
P1: xxx

International Journal of Computer Vision KL3162-04/5277531 September 6, 2004 22:24

UNCORRECTED
PROOF

International Journal of Computer Vision 61(6), 55–79, 2005
c© 2005 Kluwer Academic Publishers. Manufactured in The Netherlands.

Pictorial Structures for Object Recognition1

PEDRO F. FELZENSZWALB2
Artificial Intelligence Lab, Massachusetts Institute of Technology3

pff@ai.mit.edu4

DANIEL P. HUTTENLOCHER5
Computer Science Department, Cornell University6

dph@cs.cornell.edu7

Received November 1, 2002; Revised February 12, 2004; Accepted March 25, 20048

First online version published in September, 20049

Abstract. In this paper we present a computationally efficient framework for part-based modeling and recognition
of objects. Our work is motivated by the pictorial structure models introduced by Fischler and Elschlager. The basic
idea is to represent an object by a collection of parts arranged in a deformable configuration. The appearance of
each part is modeled separately, and the deformable configuration is represented by spring-like connections between
pairs of parts. These models allow for qualitative descriptions of visual appearance, and are suitable for generic
recognition problems. We address the problem of using pictorial structure models to find instances of an object in
an image as well as the problem of learning an object model from training examples, presenting efficient algorithms
in both cases. We demonstrate the techniques by learning models that represent faces and human bodies and using
the resulting models to locate the corresponding objects in novel images.
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1. Introduction20

Research in object recognition is increasingly con-21
cerned with the ability to recognize generic classes of22
objects rather than just specific instances. In this paper,23
we consider both the problem of recognizing objects24
using generic part-based models and the problem of25
learning such models from example images. Our work26
is motivated by the pictorial structure representation in-27
troduced by Fischler and Elschlager (1973) thirty years28
ago, where an object is modeled by a collection of parts29
arranged in a deformable configuration. Each part en-30
codes local visual properties of the object, and the de-31
formable configuration is characterized by spring-like32
connections between certain pairs of parts. The best33
match of such a model to an image is found by mini-34

mizing an energy function that measures both a match 35
cost for each part and a deformation cost for each pair 36
of connected parts.

Au: Mismatch
file disk
followed.

37
While the pictorial structure formulation is appeal- 38

ing in its simplicity and generality, several shortcom- 39
ings have limited its use: (i) the resulting energy min- 40
imization problem is hard to solve efficiently, (ii) the 41
model has many parameters, and (iii) it is often desir- 42
able to find more than a single best (minimum energy) 43
match. In this paper we address these limitations, pro- 44
viding techniques that are practical for a broad range of 45
object recognition problems. We illustrate the method 46
for two quite different generic recognition tasks, find- 47
ing faces and finding people. For faces, the parts are fea- 48
tures such as the eyes, nose and mouth, and the spring- 49
like connections allow for variation in the relative 50
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Figure 1. Sample results for detection of a face (a); and a human body (b). Each image shows the globally best location for the corresponding
object, as computed by our algorithms. The object models were learned from training examples.

locations of these features. For people, the parts are the51
limbs, torso and head, and the spring-like connections52
allow for articulation at the joints. Matching results53
with these two models are illustrated in Fig. 154

The main contributions of this paper are three-fold.55
First, we provide an efficient algorithm for the classi-56
cal pictorial structure energy minimization problem de-57
scribed in Fischler and Elschlager (1973), for the case58
where the connections between parts do not form any59
cycles and are of a particular (but quite general) type.60
Many objects, including faces, people and animals can61
be represented by such acyclic multi-part models. Sec-62
ond, we introduce a method for learning these mod-63
els from training examples. This method learns all the64
model parameters, including the structure of connec-65
tions between parts. Third, we develop techniques for66
finding multiple good hypotheses for the location of an67
object in an image rather than just a single best solu-68
tion. Finding multiple hypotheses is important for tasks69
where there may be several instances of an object in70
an image, as well as for cases where imprecision in the71
model may result in the desired match not being the one72
with the minimum energy. We address the problems of73
learning models from examples and of hypothesizing74
multiple matches by expressing the pictorial structure75
framework in a statistical setting.76

1.1. Pictorial Structures77

A pictorial structure model for an object is given by78
a collection of parts with connections between cer-79
tain pairs of parts. The framework is quite general,80
in the sense that it is independent of the specific81

scheme used to model the appearance of each part 82
as well as the type of connections between parts. A 83
natural way to express such a model is in terms of 84
an undirected graph G = (V, E), where the vertices 85
V = {v1, . . . , vn} correspond to the n parts, and there 86
is an edge (vi , v j ) ∈ E for each pair of connected parts 87
vi and v j . An instance of the object is given by a con- 88
figuration L = (l1, . . . , ln), where each li specifies the 89
location of part vi . Sometimes we refer to L simply 90
as the object location, but “configuration” emphasizes 91
the part-based representation. The location of each part 92
can simply specify its position in the image, but more 93
complex parameterizations are also possible. For ex- 94
ample, for the person model in Section 6 the location 95
of a part specifies a position, orientation and an amount 96
of foreshortening. 97

In Fischler and Elschlager (1973) the problem of 98
matching a pictorial structure to an image is defined 99
in terms of an energy function to be minimized. The 100
cost or energy of a particular configuration depends 101
both on how well each part matches the image data 102
at its location, and how well the relative locations of 103
the parts agree with the deformable model. Given an 104
image, let mi (li ) be a function measuring the degree of 105
mismatch when part vi is placed at location li in the 106
image. For a given pair of connected parts let di j (li , l j ) 107
be a function measuring the degree of deformation of 108
the model when part vi is placed at location li and part 109
v j is placed at location l j . Then an optimal match of 110
the model to the image is naturally defined as 111

L∗ = arg min
L

(
n∑

i=1

mi (li ) +
∑

(vi ,v j )∈E

di j (li , l j )

)
, (1)
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which is a configuration minimizing the sum of the112
match costs mi for each part and the deformation costs113
di j for connected pairs of parts. Generally the defor-114
mation costs are only a function of the relative position115
of one part with respect to another, making the model116
invariant to certain global transformations. Note that117
matching a pictorial structure model to an image does118
not involve making any initial decisions about locations119
of individual parts, rather an overall decision is made120
based on both the part match costs and the deformation121
costs together.122

This energy function is simple and makes intuitive123
sense. However, previous methods have used heuristics124
or local search techniques that do not find an optimal125
solution and depend on having good initialization. In126
contrast we present an efficient algorithm that can find127
a global minimum of the energy function without any128
initialization.129

Pictorial structures can be used to represent quite130
generic objects. For example, the appearance models131
for the individual parts can be a blob of some color132
and orientation, or capture the response of local ori-133
ented filters. The connections between parts can en-134
code generic relationships such as “close to”, “to the135
left of”, or more precise geometrical constraints such136
as ideal joint angles. Since both the part models and137
the relationships between parts can be generic, picto-138
rial structures provide a powerful framework. Suppose139
we want to model the appearance of the human body. It140
makes sense to represent the body as an articulated ob-141
ject, with joints connecting different body parts. With142
pictorial structures we can use a coarse model, consist-143
ing of a small number of parts connected by flexible144
joints. The combination of simple appearance models145
for the parts and structural relations between parts pro-146
vides sufficient context to find the human body as a147
whole, even when it would be difficult to find generic148
parts such as “lower-leg” or “upper-arm” on their own.149

1.2. Efficient Algorithms150

Our primary goal is to take the pictorial structure frame-151
work, and use it to efficiently solve object recognition152
and model learning problems. We consider a natural153
class of pictorial structure models and present efficient154
algorithms both for matching such models to images155
and for learning models from examples. These efficient156
algorithms are based on two restrictions on the form of157
the pictorial structure models. First, our methods re-158
quire that the graph G be acyclic (i.e., form a tree).159

Second the methods require that the relationships be- 160
tween connected pairs of parts be expressed in a par- 161
ticular form. 162

Restricting the connections between parts to a tree 163
structure is natural for many classes of objects. For ex- 164
ample, the connections between parts of many animate 165
objects can form a tree corresponding to their skeletal 166
structure. Many other kinds of objects can be repre- 167
sented using a tree such as a star-graph, where there 168
is one central part to which all the other parts are con- 169
nected. When the graph G is a tree it is possible to com- 170
pute the best match of the model to an image in poly- 171
nomial time. This is done using a generalization of the 172
Viterbi algorithm (Rabiner and Juang, 1993). Related 173
methods are known in the Bayesian Network commu- 174
nity as belief propagation algorithms (Pearl, 1988). The 175
fastest such polynomial time algorithms run in O(h2n) 176
time, where n is the number of object parts, and h is 177
a discrete number of possible locations for each part. 178
Unfortunately this is too slow in most cases because the 179
number of possible locations for a single part is usually 180
quite large – in the hundreds of thousands or millions. 181

The restriction that we impose on the form of con- 182
nections between parts enables an improvement in the 183
running time of the matching algorithms so that it be- 184
comes essentially linear rather than quadratic in the 185
number of possible locations for each part. We require 186
that di j (li , l j ) be a Mahalanobis distance between trans- 187
formed locations, 188

di j (li , l j ) = (Ti j (li ) − Tji (l j ))
T M−1

i j (Ti j (li ) − Tji (l j )),

(2)

The matrix Mi j should be diagonal, and for simplicity 189
we will assume that Ti j , and Tji are one-to-one. We 190
further require that it be possible to represent the set 191
of possible transformed locations Ti j (li ) and Tji (l j ) as 192
positions in a grid. These functions capture the ideal 193
relative locations for parts vi and v j . The distance be- 194
tween the transformed locations, weighted by M−1

i j , 195
measures the deformation of a “spring” connecting the 196
two parts. This special form for the deformation costs 197
allows for matching algorithms that run in time linear in 198
the number of grid positions of the transformed space. 199
Often this is the same as the number of possible loca- 200
tions for each part, but sometimes it may be slightly 201
larger. As we will see, a broad class of interesting re- 202
lationships can be represented in this form, including 203
those illustrated in Sections 5 and 6. 204

The asymptotic running time of the matching al- 205
gorithms that we develop is thus nearly optimal, in 206
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the sense that the methods run in essentially the same207
asymptotic time as simply matching each part to the208
image separately, without accounting for the connec-209
tions between them. In practice, the algorithms are also210
quite fast, finding the globally best match of a picto-211
rial structure to an image in just a few seconds using a212
desktop computer.213

1.3. Statistical Formulation214

In their original work, Fischler and Elschlager only215
considered the problem of finding the best match of216
a pictorial structure model to an image. As discussed217
above, they characterized this problem using the en-218
ergy function in Eq. (1). While this energy function219
intuitively makes sense, it has many free parame-220
ters. For each different object, one has to construct221
a model, which includes picking appearance param-222
eters for each part, a set of edges connecting pairs of223
parts and the characteristics of the connections. We224
are interested in automatically learning these param-225
eters from examples. Moreover, the energy minimiza-226
tion formulation only characterizes the problem of find-227
ing the best match of a model to an image, whereas228
it is often desirable to find multiple good potential229
matches.230

These questions are naturally addressed using a sta-231
tistical framework for pictorial structure models which232
we describe in Section 2. In this framework, the en-233
ergy minimization problem introduced by Fischler and234
Elschlager is equivalent to finding the maximum a pos-235
teriori estimate of the object configuration given an ob-236
served image. The statistical formulation can be used to237
learn the parameters of a model from examples. In fact,238
all model parameters can be learned from a few training239
examples using maximum likelihood estimation. This240
is of practical as well as theoretical interest, since it is241
generally not possible to find the best parameters for a242
deformable model by trial and error.243

The statistical framework also provides a natural way244
of finding several good matches of a model to an im-245
age rather than finding just the best one. The idea is246
to consider primarily good matches without consider-247
ing many bad ones. We can achieve this by sampling248
object configurations from their posterior probability249
distribution given an observed image. Sampling makes250
it possible to find many locations for which the pos-251
terior is high, and to subsequently select one or more252
of those using an independent method. This procedure253
lets us use imprecise models for generating hypotheses254

and can be seen as a mechanism for visual selection 255
(see Amit and Geman, 1999). 256

1.4. Related Work 257

Research in object recognition has been dominated 258
by approaches that separate processing into distinct 259
stages of feature extraction and matching. In the first 260
stage, discrete primitives, or “features” are detected. In 261
the second stage, stored models are matched against 262
those features. For instance, in the pioneering work of 263
Roberts (1965) children’s blocks were recognized by 264
first extracting edges and corners from images and then 265
matching these features to polyhedral models of the 266
blocks. The model-based recognition paradigm of the 267
1980’s similarly followed this approach. These meth- 268
ods focus largely on the problem of efficiently search- 269
ing for correspondences between features that have 270
been extracted from an image, and features of a stored 271
model. Examples include interpretation tree search 272
(Ayache and Faugeras, 1986; Grimson and Lozano- 273
Perez, 1987), the alignment method (Huttenlocher and 274
Ullman, 1990), RANSAC (Fischler and Bolles, 1981) 275
and geometric hashing (Lamdan et al., 1990). 276

Limitations of the simple features used by most 277
earlier model-based recognition techniques led to a 278
quite different class of recognition methods, devel- 279
oped in the 1990’s, which operate directly on images 280
rather than first extracting discrete features. These in- 281
clude both appearance-based methods (e.g., Turk and 282
Pentland, 1991; Murase and Nayar, 1995) and 283
template-based methods such as Hausdorff matching 284
(Huttenlocher et al., 1993). Such approaches treat im- 285
ages as the entities to be recognized, rather than having 286
more abstract models based on features or other primi- 287
tives. One or more training images of an object are used 288
to form a “template” that is used as a model. This model 289
is then compared to new images to determine whether 290
or not the target is present, generally by explicitly con- 291
sidering possible transformations of the template. 292

The matching of pictorial structures is an alternative 293
approach that in many ways combines the appearance- 294
based and geometric techniques. The energy minimiza- 295
tion problem associated with these models as defined 296
in Eq. (1) incorporates match costs for the individual 297
parts and deformation costs for the geometric configu- 298
ration into a single overall problem. Thus the approach 299
provides a means of simultaneously using appearance 300
and geometry, rather than first making binary decisions 301
about the possible locations of parts or features. The 302
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main drawback of the pictorial structures approach has303
been the computational difficulty of the energy mini-304
mization problem, which we address here for a class of305
models.306

There have been other part-based recognition meth-307
ods, which like the pictorial structures approach are308
based on separately modeling the appearance of in-309
dividual parts and the geometric relations between310
them. However most of these part-based methods make311
binary decisions about potential part locations (e.g.,312
Pentland, 1987; Dickinson et al., 1993; Rivlin et al.,313
1995; Burl and Perona, 1996). Moreover, most part-314
based methods use some kind of search heuristics, such315
as first matching a particular “distinctive” part and then316
searching for other parts given that initial match, in or-317
der to avoid the combinatorial explosion of the con-318
figuration space. Such heuristics make it difficult to319
handle occlusion, particularly for those parts that are320
considered first in the search.321

In Burl et al. (1998) models similar to pictorial struc-322
tures were used to represent objects in terms of a con-323
stellation of local features. In these models, rather than324
there being connections between pairs of parts, all the325
parts are constrained with respect to a central coor-326
dinate system using a Gaussian distribution. Like the327
pictorial structures formulation, no binary decisions are328
made about part or feature locations. These models,329
however, are not well suited for representing articu-330
lated objects, as a joint Gaussian distribution cannot331
capture multiple articulation points. Moreover, in Burl332
et al. (1998) the matching algorithms use heuristics that333
don’t necessarily find the optimal match of a model to334
an image.335

The problem of finding people in images using336
coarse part-based two-dimensional models was con-337
sidered in Ioffe and Forsyth (2001). This is one of two338
domains that we use to illustrate the pictorial struc-339
tures approach. Two different methods are reported in340
Ioffe and Forsyth (2001). The first method makes bi-341
nary decisions about the possible locations for indi-342
vidual parts and subsequently searches for groups of343
parts that match the overall model. The second method344
uses sequential importance sampling (particle filtering)345
to generate increasingly larger configurations of parts.346
We also describe a sampling-based technique, however347
rather than employing approximate distributions ob-348
tained via sequential importance sampling, our method349
is based on efficiently computing the exact (discrete)350
posterior distribution for the object configuration and351
then sampling from that posterior.352

In illustrating the pictorial structures approach us- 353
ing the problem of finding people in images we 354
employ simple part models based on binary images 355
obtained by background subtraction. This suggests 356
comparisons with silhouette-based deformable match- 357
ing techniques (e.g., Gdalyahu and Weinshall, 1999; 358
Sebastian et al., 2001). These approaches are quite dif- 359
ferent, however. First of all, silhouette-based methods 360
generally operate using boundary contours, requiring 361
good segmentation of the object from the background. 362
In contrast, the models we use are not based on a bound- 363
ary representation and operate directly on binary im- 364
ages. For example, a single part could match a region 365
of the image that has several disconnected components. 366
Secondly, deformable matching methods are generally 367
based on two-dimensional shape representations rather 368
than highly parameterized models. Thus they do not ap- 369
ply to cases such as an articulated body where in some 370
configurations the parts can cross one another yielding 371
vastly different shapes. 372

Finally we note that models similar to pictorial struc- 373
tures have recently been used for tracking people by 374
matching models at each frame (Ramanan and Forsyth, 375
2003). In contrast, most work on tracking highly artic- 376
ulated objects such as people relies heavily on motion 377
information (Bregler and Malik, 1998; Ju et al., 1996) 378
and only performs incremental updates in the object 379
configuration. In such approaches, some other method 380
is used to find an initial match of the model to the image, 381
and then tracking commences from that initial condi- 382
tion. Pictorial structures can be used to solve this track 383
initialization problem, or as demonstrated in Ramanan 384
and Forsyth (2003) can be used as a tracking method 385
on their own. 386

2. Statistical Framework 387

As noted in the introduction, the pictorial structure en- 388
ergy minimization problem can be viewed in terms 389
of statistical estimation. The statistical framework de- 390
scribed here is useful for addressing two of the three 391
questions that we consider in this paper, that of learn- 392
ing pictorial structure models from examples and that 393
of finding multiple good matches of a model to an im- 394
age. For the third question, that of efficiently minimiz- 395
ing the energy in Eq. (1), the statistical formulation 396
provides relatively little insight, however it unifies the 397
three questions in a common framework. 398

A standard way of approaching object recognition 399
in a statistical setting is as follows. Let θ be a set of 400



P1: xxx

International Journal of Computer Vision KL3162-04/5277531 September 6, 2004 22:24

UNCORRECTED
PROOF

60 Felzenszwalb and Huttenlocher

parameters that define an object model, I denote an401
image, and as before let L denote a configuration of402
the object (a location for each part). The distribution403
p(I | L , θ ) captures the imaging process, and measures404
the likelihood of seeing a particular image given that405
an object is at some location. The distribution p(L | θ )406
measures the prior probability that an object is at a407
particular location. Finally, the posterior distribution,408
p(L | I, θ ), characterizes the probability that the object409
configuration is L given the model θ and the image I .410
Using Bayes’ rule the posterior can be written as,411

p(L | I, θ ) ∝ p(I | L , θ )p(L | θ ) . (3)

A common drawback of the Bayesian formulation412
is the difficulty of determining a prior distribution,413
p(L | θ ), that is both informative and generally appli-414
cable. For instance, a uniform prior is general but pro-415
vides no information. On the other hand a prior which416
says that the object is in the lower left corner of the417
image is highly informative but of little use in general.418
For pictorial structures, the prior over configurations419
encodes information about the relative positions of the420
parts, which can be both informative and general. For421
instance, for a human body model such a prior can422
capture which are likely relative orientations of two423
connected limbs.424

A number of interesting problems can be character-425
ized in terms of this statistical framework,426

• MAP estimation—this is the problem of finding a427
location L with maximum posterior probability. In428
some sense, the MAP estimate is our best guess for429
the location of the object. In our framework this will430
be equivalent to the energy minimization problem431
defined by Eq. (1).432

• Sampling from the posterior—sampling provides a433
natural way to hypothesize many good potential434
matches of a model to an image, rather than just435
finding the best one. This is useful to detect multiple436
instances of an object in an image and to find possible437
locations of an object with an imprecise model.438

• Model estimation—this is the problem of finding θ439
which specifies a good model for a particular ob-440
ject. The statistical framework allows us to learn441
the model parameters from training examples using442
maximum likelihood estimation.443

Our pictorial structure models are parametrized by444
θ = (u, E, c), where u = {u1, . . . , un} are appear-445
ance parameters, the set of edges E indicates which446

parts are connected, and c = {ci j | (vi , v j ) ∈ E} are 447
connection parameters. There is a separate appearance 448
model for each part, but the exact method used to model 449
the appearance of parts is not important at this point. 450
In Section 5 we model appearance using image deriva- 451
tives around a point, to represent local features of a face 452
such as the tip of the nose or the corners of the mouth. 453
In Section 6 we model appearance using rectangular 454
shapes, to represent individual body parts. In practice, 455
the appearance modeling scheme just needs to provide 456
a distribution p(I | li , ui ) up to a normalizing constant, 457
which measures the likelihood of seeing a particular 458
image, given that a part with appearance parameters ui 459
is at location li . This distribution does not have to be 460
a precise generative model, an approximate measure is 461
good enough in practice. 462

We model the likelihood of seeing an image given 463
that the object is at some configuration by the product 464
of the individual likelihoods, 465

p(I | L , θ ) = p(I | L , u) ∝
n∏

i=1

p(I | li , ui ). (4)

This approximation is good if the parts do not overlap, 466
as in this case they generate different portions of the 467
image. But the approximation can be bad if one part 468
occludes another. For the iconic models described in 469
Section 5 the prior distribution over configurations en- 470
forces that the parts do not overlap (the probability of 471
a configuration with overlap is very small). For the ar- 472
ticulated models described in Section 6 there is much 473
less constraint on the locations of parts, and parts can 474
easily overlap. In this case we demonstrate that a good 475
estimate of the object configuration can be found by ob- 476
taining multiple samples from the posterior distribution 477
and then selecting one of them using an independent 478
method. This shows that sampling from the posterior 479
can be useful for handling modeling error. 480

The prior distribution over object configurations is 481
captured by a tree-structured Markov random field with 482
edge set E . In general, the joint distribution for a tree- 483
structured prior can be expressed as, 484

p(L | θ ) =
∏

(vi ,v j )∈E p(li , l j | θ )∏
vi ∈V p(li | θ )deg vi −1

,

where deg vi is the degree of vertex vi in the graph de- 485
fined by E . We do not model any preference over the 486
absolute location of each part, only over their relative 487
configuration. This means that p(li | θ ) is constant, and 488
we let it equal one for simplicity. The joint distributions 489
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for pairs of parts connected by edges are characterized490
by the parameters c = {ci j | (vi , v j ) ∈ E}. Since we let491
p(li | θ ) = 1, the prior distribution over object config-492
urations is given by,493

p(L | θ ) = p(L | E, c) =
∏

(vi ,v j )∈E

p(li , l j | ci j ). (5)

Note that both p(li , l j | ci j ) and p(L | E, c) are im-494
proper priors (see Berger, 1985). This is a consequence495
of using an uninformative prior over absolute locations496
for each part.497

In Eq. (4) we defined the form of p(I | L , θ ), the498
likelihood of seeing an image given that the object is499
at a some configuration, and in Eq. (5) we defined the500
form of p(L | θ ), the prior probability that the object501
would assume a particular configuration. These can be502
substituted into Eq. (3) yielding,503

P(L | I, θ ) ∝
(

n∏
i=1

p(I | li , ui )
∏

(vi ,v j )∈E

p(li , l j | ci j )

)
.

Taking the negative logarithm of this equation yields504
the same energy function that is being minimized in505
Eq. (1), where mi (li ) = − log p(I | li , ui ) is a match506
cost measuring how well part vi matches the image507
data at location li , and di j (li , l j ) = − log p(li , l j | ci j )508
is a deformation cost measuring how well the relative509
locations for vi and v j agree with the prior model. Thus510
we see that the MAP estimation problem for the statis-511
tical models introduced in this section is equivalent to512
the original energy minimization problem for pictorial513
structures described in Fischler and Elschlager (1973).514

As discussed in the introduction our efficient algo-515
rithms require that the deformation costs be expressed516
in a particular form as shown in Eq. (2). This require-517
ment has a natural interpretation in terms of the statis-518
tical models. Since di j (li , l j ) = − log p(li , l j | ci j ), it is519
equivalent to assume that the joint prior distribution for520
the locations of a pair of connected parts is given by a521
Gaussian over the displacement between transformed522
locations,523

p(li , l j | ci j ) ∝ N (Ti j (li ) − Tji (l j ), 0, Di j ), (6)

where Ti j , Tji , and Di j are the connection parameters524
encoded by ci j . These parameters correspond to the525
ones in Eq. (2) where Di j = Mi j/2 is a diagonal co-526
variance matrix.527

3. Learning Model Parameters 528

Suppose we are given a set of example images 529
{I 1, . . . , I m} and corresponding object configurations 530
{L1, . . . , Lm} for each image. We want to use the train- 531
ing examples to obtain estimates for the model param- 532
eters θ = (u, E, c), where u = {u1, . . . , un} are the 533
appearance parameters for each part, E is the set of con- 534
nections between parts, and c = {ci j | (vi , v j ) ∈ E} 535
are the connection parameters. The maximum likeli- 536
hood (ML) estimate of θ is, by definition, the value θ∗ 537
that maximizes 538

p(I 1, . . . , I m, L1, . . . , Lm | θ ) =
m∏

k=1

p(I k, Lk | θ ),

where the right hand side is obtained by assuming 539
that each example was generated independently. Since 540
p(I, L | θ ) = p(I | L , θ )p(L | θ ), the ML estimate is 541

θ∗ = arg max
θ

m∏
k=1

p(I k | Lk, θ )
m∏

k=1

p(Lk | θ ). (7)

The first term in this equation depends only on the ap- 542
pearance of the parts, while the second term depends 543
only on the set of connections and connection parame- 544
ters. Below we show that one can independently solve 545
for the appearance models of the individual parts and 546
the structural model given by the connections and their 547
parameters. As a consequence, any kind of part models 548
can be used in this framework as long as there is a max- 549
imum likelihood estimation procedure for learning the 550
model parameters for a single part from examples. We 551
use quite simple part models in this paper because our 552
focus is on developing a general framework and pro- 553
viding efficient algorithms that can be used with many 554
different modeling schemes. 555

3.1. Estimating the Appearance Parameters 556

From Eq. (7) we get 557

u∗ = arg max
u

m∏
k=1

p(I k | Lk, u).

The likelihood of seeing image I k , given the configu- 558
ration Lk for the object is given by Eq. (4). Thus, 559

u∗ = arg max
u

m∏
k=1

n∏
i=1

p
(
I k | lk

i , ui
)

= arg max
u

n∏
i=1

m∏
k=1

p
(
I k | lk

i , ui
)
.
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Looking at the right hand side we see that to find u∗ we560
can independently solve for the u∗

i ,561

u∗
i = arg max

ui

m∏
k=1

p
(
I k | lk

i , ui
)
.

This is exactly the ML estimate of the appearance562
parameters for part vi , given independent examples563
{(I 1, l1

i ), . . . , (I m, lm
i )}. Solving for u∗

i depends on564
picking a specific modeling scheme for the parts, and565
we return to this in Sections 5 and 6.566

3.2. Estimating the Dependencies567

From Eq. (7) we get568

E∗, c∗ = arg max
E,c

m∏
k=1

p(Lk | E, c). (8)

We need to pick a set of edges that form a tree and569
the connection parameters for each edge. This can be570
done in a similar way to the algorithm of Chow and Liu571
(1968), which estimates a tree distribution for discrete572
random variables. Eq. (5) defines the prior probability573
of the object assuming configuration Lk as,574

p(Lk | E, c) =
∏

(vi ,v j )∈E

p
(
lk
i , lk

j | ci j
)
.

Plugging this into Eq. (8) and re-ordering the factors575
we get,576

E∗, c∗ = arg max
E,c

∏
(vi ,v j )∈E

m∏
k=1

p
(
lk
i , lk

j | ci j
)
. (9)

We can estimate the parameters for each possible con-577
nection independently, even before we know which578
connections will actually be in E as,579

c∗
i j = arg max

ci j

m∏
k=1

p
(
lk
i , lk

j | ci j
)
.

This is the ML estimate for the joint distribution580
of li and l j , given independent examples {(l1

i , l1
j ),581

. . . , (lm
i , lm

j )}. Solving for c∗
i j depends on picking a582

specific representation for the joint distributions. In-583
dependent of the exact form of p(li , l j | ci j ), and how584
to compute c∗

i j (which we consider later, as it varies585
with different modeling schemes), we can characterize586
the “quality” of a connection between two parts as the587

probability of the examples under the ML estimate for 588
their joint distribution, 589

q(vi , v j ) =
m∏

k=1

p
(
lk
i , lk

j | c∗
i j

)
.

Intuitively, the quality of a connection between two 590
parts measures the extent to which their locations are 591
related. These quantities can be used to estimate the 592
connection set E∗ as follows. We know that E∗ should 593
form a tree, and according to Eq. (9) we let, 594

E∗ = arg max
E

∏
(vi ,v j )∈E

q(vi , v j )

= arg min
E

∑
(vi ,v j )∈E

− log q(vi , v j ). (10)

The right hand side is obtained by taking the nega- 595
tive logarithm of the quantity being maximized (and 596
thus finding the argument minimizing the value, in- 597
stead of maximizing it). Solving for E∗ is equivalent to 598
the problem of computing the minimum spanning tree 599
(MST) of a graph. We build a complete graph on the 600
vertices V , and associate a weight − log q(vi , v j ) with 601
each edge (vi , v j ). The MST of this graph is the tree 602
with minimum total weight, which is exactly the set of 603
edges defined by Eq. (10). The MST problem is well 604
known (see Cormen et al., 1996) and can be solved ef- 605
ficiently. Kruskal’s algorithm can be used to compute 606
the MST in O(n2 log n) time, since we have a complete 607
graph with n nodes. 608

4. Matching Algorithms 609

In this section we present two efficient algorithms for 610
matching tree-structured models to images with con- 611
nections of the form in Eqs. (2) and (6). The first al- 612
gorithm solves the energy minimization problem in 613
Eq. (1), which in the statistical framework is equiva- 614
lent to finding the MAP estimate of the object location 615
given an observed image. The second algorithm sam- 616
ples configurations from the posterior distribution. In 617
Felzenszwalb and Huttenlocher (2000) we described 618
a version of the energy minimization algorithm that 619
uses a different restriction on the form of connections 620
between parts. That form did not allow for efficient 621
sampling from the posterior distribution. 622
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4.1. Energy Minimization or MAP Estimate623

As discussed in Section 1.1, the problem of finding the624
best match of a pictorial structure model to an image625
is defined by the following equation,626

L∗ = arg min
L

(
n∑

i=1

mi (li ) +
∑

(vi ,v j )∈E

di j (li , l j )

)
.

The form of this minimization is quite general, and it627
appears in a number of problems in computer vision,628
including MAP estimation of Markov random fields for629
low-level vision such as image restoration and stereo630
and optimization of active contour models (snakes).631
While the form of the minimization is shared with these632
other problems, the structure of the graph and space of633
possible solutions differ substantially. This changes the634
computational nature of the problem.635

Solving this minimization for arbitrary graphs and636
arbitrary functions mi , di j is an NP-hard problem637
(see Boykov et al., 2001). However, when the graph638
G = (V, E) has a restricted form, the problem can be639
solved more efficiently. For instance, with first-order640
snakes the graph is simply a chain, which enables a dy-641
namic programming solution that takes O(h2n) time642
(see Amini et al., 1990), where as before we use n to643
denote the number of parts in the model and h is a dis-644
crete number of possible locations for each part. More-645
over, with snakes the minimization is done over a small646
number of locations for each vertex (e.g., the current647
location plus the 8 neighbors on the image grid). This648
minimization is then iterated until the change in energy649
is small. The key to an efficient algorithm for snakes650
is that the number of possible locations for each part,651
h, is small in each iteration, as the dynamic program-652
ming solution is quadratic in this value. Another source653
of efficient algorithms has been in restricting di j to a654
particular form. This approach has been particularly655
fruitful in some recent work on MRFs for low-level vi-656
sion (Boykov et al., 2001; Ishikawa and Geiger, 1998).657
Here we use constraints on both the structure of the658
graph and the form of di j .659

By restricting the graphs to trees, a similar kind of660
dynamic programming can be applied as is done for661
chains, making the minimization problem polynomial662
rather than exponential time. The precise technique is663
described in Section 4.1.1. However, this O(h2n) al-664
gorithm is not practical in most cases, because for pic-665
torial structures the number of possible locations for666
each part is usually huge.667

Recall our restricted form for di j shown in Eq. (2) in 668
terms of a Mahalanobis distance between transformed 669
locations, 670

di j (li , l j ) = (Ti j (li ) − Tji (l j ))
T M−1

i j (Ti j (li ) − Tji (l j )).

We will show how this restriction can be used to obtain a 671
minimization algorithm that runs in O(h′n) rather than 672
O(h2n) time, where h′ is the number of grid locations 673
in a discretization of the space of transformed loca- 674
tions given by Ti j and Tji . The relationship between h′ 675
and h depends on the particular transformations being 676
used, but in most cases the two quantities have similar 677
value. This makes it quite practical to compute a glob- 678
ally optimal match of a pictorial structure model to an 679
image, up to the discretization of the possible locations. 680
We first discuss the overall minimization problem for 681
tree-structured models and then turn to the method that 682
exploits the form of di j . 683

4.1.1. Efficient Minimization. In this section, we de- 684
scribe an algorithm for finding a configuration L∗ = 685
(l∗1 , . . . , l∗n ) that minimizes Eq. (1) when the graph G 686
is a tree, which is based on the well known Viterbi 687
recurrence. Given G = (V, E), let vr ∈ V be an arbi- 688
trarily chosen root vertex (this choice does not affect 689
the results). From this root, each vertex vi ∈ V has 690
a depth di which is the number of edges between it 691
and vr (and the depth of vr is 0). The children, Ci , 692
of vertex vi are those neighboring vertices, if any, of 693
depth (di +1). Every vertex vi other than the root has a 694
unique parent, which is the neighboring vertex of depth 695
(di − 1). 696

For any vertex v j with no children (i.e., any leaf 697
of the rooted tree), the best location l∗j for that vertex 698
can be computed as a function of the location of just 699
its parent, vi . The only edge incident on v j is (vi , v j ), 700
thus the only contribution of l j to the energy in (1) is 701
m j (l j ) + di j (li , l j ). The quality of the best location for 702
v j given location li for vi is 703

B j (li ) = min
l j

(m j (l j ) + di j (li , l j )), (11)

and the best location for v j as a function of li can be 704
obtained by replacing the min in the equation above 705
with arg min. 706

For any vertex v j other than the root, assume that 707
the function Bc(l j ) is known for each child vc ∈ C j . 708
That is, the quality of the best location for each child 709
is known with respect to the location of v j . Then the 710
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quality of the best location for v j given a location for711
its parent vi is712

B j (li ) = min
l j

(
m j (l j ) + di j (li , l j ) +

∑
vc∈C j

Bc(l j )

)
.

(12)

Again, the best location for v j as a function of li can713
be obtained by replacing the min in the equation above714
with arg min. This equation subsumes (11) because for715
a leaf node the sum over its children is simply empty.716
Finally, for the root vr , if Bc(lr ) is known for each child717
vc ∈ Cr then the best location for the root is718

l∗r = arg min
lr

(
mr (lr ) +

∑
vc∈Cr

Bc(l j )

)
.

That is, the minimization in (1) can be expressed re-719
cursively in terms of the (n − 1) functions B j (li ) for720
each vertex v j ∈ V (other than the root). These re-721
cursive equations suggest a simple algorithm. Let d be722
the maximum depth in the tree. For each node v j with723
depth d, compute B j (li ), where vi is the parent of v j .724
These are all leaf nodes, so clearly B j (li ) can be com-725
puted as in (11). Next, for each node v j with depth726
(d − 1) compute B j (li ), where again vi is the parent of727
v j . Clearly, Bc(l j ) has been computed for every child728
vc of v j , because the children have depth d . Thus B j (li )729
can be computed as in (12). Continue in this manner,730
decreasing the depth until reaching the root at depth731
zero. Besides computing each B j we also compute B ′

j ,732
which indicates the best location of v j as a function of733
its parent location (obtained by replacing the min in B j734
with arg min). At this point, we compute the optimal735
location l∗r for the root. The optimal location L∗ for736
all the parts can be computed by tracing back from the737
root to each leaf. We know the optimal location of each738
node given the location of its parent, and the optimal739
location of each parent is now known starting from the740
root.741

The overall running time of this algorithm is O(Hn),742
where H reflects the time required to compute each743
B j (li ) and B ′

j (li ). In the general case this takes O(h2)744
time as it is necessary to consider every location of a745
child node for each possible location of the parent. In746
the next section, we show how to compute each B j (li )747
and B ′

j (li ) more efficiently when di j is restricted to be748
in the form of Eq. (2).749

4.1.2. Generalized Distance Transforms. Tradi- 750
tional distance transforms are defined for sets of points 751
on a grid. Suppose we have a grid G, and ρ(x, y) is 752
some measure of distance between points on the grid. 753
Given a point set B ⊆ G, the distance transform of B 754
specifies for each location in the grid, the distance to 755
the closest point in the set, 756

DB(x) = min
y∈B

ρ(x, y).

In particular,DB is zero at any point in B, and is small at 757
nearby locations. The distance transform is commonly 758
used for matching edge based models (see Borgefors, 759
1988; Huttenlocher et al., 1993). The trivial way to 760
compute this function takes O(k|B|) time, where k is 761
the number of locations in the grid. On the other hand, 762
efficient algorithms exist to compute the distance trans- 763
form in O(k) time, independent of the number of points 764
in B (see Borgefors, 1986; Karzanov, 1992). These al- 765
gorithms have small constants and are very fast in prac- 766
tice. In order to compute the distance transform, it is 767
commonly expressed as 768

DB(x) = min
y∈G

(ρ(x, y) + 1B(y)),

where 1B(y) is an indicator function for membership in 769
the set B, that has value 0 when y ∈ B and∞otherwise. 770
This suggests a generalization of distance transforms 771
where the indicator function is replaced with some ar- 772
bitrary function over the grid G, 773

D f (x) = min
y∈G

(ρ(x, y) + f (y)).

Intuitively, for each grid location x , the transform finds 774
a location y that is close to x and for which f (y) is 775
small. Note that if there is a location where f (x) has a 776
small value, D f will have small value at x and nearby 777
locations. 778

With the restricted form of di j in Eq. (2), the func- 779
tions B j (li ) that must be computed by the dynamic 780
programming algorithm can be rewritten as general- 781
ized distance transforms, where the distance in the grid, 782
ρ(x, y), is given by the Mahalanobis distance defined 783
by Mi j , 784

B j (li ) = D f (Ti j (li )),
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where785

f (y) =




m j
(
T −1

j i (y)
) +

∑
vc∈C j

Bc
(
T −1

j i (y)
)

if y ∈ range(Tji )

∞ otherwise

The grid G specifies a discrete set of possible values786
for Tji (l j ) that are considered during the minimization.787
This in turn specifies a discrete set of locations l j . There788
is an approximation being made, since the set of dis-789
crete values for Tji (l j ) (the locations in the grid) might790
not match the set of discrete values for Ti j (li ) (where791
we need the value of D f ). We can simply define the792
value of the distance transform at a non-grid position793
to be the value of the closest grid point. The error intro-794
duced by this approximation is small (as the transform795
by definition changes slowly).796

The same algorithms that efficiently compute the797
classical distance transform can be used to compute798
the generalized distance transform under different dis-799
tances, by replacing the indicator function 1B(x) with800
an arbitrary function f (x). In particular we use the801
method of Karzanov (originally in Karzanov, 1992, but802
see Rucklidge, 1996) for a better description) to com-803
pute the transform of a function under a Mahalanobis804
distance with diagonal covariance matrix. This algo-805
rithm can also compute B ′

j (li ), the best location for806
v j as a function of its parent location, as it computes807
B j (li ).808

4.2. Sampling from the Posterior809

We now turn to the problem of sampling from the poste-810
rior distribution of object configurations. The sampling811
problem can be solved with a very similar algorithm812
to the one described in the previous section. The rela-813
tionship between the two cases is analogous to the rela-814
tionship between the forward-backward and the Viterbi815
algorithms for hidden Markov models. Basically the816
sampling algorithm works directly with the probabil-817
ity distributions instead of their negative logarithms,818
and the maximizations in the recursive equations are819
replaced by summations.820

As we saw in Section 2 the posterior distribution for821
our models is given by822

p(L | I, θ ) ∝
(

n∏
i=1

p(I | li , ui )
∏

(vi ,v j )∈E

p(li , l j | ci j )

)
.

Like before, let vr ∈ V be an arbitrarily chosen root 823
vertex, and the children of vi be Ci . The algorithm 824
works by first computing p(lr | I, θ ). We then sample 825
a location for the root from that distribution. Next we 826
sample a location for each child, vc, of the root from 827
p(lc | lr , I, θ ). We can continue in this manner until we 828
have sampled a location for each part. The marginal 829
distribution for the root location is, 830

p(lr | I, θ ) ∝
∑

l1

· · ·
∑
lr−1

∑
lr+1

· · ·
∑

ln

×
(

n∏
i=1

p(I | li , ui )
∏

(vi ,v j )∈E

p(li , l j | ci j )

)
.

Computing the distribution in this form would take ex- 831
ponential time. But since the set of dependencies be- 832
tween parts form a tree, we can rewrite the distribution 833
as, 834

p(lr | I, θ ) ∝ p(I | lr , ur )
∏

vc∈Cr

Sc(lr ).

The functions Sj (li ) are similar to the B j (li ) we used 835
for the energy minimization algorithm, 836

Sj (li ) ∝
∑

l j

(
p(I | l j , u j )p(li , l j | ci j )

∏
vc∈C j

Sc(l j )

)
.

(13)

These recursive functions already give a polynomial al- 837
gorithm to compute p(lr | I, θ ) up to a normalizing con- 838
stant. As in the energy minimization algorithm we can 839
compute the S functions starting from the leaf vertices. 840
The trivial way to compute each Sj (li ) takes O(h2) 841
time. For each location li we evaluate the function by 842
explicitly summing over all possible locations l j . We 843
will show how to compute each Sj (li ) more efficiently 844
for the case where p(li , l j | ci j ) is in the special form 845
given by Eq. (6). But first let’s see what we need to do 846
after we sample a location for the root from its marginal 847
distribution. If we have a location for the parent vi of 848
v j we can write, 849

p(l j | li , I, θ ) ∝ p(I | l j , u j )p(li , l j | ci j )
∏

vc∈C j

Sc(l j ).

(14)

If we have already computed the S functions we can 850
compute this distribution in O(h) time. So once we 851
have sampled a location for the root, we can sample a 852
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location for each of its children. Next we sample a loca-853
tion for the nodes at the third level of the tree, and so on854
until we sample a location for every part. Note that if we855
want to sample multiple times we only need to compute856
the S functions once. And when the location of a parent857
node is fixed, we only need to compute the distribution858
in (14) for locations of the children where p(li , l j | ci j )859
is not too small. So sampling multiple times is not much860
more costly than sampling once.861

4.2.1. Computing the S Functions. We want to ef-862
ficiently compute the function in Eq. (13). We will do863
this by writing the function as a Gaussian convolution in864
the transformed space of locations given by Ti j and Tji .865
Using the special form of p(li , l j | ci j ) we can write,866

Sj (li ) ∝
∑

l j

(
N (Ti j (li )

− Tji (l j ), 0, Di j ) p(I | l j , u j )
∏

vc∈C j

Sc(l j )

)
.

This can be seen as a Gaussian convolution in the trans-867
formed space:868

Sj (li ) ∝ (F ⊗ f ) (Ti j (li )),

where F is a Gaussian filter with covariance Di j , ⊗ is869
the convolution operator, and870

f (y) =




p(I | T −1
j i (y), u j )

∏
vc∈C j

Sc(T −1
j i (y))

if y ∈ range(Tji )

0 otherwise

Just like when computing the generalized distance871
transform, the convolution is done over a discrete grid872
which specifies possible values for Tji (l j ). The Gaus-873
sian filter F is separable since the covariance matrix is874
diagonal. We can compute a good approximation for875
the convolution in time linear in h′, the set of grid loca-876
tions, using the techniques from Wells, III (1986). This877
gives an overall O(h′n) time algorithm for sampling a878
configuration from the posterior distribution.879

Figure 2. Gaussian derivative basis functions used in the iconic representation.

5. Iconic Models 880

The framework presented so far is general in the sense 881
that it doesn’t fully specify how objects are represented. 882
A particular modeling scheme must define the pose 883
space for the object parts, the form of the appearance 884
model for each part, and the type of connections be- 885
tween parts. In this section we describe models that rep- 886
resent objects by the appearance of local image patches 887
and spatial relationships between those patches. This 888
type of model has been popular in the context of face 889
detection (see Fischler and Elschlager, 1973; Burl et al., 890
1998). We first describe how we model the appearance 891
of a part, and later describe how we model spatial re- 892
lationships between parts. Learning an iconic model 893
involves picking labeled landmarks on a number of in- 894
stances of the target object. From these training exam- 895
ples both the appearance models for each part and the 896
spatial relationships between parts are automatically 897
estimated, using the procedure described in Section 3. 898
In Section 5.3 we show some experiments with face 899
detection. 900

5.1. Parts 901

In this class of models the location of a part is specified 902
by its (x, y) position in the image, so we have a two- 903
dimensional pose space for each part. To model the 904
appearance of each individual part we use the iconic 905
representation introduced in Rao and Ballard (1995). 906
The iconic representation is based on the response of 907
Gaussian derivative filters of different orders, orienta- 908
tions and scales. An image patch centered at some po- 909
sition is represented by a high-dimensional vector that 910
collects all the responses of a set of filters at that point. 911
This vector is normalized and called the iconic index 912
at that position. Figure 2 shows the nine filters used to 913
build the iconic representation at a fixed scale. In prac- 914
tice, we use three scales, given by σ1 = 1, σ2 = 2, and 915
σ3 = 4, the standard deviations of the Gaussian filters. 916
So we get a 27 dimensional vector. The iconic index is 917
fairly insensitive to changes in lighting conditions. For 918
example, it is invariant to gain and bias. Invariance to 919
bias is a consequence of using image derivative filters, 920
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and the normalization provides the invariance to gain.921
Iconic indices are also relatively insensitive to small922
changes in scale and other image deformations. They923
can also be made invariant to image rotation, although924
we use an orientation-sensitive representation here.925

The appearance of a part is modeled by a distribution926
over iconic indices. Specifically, we model the distri-927
bution of iconic indices at the location of a part as a928
Gaussian with diagonal covariance matrix. Using a di-929
agonal covariance matrix makes it possible to estimate930
the distribution with a small number of examples. If931
many examples are available, a full Gaussian or even932
more complex distributions such as a mixture of Gaus-933
sians, or a non-parametric estimate could be used. Un-934
der the Gaussian model, the appearance parameters for935
each part are ui = (µi , �i ), a mean vector and a co-936
variance matrix. We have,937

p(I | li , ui ) ∝ N (α(li ), µi , �i ),

where α(li ) is the iconic index at location li in the im-938
age. We can easily estimate the maximum likelihood939
parameters of this distribution, as required by the learn-940
ing technique in Section 3, using the mean and covari-941
ance of the iconic indices corresponding to the positive942
examples of a particular part.943

Note that we could use other methods to repre-944
sent the appearance of image patches. In particular,945
we experimented with the eigenspace techniques from946
Moghaddam and Pentland (1997). With a small num-947
ber of training examples the eigenspace methods are no948
better than the iconic representation, and the iconic rep-949
resentation can be computed more efficiently. In fact,950
the iconic representation can be computed very fast by951
convolving each level of a Gaussian pyramid with small952
x-y separable filters (see Freeman and Adelson, 1991).953

5.2. Spatial Relations954

The spatial configuration of the parts is modeled by955
a collection of springs connecting pairs of parts. Each956
connection (vi , v j ) is characterized by the ideal relative957
location of the two connected parts si j , and a full co-958
variance matrix �i j which in some sense corresponds959
to the stiffness of the spring connecting the two parts.960
So the connection parameters are ci j = (si j , �i j ). We961
model the distribution of the relative location of part962
vi with respect to the location of part v j as a Gaussian963
with mean si j and covariance �i j ,964

p(li , l j | ci j ) = N (li − l j , si j , �i j ). (15)

So, ideally the location of part vi is the location of 965
part v j shifted by si j . Since the models are deformable, 966
the location of vi can vary by paying a cost that de- 967
pends on the covariance matrix. This corresponds to 968
stretching the spring. Because we have a full covari- 969
ance matrix, stretching in different directions can have 970
different costs. For example, two parts can be highly 971
constrained to be at the same vertical position, while 972
their relative horizontal position may be uncertain. As 973
with the appearance models for the individual parts, the 974
maximum likelihood parameters of these spatial distri- 975
butions for pairs of parts can easily be estimated using 976
training examples. 977

In practice, we need to write the joint distribution of 978
li and l j in the specific form required by our algorithms. 979
It must be a Gaussian distribution with zero mean and 980
diagonal covariance in a transformed space. To do this, 981
we first compute the singular value decomposition of 982
the covariance matrix �i j = Ui j Di jU T

i j . Now the fol- 983
lowing transformations can be defined, 984

Ti j (li ) = U T
i j (li − si j ), and Tji (l j ) = U T

i j (l j ),

which allow us to write Eq. (15) in the correct form, 985

p(li , l j | ci j ) = N (Ti j (li ) − Tji (l j ), 0, Di j ).

5.3. Experiments 986

To test the iconic modes just described we used the ML 987
estimation procedure from Section 3 to train a model of 988
frontal faces, and the MAP estimation technique from 989
Section 4.1 to detect faces in novel images. Our first 990
model has five parts, corresponding to the eyes, nose, 991
and corners of the mouth. To generate training exam- 992
ples we labeled the location of each part in twenty dif- 993
ferent images (from the Yale face database). More train- 994
ing examples were automatically generated by scaling 995
and rotating each training image by a small amount. 996
This makes our model handle some variation in ori- 997
entation and scale. Some of the training examples and 998
the structure of the learned model are shown in Fig. 3. 999
Remember that we never told the system which pairs 1000
of parts should be connected together. Determining the 1001
structure is part of the ML parameter estimation pro- 1002
cedure. 1003

We tested the resulting model by matching it to novel 1004
images using the energy minimization algorithm for 1005
finding the MAP estimate of the object location. Note 1006
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Figure 3. Three examples from the first training set showing the locations of the labeled features and the structure of the learned model.

that all model parameters were automatically estimated1007
with the maximum likelihood procedure. Thus, there1008
are no “knobs” to tune in the matching algorithm. Some1009
matching results are shown in Fig. 4. Both the learning1010

Figure 4. Matching results.

and matching algorithms are extremely fast. Using a 1011
desktop computer it took a few seconds to learn the 1012
model and less than a second to compute the MAP es- 1013
timate in each image. These experiments demonstrate 1014
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Figure 5. Matching results on occluded faces. The top row shows some input images and the bottom row shows the corresponding matching
results. The MAP estimate was a good match when the faces had up to two of five parts occluded and incorrect when three parts were occluded.

that we can learn a useful model from training1015
examples.1016

Figure 5 illustrates matching results on images with1017
partially occluded faces. The matching algorithm au-1018
tomatically handles such partial occlusion in a robust1019
way, finding a good configuration of all the parts when1020
up to two of the five parts are occluded. The occluded1021
parts are placed at reasonable locations because of the1022
constraints between parts. Moreover, it does not matter1023
which parts are occluded because our matching algo-1024

Figure 6. Matching results on an image with multiple faces. See text for description.

rithm finds the global minimum of the energy function, 1025
independent of the choice of root used by the dynamic 1026
programming approach. When three of the five parts 1027
are occluded the best match of the model to the image 1028
was incorrect. 1029

Figure 6 illustrates matching results on an image that 1030
contains multiple faces. Recall that our energy mini- 1031
mization algorithm computes the optimal location for 1032
the model as a function of the location of a root part. 1033
To detect multiple faces we first find the best overall 1034
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location for the root. We then exclude nearby locations1035
and find the best remaining one and so on for addi-1036
tional detections. Each root location yields an object1037
configuration that is optimal with respect to that lo-1038
cation of the root. In this example we simply found1039
the best three locations for the model, alternatively a1040
threshold could be used to find all matches above a cer-1041
tain quality. Multiple detections could also have been1042
generated with the sampling techniques together with1043
a separate verification technique.1044

We also learned a larger model, this one with nine1045
parts. We now have three parts for each eye, one for1046
the left corner, one for the right corner and one for the1047
pupil. This is a useful model to detect gaze direction.1048
Figure 7 shows one of the training examples and the1049
learned model. Also, in Fig. 7, there is a detailed illus-1050
tration of the connections to the left corner of the right1051
eye (part 1). The ellipses illustrate the location uncer-1052
tainty for the other parts, when this part is at some fixed1053
location. They are level sets of the probability distri-1054
bution for the location of parts 2, 3, and 4, given that1055
part 1 is fixed. Note that the location of the pupil (part 2)1056
is much more constrained with respect to the location1057
of the eye corner than any other part, as would be ex-1058
pected intuitively. Also note that the distributions are1059
not spherically symmetric, as they reflect the typical1060
variation in the relative locations of parts. We see that1061
the algorithm both learned an interesting structure for1062
the model, and automatically determined a rich set of1063
constraints between the locations of different pairs of1064
parts.1065

6. Articulated Models1066

In this section we present a scheme to model articulated1067
objects. Our main motivation is to construct a system1068
that can estimate the pose of human bodies. We concen-1069

Figure 7. One example from the second training set, the structure of the learned model, and a pictorial illustration of the connections to one
of the parts, showing the location uncertainty for parts 2, 3, and 4, when part 1 is at a fixed position.

trate on detecting objects in binary images such as those 1070
obtained by background subtraction. Figure 8 shows 1071
an example input and matching result. Binary images 1072
characterize well the problem of pose estimation for an 1073
articulated object. We want to find an object configu- 1074
ration that covers the foreground pixels and leaves the 1075
background pixels uncovered. Our method works with 1076
very noisy input, including substantial occlusion which 1077
we illustrate with examples. Note that in order to de- 1078
tect articulated bodies we use the sampling techniques 1079
in Section 4.2 instead of computing the MAP estimate 1080
for the object location. This is important because the 1081
models for articulated bodies are imprecise rather than 1082
being accurate generative models. 1083

6.1. Parts 1084

For simplicity, we assume that the image of an object 1085
is generated by a scaled orthographic projection, so 1086
that parallel features in the model remain parallel in 1087
the image. For images of human forms this is generally 1088
a reasonable assumption. We further assume that the 1089
scale factor of the projection is known. We can easily 1090
add an extra parameter to our search space in order to 1091
relax this latter assumption. 1092

Suppose that objects are composed of a number of 1093
rigid parts, connected by flexible joints. If a rigid part 1094
is more or less cylindrical, its projection can be ap- 1095
proximated by a rectangle. The width of the rectangle 1096
comes from the diameter of the cylinder and is fixed, 1097
while the length of the rectangle depends on the length 1098
of the cylinder but can vary due to foreshortening. We 1099
model the projection of a part as a rectangle parameter- 1100
ized by (x, y, s, θ ). The center of the rectangle is given 1101
in image coordinates (x, y), the length is defined by the 1102
amount of foreshortening s ∈ [0, 1], and the orienta- 1103
tion is given by θ . So we have a four-dimensional pose 1104
space for each part. 1105
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Figure 8. Input image, binary image obtained by background subtraction, and matching result superimposed on both images.

We model the likelihood of observing an image given1106
a particular location for a part in the following way.1107
First, each pixel in the image is generated indepen-1108
dently. Pixels inside a part are foreground pixels with1109
probability q1. Intuitively, q1 should be close to one, ex-1110
pressing the idea that parts occlude the background. We1111
also model a border area around each part (see Fig. 9).1112
In this area, pixels belong to the foreground with prob-1113
ability q2. In practice, when we estimate q2 from data1114
we see that pixels around a part tend to be background.1115
We assume that pixels outside both areas are equally1116
likely to be background or foreground pixels. Thus,1117

p(I | li , ui ) = qcount1
1 (1 − q1)(area1−count1) qcount2

2

× (1 − q2)(area2−count2) 0.5(t−area1−area2),

where count1 is the number of foreground pixels inside1118
the rectangle, and area1 is the area of the rectangle.1119
count2 and area2 are similar measures corresponding to1120
the border area, and t is the total number of pixels in the1121
image. So the appearance parameters are ui = (q1, q2),1122
and it is straightforward to estimate these parameters1123
from training examples.1124

Figure 9. A rectangular part. area1 is the area inside the part, and
area2 is the border area around it.

To make the probability measure robust we consider 1125
a slightly dilated version of the foreground when com- 1126
puting count1, and to compute count2 we erode the 1127
foreground (in practice we dilate and erode the binary 1128
images by two pixels). Computing the likelihood for 1129
every possible location of a part can be done efficiently 1130
by convolving the image with uniform filters. Each con- 1131
volution counts the number of pixels inside a rectangle 1132
(specified by the filter) at every possible translation. 1133

Intuitively, our model of p(I | li , ui ) is reasonable 1134
for a single part. The likelihood favors large parts, 1135
as they explain a larger area of the image. But re- 1136
member that we model p(I | L , u) as a product of the 1137
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individual likelihoods for each part. For a configuration1138
with overlapping parts, this measure “over-counts” ev-1139
idence. Suppose we have an object with two parts. The1140
likelihood of an image is the same if the two parts are1141
arranged to explain different areas of the image, or if1142
the two parts are on top of each other and explain the1143
same area twice. Therefore, with this measure the MAP1144
estimate of an object configuration can be a bad guess1145
for its true position. This is not because the posterior1146
probability of the true configuration is low, but because1147
there are configurations which have high posterior and1148
are wrong. In our experiments, we obtain a number of1149
configurations which have high posterior probability1150
by sampling from that distribution. We then select one1151
of the samples by computing a quality measure that1152
does not over-count evidence.1153

There is one more thing we have to take into account1154
for sampling to work. When p(I | L , u) over-counts ev-1155
idence, it tends to create high peaks. This in turn creates1156
high peaks in the posterior. When a distribution has a1157
very strong peak, sampling from the distribution will1158
almost always obtain the location of the peak. To en-1159
sure that we get a number of different hypotheses from1160
sampling we use a smoothed version of the likelihood1161
function, defined as1162

p′(I | L , u) ∝ p(I | L , u)1/T ∝
n∏

i=1

p(I | li , ui )
1/T ,

where T controls the degree of smoothing. This is a1163
standard technique, borrowed from the principle of an-1164
nealing (see Geman and Geman, 1984). In all our ex-1165
periments we used T = 10.1166

6.2. Spatial Relations1167

For the articulated objects, pairs of parts are connected1168
by flexible joints. A pair of connected parts is illus-1169
trated in Fig. 10. The location of the joint is specified1170
by two points (xi j , yi j ) and (x ji , y ji ), one in the co-1171
ordinate frame of each part, as indicated by circles in1172
Fig. 10(a). In an ideal configuration these points co-1173
incide, as illustrated in Fig. 10(b). The ideal relative1174
orientation is given by θi j , the difference between the1175
orientation of the two parts.1176

Suppose li = (xi , yi , si , θi ) and l j = (x j , y j , s j , θ j )1177
are the locations of two connected parts. The joint prob-1178
ability for the two locations is based on the deviation1179
between their ideal relative values and the observed1180

Figure 10. Two parts of an articulated object, (a) in their own co-
ordinate system and (b) the ideal configuration of the pair.

ones, 1181

p(li , l j | ci j ) = N
(
x ′

i − x ′
j , 0, σ 2

x

)
N

(
y′

i − y′
j , 0, σ 2

y

)
N

(
si − s j , 0, σ 2

s

)
M(θi − θ j , θi j , k), (16)

where (x ′
i , y′

i ) and (x ′
j , y′

j ) are the positions of the joints 1182
in image coordinates. Let Rθ be the matrix that per- 1183
forms a rotation of θ radians about the origin. Then, 1184[

x ′
i

y′
i

]
=

[
xi

yi

]
+ si Rθi

[
xi j

yi j

]
, and

[
x ′

j

y′
j

]

=
[

x j

y j

]
+ s j Rθ j

[
x ji

y ji

]
.

The distribution over angles, M, is the von Mises dis- 1185
tribution (Gumbel et al., 1953), 1186

M(θ, µ, k) ∝ ek cos(θ−µ).

The first two terms in the joint distribution measure the 1187
horizontal and vertical distances between the observed 1188
joint positions in the image. The third term measures 1189
the difference in foreshortening between the two parts. 1190
The last term measures the difference between the rel- 1191
ative angle of the two parts and the ideal relative angle. 1192
Usually σx and σy will be small so parts tend to be 1193
aligned at their joint. And if k is small the angle be- 1194
tween the two parts is fairly unconstrained, modeling 1195
a revolute joint. The connection parameters under this 1196
model are, 1197

ci j = (
xi j , yi j , x ji , y ji , σ

2
x , σ 2

y , σ 2
s , θi j , k

)
.
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Finding the maximum likelihood estimate of σ 2
s is easy1198

since we just have a Gaussian distribution over si −1199
s j . Similarly, there are known methods for finding the1200
ML parameters (θi j , k) of a von Mises distribution (see1201
Gumbel et al., 1953). The ML estimate of the joint1202
location in each part are the values (xi j , yi j , x ji , y ji )1203
which minimize the sum of square distances between1204
(x ′

i , y′
i ) and (x ′

j , y′
j ) over the examples. We can compute1205

this as a linear least squares problem.1206
We need to write the joint distribution of li and l j in1207

the specific form required by our algorithms. It must1208
be a Gaussian distribution with zero mean and diagonal1209
covariance in a transformed space, as shown in Eq. (6).1210
First note that a von Mises distribution over angular1211
parameters can be specified in terms of a Gaussian over1212
the unit vector representation of the angles. Let �α and �β1213
be the unit vectors corresponding to two angles α and1214
β. That is, �α = [cos(α), sin(α)]T , and similarly for �β.1215
Then,1216

cos(α − β) = �α · �β = −‖�α − �β‖2 − 2

2
.

Now let1217

Ti j (li ) = (x ′
i , y′

i , si , cos(θi + θi j ), sin(θi + θi j )),

Tji (l j ) = (x ′
j , y′

j , s j , cos(θ j ), sin(θ j )),

Di j = diag(σ 2
x , σ 2

y , σ 2
s , 1/k, 1/k),

which allow us to write Eq. (16) in the right form,1218

p(li , l j | ci j ) ∝ N (Tji (l j ) − Ti j (li ), 0, Di j ).

For these models, the number of discrete locations h′ in1219
the transformed space is a little larger than the number1220
of locations h for each part. This is because we repre-1221
sent the orientation of a part as a unit vector which lives1222
in a two-dimensional grid. In practice, we use 32 pos-1223
sible angles for each part, and represent them as points1224
in a 11 × 11 grid, which makes h′ about four times h.1225

6.3. Experiments1226

We use a coarse articulated model to represent the hu-1227
man body. Our model has ten parts, corresponding to1228
the torso, head, two parts per arm and two parts per1229
leg. To generate training examples we labeled the lo-1230
cation of each part in ten different images (without too1231
much precision). The learned model is illustrated in1232
Fig. 11. The crosses indicate joints between parts. We1233

Figure 11. Human body model learned from example configura-
tions.

never told the system which parts should be connected 1234
together, this is automatically learned during the ML 1235
learning procedure. Note that the correct structure was 1236
learned, and the joint locations agree with the human 1237
body anatomy (the joint in the middle of the torso con- 1238
nects to the head). The configuration of parts shown in 1239
Fig. 11 was obtained by fixing the position of the torso 1240
and placing all other parts in their optimal location with 1241
respect to each other. 1242

We tested the model by matching it to novel im- 1243
ages. As described in Section 6.1, we sample config- 1244
urations from the posterior distribution to obtain mul- 1245
tiple hypotheses and rate each sample using a sepa- 1246
rate measure. For each sample we compute the Cham- 1247
fer distance between the shape of the object under the 1248
hypothesized configuration and the binary image ob- 1249
tained from the input. The Chamfer distance is a robust 1250
measure of binary correlation (Borgefors, 1988). The 1251
matching process is illustrated in Fig. 12. First, a binary 1252
image is obtained from the original image using back- 1253
ground subtraction. We use this binary image as input 1254
to the sampling algorithm to obtain a number of dif- 1255
ferent pose hypotheses. The best pose is then selected 1256
using the Chamfer measure. 1257

More matching results are shown in Fig. 13. For 1258
each image, we sampled two-hundred object configu- 1259
rations from the posterior distribution and picked the 1260
best one under the Chamfer distance. Using a desk- 1261
top computer it took about one minute to process each 1262
image. The space of possible locations for each part 1263
was discretized into a 70 × 70 × 10 × 32 grid, corre- 1264
sponding to (x, y, s, θ ) parameters. There are over 1.5 1265
million locations for each part, making any algorithm 1266
that considers locations for pairs of parts at a time im- 1267
practical. 1268
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Figure 12. Input image, binary image, random samples from the posterior distribution of configurations, and best result selected using the
Chamfer distance.
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Figure 13. Matching results (sampling 200 times).

Of course, sometimes the estimated pose is not cor-1269
rect. The most common source of error comes from1270
ambiguities in the binary images. Figure 14 shows an1271
example where the image does not provide enough in-1272

formation to estimate the position of one arm. Even in 1273
that case we get a fairly good estimate. We can detect 1274
when ambiguities happen because we obtain many dif- 1275
ferent poses with equally good Chamfer score. Thus 1276
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Figure 14. In this case, the binary image doesn’t provide enough information to estimate the position of one arm.

Figure 15. This example illustrates how our method works well with noisy images.
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Figure 16. Matching results on corrupted images. The top row shows the original input, the middle row shows corrupted versions of the binary
input and the last row shows the matching results. The first two cases demonstrate how the algorithm can handle good amounts of noise and
occlusion. The third case shows an incorrect matching result.

we know that there are different configurations that are1277
equally good interpretations of the image.1278

Figure 15 shows how our method works well on a1279
noisy input. More examples of matching to noisy inputs1280
are shown in Fig. 16, using corrupted binary images,1281
including a case where large portions of the foreground1282
are missing. These examples illustrate two of the main1283
advantages of our approach. It would be difficult to de-1284
tect body parts individually on inputs such as these, but1285
the dependencies between parts provide sufficient con-1286
text to detect the human body as a whole. Moreover, the1287
presence of clutter and occlusion create difficulties for1288

heuristics or local search techniques, while our global 1289
method can find the correct configuration in these cases. 1290

7. Summary 1291

This paper describes a statistical framework for rep- 1292
resenting the visual appearance of objects composed 1293
of rigid parts arranged in a deformable configuration. 1294
The models are based on the pictorial structure repre- 1295
sentation introduced in Fischler and Elschlager (1973), 1296
which allows for qualitative descriptions of appearance 1297
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and is suitable for generic recognition problems. There1298
are three main contributions in the paper. First, we in-1299
troduce efficient algorithms for finding the best global1300
match of a large class of pictorial structure models to1301
an image. In contrast, prior work use heuristics or lo-1302
cal search techniques that must be somehow initial-1303
ized near the right answer. Second, we introduce the1304
use of statistical sampling techniques to identify mul-1305
tiple good matches of a model to an image. Third, our1306
use of a statistical formulation provides a natural way1307
of learning pictorial structure models from labeled ex-1308
ample images. Most of the prior work uses manually1309
constructed models, which are difficult to create and to1310
validate.1311

One of the difficulties in representing generic objects1312
is the large variation in shape and photometric infor-1313
mation in each object class. Pictorial structure models1314
represent the appearance of each part separately and1315
explicitly capture the spatial configuration of the parts1316
independently of their appearances. This framework is1317
general, in the sense that it is independent of the spe-1318
cific method used to represent the appearance of parts,1319
and the type of the geometric relationships between1320
the parts. By using a general framework we have pro-1321
vided a set of computational mechanisms that can be1322
used for many different modeling schemes. We have de-1323
scribed two quite different modeling schemes, one was1324
used to model faces and the other to model articulated1325
bodies.1326
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