses denote

intersection points; circles denote centers of circular patterns.

(c) Patches extracted around the interest points.

Fig. 2. The 400 patches extracted by the Förstner interest operator from 50 sample images.

Fig. 3. Examples of some of the “part” clusters formed after grouping

similar patches together. These form our part vocabulary.



vector based on these detected parts and the spatial
relations that are observed among them.

2.2.1 Part Detection

Since the vocabulary parts are all based on interest points,
the search for parts in an image is restricted to interesting
regions by first applying the same interest operator to the
image and highlighting patches around the interest points
found. For each such patch in the image, we perform a
similarity-based indexing into the part vocabulary. The
similarity of a vocabulary part P (which may be a cluster
containing several patches) to a highlighted patch q is
computed as

similarityðP; qÞ ¼ 1

d�jP je
X

p2Pð�;qÞ

similarityðp; qÞ;

where 0 < � � 1, and Pð�;qÞ denotes the subset of the part
cluster P that contains the d�jP je patches in P that are most
similar to q. (In our implementation, � ¼ 0:5.) The similarity
between patches p and q is measured by normalized
correlation, allowing for small shifts of up to two pixels.
For each highlighted patch q, the most similar vocabulary
part P �ðqÞ is given by

P �ðqÞ ¼ argmax
P

similarityðP; qÞ:

If a sufficiently similar vocabulary part is found, i.e., if
similarityðP �ðqÞ; qÞ exceeds a certain threshold (0.75 in our
implementation), then the patch q in the image is
represented by the feature id corresponding to the
vocabulary part P �ðqÞ. Fig. 4 shows examples of this
process.

2.2.2 Relations over Detected Parts

Spatial relations among the parts detected in an image are
defined in terms of the distance and direction between each
pair of parts. The distances and directions are discretized
into bins: In our implementation, the distances are defined
relative to the part size and are discretized into five bins,
while the directions are discretized into eight different
ranges, each covering an angle of 45�. By considering the
parts in a fixed order across the image, the number of
direction bins that need to be represented is reduced to
four. This gives 20 possible relations (i.e., distance-direction
combinations) between any two parts.

The 100� 40 training images (and later, 100� 40 win-
dows in test images) that are converted to feature vectors
have a very small number of parts actually present in them:
On average, a positive window contains around two to six
parts, while a negative one contains around zero to four.
Therefore, the cost of computing relations between all pairs
of detected parts is negligible once the parts have been
detected.

2.2.3 Feature Vector

Each 100� 40 training image (and later, each 100� 40
window in the test images) is represented as a feature
vector containing feature elements of two types:

1. P ðiÞ
n , denoting the ith occurrence of a part of type n in

the image (1 � n � 270 in our experiments; each n
corresponds to a particular part cluster).

2. RðjÞ
m ðPn1

; Pn2
Þ, denoting the jth occurrence of relation

Rm between a part of type n1 and a part of type n2 in
the image (1 � m � 20 in our implementation; each
m corresponds to a particular distance-direction
combination).

These are binary features (each indicating whether or not a
part or relation occurs in the image), each represented by a
unique identifier.1 The rerepresentation of the image is a list
of the identifiers corresponding to the features that are
active (present) in the image.

2.3 Learning a Classifier

Using the above feature vector representation, a classifier is
trained to classify a 100� 40 image as car or noncar. We
used a training set of 1,000 labeled images (500 positive and
500 negative), each 100� 40 pixels in size.2 The images were
acquired partly by taking still photographs of parked cars
and partly by grabbing frames from digitized video
sequences of cars in motion. The photographs and video
sequences were all taken in the Champaign-Urbana area.
After cropping and scaling to the required size, histogram
equalization was performed on all images to reduce
sensitivity to changes in illumination conditions. The
positive examples contain images of different kinds of cars
against a variety of backgrounds, and include images of
partially occluded cars. The negative training examples
include images of natural scenes, buildings, and road views.
Note that our training set is relatively small and all images in
our data set are natural; we do not use any synthetic training
images, as has been done, for example, in [8], [13], [18].

Each of these training images is converted into a feature
vector as described in Section 2.2. Note that the potential
number of features in any vector is very large since there
are 270 different types of parts that may be present, 20
possible relations between each possible pair of parts, and
several of the parts and relations may potentially be
repeated. However, in any single image, only a very small
number of these possible features is actually active. Taking
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Fig. 4. Examples of the part detection process applied to a positive
image (top row) and a negative image (bottom row) during training.
Center images show the patches highlighted by the interest operator;
notice how this successfully captures the interesting regions in the
image. These highlighted interest patches are then matched with
vocabulary parts. In the right images, the highlighted patches are
replaced by an arbitrary member of the part cluster (if any) matched by
this detection process. These parts, together with the spatial relations
among them, form our representation of the image.

1. In the implementation, a part feature of the form P ðiÞ
n is represented by

a unique feature id which is an integer determined as a function of n and i.
Similarly, a relation feature of the form RðjÞ

m ðPn1
; Pn2

Þ is assigned a unique
feature id that is a function of m, n1, n2, and j.

2. Note that the 50 car images used for constructing the part vocabulary
are not part of the training set.



advantage of this sparseness property, we train our
classifier using the Sparse Network of Winnows (SNoW)
learning architecture [26], [27], which is especially well-
suited for such sparse feature representations.3 SNoW
learns a linear function over the feature space using a
variation of the feature-efficient Winnow learning algo-
rithm [28]; it allows input vectors to specify only active
features, and as is the case for Winnow, its sample
complexity grows linearly with the number of relevant
features and only logarithmically with the total number of
potential features. A separate function is learned over the
common feature space for each target class in the
classification task. In our task, feature vectors obtained
from object training images are taken as positive examples
for the object class and negative examples for the nonobject
class and vice-versa. Given a new input vector, the learned
function corresponding to each class outputs an activation
value, which is the dot product of the input vector with the
learned weight vector, passed through a sigmoid function
to lie between 0 and 1. Classification then takes place via a
winner-take-all decision based on these activations (i.e., the
class with the highest activation wins). The activation
levels have also been shown to provide a robust measure of
confidence; we use this property in the final stage as
described in Section 2.4 below. Using this learning
algorithm, the representation learned for an object class is
a linear threshold function over the feature space, i.e., over
the part and relation features.

2.4 Detection Hypothesis Using the Learned
Classifier

Having learned a classifier4 that can classify 100� 40 images
as positive or negative, cars can be detected in an image by
moving a 100� 40 window over the image and classifying
each such window as positive or negative. However, due to
the invariance of the classifier to small translations of an
object, several windows in the vicinity of an object in the
image will be classified as positive, giving rise to multiple
detections corresponding to a single object in the scene. A
question that arises is how the system should be evaluated
in the presence of these multiple detections. In much
previous work in object detection, multiple detections
output by the system are all considered to be correct
detections (provided they satisfy the criterion for a correct
detection; this is discussed later in Section 3.2). However,
such a system fails both to locate the objects in the image,
and to form a correct hypothesis about the number of object
instances present in the image. Therefore, in using a
classifier to perform detection, it is necessary to have
another processing step, above the level of the classification
output, to produce a coherent detection hypothesis.

A few studies have attempted to develop such a
processing step. A simple strategy is used in [14]: Detected
windows are partitioned into disjoint (nonoverlapping)
groups, and each group gives a single detection located at
the centroid of the corresponding original detections. While

this may be suitable for the face detection database used
there, in general, imposing a zero-overlap constraint on
detected windows may be too strong a condition. The
system in [8] uses the very property of multiple detections
to its advantage, taking the number of detections in a small
neighborhood as a measure of the detector’s confidence in
the presence of an object within the neighborhood; if a high
confidence is obtained, the multiple detections are collapsed
into a single detection located at the centroid of the original
detections. Our approach also uses a confidence measure to
correctly localize an object; however, this confidence is
obtained directly from the classifier. In addition, our
approach offers a more systematic method for dealing with
overlaps; like [14], [8] also uses a zero-overlap strategy,
which is too restrictive for general object classes.

As amore general solution to the problem,we develop the
notion of a classifier activation map in the single-scale case
when objects are sought at a single, prespecified scale, and a
classifier activation pyramid in themultiscale casewhen objects
are sought at multiple scales. These can be generated from
any classifier that can produce a real-valued activation or
confidence value in addition to a binary classification output.

2.4.1 Classifier Activation Map for

Single-Scale Detections

In the single-scale case (where, in our case, cars are sought
at a fixed size of 100� 40 pixels), a fixed-size window (of
size 100� 40 pixels in our case) is moved over the image
and the learned classifier is applied to each such window
(represented as a feature vector) in the image. Windows
classified as negative are mapped to a zero activation value;
windows classified as positive are mapped to the activation
value produced by the classifier. This produces a map with
high activation values at points where the classifier has a
high confidence in its positive classification. This map can
then be analyzed to find high-activation peaks, giving the
desired object locations.

We propose two algorithms for analyzing the classifier
activation map obtained from a test image. The first
algorithm, which we refer to as the neighborhood suppression
algorithm, is based on the idea of nonmaximum suppres-
sion. All activations in the map start out as “unsuppressed.”
At each step, the algorithm finds the highest unsuppressed
activation in the map. If this activation is the highest among
all activations (both suppressed and unsuppressed) within
some predefined neighborhood, then the location of the
corresponding window is output as a detection, and all
activations within the neighborhood are marked as “sup-
pressed;” this means they are no longer considered as
candidates for detection. If the highest unsuppressed
activation found is lower than some (suppressed) activation
within the neighborhood, it is simply marked as sup-
pressed. The process is repeated until all activations in the
map are either zero or have been suppressed. The shape
and size of the neighborhood used can be chosen appro-
priately depending on the object class and window size. In
our experiments, we used a rectangular neighborhood of
size 71 pixels (width) � 81 pixels (height), centered at the
location under consideration.

Our second algorithm for analyzing the classifier activa-
tion map obtained from a test image is referred to as the
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3. Software for SNoW is freely available from http://L2R.cs.uiuc.edu/
~cogcomp/.

4. The SNoW parameters used to train the classifier were 1.25, 0.8, 4.0,
and 1.0, respectively, for the promotion and demotion rates, the threshold
and the default weight.



repeated part elimination algorithm. This algorithm finds the
highest activation in the map and outputs the location of the
corresponding window as a detection. It then removes all
parts that are contained in this window, and recomputes the
activation map by reapplying the classifier to the affected
windows. This process is then repeated until all activations
in the map become zero. This algorithm requires repeated
application of the learned classifier, but avoids the need to
determine appropriate neighborhood parameters as in the
neighborhood suppression algorithm.

In both algorithms, there is a trade-off between the
number of correct detections and number of false detec-
tions. An activation threshold is introduced in the algo-
rithms to determine where to lie on this trade-off curve; all
activations in the classifier activation map that fall below
the threshold are automatically set to zero. Lowering the
threshold increases the correct detections but also increases
the false positives; raising the threshold has the opposite
effect. Fig. 5 shows the classifier activation map generated
from a sample test image, the map after applying a
threshold, and the associated detection result (obtained
using the neighborhood suppression algorithm).

2.4.2 Classifier Activation Pyramid for

Multiscale Detections

The approach described above for detecting objects at a
single scale can be extended to detect objects at different
scales in an image by processing the image at several scales.
This can be done by scaling the input image a number of
times to form a multiscale image pyramid, applying the
learned classifier to fixed-size windows in each image in the
pyramid, and forming a three-dimensional classifier activa-
tion pyramid instead of the earlier two-dimensional
classifier activation map. This activation pyramid can then
be analyzed to detect objects in both location and scale
(analogous to finding peaks corresponding to object
locations in the two-dimensional map). In our multiscale
experiments, a test image is scaled to sizes ranging from
0.48 to 1.2 times the original size, each scale differing from
the next by a factor of 1.2. The learned classifier is applied to
100� 40 windows in each of the scaled images, resulting in
a classifier activation pyramid with six scale levels.

Both the neighborhood suppression algorithm and the
repeated part elimination algorithm used to analyze
activation maps in the single-scale case can be extended
naturally to analyze activation pyramids in the multiscale
case. In this case, the algorithms output both the location

and the scale of the window corresponding to an activation

flagged as a detection. The neighborhood suppression

algorithm now uses a three-dimensional neighborhood that

extends across all scales; the neighborhood size at each scale

is obtained by scaling the original neighborhood size with

the image. Similarly, the repeated part elimination algo-

rithm now removes parts at all scales that arise from the

region of an image contained within the window corre-

sponding to an activation flagged as a detection. Again, an

activation threshold is introduced in the algorithms to

determine where to lie in the trade-off between correct

detections and false detections.

3 EVALUATION

This section presents an experimental evaluation of the

object detection approach developed in the previous

section. The approach is evaluated both for the single-scale

case and for the multiscale case. We start by describing the

data sets used for evaluation in Section 3.1. In Sections 3.2

and 3.3, we discuss in detail the evaluation criteria and

performance measures we use. We emphasize the impor-

tance of identifying and specifying a suitable evaluation

methodology and discuss some important issues in this

regard that have not been addressed satisfactorily in

previous object detection research. Section 3.4 contains our

experimental results.

3.1 Test Sets

We collected two sets of test images, the first for the single-

scale case and the second for the multiscale case. We refer to

these as test set I and test set II, respectively. Test set I

consists of 170 images containing 200 cars; the cars in this

set are all roughly the same size as in the training images.

Test set II consists of 108 images containing 139 cars; the

cars in this set are of different sizes, ranging from roughly

0.8 to 2 times the size of cars in the training images. The

images were all taken in the Champaign-Urbana area and

were acquired in the same manner as the training images:

partly from still images taken with a camera and partly by

grabbing frames from video sequences of cars in motion.

They are of different resolutions and include instances of

partially occluded cars, cars that have low contrast with the

background, and images with highly textured backgrounds.
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Fig. 5. The second image shows the classifier activation map generated from the test image on the left; the activation at each point corresponds to
the confidence of the classifier when applied to the 100� 40 window centered at that point. The activations in the map have been scaled by 255 to
produce the image; black corresponds to an activation of 0, white to an activation of 1. The third image shows the map after applying a threshold of
0.9: All activations below 0.9 have been set to zero. The activations in this map have been rescaled; the activation range of 0.9-1 is now represented
by the full black-white range. The bright white peak corresponds to the highest activation, producing the detection result shown on the right. The
method prevents the system from producing multiple detections for a single object.



3.2 Evaluation Criteria

Past work on object detection has often emphasized the

need for standardized data sets for comparing different

approaches. Although several studies have reported results

on common data sets, it is often not clear how the different

approaches have been evaluated on these data sets. Problems

such as image classification have a naturally defined

evaluation criterion associated with them. However, in

object detection, there is no such natural criterion: correct

detections and false detections can be defined in different

ways, giving rising to different results. To ensure that the

comparison between different approaches is truly fair, it is

essential that the same evaluation criterion be used. There-

fore, in addition to standard data sets for object detection,

we also need appropriate standardized evaluation criteria

to be associated with them. Here, we specify in detail the

criteria we have used to evaluate our approach.5

In the single-scale case, for each car in the test images, we

determined manually the location of the best 100� 40

window containing the car. For a location output by the

detector to be evaluated as a correct detection, we require it

to lie within an ellipse of a certain size centered at the true

location. In other words, if ði�; j�Þ denotes the center of the

window corresponding to the true location and ði; jÞ
denotes the center of the window corresponding to the

location output by the detector, then for ði; jÞ to be

evaluated as a correct detection we require it to satisfy

ji� i�j2

�2
height

þ jj� j�j2

�2
width

� 1; ð1Þ

where �height; �width determine the size of the allowed

ellipse. We allowed the axes of the ellipse to be 25 percent

of the object size along each dimension, thus taking �height ¼
0:25� 40 ¼ 10 and �width ¼ 0:25� 100 ¼ 25. In addition, if

two or more locations output by the detector satisfy the

above criterion for the same object, only one is considered a

correct detection; the others are counted as false positives

(see Section 2.4 for a discussion on this). The above criterion

is more strict than the criterion used in [29], and we have

found that it corresponds more closely with human

judgement.
In the multiscale case, we determined manually both the

location and the scale of the best window containing each

car in the test images. Since we assume a fixed ratio

between the height and width of any instance of the object

class under study, the scale of the window containing an

object can be represented simply by its width. The ellipse

criterion of the single-scale case is extended in this case to

an ellipsoid criterion; if ði�; j�Þ denotes the center of the

window corresponding to the true location and w� its

width, and ði; jÞ denotes the center of the window

corresponding to the location output by the detector and

w the width, then for ði; j; wÞ to be evaluated as a correct

detection we require it to satisfy

ji� i�j2

�2
height

þ jj� j�j2

�2
width

þ jw� w�j2

�2
scale

� 1; ð2Þ

where �height; �width; �scale determine the size of the allowed
ellipsoid. In this case, we allowed the axes of the ellipsoid
to be 25 percent of the true object size along each
dimension, thus taking �height¼0:25�h�, �width¼0:25�w�,
and �scale¼0:25�w�, where h� is the height of the window
corresponding to the true location (in our case, h� ¼
ð40=100Þw�). Again, if two or more location-scale pairs
output by the detector satisfy the above criterion for the
same object, only one is considered a correct detection; the
others are counted as false positives.

3.3 Performance Measures

In measuring the performance of an object detection
approach, the two quantities of interest are clearly the
number of correct detections, which we wish to maximize,
and the number of false detections, which we wish to
minimize. Most detection algorithms include a threshold
parameter (such as the activation threshold in our case,
described in Section 2.4) which can be varied to lie at
different points in the trade-off between correct and false
detections. It is then of interest to measure how well an
algorithm trades off the two quantities over a range of
values of this parameter. Different methods for measuring
performance measure this trade-off in different ways and,
again, it is important to identify a suitable method that
captures the trade-off correctly in the context of the object
detection problem.

One method for expressing the trade-off is the receiver
operating characteristics (ROC) curve. The ROC curve plots
the true positive rate versus the false positive rate, where

True positive rate ¼ TP

nP
; ð3Þ

False positive rate ¼ FP

nN
; ð4Þ

the symbols being explained in Table 1. However, note
that, in the problem of object detection, the number of
negatives in the data set, nN (required in the definition of
the false positive rate in (4) above), is not defined. The
number of negative windows evaluated by a detection
system has commonly been used for this purpose.
However, there are two problems with this approach.
The first is that this measures the accuracy of the system
as a classifier, not as a detector. Since the number of
negative windows is typically very large compared to the
number of positive windows, a large absolute number of
false detections appears to be small under this measure.
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TABLE 1
Symbols Used in Defining Performance Measurement

Quantities, Together with Their Meanings

5. Both the data sets we have used and the evaluation routines are
available from http://L2R.cs.uiuc.edu/~cogcomp/.



The second and more fundamental problem is that the
number of negative windows evaluated is not a property
of either the input to the problem or the output, but
rather a property internal to the implementation of the
detection system.

When a detection system is put into practice, we are
interested in knowing how many of the objects it detects,
and how often the detections it makes are false. This trade-
off is captured more accurately by a variation of the recall-
precision curve, where

Recall ¼ TP

nP
; ð5Þ

Precision ¼ TP

TP þ FP
: ð6Þ

The first quantity of interest, namely, the proportion of
objects that are detected, is given by the recall (which is the
same as the true positive rate in (3) above). The second
quantity of interest, namely, the number of false detections
relative to the total number of detections made by the
system, is given by

1� Precision ¼ FP

TP þ FP
: ð7Þ

Plotting recall versus (1� precision), therefore, expresses the
desired trade-off.

We shall also be interested in the setting of the threshold
parameter that achieves the best trade-off between the two
quantities. This will be measured by the point of highest
F-measure, where

F-measure ¼ 2 � Recall � Precision
Recallþ Precision

: ð8Þ

The F-measure summarizes the trade-off between recall and
precision, giving equal importance to both.

3.4 Experimental Results

We present our single-scale results in Section 3.4.1 below,

followed by a comparison of our approach with baseline

methods in Section 3.4.2 and a study of the contributions of

different factors in the approach in Section 3.4.3. Our

multiscale results are presented in Section 3.4.4.

3.4.1 Single-Scale Results

We applied our single-scale detector, with both the

neighborhood suppression algorithm and the repeated

part elimination algorithm (see Section 2.4), to test set I

(described in Section 3.1), consisting of 170 images

containing 200 cars. To reduce computational costs, the

100� 40 window was moved in steps of size 5 percent of

the window size in each dimension, i.e., steps of five

pixels and two pixels, respectively, in the horizontal and

vertical directions in our experiments. Training over 1,000

images took around 10 minutes in our implementation on

a machine with two Sun UltraSPARC-II 296 MHz

processors and 1,024 MB memory. The time to test a 200�
150 image was approximately 2.5 seconds.6 In all, 147,802

test windows were evaluated by the system, of which

more than 134,333 were negative.7
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Fig. 6. (a) Recall-precision curves showing the performance of our single-scale car detection system with the two algorithms described in Section 2.4.

(b) ROC curves showing the same results. It is important to note that the x-axis scales in the two curves are different; the x-axis values in the ROC

curve are much smaller than in the recall-precision curve. Note also that precision need not necessarily decrease monotonically with increasing

recall; this is exhibited by the inward bend on the lower left corner of the first curve (consequently, recall is not necessarily a function of precision).

See Section 3.3 for definitions of the different quantities and a discussion of why the recall-precision curve is a more appropriate method for

expressing object detection results than the ROC curve.

6. The improvements in computation time over [29] are mainly due to
two factors: a faster method for computing correlations, and the observation
that image patches in test images need not be compared to vocabulary parts
that are not seen during training.

7. The number of negative windows was calculated by counting the
windows outside the permissible ellipses around objects (see Section 3.2).
However, since only one window within the permissible ellipse for any
object would be counted as positive in evaluation, the effective number of
negatives is actually larger than this number.



Following the discussion in Section 3.3, we present our
results as recall versus (1� precision) in Fig. 6. The different
points on the curves are obtained by varying the activation
threshold parameter as described in Section 2.4. For
comparison, we also calculate the ROC curves as has been
done before (using the number of negative windows
evaluated by the system as the total number of negatives);
these are also shown in Fig. 6.

Tables 2 and 3 show some sample points from the recall-
precision curves of Fig. 6.8 Again, for comparison, we also
show the false positive rate at each point corresponding to
the ROC curves. The repeated part elimination algorithm
allows for a higher recall than the neighborhood suppres-
sion algorithm. However, the highest F-measure achieved
by the two algorithms is essentially the same.

Figs. 7 and 8 show the output of our detector on some
sample test images.

3.4.2 Comparison with Baseline Methods

As baselines for comparison, we implemented two addi-
tional detection systems. The first is a SNoW-based detector
that simply uses single pixel intensities (discretized into
16 intensity ranges) as features. Since this uses the same
learning algorithm as our system and differs only in the
representation, it provides a good basis for judging the

importance of representation in learning. The second
baseline system is a nearest-neighbor based detector that
uses the normalized correlation between test windows and
training images (in raw pixel intensity representation) as
the similarity measure. The classifier activation map for the
SNoW-based method was computed as before, using SNoW
activations. In the case of nearest-neighbor, the classifier
activation for a positively classified test window was taken
to be the correlation of the window with the nearest training
image. The results (using the neighborhood suppression
algorithm) are shown in Fig. 9. The poor performance of the
baseline detectors is an indicator of the difficulty level of
our test set: For the COIL object database, nearest-neighbor
gives above 95 percent recognition accuracy, while on the
face detection database in [13], the pixel-based SNoW
method achieves above 94 percent recall.

3.4.3 Contributions of Different Factors

To gain a better understanding of the different factors
contributing to the success of our approach, we conducted
experiments in which we eliminated certain steps of our
method. The results (using the neighborhood suppression
algorithm) are shown in Fig. 10. In the first experiment, we
eliminated the relation features, representing the images
simply by the parts present in them. This showed a decrease
in performance, suggesting that some additional informa-
tion is captured by the relations. In the second experiment,
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TABLE 2
Performance of Our Single-Scale Detection System with the

Neighborhood Suppression Algorithm (see Section 2.4) on Test Set I, Containing 200 Cars

Points of highest recall, highest precision, and highest F-measure are shown in bold.

TABLE 3
Performance of Our Single-Scale Detection System with the

Repeated Part Elimination Algorithm (see Section 2.4) on Test Set I, Containing 200 Cars

Points of highest recall, highest precision, and highest F-measure are shown in bold.

8. The reason for the lower numbers in Table 2 compared to [29] is the
use of a more rigorous evaluation criterion; see Section 3.2.



we retained the relation features, but eliminated the patch
clustering step when constructing the part vocabulary,
assigning a different feature id to each of the 400 patches

extracted from the sample object images. This resulted in a

significant decrease in performance, confirming our intui-

tion that representing similar patches as a single concep-

tual-level part is important for the learning algorithm to
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Fig. 7. Examples of test images on which our single-scale detection system achieved perfect detection results. Results shown are with the

neighborhood suppression algorithm (see Section 2.4) at the point of highest F-measure from Table 2, i.e., using an activation threshold of 0.85. The

windows are drawn by a separate evaluator program at the exact locations output by the detector.

Fig. 8. Examples of test images on which our single-scale detection system missed objects or produced false detections. As in Fig. 7, results shown

are with the neighborhood suppression algorithm using an activation threshold of 0.85. The evaluator program draws a window at each location

output by the detector; locations evaluated as false positives are displayed with broken windows.

Fig. 9. Comparison of our detection system with baseline methods. The

poor performance of the baseline methods is an indicator of the difficulty

level of our test set. In addition, the poor performance of the pixel-based

detector that uses the same learning algorithm as ours, and differs only

in the representation, demonstrates the importance of choosing a good

representation.

Fig. 10. Contributions of different factors in our approach to the overall

performance. Both the relation features and the patch clustering step

are important elements in our representation. Small clusters also have

a role to play.



generalize well. We also tested the intuition that a small
number of conceptual parts corresponding to frequently
seen patches should be sufficient for successful detection by
ignoring all one-patch clusters in the part vocabulary.
However, this decreased the performance, suggesting that
the small clusters also play an important role.

To further investigate the role of the patch clustering
process, we studied the effect of the degree of clustering by
varying the similarity threshold that two clusters are
required to exceed in order to be merged into a single
cluster (as mentioned in Section 2.1, the threshold we have
used is 0.80). The results of these experiments (again with
the neighborhood suppression algorithm) are shown in
Fig. 11. The results indicate that the threshold we have used
(selected on the basis of visual appearance of the clusters
formed) is in fact optimal for the learning algorithm.
Lowering the threshold leads to dissimilar patches being
assigned to the same cluster and receiving the same feature
id; on the other hand, raising the threshold causes patches
that actually represent the same object part, but do not cross
the high cluster threshold, to be assigned to different
clusters and be treated as different parts (features). Both
lead to poorer generalization.

Another experiment we conducted was to include parts
derived from negative (nonobject) images in the part
vocabulary; the intuition was that this should facilitate
more accurate representation of negative images and
should therefore improve detection results. To test this
intuition, we removed 50 negative images from the training
set and added them to the set of 50 object images that were
originally used in vocabulary construction. Using all 100 of
these images to construct the part vocabulary, we then
trained the classifier on 450 positive and 450 negative
images. The results, shown in Fig. 12,9 suggest that
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Fig. 11. Effect of degree of clustering. (a) Lowering the clustering threshold causes dissimilar patches to be clustered together, leading to poor
generalization. (b) Raising the threshold causes patches representing the same object part to be assigned to different clusters; this again leads to
poor generalization.

Fig. 12. Contrary to intuition, including negative images in constructing
the part vocabulary does not seem to improve performance.

Fig. 13. Performance of our multiscale car detection system with the two
algorithms described in Section 2.4.

9. Note that, in order to make a fair comparison, the top (solid) curve in
Fig. 12 was obtained using only the same 450 positive and 450 negative
images for training as the lower (dashed) curve. For this reason, it is
different from the curve shown in previous figures (which uses 500 positive
and 500 negative training images).



constructing the part vocabulary from only positive exam-

ples of an object class gives an adequate representation for

learning to detect instances of the object class.

3.4.4 Multiscale Results

Finally, we applied our multiscale detector, with both the

neighborhood suppression algorithm and the repeated part

elimination algorithm, to test set II (described in Section 3.1),

consisting of 108 images containing 139 cars. As described

in Section 2.4.2, images were scaled to sizes ranging from

0.48 to 1.2 times the original size, each scale differing from

the next by a factor of 1.2; a 100� 40 window was then

moved over each scaled image. As in the single-scale case,

the window was moved in steps of five pixels in the

horizontal direction and two pixels in the vertical direction.

The time to test a 200� 150 image was approximately

12 seconds. In all, 989,106 test windows were evaluated by

the system, of which over 971,763 were negative.10

Our multiscale results are shown in Fig. 13 and Tables 4

and 5. There are two observations to be made about these

results. First, as in the single-scale case, the repeated part

elimination algorithm allows for a higher recall than the

neighborhood suppression algorithm (in this case, much

higher, albeit at a considerable loss in precision). In terms of

the highest F-measure achieved, however, the performance

of the two algorithms is again similar.

The second observation about the multiscale results is

that they are considerably poorer than the single-scale

results; the highest F-measure drops from roughly 77 per-

cent in the single-scale case to 44 percent in the multiscale

case. This certainly leaves much room for improvement in

approaches for multiscale detection. It is important to keep

in mind, however, that our results are obtained using a

rigorous evaluation criterion (see Section 3.2); indeed, this

can be seen in Figs. 14 and 15, which show the ouput of our

multiscale detector on some sample test images, together

with the corresponding evaluations. In particular, our use of

such a rigorous criterion makes previous results that have

been reported for other approaches incomparable to ours.

4 ANALYSIS

In this section, we analyze the performance of individual

steps in our approach. In particular, we consider the results

of applying the Förstner interest operator, of matching the

image patches around interest points with vocabulary parts,

and of applying the learned classifier.

4.1 Performance of Interest Operator

The first step in applying our detection approach is to find

interest points in an image. Table 6 shows the number of
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TABLE 4
Performance of Our Multiscale Detection System with the

Neighborhood Suppression Algorithm (see Section 2.4) on Test Set II, Containing 139 Cars

Points of highest recall, highest precision, and highest F-measure are shown in bold.

TABLE 5
Performance of Our Multiscale Detection System with the

Repeated Part Elimination Algorithm (see Section 2.4) on Test Set II, Containing 139 Cars

Points of highest recall, highest precision, and highest F-measure are shown in bold.

10. The number of negative windows was calculated as in the single-
scale case; in this case, using the permissible ellipsoids around objects.



interest points found by the Förstner interest operator in

positive and negative image windows.11 In Fig. 16, we show

histograms over the number of interest points found.

Positive windows mostly have a large number of interest

points; over 90 percent positive windows in training, and

over 75 percent in test set I and 70 percent in test set II, have

five or more interest points. Negative windows have a more

uniformdistribution over the number of interest points in the

training images, but mostly have a small number of interest

points in test images; over 60 percent in test set I and over

75 percent in test set II have less than five interest points.
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Fig. 14. Examples of test images on which our multiscale detection system achieved perfect detection results. Results shown are with the
neighborhood suppression algorithm (see Section 2.4) at the point of highest F-measure from Table 4, i.e., using an activation threshold of 0.95. The
windows are drawn by a separate evaluator program at the exact locations and scales output by the detector.

Fig. 15. Examples of test images on which our multiscale detection system missed objects or produced false detections. As in Fig. 14, results shown
are with the neighborhood suppression algorithm using an activation threshold of 0.95. The evaluator program draws a window at each location-
scale pair output by the detector; location-scale pairs evaluated as false positives are displayed with broken windows. Notice the rigorousness of the
evaluation procedure (for details see Section 3.2).

TABLE 6
Numbers of Interest Points and Vocabulary Parts Found in Positive and Negative Image Windows

11. As before, in test images, all windows falling within the permissible
ellipses/ellipsoids around objects were counted as positive; all others were
counted as negative.



4.2 Performance of Part Matching Process

Once interest points have been found and image patches

around them highlighted, the next step is to find vocabulary

parts that match the highlighted patches. The result of this

step is important since it determines the actual representa-

tion of an image window that is given to the classifier.

Table 6 shows the number of vocabulary parts found in

positive and negative image windows. The proportion of

highlighted patches matched by vocabulary parts is more or

less the same across training images and both test sets;

roughly 50 percent for positive windows and 30 percent for

negative windows. Histograms over the number of voca-

bulary parts are shown in Fig. 17; the distributions are

similar in form to those over interest points. It is interesting

to note that the distribution over the number of vocabulary

parts in positive windows in test set I is very close to that

over the number of vocabulary parts in positive training

images.

4.3 Performance of Learned Classifier

The performance of the classifier is shown in Table 7. While

its performance on test set I is similar to that on the training

set, its performance on test set II is drastically different. In
particular, the classification accuracy on positive windows
in test set II is very low. Furthermore, as is seen from Fig. 18,
positive windows in test set II that are classified correctly
are done so with lower confidence than in test set I and the
training set; the activations for true and false positives are
well-separated in test set I and the training set, but the
opposite is true for test set II. These observations shed some
light on our multiscale results, although it remains to be
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Fig. 16. Histograms showing distributions over the number of interest points in positive and negative image windows.

Fig. 17. Histograms showing distributions over the number of vocabulary parts in positive and negative image windows.

TABLE 7
Performance of Raw Classifier on Positive

and Negative Image Windows



understood why the performance of the classifier differs in

the two cases.

5 CONCLUSION

To summarize, we have presented an approach for learning

to detect objects in images using a sparse, part-based

representation. In our approach, a vocabulary of distinctive

object parts is automatically constructed from a set of

sample images of the object class of interest; images are then

represented using parts from this vocabulary, together with

spatial relations observed among the parts. Based on this

representation, a learning algorithm is used to automati-

cally learn a classifier that distinguishes between members

and nonmembers of the object class. To detect instances of

the object class in a new image, the learned classifier is

applied to several windows in the image to generate what

we term a classifier activation map in the single-scale case

and a classifier activation pyramid in the multiscale case.

The activation map or pyramid is then processed to

produce a coherent detection hypothesis; we presented

two algorithms for this process.
We also addressed several methodological issues that are

important in evaluating object detection approaches. First,

the distinction between classification and detection was

highlighted, and a general method for producing a good

detector from a classifier was developed. Second, we

emphasized the importance of specifying and standardizing

evaluation criteria in object detection experiments; this is

essential for comparisons between different approaches to

be meaningful. As a step in this direction, we formulated

rigorous, quantitative evaluation criteria for both single-

scale and multiscale cases. Finally, we argued that recall-

precision curves are more appropriate than ROC curves for

measuring the performance of object detection approaches.
We presented a critical evaluation of our approach, for

both the single-scale case and the multiscale case, under the

proposed evaluation standards. We evaluated it here on

images containing side views of cars; the approach is easily

extensible to other objects that have distinguishable parts in
a relatively fixed spatial configuration.

There are several avenues for further research. The
multiscale detection problem is clearly harder than the
single-scale one; much room seems to remain for improve-
ment in this direction. One possibility is to incorporate scale
information in the features; this may help improve the
performance of the classifier. The general detection problem
may also require detecting objects at different orientations;
it may be possible to achieve this by learning a number of
view-based classifiers as in [18], and extending the classifier
activation map or pyramid to incorporate activation
information from the different views. Computation time
can be reduced by processing different scales and orienta-
tions in parallel.

At the learning level, a natural extension is to learn to
detect several object classes at once. It also remains an open
problem to formulate a learning problem that directly
addresses the problem of detection rather than classification.
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