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Abstract-This paper introduces an analytical framework for 
studying some properties of model acquisition and recognition 
techniques based on indexing. The goal is to demonstrate that 
several problems previously associated with the approach can 
be attributed to the low dimensionality of invariants used. 
These include limited index selectivity, excessive accumulation 
of votes in the look-up table buckets, and excessive sensitivity 
to quantization parameters. Theoretical results demonstrate 
that using high-dimensional, highly descriptive global invariants 
produces better results in terms of accuracy, false positive 
suppression, and computation time. 

A practical example of high-dimensional global invariants 
is introduced and used to implement a 2-D shape 
acquisitionhecognition system. The acquisitiodrecognition 
system is based on a two-step table look-up mechanism. First, 
local curve descriptors are obtained by correlating image 
contour information at short range. Then, seven-dimensional 
global invariants are computed by correlating triplets of local 
curve descriptors at longer range. 

This experimental system is meant to illustrate the behavior 
of a high-dimensional indexing scheme. Indeed, its performance 
shows good agreement with the analytical model with respect 
to database size, fault tolerance, and recognition speed. Model 
acquisition time is linear to cubic in the number of object 
features. Object recognition time is constant to linear in the 
number of models in the database and linear to cubic in the 
number of features in the image. The system has been tested 
extensively, with more than 250 arbitrary shapes in the database. 
Unsupervised shape and subpart acquisition is demonstrated. 

I. INTRODUCTION 

BJECT recognition is a central problem in computer 0 vision. It involves a set of object models that must 
be recognized in images. General surveys on model-based 
object recognition systems can be found in [SI and 1201. The 
basic paradigm contains three components: matching, pose 
computation, and verijication [36]. During matching, features 
extracted from an image are compared and associated with 
features of the object models. As all feature combinations may 
have to be explored, brute-force matching is computationally 
equivalent to an exponential search. One distinguishing con- 
tribution of various recognition systems has been solutions 
for cutting down the complexity in this area. However, even 
when techniques aimed at optimizing this process are used 
(e.g., alignment [35]), each model in the database must be 
separately considered. In applications with large databases, this 
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computation burden has to be borne every time an image is 
processed. 

Recently, an alternate paradigm called indexing or hashing 
has been proposed [40], [21]. In indexing, the feature corre- 
spondence and search of model database are replaced by a 
table look-up mechanism. The latter approach is described in 
detail in Section I1 and in the rest of this paper. Indexing 
schemes share a uniform underlying structure. They compute 
invariants from an image that are then used as indexes to 
look-up a table containing references to the object models. The 
table look-up returns a list of candidate models with associated 
weighs indicating their likelihood. Proposed indexing schemes 
mainly differ in the choice of invariants employed as indexes. 

The benefits of indexing over traditional search-based 
matching schemes should be specifically evident in appli- 
cations involving large model databases. Such applications 
could include image databases for multimedia applications, 
information services, libraries, and archives where the number 
of objects of interest ranges in the thousands. Indexing does 
not require considering each model separately and is thus less 
dependent on the database size. Additionally, indexing offers 
a straightforward approach to automatic or semiautomatic 
model acquisition, a useful feature in most applications. 

Although there is an abundance of proposed indexing 
schemes [38], [40], 1211, there have been few computational 
principles guiding their design. Some Straightforward error 
analysis is provided in [43], while an estimate of the upper 
bounds on the database size for an optimally designed 
similarity geometric hashing techiques is given in [50]. 

Given the lack of a computational framework and the 
practical difficulty of rigorously testing such experimental 
systems on large libraries under varying conditions, it is 
difficult to evaluate the performance of indexing schemes. This 
is especially true in the context of their natural applications, 
namely large model databases. This problem has recently 
been highlighted by Grimson and Huttenlocher [30] in their 
critique of geometric hashing. More recently, some papers 
have been aimed at answering these remarks, and to extend 
the accuracy and capacity of the original geometric hashing 
with the introduction of a Bayesian scheme [50]. 

This paper presents a computational framework in which 
acquisitionhecognition techniques based on indexicg are an- 
alyzed. The criteria include computational efficiency, noise 
tolerance, and database as a function of the amount of in- 
formation contained in the invariants used as indexes. A result 
of our analysis is that for indexing schemes to be practical, 
they must take advantage of look-up tables containing a large 
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number of coarsely quantized entries. We propose that this 
can be best accomplished using very descriptive invariants and 
indexes, typically of a high-dimensional nature. In the context 
of this paper, we will therefore use the term high dimensional 
to indicate invariants that have a large number of coarsely 
quantized distinct values. 

The following analysis compares high-dimensional indexing 
techniques to the more conventional low-dimensional schemes, 
such as geometric hashing. A first result is that the use of 
high-dimensional indexes drastically increases the signal-to- 
noise ratio of the approach. That is, the number of votes for 
randomly generated incorrect hypothesis becomes smaller as 
the dimensionality of the indexes increases, while the average 
number of votes for correct hypotheses is kept constant. 
A second, equally important, result is that the amount of 
computation required by the technique is significantly reduced. 
Section 111 presents this analysis in detail. 

We will show that the use of high-dimensional indexes is 
crucial to overcoming some drawbacks of table look-up based 
techniques such as geometric hashing 1381, [42] when large 
object model databases are considered. These include poor 
index selectivity, excessive accumulation of votes in each 
bucket, sensitivity to noise and quantization parameters, and 
probability of false positives. The latter would require further 
processing to be successfully eliminated. 

Crimson [30], for instance, suggests that geometric hashing 
performs well on simple scenes with little sensor noise, but 
that its performance degrades significantly even with limited 
amounts of clutter or perturbation. This paper shows that these 
problems, far from being inherent limitations of the underlying 
approach, are mainly a result of the low dimensionality of the 
indexes of choice. In Grimson's error analysis, buckets are 
characterized by 2-D invariant vectors of limited descriptive 
power. With these assumptions and a reasonable choice of 
quantization parameters, a practical table would have on the 
order of 10' useful buckets. Even under ideal conditions (e.g., 
uniform index distribution in the table), as the number of object 
models stored in the table increases, the number of entries per 
bucket becomes inevitably large. This will be discussed in 
detail in Section 111. When quantization effects, nonuniform 
distribution of the indexes, and projective distortion of the 
objects are taken into account, the complexity of the analyzed 
scenes, the maximum size of the database, and the computation 
time become issues, as pointed out in [30]. 

On the other hand, our analysis shows that indexing tech- 
niques based on higher dimensional look-up tables are faster, 
can reliably handle very large model databases. and can reduce 
the occurrence of false positives. As a practical example, 
in Section IV we will introduce an experimental 2-D ac- 
quisition/recognition system based on a seven-dimensional 
table look-up mechanism. This test system uses global shape 
descriptors that are invariant to 2-D similarity transforms. 
The corresponding look-up table can hold about 106 buckets. 
Assuming a perfectly uniform index distribution, and on 
the order of 10" indexes per model, the resulting shape 
table could accommodate on the order of IO3 objects before 
saturation (i.e., before its average number of entries per 
buckets becomes equal to I ). Under similar assumptions, 

standard geometric hashing techniques would be limited to 
a table size of about 10' buckets. This could hold a scarce 10 
objects before saturation, a two orders of magnitude difference. 
Nonuniform index distributions would degrade performance 
similarly both in the low- and high-dimensional approaches. 
Since rehashing methods [50] can alleviate the problem of 
nonuniformity, we do not consider it an issue. Additionally, 
in our example, coarser quantization is selected along each 
parameter axis (i.e., fewer buckets per axis) with respect to that 
assumed for standard geometric hashing. This offers the benefit 
of an increased noise resilience. The relationships between 
quantization and index dimensionality is studied in detail in 
Subsection 111-D. 

The novelty of the proposed approach is the use of corre- 
lated complex local shape parameters (i.e., four-dimensional 
local shape descriptors) to produce viewpoint invariant, high- 
dimensional global descriptors. These descriptors are used as 
indexes in a look-up table to identify the 2-D shapes from 
a database and recover their position, scale, and orientation. 
Local shape descriptors are also extracted within a look-up 
table paradigm by correlating over short distances information 
such as local edge orientation and position. 

The seven-dimensional invariant used in the test 2-D acqui- 
sition/recognition system is intended to be only one practical 
example of a high-dimensional global descriptor. Further and- 
ysis will undoubtedly lead to more robust and/or higher 
dimensional global invariants. In fact, such invariants based on 
the long-distance correlation of lower dimensional local shape 
descriptors can be easily obtained in a number of different 
ways. These include using nongeometric parameters, e.g., 
intensity ratios at different image locations, color, range infor- 
mation, and other visual clues. This makes high-dimensional 
indexing a viable candidate for analyzing a variety of inputs 
modalities, not limited to 2-D contour shapes. 

The design of the test system [I81 has allowed us to focus 
on various design issues (beyond that of index dimensionality) 
involved in the making of a practical working recognition 
system. These include local versus global descriptors, feature- 
subpart hierarchy, and heuristics for reducing recognition time. 
Finally, the proposed approach tries to address what we 
consider important limitations of conventional table look-up 
techniques. For instance, they often fail to offer a straight- 
forward mechanism to support important notions in shape 
representation, such as subparts identification and hierarchical 
database organizations. The system is described in Sections 
IV through X, and some experimental results arepresented in 
Section XI. 

Again, we wish to emphasize that we are presenting a 
specific implementation of the high-dimensional indexing par- 
adigm. The test system is an example intended mainly to 
illustrate some advantages of the approach. Many other al- 
ternative embodiments are possible, and we make no claims 
regarding the specific robustness of the global invariant of 
choice. The computational analysis of Section 111, however, is 
of a general nature and is valid for any other indexing schemes 
regardless of the specific choice of invariants. Therefore it can 
be used to guide the design and predict the performance of 
any such system. 
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11. INDEXING 

In general, index-based recognition systems compute invari- 
ants from an image and are then used to index in a look-up 
table During model acquisition, the locations (buckets) of the 
table so indexed are filled with entries containing references to 
object models and some additional parameters. The latter, for 
instance, can be used for pose recovery. During recognition, 
the models listed in the indexed entries are collected into a list 
of candidate models. Next, the most likely of the candidate 
models are selected on the basis of the number of votes they 
have received, i.e., the number of times they were indexed. 
Recognition may include pose computation and verification. 
The look-up tables used in the process are usually sparse in 
that, on average, only a few of their entries are used. The look- 
up tables are, therefore, often implemented as a hash tables to 
save storage. 

One well-known index-based approach is geometric hashing 
[42], [40], [21]. In its basic form, geometric hashing handles 
2-D shapes under similarity (affine) transformations. In the 
image, two (three) feature points are chosen as a reference 
frame, also called a basis, and the orthogonal (affine) coor- 
dinates (a ,@)  of each other model point in that basis are 
used as indexes. Hence, the dimensionality of the index is 
2. Each indexed entry is updated with the basis vectors and 
with a reference to the corresponding object model. This 
process is repeated using each couple (triplet) of model points 
as a basis. In its original conception, geometric hashing is 
therefore a single-step, bottom-up scheme. That is, object 
models are recognized directly from sampled image points 
without grouping or correlating any intermediate geometric 
features or subparts. 

A. Indexing Versus Matching 

The benefits of indexing over traditional matching-based 
schemes should be specifically evident in applications involv- 
ing large collections of object models. Typical examples would 
be image databases for multimedia applications, information 
services, libraries, archives, and department stores, where the 
number of objects that need to be recognized number in the 
thousands. Indexing does not involve a search over the image 
database and is thus less sensitive to the size of the model 
database. For this reason it is very important to study how well 
these techniques scale with respect to the number of object 
models in the database. 

In these applications, model acquisition is performed only 
once, usually off-line, while recognition is performed repeat- 
edly, often under timing constraints. The acquisition step can 
thus afford to be computationally expensive, while recognition 
must be as computationally efficient as possible. This is pre- 
cisely what happens in the case of indexing techniques, where 
most of the computational load is shifted from recognition 
to acquisition time. This is accomplished by precomputing a 
large number of model representation invariants and storing 
them in fast access look-up tables. 

Another benefit of indexing over matching for large model 
databases is automated model acquisition. Automated model 
acquisition is important if a system has to deal with a large 

number of objects. Yet, many recognition paradigms lack 
the means for automatic model building [2], [6], [7], [lo], 
[12], [241, [281, [331, [371, [381, [471, 1531, [ W .  The object 
models, rather than being acquired from raw data, are either 
hand crafted or generated assuming that precise geometric 
information is available. Model database organization and 
indexing schemes are critical whenever a scalable recognition 
behavior is to be accomplished. On the other hand, in indexing 
the scheme for acquiring models is similar to that for recog- 
nition. Models are acquired simply from characteristic images 
of the objects, making precise 3-D models or CAD/CAM- 
type models superfluous. Model acquisition is incremental. A 
system does not have to be recomputed from the start if a 
model must be added (or deleted). 

B. Local Versus Global Features 

Footprints [38] and structural indexing [55]  use high- 
dimensional indexes. This is due to the specific choice of 
invariants and has not been motivated by any underlying 
computational scheme. Both techniques use local shape 
descriptors directly as indexes. 

Local shape, however, tends to be a less discriminating 
visual clue in large databases where each different model may 
share a substantial portion of the local shape structure with 
many others. A more discriminating factor is the geometrical 
conjiguration of local shapes. In general, indexes that convey 
global configurational characteristics are more selective than 
their local counterparts. This can also be understood by con- 
sidering that, by definition, the amount of visual information 
associated with a local shape descriptor is lower than that 
associated with a combination of several such descriptors and 
their relative geometric configuration on the object model. As 
a consequence, locally derived indexes must be quantized at a 
finer grain to obtain an equivalent range of quantized values. 
This has the undesired effect of making them more susceptible 
to noise. 

A similar situation, where local versus global descriptors 
are compared, can be found in the discussion of single- versus 
multi-window Hough transforms [ 151. 

C. Segmentation 

Segmentation is not required in indexing, but even partial 
segmentation will aid any indexing scheme. Various bottom- 
up techniques, such as region segmentation and perceptual 
organization [45], will help. Indexing schemes in general have 
ignored the issue of segmentation and have been implemented 
without it. [21] relies on simple perceptual organization to aid 
indexing. 

We have experimented with simple heuristics similar to the 
local focus feature approach of [lo]. This has allowed us to 
reduce the recognition complexity from cubic to linear in the 
number of image features. The scheme is described in detail 
in Section IX-B. There are, however, shortcomings to using 
such heuristics, such as scale dependency and the need for 
feature saliency assignment. Another viable scheme is random 
sampling with a threshold on the number of votes. This latter 
heuristic is similar to various search cutoff schemes [29]. 
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111. MULTIDIMENSIONAL INDEXING 
The following analysis compares high-dimensional indexing 

techniques [ 181 to the more conventional low-dimensional 
schemes, such as geometric hashing. Not unexpectedly, a 
result is that the use of high-dimensional indexes drastically 
increases the signal-to-noise ratio of the approach. That is, 
the number of votes for randomly generated incorrect hypoth- 
esis becomes smaller as the dimensionality of the indexes 
increases, while the average number of votes for correct 
hypotheses is kept constant. Another important result is that 
the amount of computation required by the technique is 
significantly reduced. 

A.  A Framework for  Indexing Techniques 

To justify this claim let us introduce a formal framework for 
indexing techniques. Define {Si}:>: as a set of model shapes. 
For each model shape S;, a number Ns? of independent d- 
dimensional vector indexes aj = (01,. t rz j ,  . . .  % a d J ) ;  j = 
1. . . . ~ *Wst is generated. These are usually invariant with 
respect to a given coordinate transformation (similarity, affine, 
etc.). Later we will use Ns as the average number of index 
generated from a model shape. 

In the case of geometric hashing with similarity transforms, 
for instance, the invariant indexes are 2-D bases ( a , @ )  that 
represent the Cartesian projections of a model shape point on 
the Cartesian frame defined by other two shape points (see 
Fig. I(a)). In the affine case, (m.jj) are the affine projections 
of a shape model point on the affine coordinate frame defined 
by other three model shape points (see Fig. l(b)). 

Storage: For each index a,, a tuple (Sz! G) is then ap- 
pended to the entry of a hash table Ho indexed by the indexes 
a,, where Si is the reference to the ith model shape and G is 
a vector of geometric parameters that can be used to recover 
the complete (partial) pose of the model shape in an image. 
For example, G could contain the coordinates of the center of 
mass of. the shape in the Cartesian or affine base determined 
by the index aj. 

After the process is repeated for each model shape, entries 
in the table Ho will contain lists of (S ;G)  tuples. We will use 
and ( N E )  for the number of tuples ( S ; G )  that each bucket of 
the table Ho will hold on average. 

Recognition: NI  indexes ak: are generated in a similar way 
from an image. The value of N I  usually depends on the 
number of objects in the image. The indexes are used to 
retrieve entries in Ho, that is, lists of (S i ,  G) tuples. Each 
reference Si corresponds to a model shape that, with the 
proper pose in the image, could have generated the index. 
The complete (or a partial) pose P = ( ( 2 0 ,  yo),?y, s) of 
the shape is recovered, using the coordinate base associated 
with the index ak and the vector G .  Each tuple (S;,P) thus 
generated from the list in HO is treated as evidence for the 
corresponding model shape hypotheses at the corresponding 
pose in the image. This evidence is accumulated in a second 
hash table H I ,  where entries are indexed by the tuples (Si ;  P) 
and have a value proportional to the number of times that the 
corresponding tuple has been generated by the image indexes. 
H I  is therefore a histogram of the votes received by each 

(b) 

Fig. I .  Similarity (a) and affine (b) index generation in geometric hashing. 

possible shape hypothesis. If Np is the number of different 
quantized poses that a model shape can have in the image, 
the table H1 will have a virtual number of entries given by 
N H ~  = NltINp, where N,tr is the number of model shapes. 

B. Outline of the Analysis 

The goal of the analysis is first to identify the role of the 
different parameters N n f . G  (the average number of index 
generated from a model shape), etc., on the behavior of 
indexing techniques. The second objective is to understand the 
mechanism responsible for false positives with large databases 
of model shapes. Finally, we will show how using more de- 
scriptive higher dimensional indexes decreases the probability 
of false positives and reduces the amount of computation re- 
quired. This will be accomplished by studying the behavior of 
N G ( ~ )  (the average number of votes for a correct hypothesis) 
and P B ( ~ .  d) (the probability of getting k votes for an incorrect 
hypothesis because of random cooccurrences) as a function 
of d (the index dimensionality). Specifically, we will keep 
N G ( ~ )  constant as d grows, by simultaneously increasing the 
number of indexes per model or using coarser quantization 
of the indexes. We will then show that PB ( k ,  d) effectively 
decreases as d increases for values of k around G ( d ) .  

In the analysis, we will assume uniform distribution of 
the indexes in Ho for simplicity. A nonuniform distribution 
produces identical effects on the low- and high- dimensional 
indexing. Therefore. the comparison between the two still 

- 

- 
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holds. Also, a number of techniques can be used to generate 
a more uniform distribution (see for instance [49]). 

C. Index Formation Techniques 

Typically, indexes are formed by first generating tuples of 
interest features (e.g., interest points) and then by using their 
global configuration and associated information to produce the 
indexes. If I is the size of the tuple, and the model contains 
71 points, we can then generate up to (7) 1-tuples. The total 
number can be bounded by means of a variety of techniques 
that will be mentioned in the following. 

We will restrict our analysis of high- versus low-dimensional 
techniques to the cases where the number of local interest 
features in a tuple, I ,  is constant. The increase in dimen- 
sionality will therefore come from the use of extra local 
information, such as 1st- and 2nd-order local shape properties, 
color, texture, or other visual clues that can be used with the 
1-tuple geometric structure to generate invariants. Under this 
assumption, the number of considered 1-tuples, both at storage 
and at recogntion time, is constant and independent of the 
dimensionality of the approach. 

Then, the effects of occlusion can be simply modeled as 
follows. Let us assume that a minumum ratio of unoccluded 
local interest features p ,  is available. That is, pu is the ratio 
of unoccluded local interest features with respect to the total 
number of local interest features in an image. Then, if 1 is 
the tuple size and NT is the number of l-tuples, then at least 
N ~ p e  are unoccluded. We can simplify this by defining a 
minimum bound pu = p i  on the probability that an 1-tuple 
is unoccluded. This probability is constant and independent of 
the dimensionality d of the invariants that have been selected. 

D. Problems with Conventional Approaches 

The limit of indexing techniques lies primarily in the finite 
size of the first hash table Ho. As the number of models NRI  
stored in Ho grows larger, the lists of tuples (&, G )  stored 
in the table will also increase. This leads to two important 
consequences: 

The time required to process an image TE( N,,*) increases 
since all the indexed tuples must be processed. 
The probability P ~ ( l c ,  d )  of having many votes (large 
values of IC) for incorrect hypotheses generated by random 
cooccurrences increases. This may ultimately lead to false 
positives, that is, incorrect hypotheses that have more 
support than correct ones. 

Correct Votes: To demonstrate these claims, let us first 
determine the average support that a model shape in the image 
will generate for the corresponding hypothesis in H I .  

Given a certain level of noise, a noise model, and a 
quantization step Aai for each axis of the index vector, there 
will be a probability 

that the quantized value of index computed from a noisy scene 
will match the correct index generated at storage time by a 

given model shape present in the image. Here the p g ,  are the 
probabilities that there is equivalence on the ith axis of a d- 
dimensional index vector. If the values of the pgT are assumed, 
for simplicity, to be all equal to pg we will have 

pG((1)  = pt ( 2 )  

Then, with the average number of indexes generated per 
model shape, the probability of getting k matching indexes 
from a model shape in the image can be obtained from the 
binomial distribution 

The average number of matching indexes is then 

(3) 

(4) 

From the previous section, p~ is the worst case probability 
that any such index is not destroyed by occlusion. The av- 
erage effect of occlusion could then be roughly modeled by 
introducing pu in the estimate of z ( d )  by replacing p: by 
p ~ ~ p : .  As stated before, pc. is independent of d and is rather 
a funtion of the number of independent local interest points 
used to generate the indexes. 

A similar approach can be used to model image clutter. The 
main effect of clutter, i.e., multiple objects in the scene, on 
indexing techniques is to reduce the probability of generating 
correct indexes while increasing that of incorrect ones. Both 
average effects can be modeled by smaller values of pg. For 
r n  unoccluded object models in a scene, for instance, the 
probability of generating a correct index for a specific object 
model is p i / 7 n l ,  where 1 is again the number of independent 
local interest points used to compute the &dimensional index. 
Heuristics such as the radius of coherence (Section IX-B) or 
the local focus feature approach [lo] can be used to bring 
this value close to p i / r r ~ .  For the sake of simplicity, in the 
following discussion we will use only the term p,, by factoring 
in it both the occlusion and clutter contributions. In any case, 
the negative contribution of clutter will affect both techniques 
in the same way since the number of local features 1 used to 
generate the indexes is independent on the dimensionality of 
the technique. This is consistent with the comparative nature 
of this paper. 

Since for each correct index the corresponding list in H0 
will contain at least one correct reference to the corresponding 
shape, the average number of votes that correct hypotheses 
will receive in H I  is at least equal to G ( d ) . T G ( c t )  2 z(it). 
The inequality sign reflects random votes that may accumulate 
in the correct hypothesis bucket. The probability of getting k 
votes for a correct shape-pose pair is then P G ( ~ ,  d )  or better. 

It is obvious that unless ps  z 1, these values will strongly 
depend on the dimensionality of the index. Lower dimensional- 
ity will in general correspond to a higher percentage of correct 
votes. On the other hand, incorrect hypotheses with many 
votes will also be more probable. To study the use of higher 
dimensional indexes objectively, we will normalize %( d )  so 
that it is kept constant with respect to (1, that is, 
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This can be accomplished in three ways: 
By increasing the average number of indexes generated 
by each model shape as d increases. In this case, 

By using coarser quantization step An = Au(d), And for 
short, along each index axis as d increases. An appropriate 
choice should yield larger values of p ,  (And) (in this case 
a function of Acr) as d increases such that the global 
probability of getting a good d-dimensional index 

- 
N s ( d )  = Ns( l ) /p f - l .  

pG(d* A%) = p ; ( A a d )  (6) 

is constant with respect to d. That is p ~ ( d ,  And) = 
p G ( d  - 1, Aad-1) = ' .  . = pc(1, A N I ) .  

By a combination of the above techniques. 
To avoid a larger number of indexes to process as d grows, 
we will rely on coarser quantization. 

Using Coarser Quantization: Let us assume a Gaussian 
model with variance 0.  For simplicity's sake, we will assume 
the same model over all the index axes. If the quantization 
step Aa is of the same order as 0, then doubling or redoubling 
Acu should make the probability ps  z 1. Therefore, from (6), 
reducing the number of quantization intervals nb by a small 
factor (i.e., 2 , s . .  .) satisfies the requirements. 

p G ( d , A t r d )  = p G ( d -  1 , A a d - l )  = _ ' '  = p G ( l , h a l ) .  (7)  

A more interesting case is when the original AN is small 
compared to 0. In this case, a much larger reduction in the 
number of good votes results when high-dimensional indexes 
are used. We will analyze this as a worst-case scenario. Since 
Aa is smaller than the width of the error distribution the 
probability of an index generated during recognition to match 
the corresponding one stored at acquisition will be the sum 
over all ith quantization steps of the combined probability 

that both measurements fall within the same ith quantization 
step of width Aa .  Here, xo is the expected value for the 
measurement and A" the start of the useful range of values 
on the index axis (assumed to be the same on all axes for 
simplicity). The probability of a match is then 

where n b ( d )  the number of quantization steps on each index 
axis as a function of d (also assumed to be the same on all 
axes for simplicity). If A is the range of admissible values for 
the index along an axis, 7 1 b ( d )  is computed as 

In any case, the probability of a correct index match will be 
larger than 

0.14 

0.12 

0.08 

0.06 

0.04 

0.02 

A0 
One index axis 

Fig. 2 .  
assumption. 

Probability distribution of one index value with Gaussian noise 

which is the approximate value of the sum in (9) over the 
quantization step closest to the midpoint in the Gaussian (see 
gray area in Fig. 2). We will use this value as a lower bound. 
It is then possible to compute a pessimistic estimate of how 
much more coarsely we should quantize the index axes in 
order to insure a constant average number of correct votes as 
d increases. The requirements of (7) are satisfied by choosing 
fewer quantization steps as d increases, as expressed by 

where p g l  = p,(l) and 7261 = n b ( 1 ) ,  for simplicity. This 
corresponds to a larger quantization step, 

Incorrect Votes: The mechanism that allows incorrect votes 
to accumulate in a given entry of H1 (model-pose hypothesis) 
is slightly more complex. First, we must distinguish between 
correct indexes and incorrect ones. Let us consider a correct 
index generated from the image, that is, one that matches 
exactly the one produced by the corresponding model shape 
at storage time. Then, at least one of the (Si ,  G )  tuples in the 
corresponding entry in the table HO will be correct. Thus, if 
NE is the average length of the list stored in Ho, on average 
the other NE - 1 tuples will vote for random model shapes 
that happen to share the common index. 

Since the model shapes that share an index are typically 
completely uncorrelated, it is reasonable to assume that these 
incorrect votes will spread uniformly over H I .  

If the index is incorrect, all of the entry tuples in the 
corresponding HO entry will support incorrect hypotheses. 
Therefore, on average, N E  incorrect votes will be generated. 
Since in general NE >> 1, we can ignore the correct con- 
tribution in the first case and assume that any image index 
will in general generate X E  incorrect votes that will spread 
uniformly in the second table H I .  

Under this assumptions, the probability that an entry in 
H1 randomly accumulates k votes is given by the binomial 

- 
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distribution: 

Since NI- >> I C ,  this can be rewritten as 

The only dependency on d is in the term f l ~ .  This will 
strongly depend on the size of the table Ho and therefore on 
the dimensionality of the indexes. N E  can be computed as the 
number of references stored in Ho divided by the size of Ho 

Here, n b ( d )  i s  the number of separate quantized values on 
each index axis, assumed to be the same along each axis for 
simplicity. Substituting ( 1  6) in ( 1  5), we obtain 

The final result is obtained by substituting the normalized 
value of n b ( d )  as a function of d from (13), where we use the 
notation n b  = n b ( 0 )  for simplicity. Note that N H ~  has also 
been replaced by Nhf N p ,  as discussed in Section 111-A. 

Fig. 3. Ratio of bad votes in multidimensional and 2-D indexing. 

P . ( k d )  

Since X G ( d )  is kept constant, we can determine the behav- 
ior of the technique by looking at the ratio P B ( ~ ,  d ) / P ~ ( k ,  1). 
If this value is reduced as d increases, then the use of high- 
dimensional indexes is effective in reducing the chances of 
false positives. 

1 k ( d - 1 )  -- 2;::;; - (ai 
NI iv 'V < 4-- [ ("*&-l 1 (19) 

1 
(1- m) 

The most important factor in this equation is the value of 
nb&.  If this is greater than one, the probability that an 
hypothesis will receive a large number ( k  large) of votes is 
reduced exponentially with both Ic and d. If the value is smaller 
than one, the opposite effect will be observed. Also, the second 
term in (19) will be almost indeDendent of d. nh.K is larger 

0 1 2 3 4 5 6 7 8 9  
k 

Fig. 4. Probability of false positive with k votes. 

than 1 unless the noise produces complete indetermination on 
the value of the index. 

If Aa is the size of the quantization on the parameter a,  
and A = Al - A0 is the allowable range of values, then 
n b  = A/&. In this case, we have n b f i  = &,, which 
is greater than 1 unless the Gaussian width is larger than the 
allowable range for the parameter. 

Fig. 3 plots the value of (19) as a function of both k and d for 
N s ( 0 )  = 100: NAI = 1000. NI  = 1000,nb = 64, and p g  = 
0.1. Note that even for such a low probability of getting correct 
1 -D index values, the probability ratio drops exponentially as 
d is increased from 2 to 7. Analogous results can be obtained 
for all practical values of the fixed parameters. Fig. 4 plots 
the expected value for the probability of obtaining incorrect 
hypotheses with k votes as d increases (different curves) for 
the same set of parameters. Notice how the probability of bad 
hypotheses tends to accumulate toward the lower votes range 
as d increases. Therefore, the performance of low-dimensional 
indexing techniques can become exponentially better if more 
information can be used reliably to build higher dimensional, 
more descriptive indexes. 

- 
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Fig. 5. 
changes. 

Recognition time versus database size as dimensionality of index 

E.  Time Requirements 

As d increases and G ( d )  is kept constant, FE($)  becomes 

Since nbyg is always larger than 1, the value of K(d) will 
then decrease exponentially with d. In the best case, when 
both look-up tables are implemented as arrays, the average 
time required to process one image index is given by 

where t o  is the time required to compute the index and to ac- 
cess the corresponding entry in Ho and t l  is the time required 
for generating the index and updating the corresponding entry 
in  HI. Therefore, the total time required to process the NI 
image indexes will be 

Fig. 5 shows the time to process 1000 image indexes as the 
model in the database grows from 1 to 1000 and for values 
of d = 2 (geometric hashing) to d = 7 (multidimensional 
indexing). Assuming that the hash table is stored on disk 
(for large databases), we choose t o  = 0.1 s and tl  = 0.01 
s. The other fixed parameters have the same value chosen 
in the previous subsection. As we can see, although the 
behavior is linear in both cases, the growth rate is significantly 
different, leading to much faster recognition times for the 
higher dimensional case. 

When the size of the table is approximately lo6, the linear 
growth constant is so small that recognition time on a shape 
table with 100 objects is only 10% larger than the one with a 
single object. By comparison, with a table 10 times smaller, 

the increase is of 123%. The memory required in the two 
cases, however, is the same since the number of entries stored 
in the table is not a function of its total size and sparse data 
can be represented in a compact form by means of a hashing 
paradigm. 

Index-based techniques can perform recognition when the 
average number of entry per bucket is much above saturation, 
i.e., larger than 1. Nonetheless, as this value keeps increasing, 
so do the recognition time and the chances of detecting false 
positives. Besides, having fewer entries per bucket corresponds 
to a higher discriminating power of the table. Fewer shape 
instance hypotheses are produced, so the clustering process in 
parameter space or the checking of the candidate object model 
become much easier tasks. Since the performance of the table 
is based on its size and sparseness (see (22)), shape tables are 
ideally implemented as hash tables. 

IV. APPROACH OUTLINE 

To substantiate in practice the results of Section 111, we 
have implemented a 2-D recognition system based on high- 
dimensional indexing associated with global descriptors. This 
section and the following one should therefore be viewed as 
the description and study of one out of many possible imple- 
mentations of a high-dimensional indexing scheme. We make 
no claims for the robustness and stability of the invariants 
used as indexes other than they are high dimensional (e.g., 
very descriptive) and, to the extent of our purposes, invariant 
to similarity transformations. Better descriptors can be devised, 
more refined techniques for detecting local shape can be used, 
and better ways for correlating local shape over long distances 
can be identified. The point here is only to provide a simplified 
test system to study the practical behavior of a recognition 
system based on the above-discussed approaches. 

A two-step process is proposed (see Fig. 6). In the first 
stage local features are detected from a 2-D contour image. 
Edge-curves are segmented and labeled on the basis of their 
local shape. An indexing-based recognition scheme is used 
to recognize curve shapes. This is only to show that a 
homogeneous approach to recognition where only indexing 
is used is viable. Other fundamentally different schemes could 
be equally well used to detect the local features. 

In the second stage, the local curve features are used to 
compute high-dimensional invariants. These invariants are 
used to index into a shape table containing references to object 
models. Thus the scheme performs indexing twice: First, short- 
range autocorrelation operators on edges are used to index 
into a small set of simple localized shape descriptors, and 
next global autocorrelation operators on local curve shapes 
are used to index into a global look-up table that contains the 
shape model representations. 

During model acquisition, one or more characteristic views 
of the model are presented. Local curve-shape features are 
detected, and high-dimensional indexes are computed from 
combinations of the curve features. At each corresponding 
indexed location in the shape table (bucket), an entry is 
appended with a reference to the model and specific parameters 
to recover pose. 
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During recognition, high-dimensional indexes are computed 
with an identical approach. These indexes are subsequently 
used to index into the shape table and to recover all the models 
stored in the respective table entries. Also, from the entry 
and the configuration of the local shapes used to compute 
the index, the pose-i.e., the location, orientation, and scale 
of the identified shape-is computed. The hypothesized shape 
instances (i.e., models and their pose) are then ordered on 
the basis on the number of times they were indexed. Only 
those shape instances with the best match to the input data are 
selected, thus effectively segmenting the image into distinct 
recognized objects. 

A performance 'analysis with respect to fault tolerance and 
recognition behavior with a large number of shapes (= 290) 
is given in Section X. Both acquisition and recognition are 
efficient; specifically, recognition is not exponential in the 
problem size as it is the case for many systems [29] and 
grows very slowly with the number of models in the database. 
It grows approximately as K + cQ, where K is a constant 
time, Q is the number of objects in the database, and c is of 
the order of 0.001. In Sections V through IX, the approach 
is discussed in detail and compared with existing techniques. 
Section X deals with subpart detection. Finally, Section XI 
provides some examples to support the theoretical analysis. 

V. SHAPE AUTOCORRELATION 

The computation of indexes, both for the local curve features 
and for the global high-dimensional invariants, is based on the 
concept of shape autocorrelation [ 171. We introduce shape 
autocorrelation operators and describe their application in a 
generalized parameter transform framework. Some notions are 
recalled from previous work [ 151, [ 161. The main result here 
is that for computing shape descriptors, in our case invariant 

indexes, it is better to use information spatially distributed over 
the object shape rather than at localized portions of the shape 
(as is done in footprints [38] or structural hashing [ S I ) .  

A.  Extending the Generalized Neighborhood Framework 

The generalized Hough transform, proposed by Ballard in 
[4], has shown how stochastic evidence integration techniques 
can be applied to the recognition of arbitrary shapes in 2- 
space. However, due to the locality of the parameter estimation 
technique typical of the Hough paradigm, the complexity of 
the model search space becomes large once arbitrary rotation 
and scale transformation are allowed in the input. 

Recent work [15], [I61 has shown how it is possible to 
further generalize the notion of parameter transform to include 
a mechanism for fusing evidence embedded in distant portions 
of the image. This is achieved by extending the neighborhood 
concept to include compact nonconnected data set (generalized 
neighborhoods) and by devising transform operators for this 
new sparse data structure. 

In the usual parameter transform formulation, a local map- 
ping operator f ( P ,  5:  y)  is devised to estimate the likelihood 
of the presence of a specific feature P = (PI. p2 . . . ~ p s ) ,  in a 
small local neighborhood A(z .  y) in the image space, centered 
around the point (x, v) .  Here, the parameters p 1 , p 2 , .  . . , p s  
uniquely identify the feature of interest. Evidence integration 
is performed by integrating the estimator over the entire image: 

P = J f (P ,3 ' , y )dzdy .  (23) 
Image 

The resulting value is a confidence measure on the presence 
of the corresponding feature in the input. By repeating the 
operation for each possible feature, a density function over 
the parameter space of the features is generated. Peaks in 
the density function indicate high values of confidence with 
respect to the corresponding feature. Selection techniques are 
used to isolate the peaks from the background noise. 

The mapping operator, in the case of generalized neighbor- 
hoods, is structured as a shape autocorrelation function of the 
form 

EP, : t . . v , )  = .I,,,, . . .J 
r9?4)}) N { ( ~ k . - l  .Yk  ~ 1 ) I )  

[f (P. Z: y. 3'1, ?/l, ' ' ' , :Ck , yk)12dzi d y l  . . . d z k d ? j k ,  (24) 

where k determines the order of the correlation function. 
A( { ( x ,  y)}) is a neighborhood for partial evidence integration 
which can depend on the values of the different (z: y). Such 
neighborhoods, usually, can be the entire image or a portion 
of the image centered around (x,y). 

Parameter transforms based on generalized neighborhoods 
achieve two or more orders of magnitude better accuracy in the 
parameter estimation of simple parametric features. They have 
been used to reliably extract up to eight-dimensional paramet- 
ric features, such as conic sections in 3-space from range data 
[ 161. Specific advantages of autocorrelation mapping operators 
are discussed in (161. 

In conventional nonparametric feature extraction paradigms, 
such as the generalized Hough transform, analytical operators 
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are replaced by a look-up table. Identically, in our framework, 
shape autocorrelation operators are replaced by a multidimen- 
sional table look-up mechanism where the indexes are function 
of various parameters extracted at different location over the 
image. For instance, given three points (XI, yl). ( Z Z ?  PZ), and 
( 5 3 ,  y3), one could have an index (9 ,  %), where 

sz = J (21  - .3)2 + (y1 - y3)2 

s = J(.l - .2)2 + (y1 - y2)2 

+ J(.z - 5 3 1 2  + (Yz - y3I2 

+ J(T3 - .1)2 + (Y3 - Y1)2. (25) 

Here, the index (2 .  2 )  is invariant with respect to similarity 
transformations. 

VI. INDEX COMPUTATION 

We present the general scheme for computing invariant 
indexes using spatial autocorrelation operators. Since the basic 
principles for computing indexes is the same for both the 
local curve-feature detection stage and the following object 
detection (or acquisition) stage, they are treated here together. 
Later, we will describe in detail individually the procedure 
for detecting local features and the procedure for object 
recognition/acquisition. 

A.  Shape Autocorrelation Operutors 

In its most general formulation, we define a shape au- 
tocorrelation operator of order k to take a combination of 
k different feature points as an input and to return an n- 
tuple, called an index. The index is computed on the basis 
of the geometrical relationship between the k points and local 
properties at those points. These local measures can include 
the 0th- and 1st-order properties (location and tangent) of the 
edge points or higher order local information such as local 
curve shape. The combinations of k points considered can 
be constrained in various ways. For example, to extract local 
curve shape, the combinations can be limited to points lying 
in small local neighborhoods on the same connected curve 
piece, while for complete object recognition, the points may 
lie in distant portions of the image and on different curves. 
The operator of (25) that generates the 2-D vector ($ a) 
from three points, for instance, is one of the simplest possible 
Yd-order shape autocorrelation operators. 

In a k th  order shape autocorrelation transform, first a set of 
k-tuples of points is generated from an image. Successively, 
shape autocorrelation operators are applied to the k-tuples, 
and the result is used to index in a look-up table. Finally, the 
output from the table is used to produce a density function on a 
parameter space where vectors correspond to specific feature 
instances. 

' . S  

B. Index 

In the domain of similarity transforms on 2-D shapes, 3rd- 
order spatial autocorrelation operators are more than adequate, 
since rotation, scale, and translation between model and model 

M 

P l  
Fig. 7 Computing index from feature triplets. 

instance can be uniquely determined from two corresponding 
points. Each feature point in the image can be associated with 
all possible combinations of two other points, thus forming a 
set of triangles (see Fig. 7). For each triangle, for instance, 
we can generate a four-dimensional index a l ,  cyz) 

consisting of two ratios 9 and 2 (where S = s1 + s2 + sg). 
which determine the geometry of the triangle, and the two 
angles a1 and az, which describe lSt-order properties of the 
curve with respect to the given 3-point set. Here, (11 is the 
angle between the tangent at p 2  and line p2p3:  cyz is a similar 
angle for point p 3  (see Fig. 7). While the tangent at the first 
point can also be used as a part of the index, we have chosen 
not to do so. Then, if the tangent measurement at pl  is in error, 
at least all the indexes generated here will not be in error. 

Different quantization criteria can be applied to each of the 
index parameters to limit them to a finite number of discrete 
values (in our experiments, this number ranges from 8 to 32). 
The generated index is invariant to similarity transformations. 
In fact, if other global properties of the tuples of points are 
also invariant, they can be used to form indexes of higher 
dimensions, as we will show later. In general, all ratios 
between visual parameters (e.g., intensity, curvature, etc.) are 
good candidates for invariance. 

VII. SHAPE ACQUISITION AND RECOGNITION 
We present the general scheme for acquiring and recog- 

nizing shapes. The basic procedure is the same for both the 
local curve-feature detection stage and the following object 
detection (or acquisition) stage. For local curve features, the 
models are a small set of curve shapes (4 in our present 
implementation), and the feature detection process consist of 
recognizing these curve shapes. For object shapes, the local 
curve shapes serve as features. The object models are acquired 
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from characteristic views of the object, and recognition is 
performed on images following feature detection. 

A. Acquisition 

During the acquisition phase, we consider a single, un- 
occluded 2-D shape in the image so that the position of 
its center of mass (ZO; yo), its scale p (default value is 
l.O), its orientation vector d (Fig. 7), and a symbolic label 
L are known. In the case of 3-D shapes, different views 
corresponding to different aspects of the object [39], [ 191 can 
be acquired. Alternatively, given the high computational cost 
of finding different aspects of an object [27] and the ability 
of our system to recognize shapes from partial instances and 
with some amount of projective invariance (Section XI), the 
Gaussian viewing sphere can be sampled at regular intervals. 
Finally, as shown in [40] and [21], 3-D pose can be recovered 
directly from 2-D contours using tuples of points. 

For each triplet of feature points, we compute the index and 
another n-tuple, called an entry, containing four elements: 

1)  The label L of the object 
2) The position (ZT, y ~ )  of the center of mass in the new 

right-hand coordinate system defined by the normalized 
vector t 2 3  and its corresponding orthonormal one 

3) The ratio p = :. 
4) The angle CYT between the two vectors t 2 3  and d. 

These parameters depend on scale, orientation, and location 
and are used to recover the position, of an object shape from 
the corresponding 3-point sets. The generated discrete index 
addresses a bucket in a look-up table to which we add the 
entry ( L ,  (zT.YT),P,~T). 

B. Recognition 

During recognition, in a similar fashion, all possible combi- 
nations of three edge points from an image are used to generate 
a set of indexes. From each entry contained in the table-bucket 
addressed by the index generated by a triplet of points, we 
obtain a shape label L and compute the location, orientation, 
and scale of this shape L.This triplet votes for an instance 
of shape L in the recovered pose. A shape instance is one 
particular instance of a shape and consists of a shape label and 
specific values for location, rotation, and scale. The process is 
repeated for all triplets of points, and votes are accumulated 
for the different shape instances computed from the entries. 
Triplets located on the same shape in general provide correct 
estimates for the parameters, thus accumulating votes for the 
correct shape instance. Other triplets produce pseudorandom 
results that are scattered over numerous shape instances and 
result in negligible accumulation. 

Let us define discrimination = 2, where V, are the votes 
for the correct shape instance and V, the maximum votes 
received for an incorrect shape instance, as a measure of the 
capability of this technique to distinguish between different 
shape instances. If a shape instance A shares a fraction 
p of points and their local properties with another shape 
instance B, then the discrimination between the two shapes 
is approximately P - ~ .  

For each shape hypothesis, we record the features used to 
generate its value, and record the number of times it was 
indexed, as votes for that hypothesis. We assume that distinct 
objects in the image do not share features. Thus, different 
shape hypotheses generated by overlapping feature subsets 
compete, and only the one with highest number of votes is 
selected. Since these selected shapes do not share image data, 
they inherently constitute a segmentation of the input image. 

By modifying the number of points, properties, and relation- 
ships considered, the same framework of evidence integration 
can be extended to other domains. In 3-space, for instance, 
one could use the relative position of combinations of three 
points from a range data image. The correspondence between 
three model and three range points fully determines 3-D object 
position. The 1 st-order properties (surface normals) can be 
represented, for instance, by the angle between the tangent 
planes and the plane containing the three 3-D points. 

VIII. LOCAL SHAPE FEATURES 

The scheme outlined above for computing indexes could be 
used directly for recognizing object shapes with edge-points 
serving as features. However, the dimensionality of the index 
computed from just edge points is limited to at most five (of 
which we used only four above for noise rejection). Also, the 
O(n3) computational complexity with respect to the number 
of points n considered makes the approach unappealing when 
large data sets are explored. 

To overcome this difficulty, we caii consider only a small 
specific subset of the edge points. In this case, the stability and 
robustness of the transform would depend on reliably selecting 
the same subset of points when acquiring and recalling the 
shapes, that is, selecting the same points for the same objects in 
different images. Our solution is to encode local 2-D shape of 
edge-curves into a small set of localized and symmetric shape 
descriptors. Next, we use this intermediate representation as 
the features for the spatial transform that computes indexes 
for object shapes. 

Curve shapes have been labeled based on curvatures mea- 
sures [35] and by fitting parametric functions [%]. However, 
derivatives and retrieving the curve parameters from an image 
is a hard task requiring optimal segmentation of the input. 
Also, the existence of a parametric representation does not 
guarantee its stability. In other words, small variations in 
some of the parameters can produce arbitrary large variations 
in the shape of the associated 2-D curve, and vice versa. 
Thus, matching the extracted representations to the stored ones 
becomes almost impossible. In these cases, parametric repre- 
sentations are not viable candidates for either the acquisition 
or the recognition process. Curvature requires computation of 
high-order derivatives, and is scale dependent. 

We have chosen to use the same framework we have for 
object recognition to also serve as a feature detection. Thus, we 
have replaced feature detection by model-based recognition. A 
number of curve shapes (four in the current implementation) 
are chosen as models. These models are acquired by presenting 
digitized images of the curve-shape under various similarity 
transformations. The best curve shape at each edge point is 
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Fig. 8. Sampling. 

recognized using indexing. Then, among the overlapping curve 
shapes, the best ones are chosen, giving a segmentation of the 
edge-curves into nonoverlapping labeled sections. The location 
of the curve-shape is given by the pose computation. 

A. Detecting Local Shapes 

The framework. for the acquisition and extraction of local 
shape descriptors is analogous to the one described in Section 
VII-A. While global (object) shapes are not associated with 
any specific point on the shape and are positioned through 
their centers of mass, local shapes are associated with a specific 
point on the shape. For instance, elliptical arcs are associated 
with points where curvature reaches local extrema. Four local 
shape descriptors used by us are lines, circular arcs, and elliptic 
arcs (minima and maxima of curvature). Larger sets of local 
shape descriptors can also be considered [l] ,  191. 

Given the image of an object, edges are extracted using 
standard techniques such as a Canny edge detector [14]. 
Edges are then linked into curves using simple eight neighbors 
connectivity. We assume that the shape of the object is 
completely captured by these 2-D edge-curves. However, no 
assumption is made on the connectivity of the contours other 
than piecewise continuity. Hence, noisy or broken contours 
are acceptable. 

Given a point (so.:yo) on a edge-curve, we symmetrically 
sample around that position along the curve (see Fig. 8), 
generating a set { ( x ~ ,  pi) .  - N 5 i 5 N } .  The sampling step 
is proportional to the length of the longest symmetrical interval 
around the point for which the tangent behavior is monotonic 
on a coarse scale, and the total tangent variation is less than 
F. It is also inversely proportional to the total variation in 
tangent angle on the symmetric interval for tangent angle less 
than F. We assume that faster variations in tangent correspond 
to smaller features, which accordingly require finer sampling 
for detection. As the sampling is based on angles and not on 
distances, it is scale independent. Next, we form all possible 
combinations of the point ( x ~ . o , y ~ )  with two others from the 
set {(xi, yi)}. The index (2 ,  2 ,  o1 0 2 )  described in Section 
11-B, is computed from each triplet and it is used to address 
a bucket in the local-shape look-up table. The point to note 
here is that all possible triplets of edges on the curve are not 
considered. One of the points is always at the center of the 
symmetric sampling; the second point always comes from one 
side of this point and the third from the other side. 

Fig. 9. Shape of leaf # 1. 

Fig. IO. Local shape descriptors. 

During acquisition, images of the curve shapes are presented 
in various poses. The computation for indexes is performed 
with (zo, yo) fixed at the center of symmetry for the model 
curve shape. Since during acquisition one of the points in the 
triplets is always at the center of symmetry of the curve, the 
strongest response during recognition will also be when the 
edge point (that we are sampling symmetrically around) is 
actually at the center of symmetry for its local curve shape. 
For each triplet, the entry ( A ,  [j, S )  is inserted in the table. 
Here, X is the symbolic label for the local curve shape. /3 is 
the angle between the vector t and the normal to the contour 
n, required to recover the shape orientation from the triplet. 
S = s1 + s2 + s3 is used for scale normalization. 

During recognition, given (z0,yo) and the sample set 
{ (zt ,yt )} ,  triplets are formed and indexes computed in an 
analogous fashion. For each entry in the table addressed by 
these indexes, a feature instance is computed that uniquely 
identifies the local shape and its orientation and scale. After 
all the triplets have been considered, the feature instance 
with the highest data support (i.e., votes) describes the shape 
around (-CO,  :yo). By considering the subset of {(zGz. yz)} that 
successfully voted for a given feature, it is also possible to 
recover the section of the contour associated with it. The 
process is repeated for each edge point. Since sampling 
rates are recomputed for each point, sample density varies 
dynamically along the curve. 

After the feature detection phase, local descriptors supported 
by overlapping portions of a curve are compared. From each 
overlapping set, the feature with the highest number of votes 
is chosen. In this way, curves are naturally segmented into 
a small set of nonoverlapping localized shapes (see Figs. 
9, 10, and 11). These local descriptors are positioned at 
coarsely sampled contour locations. To increase stability, a 
finer localization is obtained by extracting new descriptors on 
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Fig. 1 1. Selected descriptors. 

a pixel-by-pixel basis, in a small neighborhood of the original 
local descriptors, and selecting again from among the results 
the one with highest support. In our experimental testing, this 
approach has shown stability with respect to scale, rotation, 
translation, and limited projective transformations of the input 
data. 

IX. OBJECT SHAPES 

Object shape acquisition and recognition is performed on 
images after the local curve shape detection stage. The overall 
scheme follows that outlined in Section VII. One main dif- 
ference is that the index is now seven-dimensional, with the 
additional information provided by the feature labels. Also, a 
number of heuristics to improve speed are introduced. 

A. Model Acquisition 

The shape database is similar to associative memories 
[32] ,  which usually employ distributed representations, i.e., 
each global shape (object) description is not localized to a 
particular location but is distributed over the memory. Such a 
holographic representation engenders fault tolerance to loss 
of parts of the memory. The distributed representation of 
visual shapes is contained in the shape table and selection 
mechanisms described in Section 11. Shapes are represented 
as a collection of entries distributed over the table. Tables, 
because of their extreme sparseness (see Section III), are 
implemented as hash tables. 

New shapes are acquired by performing a shape autocorrela- 
tion transform on presented instances from images. To enhance 
recognition in the presence of noise and small projective 
transforms of the input, two heuristics are employed. Different 
instances of the same shape in different poses are acquired. For 
each object, the acquisition is repeated on different views until 
the indexes no longer hit empty buckets in the shape table with 
a significant rate. Secondly, a stochastic index perturbation 
mechanism during acquisition is performed. That is, a small 
randomness (order of the index parameter quantization) is 
added to a index along each of its dimensions. This, while 
not modeling the noise and its effect on the index, increases 
the fault tolerance of recognition. 

One potential problem is that an incorrect measurement may 
be caused by incorrect noise and segmentation and, yet it 
will still be recorded in the library. Insuring that a minimum 
number of votes be measured from an index before it is 

accepted as a valid invariant [48] will help alleviate this 
problem. 

The local shape of a curve around a point provides ad- 
ditional dimensions for the indexes used for object shapes. 
The index becomes (2.  ~ , a 1 , n 2 , X 1 , A 2 , X j ) ,  where A, is 
the symbolic label for the local curve shape at point (x,,yJ. 
These indexes are of a higher dimensionality, endowing the 
transform with even more selectivity. The scale (or size) of 
the local curve descriptors could be used to generate additional 
parameters for the index, but these are not used in this paper. 
The entries used and the acquisition process is the same as 
described in Section VILA. 

B. Object Shape Recognition 

To recognize objects in an image, the first stage is feature 
detection. Edges are detected in the image and local curve 
features then detected using the scheme detailed in Section 
VIII. Triplets of local-curve shapes are used to generate 
the seven-dimensional indexed as described in the previous 
section. The object recognition scheme proceeds as described 
in Section VII-B. 

A direct implication of the use of 3rd-order autocorrelation 
function is O(71:) time complexity, where T I S  is the number 
of local shapes. It is further possible to reduce the time 
requirement to 0 ( 7 1 , ) ,  as shown below. 

Local shape descriptors are assigned a weight wT, propor- 
tional to their visual relevance. This measure uses the length of 
their support normalized with respect to the size of the model 
(this favors large features) and/or the tangent angle variation 
per unit length that they describe (this favors corners). Larger 
features have a higher chance of being correctly identified 
from the input. Rapid variations in tangent correspond to 
curvature maxima that are well localized on contours. For 
each model, we isolate a small constant number c of such 
highly relevant descriptors D, = { D t :  i 5 c} from the others 
D = { D J : j  5 n,},D, C D. We then generate all possible 
triplets with the first element from the set D and the other two 
from the set D,. The total number of triplets formed, n, ( i ) ,  
is a linear function of n,. Thus, the time required to acquire 
a shape model, or one view for a 3-D object, is O(71,). This 
representation is still highly redundant since each feature is 
present in at least (5) triplets. 

Furthermore, since real-world objects have in general a 
compact structure, it is possible to exploit this property to 
reduce the number of triplets considered. For each identified 
descriptor we generate a circle of coherence centered at its 
location. The radius of this circle is proportional to the size 
of the local shape. Other descriptors from the same shape are 
more likely to be found within such a circle. This technique 
has been demonstrated to reduce the number of triplets from 
cubic to a linear with respect to the image size [16]. 

To make recognition robust with respect to noise in cluttered 
environments, we extend the radius of coherence until a 
required constant number of descriptors with desired visual 
significance U),, normalized with respect to that of the con- 
sidered descriptor, are found, and we create triplets only with 
these. This search can be made efficient using multiresolution 
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analysis techniques [ 131, or by maintaining the features in a 
heap structure. In either case, maximum search time is within 

The heuristics of saliency and locality used here to reduce 
recognition time are similar to the local focus feature approach 
of Bolles and CaiIi [lo] and the salient feature methods of 
Tumey et al. [ V I .  These heuristics are only approximate, and 
they can fail. Under our scheme, it is not possible to assign 
saliency in a totally scale-independent manner. Similarly, 
locality is only a very crude approximation to object level seg- 
mentation. Sophisticated bottom-up segmentation techniques 
such as perceptual organization [45] will obviously aid this 
system but have not yet been incorporated into it. Therefore, 
while saliency and locality can 'often reduce the recognition 
time to linear in the number of features, for images where 
these approximations fail features other than the salient ones 
are copsidered and the search is expanded over the full image. 

O ( n  log n) .  

X. SUBPART IDENTIFICATION 

We introduce a method for using indexing to automatically 
detect subparts in the acquired objects. This, coupled with 
the flexible structure of the global shape indexes, allows for 
the formulation of a hierarchical organization of the shape 
database. Such a layered structure of the shape table, however, 
has not yet been implemented in the current system. 

Complex object shapes can be broken into smaller and 
simpler components that are termed subparts. These subparts, 
if considered as separate shapes, may recursively be broken 
into their component subparts. Subparts allow description of 
complex shapes in terms of simpler ones rather than directly 
in terms of primitive features, in this case the local shape 
descriptors. Thus subparts allow a hierarchical representation 
of shape, with the sttape hierarchy starting from local fea- 
tures, through subparts and finally object shapes. This way of 
structuring the information allows for more compact represen- 
tation, more efficient extraction and higher data abstraction 
capabilities. The hierarchical shape representation is useful 
for recognition, shape representation [23], and possibly in 
reasoning about the objects. In indexing systems, the number 
of levels can be increased by using subparts. This will add to 
the dimensionality of indexes used for object recognition. 

The different varieties of subparts can be categorized by 
whether they can overlap or are strictly nonoverlapping, and 
by the technique used to categorize a part of a shape as a 
subpart. For example, in [23] subparts are nonoverlapping 
and are formed by segmenting the shapes at comers; in [45] 
subparts can be overlapping and are segmented on the basis 
of perceptual organization criteria. 

We define subparts as locally connected parts of one shape 
that are shared (rotated and scaled) among a significant number 
of other shapes. The subparts can be overlapping. There is 
a lower bound c m  the number of shape descriptors required 
to form a subpart, as very small sections of a shape (such 
as a portion of a curve or straight line) can be shared by 
numerous objects and lack descriptive power. Our definition 
of subparts does not depend on segmentation, i.e., on the 
reliable decomposition of different instances of a shape in 

Fig. 12. Lamp # 1 .  

Fig. 13. Lamp # 2. 

an identical way. However, we can take advantage of any 
subpart segmentation method to speed up our computation by 
constraining the generalized neighborhoods to the segmented 
sections. 

In our framework, the concept of subpart finds natural 
expression in terms of evidence integration across several 
models. Given a table containing a large number of shapes, 
we use the indexes generated during the acquisition process 
to extract information from the image, based on previously 
acquired shape information. If a significant match is found 
between the new shape and other shapes from the database, the 
set of matching elements (i.e., single local shape descriptors 
that produced matching triplets) is analyzed as a possible 
candidate for a subpart. If it satisfies some criteria, such as 
being compact and connected, it is classified as such and 
inserted in the subpart database. 

The experimental result of unsupervised subpart detection 
from the set of objects shown in Figs. 12, 13, 14, and 15 is 
shown in Fig. 16. 

Subparts assume semantic roles identical to local shape 
descriptors. That is, they are located at their center of mass 
and assigned a label, an orientation, and scale. As such, they 
participate in the recognition of the shapes they belong to, by 
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Fig. 16. Defected subpan. 

or relative position and orientation, or due to spurious 
votes that do not lead to a valid support. From this set, 
we select features that have participated in more than 2 
votes, where n is the number of used shape descriptors, 
i.e., we select those whose votes were not produced by 
stochastic or correlated noise [ 161. Nt is the total number 
of triplets formed by the descriptors. 

4) Next, we check if the selected features form any subpart 
that A and B share. To belong to a subpart, the fea- 
tures must exhibit spatial coherence, i.e., they must be 
related by spatial proximity and continuity along edge- 
contours. Continuity is checked by looking for overlap 
or adjacency in the edge support for each feature. If an 
edge-contour has more than 10% of its features missing, 
then it is not a viable candidate for forming a subpart, 
and the subpart itself is not considered. Therefore, for 
a set of selected local shape descriptors in B to be a 
subpart of A, the features must belong to a spatially 
coherent segment of B and only to that segment of B. 
A minimum number of spatially coherent features of B 
must be selected, insuring that the entity defined as a 
subpart is more than simply a local shape or a small 
part of curve. 

Fig. 14. Lamp # 3.  

Fig. 15. Lamp # 4. 

forming triplets with other local descriptors, including other 
subparts and generating indexes in the shape table. 

M~~~ formally, suppose there are two distinct objects A 
and B and we wish to know the subparts shared by them. The 
process of obtaining the subparts is: 

Detect the local shape descriptors for object and per- 
form recognition on the global shape table that already 

Subpart B is not limited to sharing subparts with a single 
object. If more than one set of features has significant vote, 
each of those feature sets has to be checked for being a subpart 
(steps 

The process described above is for finding common subparts 
between object models during their acquisition. We have not 
yet 

and 4)- 

subparts for recognition 
contains a representation of A. 
If there are no significant votes accumulated for the 
object A, then B and A do not share any subpart. 
If significant votes are obtained for object A,  then B and 
A are likely to share a subpart. For each shape instance 
of A with significant votes the local shape descriptors 
in B that voted for that instance are known. Note that 
more than one shape instance of A can be created if A 
and B share more than one subpart at different scales 

XI. EXPERIMENTS 
We report some experiments testing the performance of the 

multidimensional indexing scheme presented before. These ex- 
periments provide some empirical test of one multidimensional 
indexing system. It is difficult to test and quantify how well a 
system will perform under real-world conditions. There is no 
way of trying out all real-world situations with varying numer- 
ous parameters like object shapes, viewing angles, distances, 
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i 
,/----/ Fig. 17. Some of the objects used for testing database size. i' (-.. ..__c. ,- 

20 70 120 170 220, 270 
Number of models in database 

Fig. 18. Average discriminability vs. size of database. 

scales, noise, occlusion, and scene complexity. That is exactly 
why we provided a computational framework for analyzing 
indexing. The system implementation and experimentation are 
to be treated more as a proof of concept. 

The system was implemented in Lisp on a Symbolics 
3650. The size of the shape table was 220 with the 
seven index dimensions (see Section IX-A) quantized to 
24% 24, 2J, 23, 2J. 22. 2 2 .  arid 2' levels, respectively. For the 
object hypotheses table H I ,  the number quantization levels 
for pose parameters was 24 for ( L T ,  yt), and 8 for p and a : ~ .  
Note that the quantization levels for the axes is much lower 
than the lo2 value typically used in geometric hashing, and 
the shape table size is larger by a factor z 10'. 

A. Model Database Size 
To test the recognition performance as a function of the 

number of object models in the shape library, we sequen- 
tially added 290 models to the shape memory and tested 
the recognition of the first five objects introduced into the 
shape table. Some of the shape models used are shown in 
Fig. 17. Discrimination ratio (Section VII-B) was used as the 
parameter to evaluate recognition performance. The shapes 
were generated by a random process and contain a similar 
number of local features (5 to IO) and are of similar size 
(perimeter). Thus, the recognition task was hard in the sense 
that there was no large variation in shape. 

Fig. 18 shows the plot of discrimination versus number of 
objects in the database. The plotted discrimination value is the 
average discrimination for the five test shapes. It is interesting 
to note how performance degraded abruptly once the first 
few shapes were added to the database but the asymptotic 
behavior shows a discrimination power larger than 12, i.e., 
correct instances received at least 12 times more votes than 
the number of votes for the next best shape. 

The experiment indicates that the indexing scheme adopted 
is good in the sense that the table does not saturate quickly. 
This experiment is limited in that the recognition test was 

Fig. 19. Shape of leaf ## 2 

Fig. 20. Local shape descriptors 

carried out on noise-free, unoccluded, and uncluttered scenes. 
The average recognition time was 6 s per object. On the av- 

erage, there were 5 local shape descriptors per object, resulting 
in 125 indexes per object for acquisition and recognition. 

B. Recognition 

We report some experiments as examples of invariance of 
recognition capabilities to geometric transformations of the 
model in the image. 

We selected the domain of leaf shapes to demonstrate the 
acquisition and recognition of complex nonparametric shapes. 
The images used for the experiments are obtained from a 
database of drawings. The drawings were treated as images 
and the sampled drawings treated as edge maps. Thinning, 
contour linking, etc., were run on these edge maps just like on 
conventional edge maps obtained from intensity images. The 
images are cleaner than real images, but they provided more 
control over the experiments. Two of the leaves from this set 
are shown in Figs. 9 and 19. In this and following figures we 
show the contours obtained by linking the edges. The contours 
have been smoothed with a Gaussian filter. The local shape 
descriptors detected along these two leaves are shown in Figs. 
11 and 20. 
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Fig. 21. Rotated leaf. 

Fig. 24. Magnified leaf. 

.A 

Fig. 25. Local descriptors 

Fig. 22. Local descriptors. 

Fig. 26. Recognition/location 

I! 

Fig. 23. Recognitiodlocation. 

Rotation and translation in rhe image plane: An image of 
leaf #1 that has undergone rotation and translation in the 
image plane is considered (Figs. 23 and 24). The system 
correctly identifies the shape and the parameters for rota- 
tion, translation, and scale. The original leaf #1 model, 
translated and rotated with the recovered amounts, is 
overlaid (Fig. 25). The difference in registration is due 
to the coarsely quantized computation of the geometrical 
transform parameters, e.g., the position of the center of 
mass. If needed, a more precise registration of the model 
to the image can be obtained by reducing the size of the 
quantization, rematching only the selected local shapes, 
and accumulating evidence only for the matched model. 
Scaling: An image of the leaf is taken at a shorter 
distance, leading to projected shape of the leaf being 

1.8 times larger than the model (Figs. 26 and 27). 
The recognition phase returns the correct label for the 
leaf and the correct scale factor. Fig. 28 shows the 
recognized model, scaled by the computed scale factor, 
and projected onto the image. 
Skew: Slant and/or tilt of the object corresponds to 
viewing the object from different viewpoints. This intro- 
duces a skew in the projected shape of the object-for 
example, a rectangle appears as a parallelogram. A leaf 
is viewed with the image plane slanted and titled about 

from a plane parallel to the leaf (i.e., projective trans- 
form, Figs. 29 and 30). There is also some magnification 
due to differences in the viewing distances. Even given 
the relatively large change in viewing direction, the 
correct model is recognized. This model, with the scale 
and translation accounted for, is overlaid on the image 
in Fig. 31. Currently, recovery of viewing directions is 
not incorporated since objects are 2-D shapes. 
Views, generalization, and separability: The current sys- 
tem handles 2-D shapes. One way of handling 3-D 



390 IEEE TKANSACTIONS ON PATfERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 4. APRIL 1994 

Fig. 27. Skewed leaf. 

Fig. 30. Complex scene. 

5 )  

shapes are categorized as the most similar objects in 
the shape memory (generalization), but after learning of 
the shape, the system is able to distinguish between that 
similar shape and the newly learned one (separability). 
Clutter and Occlusion: Finally, to show that the system 
works correctly for complex scenes, we analyze an 
image, shown in Fig. 32, containing multiple instances 
of the same object at different locations, and in the 
presence of other objects not in the database. All the 
instances of leaf #1 are correctly recognized. Due to 
the presence of multiple objects, other models in the 
memory also receive some votes. These models are 
suppressed by the constraint satisfaction mechanism. 
Again, the difference in the registration of the object 
model with the image (Fig. 33) reflects the quantized 
values used for computing the transforms. 

Fig. 28. Local descriptors 

The average recognition time was 25 s per object for the 
similarity transform and 5 min for the cluttered scene. On 
the average, there were 30 local shape descriptors per object, 
resulting in 1500 indexes per object. 

Fig. 29. Rec :ognition/location 

objects is to have different 2-D views of the 3-D object. 
These views can sample the Gaussian viewing sphere 
or be obtained from an aspect graph. Generalization is 
the ability of a recognition that on being presented with 
a shape that is not in its database, it categorizes it as 
the shape it is most similar to. Separability means if the 
unlearned shape, which is categorized as a shape similar 
to it, is subsequently learned, new presentations of it get 
correctly categorized to the newly learned shape. 
To show that viewpoint direction parameters could be 
recovered by learning the projected representations of 
the model at different viewing angles, we acquired 
the skewed leaf shape as a separate leaf model. In 
subsequent recognition of the skewed shape, the correct 
instance is recognized. This not only indicates that the 
system can be incremented to handle 3-D shapes but 
also the factors of generalization and separability, i.e., 

XII. CONCLUSION AND FUTURE DIRECTIONS 

We have provided a computational framework for the anal- 
ysis of indexing-based model acquisition and recognition 
systems. This analysis shows that high-dimensional indexing 
strategies can solve a number of problems that have hampered 
conventional look-up table techniques. The benefits include 
improvements in recognition time, discriminating power, and 
maximum size of the database. As a proof of concept, a high- 
dimensional indexing system for the automatic acquisition and 
recognition of complex visual shapes has been presented. The 
associative memory structure used for storing and recalling 
shapes instances exhibits the properties of robustness, gener- 
alization, and recall from partial descriptions. The mechanism 
is also capable of unsupervised detection of subparts shared 
by newly acquired and stored models. 

Such a memory scheme is efficiently implemented both in 
terms of time and space requirements. Model acquisition is 
accomplished in time complexity of O(n3) ,  where the model 
is described by n local shape descriptors. The requirement 
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Fig. 3 I .  Recognitiodlocation. 

for memory space is O(mn) to O ( m n 3 ) ,  with m the number 
of distinct object shapes (or distinct object shapes times their 
different aspects for 3-D shapes) and 71 the average number of 
local shapes per model. Recognition time grows very slowly 
with the number of models in the database and is given by 
NTT(lc + cQ), where N T ~  is the number of feature triplets 
in the image, k and c are constants, and Q is the number of 
models in the database. c in our case is as low as 0.001. 

Current work is focusing on the extension of the multidi- 
mensional indexing paradigm to 3-D shapes and applications 
beyond object recognition. 

REFERENCES 

H. Asada and M. Brady, “The curvature primal sketch,” IEEE Trans. 
Pattern Anal. Machine Intell.. vol. 8, no. I ,  1986. 
N. Ayache, 0. Faugeras, and B. Faverjon, “A geometric matcher for 
recognizing and positioning 3-D rigid objects,” Int. Conf fntelligent 
Robots and Computer Vision, Proc. SPIE, Oct. 1984. 
D. H. Ballard, “Parameter nets: A theory of low level vision,’’ in Proc. 
7rh fnt. Joint Conf ArriJcial Inreffigence, Aug. 1981, pp. 1068-1078. 
__, “Generalizing the Hough transform to detect arbitrary shapes,” 
Pattern Recogn., vol. 13, no. 2, 1981, pp. I 11-122. 
R. M. Bolle, A. Califano, R. Kjeldsen, and R. W. Taylor, “Computer 
vision research,” in Proc. DARPA h u g e  Understanding Workshop, Palo 
Alto, CA, May 1989. 
R. M. Bolle, A. Califano, R. Kjeldsen, and R. W. Taylor, ‘‘Visual 
recognition using concurrent and layered parameter networks,” in Proc. 
IEEE Con$ Computer Vision and Puttern Recognition, San Diego, June 
1989. 
B. Bhanu and 0. D. Faugeras, “Shape matching of two-dimensional 
objects.” IEEE Trans. Pattern Anal. Machine Intell.. vol. 8, no. 2, pp. 
137-155, Mar. 1984. 
P. J. Besl and R. C. Jain, “Three-dimensional object recognition,” 
Comput. S u n q s ,  vol. 17, no. I ,  pp. 75-145, Mar. 1985. 
A. P. Blicher, “A shape representation based on geometric topology: 
Bumps, Gaussian curvature, and the topological zodiac,” in Proc. loth 
Int. Join1 Conf: Artificial Intelligence, Aug. 1987, pp. 767-770. 
R. C. Bolles and R. A. Cain, “Recognizing and locating partially visible 
objects: The local feature focus approach,” Int. J. Robotics Reseurch. 
vol. I .  no. 3, pp. 57-82, Fall 1982. 
R. C. Bolles, P. Horaud, and M. J. Hannah, “3-DPO: A three- 
dimensional part orientation system,” in Proc. 8th Int. Joint Con5 
on Artificial fnrelligence, Aug. 1983, pp. 1 116-1 120. 
R. A. Brooks, “Model-based three-dimensional interpretations of two- 
dimensional images,’’ IEEE Trans. Pattent Anal. Machine Intell., vol. 5, 
no. 2, pp. 140-150, Mar. 1983. 
P. J. Burt. “Smart sensing within a pyramid vision machine,” Proc. 
IEEE. vol. 76, no. 8, pp. 1006-lO15, Aug. 1988. 
J .  F. Canny, “A computational approach to edge detection,” IEEE Trans. 
Pattern Anal. Machine Intell., vol. 8, no. 6, pp. 679-698, Nov. 1986. 

[IS] A. Califano, “Feature recognition using correlated information con- 
tained in multiple neighborhoods,” in  Proc. 7th Not. Conf Artificiol 
Intelligence. July 1988, pp. 83 1-836. 

(161 R. M. Bolle and R. W. Taylor, “Generalized neighborhoods: A new 
approach to feature extraction,” in Proc IEEE Conf Computer Vision 
and Puttern Recognition. June 1989. 

[ 171 A. Califano and R. Mohan, “Generalized shape autocorrelation.” in Proc. 
AAAf-90, July 1990. pp. 1067-1073. 

[ 181 A. Califano and R. Mohan, “Multi-dimensional indexing for recognizing 
visual shapes,” in Proc. IEEE Con$ Computer Vision and Pattern 
Recognition, June 1991, pp. 28-34. 

[ 191 I. Chakravarty and H. Freeman, “Characteristic view as a basis for three- 
dimensional object recognition,” in Proc. SPfE Conf Robot Vision, 1982, 

1201 R. T. Chen and C. R. Dyer, “Model-based recognition in robot vision,” 
ACM Comput. Surveys, vol. 18, no. I ,  pp. 66-108, Mar. 1986. 

[21] D. T. Clemens and D. W. Jacobs, “Model group indexing for recog- 
nition,” in Proc. IEEE Cmf: Computer Vision and Prrttern Recognition. 
June 1991, pp. 4-9. 

[22] R. 0. Duda and P. E. Hart, “Use of the Hough transform to detect lines 
and curves in images,” Commun. ACM. vol. 15, no. I ,  pp. 11-15, 1972. 

[23] G. J. Ettinger, “Large hierarchical object recognition using libraries of 
parameterized model sub-parts,” in Pmc. IEEE Conf Computer Vision 
and Pattern Recognition. June 1988, pp. 3 2 4 1 .  

[24] 0. D. Faugeras and M. Hebert, “A 3-D recognition and positioning al- 
gorithm using geometric matching between primitive surfaces,” in Proc. 
8th Int. Joint Con$ Artificial Intelligence, Aug. 1983, pp. 99&1002. 

125) J .  A. Feldman and D. H. Ballard, “Connectionist models and their 
properties,” Cognitive Sci.. vol. 6.  I98 I ,  pp. 205-254. 

[26] W. E. L. Crimson and T. Lozano-Perez, “Model-based recognition and 
localization from sparse range data or tactile data,” Int.  .I. Roborics 
Research. vol. 3 ,  no. 3, pp. 3-34. Fall 1984. 

[27] Z. Gigus and 3. Malik, “Computing the aspect graph for line drawings 
of polyhedral objects,” fEEE Trans. Purrern Anal. and Machine Intell.. 
vol. 12, no. 2, Feb. 1990. 

[28] C. Goad, “Special purpose automatic programming for 3-D model-based 
vision,” in Proc. DARPA Image Understanding Workshop, 1983, pp. 

[29] W. E. L. Crimson, “The combinatorics of heuristic search termina- 
tion for object recognition in cluttered environments,” Massachusetts 
Institute of Technology, Cambridge, MIT AI Memo 1 I I I ,  May 1989. 

1301 W. E. L. Crimson and D. P. Huttenlocher, “On the sensitivity of 
geometric hashing,” in Proc. 3rd Int. Conf Computer Vision, Osaka, 
Japan, 1990 

[3 11 C. Hansen and T.  Henderson, “CAGD-based computer vision,” in Proc. 
Workshop on Computer Vision, Nov.-Dec. 1987, pp. 100-105. 

1321 G. Hinton and J. Andreson, Purrrllel Models of Associnriwe Memory: 
Lawrence Erlbaum, 1981 

[33] P. Horaud and R. C. Bolles, “3D PO’s strategy for matching three- 
dimensional objects in range data,” in Proc. fEEE 1984 fnt. Conf: 
Robotics, Mar. 1984, pp. 78-85. 

1341 P. V .  C. Hough, “Methods and means for recognizing complex patterns,” 
U. S. Patent 3069654, 1962. 

[35] D. P. Huttenlocher and S. Ullman, “Object recognition using alignment,” 
in Proc. 1st. fnt. Conf Computer Vision. pp. 102-1 I I ,  1987. 

[36] D. P. Huttenlocher, “Three-dimensional recognition of solid objects 
from a two-dimensional image,” Ph.D. dissertation, Massachusetts In- 
stitute of Technology, Cambridge, MIT AI-Lab. Tech. Rep. # 1045, 
1988. 

[37] K. Ikeuchi and T. Kanade, “Automatic generation of object recognition 
programs,’’ IEEE Proc., vol. 76. no. 8, Aug. 1988, pp, 1016-1035. 

138) A. Kalvin, E. Schonberg. J .  T. Schwartz, and M. Sharir, “Two- 
dimensional, model-based, boundary matching using footprints,” fn t .  J. 
Robotics Research, vol. 6, no. 4, Winter 1986. 

I391 J. Koenderink and A. van Doorn, “The internal representation of solid 
shape with respect to vision,” Biologiccrl CJhem..  vol. 32, pp. 21 1-216, 
1979. 

1401 Y. Lamdan, J. T. Schwartz, and H. J. Wolfson, “On recognition of 3D 
object from 2D images,” in  Pmc. fEEE Conf: Robotic.\. cmd Automution. 

1411 Y. Lamdan, J. T. Schwartz, and H. J. Wolfson, “Object recognition by 
affine invariant matching,” in P roc. lEEE Conf: Computer Vision and 
Pattern Recognition. pp. 335-344. 

1421 Y. Lamdan and H. J. Wolfson, “Geometric hashing: A general and 
efficient model-based recognition scheme.” in Proc. 2nd Int. COR[ 
Computer Vision, Dec. 1988. 

1431 Y. Lamdan and H. J. Wolfson, “On the error analysis of geometric 
hashing,’‘ Robotics Lab. New York University, Tech. Rep. 213. Oct. 
1989. 

PQ. 3 7 4 5 .  

94-104. 

pp. 1407-1413. 



392 IEEE TRANSACTIONS ON PA’ITERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 16, NO. 4. APRIL 1994 

1441 D. G. Lowe, ‘“The viewpoint consistency constraint,” Int. J .  Comput. 
Vision, vol. I ,  1987, pp. 57-72. 

[45] R. Mohan and R. Nevatia, “Perceptual organization for scene segmenta- 
tion and description,” in IEEE Trans. Pattern Anal. and Machine Intell., 
vol. 14. no. 6, June 1992, pp. 616-635. 

1461 J. L. Mundy and A. J. Heller, “The evolution and testing of a model- 
based object recognition system,” in Proc. 3rd. Int. Conf Computer 
Vision, pp. 268-282, 1990. 

[47] R. Nevatia and T. 0. Binford, “Description and recognition of curved 
objects,” Artificial Intell., vol. 8, no. I .  pp. 77-98, 1977. 

[48] Suggested by one of the referees, during the review process. 
[49] I .  Rigoutsos and R. Hummel, “On a scalable parallel implementation of 

geometric hashing on the connection machine,” Courant Inst. of Math. 
Science, New York Univ., Tech. Rep. 554, Apr. 1991. 

[50] I .  Rigoutsos and R. Hummel, “Robust similarity invariant matching in 
the presence of noise,” in Proc. 8th. Israeli Con$ Artificial Intelligence 
and Computer Vision, Dec., 1991. 

[51] A. Rosenfeld and A. C. Kak, Digital Picture Processing. New York: 
Academic, 1982. 

[52] D. E. Rumelhart and McClelland, Eds., Parallel Distributed Processing: 
Exploratioms in the Microsructures of Computing. Cambridge, MA: 
MIT Press, 1986. 

1531 D. Sabbah, “Computing with connections in visual recognition of 
origami objects,” Cognitive Sci.. vol. 9, no. I ,  Jan.-Mar. 1985, pp. 
25-50. 

[54] R. Shapka and H. Freeman, “Reconstruction of curved-surface bodies 
from a set of imperfect projections,” in Proc. 5th Inr. Joint Con$ 
Art$cial Intelligence, Aug. 1977, pp. 22-26. 

[55] F. Stein and G. Medioni, “Efficient two dimensional object recognition,” 
in Proc. Int. Conf Pattern Recognition, Alantic City, NJ, June 1990. 

[56] G. Taubin, “Nonplanar curve and surface estimation in 3-space,” in Proc. 
IEEE Con$ on Robotics and Automation, Apr. 1988. 

[57] J. L. Tumey, T. N. Mudge, and R. A. Volz, “Recognizing partially 
occluded parts,” IEEE Trans. Pattern Anal. Machine Intell., vol. 7, no. 
4, pp. 4 1 W 2 1 ,  July 1985. 

158) 1. Weiss, “Projective invariants of shapes,” in Proc. DARPA Image 
Understanding Workshop, pp. 1125-1 134, Apr. 1988. 

[59] A. Witkin, “Scale space filtering,” in Proc. 8th Int. Joint Conf Artificial 
Intelligence, Aug. 1983, pp. 1019-1021. 

Andrea Califano (SM’90) was born in Napoli, Italy. He received the Laurea 
in physics from the University of Florence, Florence, Italy, in 1985. He 
continued his thesis research on the chaotic behavior of high-dimensional 
dynamical systems as a research associate at the Instituto Nazionale di Ottica 
in Florence, Italy. 

In 1986 he spent six months as a Visiting Scientist at the Information 
Mechanic Group at the Massachusetts Institute of Technology, Cambridge, 
MA, where he was involved in research on cellular automata. From 1986 to 
1991, he was a Research Staff Member in the Exploratory Computer Vision 
Group at the IBM T. J. Watson Research Center, Yorktown Heights, NY, 
where he is currently the Manager of the Computational Biology and Pattern 
Matching Group. His current research interests are in the areas of computer 
vision, pattern matching, and their applications’ to molecular biology and 
genetics. 

Rakesh Mohan (S’8&M’90) received the B.Tech 
degree from the Indian Institute of Technology, 
Kanpur, India, in 1983 and the M.S. and Ph.D 
degrees from the University of Southern California, 
Los Angeles, in 1989, all in computer science. 

He IS currently a Research Staff Member at the 
IBM T. J. Watson Laboratory, Yorktown Heights, 
NY. His research interests include computer vision, 
robotics, and neural networks. 

Dr. Mohan is the coeditor of the book Progresr 
in Neural Networks: neural Networks in Vision. 


