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Fingerprint Classification
by Directional Image Partitioning

Raffaele Cappelli, Alessandra Lumini,
Dario Maio, Member, IEEE, and Davide Maltoni

Abstract—In this work, we introduce a new approach to automatic fingerprint classification. The directional image is partitioned into
“homogeneous” connected regions according to the fingerprint topology, thus giving a synthetic representation which can be
exploited as a basis for the classification. A set of dynamic masks, together with an optimization criterion, are used to guide the
partitioning. The adaptation of the masks produces a numerical vector representing each fingerprint as a multidimensional point,
which can be conceived as a continuous classification. Different search strategies are discussed to efficiently retrieve fingerprints
both with continuous and exclusive classification. Experimental results have been given for the most commonly used fingerprint
databases and the new method has been compared with other approaches known in the literature: As to fingerprint retrieval based
on continuous classification, our method gives the best performance and exhibits a very high robustness.

Index Terms—Fingerprint classification, directional image, partitioning algorithms, continuous classification, biometric systems.
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1 INTRODUCTION

INGERPRINT recognition is the basic task of the Inte-
grated Automated Fingerprint Identification Service

(IAFIS) of the most famous police agencies. Ten-print based
identification and latent fingerprint recognition are the two
main concerns of an IAFIS. In the former, the system should
identify a person by the whole sequence of his/her 10 fin-
gerprints; in the latter, it has to identify a person through a
latent fingerprint found on a crime scene. The huge amount
of data of the large fingerprint databases seriously com-
promises the efficiency of the identification task, although
the fastest minutiae matching algorithms take only a few
tens of milliseconds per matching [15]. Adopting a classifi-
cation approach, based on common typology of finger-
prints, is a valid strategy in order to reduce the amount of
matching during fingerprint retrieval and, consequently, to
improve the identification process efficiency.

Most IAFISs use exclusive classification, i.e., fingerprints
are partitioned into some predefined classes according to
their macro-features. The first scientific studies on finger-
print classification were made by Galton [7], who divided
the fingerprints into three major classes. Later, Henry [8]
refined Galton’s classification by increasing the number of
the classes. All the classification schemes currently used by
police agencies are variants of the so-called Henry’s classifi-
cation scheme. The scheme adopted by the FBI defines three
major classes, each of which can be divided into two or
more subclasses, making the total number eight: Plain Arch,

Tented Arch, Radial Loop, Ulnar Loop, Plain Whorl, Cen-
tral Pocket, Double Loop and Accidental Whorl (Fig. 1).

The performance of the exclusive classification-based
IAFISs strongly depends on the number of classes and on
the distribution of fingerprints; unfortunately, the number
of classes is often small, the fingerprints are nonuniformly
distributed (in the most famous classification schemes, ap-
proximately 90 percent of fingerprints belong to only three
classes), and there are many “ambiguous” fingerprints,
whose exclusive membership cannot be reliably stated even
by human experts. Nevertheless, exclusive classification
allows for the efficiency of the 10-print based identification
to be improved, since the knowledge of the classes of the
ten fingerprints can be used as a code for reducing the
number of comparisons at minutiae level. On the other
hand, an exclusive classification approach does not confer
sufficient selectivity to latent fingerprint searching.

A continuous classification approach characterizes each fin-
gerprint with a numerical vector, whose components de-
note the similarity degree with respect to a predefined set
of class prototypes. A continuous approach enables both am-
biguous fingerprints to be dealt with and the efforts during
fingerprint retrieval to be balanced. The advantages of a
continuous versus an exclusive classification approach are
discussed in [16], where some continuous retrieval strate-
gies were compared with the corresponding exclusive ones.

In this work, we present a new fingerprint classification
method which uses dynamic masks for directional image
partitioning. The new approach is translation and rotation
invariant and it does not require the singularities [25] to be
detected. A directional image is a discrete matrix whose
elements represent the local average directions of the fin-
gerprint ridge lines. A directional image effectively summa-
rizes the information contained in a fingerprint pattern and
it can be reliably computed also on noisy fingerprints. Fur-
thermore, the local directions within a damaged area can be
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partially restored by means of a regularization process. For
the above reasons, most of the existing classification meth-
ods make use of fingerprint directional images. The basic
idea of the method presented here consists of generating a
compact version of the directional image by grouping
similar elements into “homogeneous” regions. In fact, evi-
dent redundancy usually affects fingerprint patterns due to
the smoothness of the ridge lines; hence, partitioning into
homogeneous regions gives a useful synthetic representa-
tion which can be exploited as a basis for the classification
task. Actually, the method is an evolution of the approach
based on relational graphs [18], aimed at overcoming the
problems found by the authors during the experimentation.

In Section 2, the main classification approaches known in
the literature are reported; particular emphasis is given to
the method PCASYS [4] and to a corresponding continuous
implementation [16]; furthermore, the method [18] which
constitutes an initial approach to fingerprint classification
by directional image partitioning is briefly summarized.
Section 3 introduces the new method and, in particular, it
formally defines the concept of dynamic mask and the cost
measure used to obtain an optimal partitioning. In Section 4,
the retrieval strategies introduced in [16] are briefly re-
viewed, since they are adopted in this work to evaluate the
classification performance. Section 5 describes some ex-
perimental results for NIST Database 4 [27] and NIST Data-
base 14 [28]. As to continuous classification, our method is
compared with that presented in [16]; although the new
method was originally conceived for continuous classifica-
tion and its evolution accompanied such a choice, it can
also be applied to exclusive classification: Some compari-
sons with [4] and [13] are included in Section 5. The ex-
perimental results show the superiority of continuous clas-
sification for the retrieval task, where the approach pre-
sented here exhibits better performance than [16]. As to
exclusive classification, the performance of our method is
not much worse than those reported in [4] and [13], which

were specifically developed for this task and include ad hoc
heuristics to improve the classification accuracy. Further-
more, the robustness of the method has been evaluated
over a set of manually deformed or deteriorated fingerprint
images; the results reported at the end of Section 5 prove
that it is usually very tolerant with respect to poor quality
fingerprints. Finally, Section 6 draws some concluding re-
marks and includes proposals of future work.

2 LITERATURE REVIEW

Many approaches to automatic fingerprint classification
have been presented in the literature and the research on
this topic is still very active. The existing methods can be
coarsely assigned to one of the following categories: syntac-
tic methods, approaches based on singularities, neural approaches,
and others.

�� Syntactic methods [20], [22]. Patterns are described
by means of terminal symbols and production rules.
Terminal symbols are associated to small groups of
directional elements within the fingerprint directional
image. A grammar is defined for each class and a
parsing process is responsible for classifying each
new pattern.

�� Approaches based on singularities [13] ,[14]. Heuris-
tic criteria based on the number and the position of
the singularities [15] are used to classify fingerprints.
Other local features, such as ridge line shape and local
orientation, are exploited to improve the performance.
Since these methods heavily rely on singularities,
some problems arise in the presence of noisy or par-
tial fingerprints, where singularity detection can be
misleading. In [13] an iterative regularization is car-
ried out, until a valid number of singular points is
detected, to reduce noise and consequently to im-
prove the classification accuracy.

Fig. 1. Each fingerprint in the figure belongs to a different subclass of the FBI’s classification scheme; from left to right and from top to bottom:
Plain Arch, Tented Arch, Radial Loop, Ulnar Loop, Plain Whorl, Central Pocket, Double Loop, and Accidental Whorl.
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�� Neural approaches [1], [9], [12], [21]. Neural network
approaches are mostly based on multilayer percep-
trons or Kohonen self-organizing networks. In par-
ticular, in [12], Kamijo presented an interesting py-
ramidal architecture constituted by several multilayer
perceptrons, each of which was trained to recognize
fingerprints belonging to different classes.

�� Others [5], [23]. Chong et al. based the classification
on the ridge-line geometrical shape [5]. B-spline
curves were used to model fingerprint ridge lines;
adjacent curves were merged to limit noise artifacts.
Classification was performed by tracing the resulting
curves in order to detect turns (i.e., complete direction
exchanges). Senior proposed in [23] a hidden Markov
model classifier whose input features are the meas-
urements (ridge angle, separation, curvature, etc.)
taken at the intersection points between some hori-
zontal-vertical fiducial lines and the fingerprint ridge
lines.

2.1 The PCASYS Approach by NIST
The PCASYS approach (Pattern-level Classification Auto-
mation SYStem) proposed by Candela et al. at NIST [3], [4]
assigns fingerprints to six nonoverlapping classes and is, in
our opinion, the most promising approach for exclusive
classification.

Before computing the directional images, the ridge-line
area is separated from the background and an enhancement is
performed in the frequency domain. The computation of
the directions is carried out by the method reported in [26].
The directional image is then registered with respect to the
core position which corresponds to the fingerprint center.
The dimensionality of the directional image, considered as
a vector of 1,680 elements, is reduced to 64 elements by us-
ing the principal component analysis (KL transform) [10], [11].
At this stage, a PNN (Probabilistic Neural Network) [24] is
used for assigning each 64-element vector to one class of

the classification scheme. In order to improve the classifica-
tion reliability, especially for whorl fingerprints, the authors
also implemented an auxiliary module (called pseudoridge
tracer), which works by analyzing the ridge-line concavity
under the core position. Fig. 2 shows a functional scheme of
the NIST classification approach.

In [16], a continuous classification method is derived
from PCASYS. In particular, the vectors obtained after the
dimensionality reduction step are directly used for indexing
a fingerprint database through a spatial data structure. In
the experiments the authors found that the best results
could be obtained by using a five-dimensional space (in-
stead of 64) and by linearly rescaling the vector components
in the range [0, 1].

2.2 A Structural Approach Based on Relational
Graphs

In [18], a structural approach for fingerprint classification
was presented, whose functional schema is shown in Fig. 3.

The basic idea is to perform a directional image parti-
tioning into several homogeneous regular-shaped regions,
which are used to build a relational graph summarizing the
fingerprint macro-features. The whole approach can be di-
vided into four main steps: computation of the directional
image, segmentation of the directional image, construction
of the relational graph, and inexact graph matching. The
directional image is computed, over a discrete grid 32 � 32,
by means of a robust technique proposed by Donahue and
Rokhlin [6]. A dynamic clustering algorithm [19] is adopted
to segment the directional image according to well-suited
optimality criteria. In particular, with the aim of creating
regions as homogeneous as possible, the algorithm works
by minimizing the variance of the element directions within
the regions and, simultaneously, by maintaining the regu-
larity of the region shape. Starting from the segmentation of
the directional image, a relational graph is built by creating
a node for each region and an arc for each pair of adjacent

Fig. 2. A functional scheme of the PCASYS for exclusive classification.
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regions. By appropriately labeling the nodes and arcs of the
graph, the authors obtain a structure which summarizes the
topological features of the fingerprint and which is invari-
ant with respect to displacement and rotation. An inexact
graph matching technique derived from [2] is used to com-
pute a “distance” vector between the graph and each class-
prototype graph. This distance is considered to be a con-
tinuous classification of the fingerprint, since it describes
how close the fingerprint is to each class; if the application
needs to assign a fingerprint to a single class, the vector
obtained can be given as input to a general purpose classi-
fier. It is worth noting that this technique does not require
any position alignment or normalization and, in principle,
can be directly used for the classification of partial finger-
prints (i.e., matching a graph with a subgraph).

3 DYNAMIC MASKS

3.1 From Relational Graphs to Dynamic Masks
A preliminary analysis of the experimental results pro-
duced by the relational graph approach described in Sec-
tion 2.2 pointed out that some problems arise from the diffi-
culty in obtaining analogous segmentation from similar
directional images. In fact, although the greedy clustering

algorithm adopted usually produces a good segmentation
(that is, characterized by regular-shaped and homogeneous
regions), it is too influenced by local ridge-line orientation
changes, by the starting point of the clustering routines,
and by some specific parameters; as a result, similar inputs
can give rise to different outputs (Fig. 4). In such cases, sev-
eral problems are encountered by the inexact graph
matching algorithm in finding the hidden similarities. An
attempt was made to overcome these drawbacks by imple-
menting a global clustering strategy, with the aim of im-
proving the segmentation robustness. A genetic algorithm
derived from the approach [17], where reproduction and
mutation operators were redesigned to deal with the clus-
tering problem, was used instead of the greedy technique.
Better results were obtained both in qualitative and nu-
merical terms (obviously with a higher computational cost)
and a greater robustness was noted (see Fig. 5 for an exam-
ple); anyway, some problems still persisted: In fact, the out-
puts produced by the genetic optimization in the presence
of different initial populations were sometimes very differ-
ent from each other, even if their fitness was closed. This
clearly means that the directional image partitioning task is
an ill-posed problem.

Fig. 3. The main steps of the approach in [18]. The intermediate results produced during the classification of a Left Loop fingerprint are shown.
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3.2 An Overview of the New Approach
The basic idea of the new approach is to perform a
“guided” segmentation of the directional image with the
aim of drastically reducing the degrees of freedom during
the partitioning process and, consequently, conferring sta-
bility to the solutions. To this purpose, a set of dynamic
masks, directly derived from the most common fingerprint
classes, are used to guide the partitioning. Profound modi-
fications result in the approach: In particular, the inexact
graph matching step is simplified and embedded in the
segmentation step. Fig. 6 reports the schema of the new
method applied to a Left Loop fingerprint: The directional
image is initially calculated and enhanced; a set of dynamic
masks is used for the segmentation step where each mask is
independently adapted to best fit the directional image ac-
cording to a cost function; the resulting costs constitute a
basis for the final classification.

3.3 Directional Image Computation and
Enhancement

The fingerprint segmentation, preprocessing, and direc-
tional image computation are performed as in [4]: The fin-
ger area is separated from the background and its quality is
improved by a filtering in the frequency domain; then, the
Stock and Swonger method [26] is applied to calculate direc-
tional elements over a discrete grid 28 � 30. Each element is
denoted by a vector v = [xcos 2q, xsin 2q], where q ³ [0�, 180�)
represents the orientation and |v| = x gives a confidence

value. This kind of encoding allows the problems induced by
the orientation discontinuity (180� � 0�) to be avoided [4].

In order to smooth out the local irregularities produced
by noise and to increase the importance of the discriminant
elements, the following three steps are carried out on the
directional image:

�� Regularization of the directional elements by local
averaging on 3 � 3 windows W.
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where distc(v) returns the distance in blocks of v ori-
gin from the directional image center and s deter-
mines the scale of the Gaussian function.

�� Strengthening of the directional elements located in
the irregular regions mainly determined by the fin-
gerprint singularities. To this purpose, we use a
strengthening function (str) which increases the

Fig. 4. The segmentation of two Left Loop fingerprints.

Fig. 5. Segmentation results given by the genetic approach (1 and 3) and by the greedy strategy (2 and 4) starting from the same input images
(1 � 2, 3 � 4).
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significance of each element according to the irregu-
larity degree of its 3 � 3 neighborhood, without re-
quiring the singularities to be explicitly detected. For
each element, a local 3 � 3 window is considered and
a strengthening function str is applied. str is defined
as one minus the magnitude of the sum of the direc-
tional elements divided by the sum of element mag-
nitudes; it returns 0 if all the vectors are parallel to
each other and its value approaches 1 when discor-
dance increases.
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The resulting directional image is made up of vectors ve
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where g is a weighting factor.

Fig. 6. Classification of a Left Loop fingerprint by means of the dynamic masks approach.
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Fig. 7 shows a sample directional image before and after
the enhancement process.

3.4 Dynamic Mask Definition
Dynamic masks have been introduced in order to decrease
the degrees of freedom during the partitioning process; the
application of a particular mask to a directional image can
be viewed as a “guided” segmentation, where the region
number and their coarse shape are fixed a priori. Each mask
is characterized by a set of vertices defining the borders of
the regions which determine the segmentation. Some verti-
ces can be locally moved to best fit the fingerprint image
singularities, which can occupy different positions within
fingerprints of the same class (Fig. 8).

Formally, a dynamic mask is defined as a 6-tuple M =
(V, P, 5D, $, fwin, fmov), where:

�� V = VF  ­ VM  ­ VD is a set of vertices p, each of which
is characterized by an initial position (px, py); VF de-
notes the fixed vertices; VM denotes the mobile vertices
whose position can be independently adjusted during
the mask adaptation; finally, VD denotes the dependent
vertices whose position is anchored to that of one
mobile vertex. The three vertex subsets are disjointed:
VF  ¬ VM = «, VF  ¬ VD = «, VD  ¬ VM = «.

�� P = {P1, P2, …, Pn} is a set of polygonal regions whose
vertices are in V; each region Pi = {pa, pb, pc, …} is
bounded by the polygon defined by the vertices
pa, pb, pc, … taken in the given order; hence, P is a
subset of the power set of V: P ± ¨(V).

�� 5D ² VD � VM is a relation encoding the dependency
of the dependent vertices from the mobile ones. Each
dependent vertex is anchored to exactly one mobile
vertex; during the mask adaptation, the movement of
a mobile vertex determines a corresponding move-
ment in all the vertices anchored to it.

�� $ ² P � P � Dq encodes a relation between some re-
gion pairs, which are associated to angles represent-
ing the “ideal” values of their mean orientation dif-
ference. Dq denotes the domain of the orientation dif-
ferences. For each pair Pi, Pj, whose orientation differ-
ence qij ³ Dq is significant,1 the triplet (Pi, Pj, qij) ³ $.

�� fwin : VM � Dxmax � Dymax is a function which associates
to each mobile vertex a mobility window which limits
the vertex movements during the mask adaptation.
Dxmax and Dymax represent the domain of maximum
displacements along the x and y axes, respectively.

�� fmov : 5D � Dx � Dy � Dx � Dy is a function which indi-
cates, for each pair in 5D, the dependent vertex
movement on the basis of the corresponding mobile
vertex movement. Dx and Dy represent the domain of
displacements along x and y axes, respectively.

Fig. 9 shows an example.

1. An orientation difference is significant if it is useful to discriminate fin-
gerprints belonging to different classes.

Fig. 7. Enhancement of a directional image: the map in the arrow-box shows the most irregular regions as revealed by the str function. The pa-
rameters are: s = 9.6 and l = 112.

Fig. 8. The singularity positions in three different Left Loop fingerprints.
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3.5 Directional Image Partitioning With Dynamic
Masks

Let MT,Q be the steady mask obtained by the dynamic mask
M as a result of the following transformations:

�� a global rotation-displacement T = (dx, dy, j), where dx
and dy denote the global mask displacement and j
denotes the global mask rotation.

�� a set of mobile vertex displacements Q = { (dx1, dy1),
(dx2, dy2), ... }; (dxi, dyi) denotes the displacement of the
vertex pi with respect to its initial position.

The application of a steady mask MT,Q to a directional im-
age D consists in superimposing MT,Q on D and deriving a
segmentation R = {R1, R2, ..., Rn} where each region Ri is made
up of the directional elements internal to the polygon Pi.

A steady mask MT,Q well fits a directional image D when
the segmentation R obtained by the application of MT,Q to D
is such that the orientations of the directional elements
within each region Ri are homogeneous and the orientation
differences in $ are close to the corresponding ones in-
duced by R. Hence, the cost Csm(MT,Q, D) of the application
of MT,Q to D is given by the sum of two terms:
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where:

�� As to the first term, Var(Ri) is proportional to the vari-
ance of the directional elements in Ri (see the Appen-
dix) and C0 is a parameter which introduces a penalty
proportional to the number of regions in M in order to
balance the possibility of obtaining lower costs by
segmenting the directional image into several small
regions. This cost coincides with the segmentation
cost used in the relational graph approach in [18], ex-
cept for the region-shape term which is now ne-
glected due to the region shape fixed a priori.

�� As to the second term, Ddir(Ri, Rj) ³ [-90�, 90�) returns
the difference between the average orientations qi, qj ³
[-90�, 90�) of the regions Ri and Rj:
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and Dabs(qi, qj) ³ [0�, 90�] returns the difference be-
tween qi, qj ³ [-90�, 90�):
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m is the weight of the orientation difference contribu-
tion, and card($) returns the number of triplets in $.
The orientation difference evaluation is the only con-
tribution inherited by the inexact graph matching step
in [18]. Actually, only a few orientation differences are
taken into account, since most of them are nondis-
criminant (e.g., in the upper portion of each finger-
print, the ridge lines describe a semi-circle, causing
very similar orientation differences among the distinct
typologies).

The application cost of a dynamic mask M to a direc-
tional image D is computed by determining the minimum
cost Csm(MT*,Q* , D) over all the possible steady masks MT,Q:

C ,dm M D C C0 5 3 84 9= �� �� =sm T ,Q T,Q sm T,QM , D M , D* * min .

Fig. 10 shows the adaptation of the same mask to three dif-
ferent images of the same fingerprint.

In order to determine the application cost Cdm(M, D) we
adopt a heuristic strategy which sequentially attempts to
optimize the parameters involved, according to the fol-
lowing steps:

1)�Selection of the best global rotation-displacement T*

by means of an exhaustive search over a range of dis-
crete rotation-displacements of M, fixing Q = {(0, 0),
(0, 0), ...}.

Fig. 9. An example of dynamic mask definition. Fixed vertices are denoted by empty circles, the mobile ones by black circles, and the dependent
ones by gray circles. The dashed boxes denote the mobility windows associated to the mobile vertices. An arrow from a mobile vertex pi to a
dependent vertex pj indicates the dependence of pj on pi.
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Fig. 10. Adaptation of the mask defined in Fig. 9 to three different images of the same Left Loop fingerprint.

Fig. 11. Prototype mask creation. The mask area is larger than the directional image to allow the border elements to be considered during the
mask displacement.
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Fig. 12. The five prototype masks derived from the classes Arch, Left Loop, Right Loop, Tented Arch, and Whorl and an example of application of
each mask to a fingerprint belonging to the corresponding class. The vertex positions, the mobility windows, and the dependencies on mobile
vertices are graphically shown; the orientation differences are: $Arch = {(P1, P2, 37�), (P2, P3, 37�)}, $Left Loop = {(P1, P6, 36�)}, $Right Loop =
{(P4, P5, -36�)}, $Tented Arch = {(P1, P4, -38�)}, $Whorl = {(P1, P9, -30�), (P4, P9, 30�)}.
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Fig. 13. The figure shows the segmentation obtained by applying the prototype masks defined in Fig. 12 to some sample fingerprints (only one
example is provided for each class); the corresponding normalized feature vectors are shown on the right in the form of histograms.



CAPPELLI ET AL.:  FINGERPRINT CLASSIFICATION BY DIRECTIONAL IMAGE PARTITIONING 413

2)�For each mobile vertex pi ³ VM, selection of the best

displacement (dx
*
i, dy

*
i) with respect to the initial po-

sition, by means of an exhaustive search over a range
of discrete positions within the window fwin(pi), being

T = T* and Q = {(dx
*
1, dy

*
1), ..., (dx

*
i-1, dy

*
i-1), (dx i, dy i), ...,

(0, 0)}; the mobile vertices already considered are main-
tained in the optimal positions found, whereas those not
yet considered are placed in the initial positions.

The sequential optimization and the discretization
adopted for global mask displacement, global mask rota-
tion, and mobile vertex positions allow the number of
evaluations of the segmentation cost to be reduced, thus
obtaining several computational advantages; on the other
hand, the final cost is not guaranteed to be the optimum.

3.6 Generation of a Set of Prototype Masks
The creation of prototype masks is performed once and for
all. For each possible fingerprint pattern, at least one well-
fitting dynamic mask should be created. Hence, a reason-
able solution is to derive the masks from the classes of one
well-known classification scheme. The approach summa-
rized in Fig. 11 has been adopted to create each dynamic
mask. The set of masks used in our experimentation is re-
ported in Fig. 12.

3.7 Classification
Let Mi, i = 1..s be the prototype masks and D the directional
image to be classified; the feature vector wD resulting from
the mask application is:

wD = [Cdm(M1, D), Cdm(M2, D), ..., Cdm(Ms, D)],

where low component values denote high similarity with
the corresponding prototype mask. wD can be normalized
as:

~wD  = [Cdm(M1, D)/CS , Cdm(M2, D)/CS, ..., Cdm(Ms, D)/CS]

CS = Cdm(M1, D) + Cdm(M2, D) + ...+ Cdm(Ms, D)

The normalization enables:

�� working within the fixed range [0, 1]; this makes fin-
gerprint indexing through spatial data structures
easier.

�� dealing with differently contrasted images: The image
contrast is related to the magnitude of the directional
elements; hence, it can determine an increase or a re-
duction of all the costs.

If an exclusive classification is required, a neural net-
work or a statistical classifier can be used to properly clas-
sify vectors ~wD . In a continuous approach, ~wD  itself can be
used as an access key for similarity searches; in fact, it is
reasonable to assume that similar directional images give
analogous segmentation costs and therefore the corre-
sponding vectors are close to each other in the s-
dimensional space. Fig. 13 shows the feature vectors ~wD
extracted from fingerprints belonging to different classes.

4 FINGERPRINT RETRIEVAL

Several strategies for fingerprint retrieval can be defined ac-
cording to the application requirements: accuracy/efficiency
needed, the kind of minutiae matching algorithm used, the
presence of a human supervisor, etc. For example, Senior
proposed in [23] a retrieval technique based on exclusive
classification, where more than one class are searched in
case of classification uncertainty; the trade-off between re-
trieval efficiency against error rate can be tuned according
to the user requirements. In order to evaluate the efficiency
of continuous vs. exclusive classification for latent finger-
print retrieval, two different methodologies were proposed
in [16]. The two methodologies (named A and B) are appli-
cable to both the classification approaches, thus obtaining
four different strategies (respectively, AE, AC, BE, BC ). In
any case, the classification enables reducing the number of
fingerprints which have to be considered for minutiae
matching; the matching step produces a small list of candi-
date fingerprints and the final decision of real correspon-
dence is taken by a human expert who analyzes the candi-
date fingerprints only.

4.1 Methodology A
Methodology A assumes an error-free classification, so the
search is restricted to the database fingerprints resembling
analogous classification characteristics. The strategy AE can
be implemented by searching the whole corresponding
class of the latent fingerprint; the strategy AC, by searching
among those fingerprints which are less far from the feature
vector w of the latent fingerprint than a fixed tolerance r.
The average portion of database considered and the aver-
age retrieval error can be formally stated as:

AE : Given an exclusive classification scheme with s classes,
let Pd(i), i = 1..s be the probability that a fingerprint be-
longs to the class i according to the database class distri-
bution and let Pc(i), i = 1..s be the probability that a latent
fingerprint is assigned to the class i; then, the average
portion of database considered C(AE) is:

C(A ) = P (i) P (i) E c d
i=1

s

¼Ê
where Pd(i) represents the database fraction involved in
the retrieval of a fingerprint of class i and Pc(i) is the
weighting factor representing the probability to classify a
latent fingerprint as i. Let Pd|c(j|i) be the conditional
probability that a database fingerprint, corresponding to
a latent fingerprint classified as i, has been classified j in
the database; then, the average retrieval error E(AE) can
be calculated by weighting the average retrieval errors of
the single classes by the probabilities Pc(i):

E(A ) = P (i) E (A ) E Ec i
i=1

s

¼Ê

E (A ) =  P (j|i)i d|c
j=1, j i

s

E
�

Ê
AC : Given a fixed tolerance r, the average portion of data-

base considered Cr(AC) is determined by the average
number of fingerprints inside the hyper-sphere with ra-
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dius r centered in the latent fingerprint. The average re-
trieval error Er(AC) is determined by the average num-
ber of missed retrievals inside the search area.

4.2 Methodology B
Methodology B allows for misclassification to be taken into
account; to this aim, the search is carried out incrementally
over the whole database, avoiding any possible retrieval
error. This methodology requires the search to be termi-
nated when a human expert finds a real correspondence
between the latent fingerprint and a database fingerprint
that has already been considered. If the latent fingerprint
has no correspondence in the database the search is always
extended to the whole database. The strategy BE can be im-
plemented by starting the search from the latent fingerprint
class, and incrementally extending it to the other classes;
the strategy BC can be carried out by processing finger-
prints according to their distance from the latent fingerprint
feature vector w.

BE : Let qi = <q1
i, q2

i, ... qs
i> be a permutation defining a

class sequence for the retrieval of an i fingerprint. On av-
erage, half a class has to be scanned to find the finger-
print corresponding to the latent one, if it exists; and the
whole class has to be scanned, otherwise. Therefore,
when a correspondence exists in the database, the aver-
age portion of database considered C(BE) is:

C(B ) = P (i) C (B ) E Ec i
i=1

s

¼Ê

C (B ) = P (q |i) P (q ) + P (q )  i d|c j
i

d j
i

d k
i

k=1

j 1

j=1

s

E ¼
�
!
  

"
$
##

�
���

�
���

-

ÊÊ 1
2 ,

where the term between the square brackets represents
the average portion of database considered when the
corresponding fingerprint of an i latent fingerprint be-
longs to the jth class (qj

i); in fact, this term includes the
scan of all the fingerprints belonging to the classes which
precede qj

i in qi and the scan of half the fingerprints be-
longing to qj

i. The optimum sequence q*i can be deter-
mined according to the following ordering rule. Let a and b
be two adjacent classes in the optimum sequence q*i,
then a precedes b if and only if Pd|c(b|i) ¼ Pd(a) <
Pd|c(a|i) ¼ Pd(b); in fact, it can be simply proven that, by
exchanging the order of a and b, the corresponding
Ci(BE) values differ only for the above-considered terms.
Furthermore, the transitive property for the class prece-
dence rule can be proved.

BC: The average portion of database considered C(BC) is
determined by the average number of fingerprints inside
the hyper-sphere centered in w and with radius r given
by the distance between w and v, where v is the feature
vector relative to the database fingerprint corresponding
to the searched one.

5 EXPERIMENTAL RESULTS

This section reports some experimental results obtained by
the dynamic mask method and compares it with other clas-
sification approaches, using two fingerprint databases

commonly adopted by the scientific community. In the fol-
lowing, we denote with MASK the dynamic mask method
introduced here, with LUMINI the continuous classification
approach described in [16], with PCASYS the exclusive ap-
proach by NIST [4], and with KARU the exclusive approach
by Karu and Jain [13].

5.1 Databases
The experimentation has been performed on NIST Special
Database 4 (Db4) [27] and NIST Special Database 14 (Db14)
[28]. Both databases consist of 256 gray-level images; two
different fingerprint instances (F = First, S = Second) are
present for each finger. Each fingerprint was manually
analyzed by a human expert and assigned to one of the
following five classes: Arch (A), Left Loop (L), Right Loop
(R), Tented Arch (T), and Whorl (W). Actually, some am-
biguous fingerprints have an additional reference to one or
more classes (cross-referenced fingerprints).

�� Db4 contains 2,000 fingerprint pairs, uniformly dis-
tributed in the five classes; in order to resemble a real
distribution (A = 3.7 percent, T = 2.9 percent, L = 33.8
percent, R = 31.7 percent, W = 27.9 percent), we re-
duced the cardinality of the less frequent classes, ob-
taining 1,204 pairs (the first fingerprints from each class
have been chosen according to the right proportion).

�� Db14 contains 27,000 fingerprint pairs randomly
taken, thus approximating the real fingerprint distri-
bution; only the last 2,700 fingerprint pairs have been
employed in our simulation, since these constitute the
test set used in [4].

The first 2,000 fingerprints of Db14 have been used as
“training set” to derive the set of prototype masks and to
optimize the parameters of our method. Actually, since the
mask construction concerns macroscopic features of the
fingerprints, it can be verified that prototypes created
starting from different training sets (provided they are suf-
ficiently large) are almost identical. The parameter values
used for the tests are: s = 9.6, l = 112, m = 1.6, C0 = 10; the
range of global mask displacements is [-8, 8] for both x and
y axes, with discrete steps of two blocks; the range of global
mask rotation is [-20°, 20°] with steps of 5°.

5.2 Continuous Classification for Fingerprint
Retrieval

In order to compare the performance of the two continuous
approaches MASK and LUMINI, some fingerprint retrieval
operations have been simulated, according to strategies AC

and BC described in Section 4, by indexing the fingerprint in-
stances F through their feature vectors and by searching the
corresponding instances S. Moreover, the retrieval results of
PCASYS are evaluated in the context of strategies AE and BE,
and compared with those given by the continuous approaches.

5.2.1 Methodology A
In methodology A, continuous classification allows defin-
ing the reliability level a priori by tuning r (i.e., increasing
the time spent for retrieval to decrease the average retrieval
error). Fig. 14 reports the results produced by MASK as to
the average retrieval error Er(AC) and the average portion
of database considered Cr(AC).
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The graphs in Fig. 15 summarize MASK performance by

plotting each pair Er(AC), Cr(AC) relative to the same r as a
single point; LUMINI performance and PCASYS perform-
ance are also reported. MASK performance is considerably
better than LUMINI at low error rate (see Table 1); as the
error increases, the difference between the two methods
progressively disappears and, for error rates beyond 14
percent, the two methods behave similarly.

In order to compare the two continuous approaches with
PCASYS, which determines just one operating point in the
graphs in Fig. 15, the abscissa or the ordinate value should

be fixed. Table 2 reports the average errors E(AE), Er(AC)

obtained by fixing the ordinate value Cr(AC) = C(AE) =
C(A). It should be noted that MASK error is considerably
lower than the others.

Fig. 14. MASK results over Db4 (a) and Db14 (b); the average portion of database considered Cr(AC) and the average retrieval error Er(AC) are
plotted as a function of r.

Fig. 15. Trade-off Cr(AC)/Er(AC) varying r for the two continuous approaches MASK and LUMINI. The point  denotes C(AE)/E(AE) for the ex-
clusive classification approach PCASYS.

TABLE 1
STRATEGY AC: COMPARISON BETWEEN LUMINI AND MASK
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5.2.2 Methodology B
Table 3 reports the average portions of database considered
for the retrieval of a given fingerprint. Two slightly differ-
ent optimum sequences have been adopted to determine
C(BE) for the method PCASYS on Db4 and Db14. In fact, the
marginal and conditional probabilities have been derived
from the experimental confusion matrices, which were dif-
ferent in the two cases.

Db4: q*A=<A,T,R,L,W>, q*L=<L,T,A,W,R>,

q*R=<R,A,T,W,L>, q*T=<T,A,L,R,W>, q*W=<W,L,R,T,A>

Db14: q*A=<A,T,R,L,W>, q*L=<L,A,T,W,R>,

q*R=<R,T,A,W,L>, q*T=<T,A,R,L,W>, q*W=<W,L,R,T,A>

For LUMINI and MASK, C(BC) has been experimentally
determined by counting, for each instance S, how many
instances F were closer to S than its corresponding finger-
print, and by averaging the results. Table 3 shows that
MASK performs slightly better than LUMINI and, espe-
cially, that both the continuous approaches outperform the
exclusive approach PCASYS.

5.3 Exclusive Classification
Although MASK was conceived for continuous classification,
its prototype masks derive from the classes {A, L, R, T, W}
and, therefore, it is reasonable to expect good performance
even for exclusive classification. On the other hand, the
development of a neural or statistical classifier capable of
improving exclusive classification performance is out of the
aim of this work and a simple minimum cost criterion has
just been adopted here.

Exclusive classification has been performed both on Db4
(1,204 fingerprints) and Db14 (2,700 fingerprints), with no
rejection. In case of cross-referenced fingerprints, only the
“first” class has been considered. A comparison with PCA-
SYS is provided for Db4 and Db14 and with KARU for Db4.
Table 4 summarizes the percentage errors of the methods
considered. Actually, KARU performance, as reported in
[13], has been calculated under slightly different conditions:
In fact, the authors initially computed the percentage errors
associated to the five classes over the whole database and
then weighed them according to the class distribution. As
to PCASYS, (aux) denotes the use of the pseudoridge tracer
auxiliary module.

Both PCASYS and KARU give better results than MASK
(even if the performance is near the same for Db4); on the
other hand, it is worth noting that MASK does not use any
heuristic rule or additional criteria to improve class separa-
tion in case of uncertainty, since the continuous classifica-
tion itself provides a solution to this problem.

5.4 Robustness
Some experiments have been carried out to evaluate MASK
robustness in case of relevant disturbances (i.e., which usu-
ally affect latent fingerprints). Table 5 shows the results ob-
tained by applying MASK and PCASYS to some fingerprint
images taken from Db4 (see Fig. 16) and submitted to: rota-
tions, partial deletion, and artificial noise addition. For each
image in Fig. 16, Table 5 reports the kind of perturbation,
the real class, and the classification output given by the two
methods; the confidence score produced by PCASYS and
the minimum cost obtained by MASK are also provided
(within parentheses).

Generally, MASK exhibits a more robust behavior than
PCASYS. In fact, PCASYS is based on the dimensionality
reduction via the Karhunen-Loève transform, whose accu-
racy strictly relies on a correct pattern alignment which is
not always assured by the initial processing steps; moreo-
ver, the KL transform is very sensitive to partial deletion
and corruption of the singularities since these regions en-
code large sources of variance. On the contrary, MASK
involves a global optimization process which generally

TABLE 2
COMPARISON AMONG PCASYS, LUMINI, AND MASK FIXING THE AVERAGE PORTION OF DATABASE READ

TABLE 3
COMPARISON BETWEEN THE AVERAGE PERCENTAGES OF DATABASE SEARCHED (METHODOLOGY B)

TABLE 4
EXCLUSIVE CLASSIFICATION PERCENTAGE ERRORS
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proved to be very tolerant with respect to the above-
mentioned perturbations.

5.5 Rejection and Error Analysis in MASK
The following simple rejection criterion, based on the over-
all quality of the directional image, can be adopted to reject
fingerprints in the case of high uncertainty.

Let R = {Rs} be the partitioning of the directional im-
age D in a single region Rs; then, a quality measure Q is
given by the variance Var(Rs) (see the Appendix): In fact,
Var(Rs) measures the directional element variance within
the whole directional image, weighing each element by
its magnitude. Since the magnitudes of elements within a
noisy fingerprint are always low and the element direc-
tions corresponding to low-contrasted images are usu-
ally “flat,” in both cases, Q = Var(Rs) returns low values
(see Fig. 17). Therefore, the rejection criterion simply
consists in rejecting fingerprints with Q lower than a
fixed threshold.

As far as strategy AC is concerned, the two graphs in
Fig. 18 show the average retrieval error Er(AC) as a function
of the rejected fingerprint percentage, fixing the portions of
database searched Cr(AC).

As to strategy BC, Table 6 reports C(BC) for different re-
jection percentages.

Finally, we analyzed the 120 worst mated pairs from Db4
(i.e., whose F and S fingerprints were the least similar to
each other according to MASK) in order to figure out the
main error causes:

1)�poor quality fingerprints discarded by the rejection
criterion (10 percent rejection),

2)�other poor quality fingerprints not rejected,
3)� fingerprints with one or more written words,
4)� fingerprints with one or more lines,
5)�other.

Each of the 120 pairs has been assigned to one of the above
categories; precedence has been given to the category with
the lowest index (e.g., a fingerprint with both words and
lines is assigned to Category 3). Fig. 19 shows some finger-
prints assigned to Categories 3 and 4 which appear in the
NIST databases, since the corresponding images were
scanned from hand-annotated FBI cards. Table 7 summa-
rizes our error analysis: only a few low-quality fingerprints
have not been rejected and most of the errors are caused by
written words and/or lines. No ad hoc rejection rules have

TABLE 5
CLASSIFICATION OF SOME FINGERPRINT IMAGES SUBMITTED TO ARTIFICIAL PERTURBATIONS

TABLE 6
STRATEGY BC: C(BC) AS A FUNCTION OF THE REJECTION PERCENTAGE

TABLE 7
ERROR ANALYSIS OVER THE 120 WORST MATED FINGERPRINT PAIRS
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been developed to deal with Categories 3 and 4 because
these kind of perturbations are specific to the databases used.

6 CONCLUSIONS

In this work, a new structural approach to fingerprint clas-
sification is introduced. As in the relational graph method

[18], directional image partitioning is performed to capture
the conspicuous fingerprint macro-features. Dynamic
masks have been defined as a powerful instrument for a
robust segmentation.

The experimental results prove the accuracy and robust-
ness of the new method and the comparison with other

Fig. 16. Fingerprints manually altered by: rotation (no. 1, no. 2), partial deletion (no. 3, no. 4, no. 5, no. 6), and noise addition (no. 7, no. 8, no. 9,
no. 10). The segmentation obtained by the lowest cost mask is reported on the right side of each image; in all cases, the classification result pro-
duced by MASK is correct.
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techniques demonstrates its superiority for the continuous
classification task. We would like to remark that the aim of
our work is not to prove the superiority of the continuous
classification approaches with respect to the exclusive ones.
In fact, continuous classification does not enable to accom-
plish some tasks to be carried out, such as fingerprint la-
beling according to a given classification scheme. Never-
theless, if we classify fingerprints only for improving the
retrieval efficiency and we operate under the hypotheses
involved by the retrieval methodologies A and B, MASK
approach performs better than exclusive techniques.

All the simulations have been carried out on a PC
PentiumÉ 200MHz. Table 8 reports the average time neces-

sary for the main processing steps involved in a fingerprint
classification with the MASK approach.

Future work will be dedicated to the definition and ex-
perimentation of a new set of prototype masks not neces-
sarily derived from the common fingerprint classes and to
the definition of other rejection criteria.

APPENDIX

Variance of a Region
Given a directional image D and a segmentation R = {R1, R2,
... Rs} of D, the variance Var(Ri) of the region Ri containing ni
directional elements v = [vx, vy] is defined as:

Fig. 17. Low quality (top row) and high quality (bottom row) images from Db4.

Fig. 18. Strategy AC: The average error Er(AC) as a function of the rejection percentage in Db4 and Db14; the two curves refer to Cr(AC) = 18
percent and Cr(AC) = 23 percent.
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It should be noted that the region variance has not been
normalized with respect to the number of elements, so that
large regions are implicitly penalized.

The above formula can be computationally simplified by
means of some simple mathematical transformations:
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