
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE,  VOL.  20,  NO.  12,  DECEMBER  1998 1295

Integrating Faces and Fingerprints
for Personal Identification

Lin Hong and Anil Jain, Fellow, IEEE

Abstract—An automatic personal identification system based solely on fingerprints or faces is often not able to meet the system
performance requirements. Face recognition is fast but not extremely reliable, while fingerprint verification is reliable but inefficient in
database retrieval. We have developed a prototype biometric system which integrates faces and fingerprints. The system
overcomes the limitations of face recognition systems as well as fingerprint verification systems. The integrated prototype system
operates in the identification mode with an admissible response time. The identity established by the system is more reliable than
the identity established by a face recognition system. In addition, the proposed decision fusion scheme enables performance
improvement by integrating multiple cues with different confidence measures. Experimental results demonstrate that our system
performs very well. It meets the response time as well as the accuracy requirements.

Index Terms—Biometrics, fingerprint matching, minutiae, face recognition, eigenface, decision fusion.
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1 INTRODUCTION

ITH the evolution of information technology, our so-
ciety is becoming more and more electronically con-

nected. Daily transactions between individuals or between
individuals and various organizations are conducted in-
creasingly through highly interconnected electronic de-
vices. The capability of automatically establishing the
identity of individuals is thus essential to the reliability of
these transactions. Traditional personal identification ap-
proaches which use “something that you know,” such as a
Personal Identification Number (PIN), or “something that
you have,” such as an ID card are not sufficiently reliable
to satisfy the security requirements of electronic transac-
tions because they lack the capability to differentiate be-
tween a genuine individual and an impostor who
fraudulently acquires the access privilege [17]. Biometrics,
which refers to identification of an individual based on
her physiological or behavioral characteristics, relies on
“something which you are or you do” to make a personal
identification and, therefore, inherently has the capability
to differentiate between a genuine individual and a
fraudulent impostor [17], [27].

Any human physiological or behavioral characteristic
can be used as a biometric characteristic (indicator) to make a
personal identification as long as it satisfies the following
requirements [6], [17]:

1)�universality, which means that each person should
have the characteristic;

2)�uniqueness, which indicates that no two persons
should be the same in terms of the characteristic;

3)�permanence, which means that the characteristic
should not be changeable; and

4)� collectability, which indicates that the characteristic
can be measured quantitatively.

However, in practice, a biometric characteristic that satisfies
all the above requirements may not always be feasible for a
practical biometric system. In a practical biometric system,
there are a number of other issues which should be consid-
ered, including [6], [17]:

1)�performance, which refers to the achievable identifica-
tion accuracy, speed, robustness, the resource re-
quirements to achieve the desired identification accu-
racy and speed, as well as operational or environ-
mental factors that affect the identification accuracy
and speed;

2)� acceptability, which indicates the extent to which peo-
ple are willing to accept a particular biometrics in
their daily life; and

3)� circumvention, which reflects how easy it is to fool the
system by fraudulent methods.

A practical biometric system should be able to:

1)�achieve an acceptable identification accuracy and
speed with a reasonable resource requirements;

2)�not be harmful to the subjects and be accepted by the
intended population; and

3)�be sufficiently robust to various fraudulent methods.

Currently, there are mainly nine different biometric tech-
niques that are either widely used or under investigation,
including [27]:

•� face,
•� facial thermogram,
•� fingerprint,
•� hand geometry,
•� hand vein,
•� iris,
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•� retinal pattern,
•� signature, and
•� voice-print

(some of the examples are shown in Fig. 1) [6], [7], [8], [16],
[17]. All these biometric techniques have their own advan-
tages and disadvantages and are admissible depending on
the application domain.

A generic biometric system architecture is depicted in
Fig. 2. Logically, it can be divided into two modules:

1)� enrollment module and
2)� identification module.

During the enrollment phase, the biometric characteristic of
an individual is first scanned by the biometric reader to
produce a digital representation of the characteristic. In
order to facilitate the matching and identification, the digi-
tal representation is usually further processed by a feature
extractor to generate a compact but expressive representa-
tion, called a template. Depending on the application, the
template may be stored in the central database of the
biometric system or be recorded in the smart card or mag-
netic card issued to the individual. The identification mod-
ule is responsible for identifying individuals at the point-of-
access. In the operational phase, the biometric reader cap-
tures the characteristic of the individual to be identified and
converts it to a raw digital format, which is further proc-
essed by the feature extractor to produce a compact repre-

sentation that is of the same format as the template. The
resulting representation is fed to the feature matcher which
compares it against the template(s) to establish the identity.

1.1 Operational Mode
A biometric system may operate in

1)� the verification mode or
2)� the identification mode [17].

A biometric system operating in the verification mode
authenticates an individual’s identity by comparing the in-
dividual only with his/her own template(s) (Am I whom I
claim I am?). It conducts one-to-one comparison to deter-
mine whether the identity claimed by the individual is true
or not. A biometric system operating in the identification
mode recognizes an individual by searching the entire tem-
plate database for a match (Who am I?). It conducts one-to-
many comparisons to establish the identity of the individual.

Generally, it is more difficult to design an identification
system than to design a verification system [17]. For a veri-
fication system, the major challenge is the system accuracy.
It is usually not very difficult to meet the response time
requirement, because only one-to-one comparison is con-
ducted. On the other hand, for an identification system,
both the accuracy and speed are critical. An identification
system needs to explore the entire template database to
establish an identity. Thus, more requirements are imposed
on the feature extractor and, especially, the feature matcher.

                         (a)                                        (b)                                     (c)                                         (d)                                       (e)

Fig. 1. Examples of biometric characteristics (indicators). (a) Face. (b) Facial thermogram. (c) Fingerprint. (d) Hand vein. (e) Retinal scan.

Fig. 2. A generic biometric system architecture.



HONG AND JAIN: INTEGRATING FACES AND FINGERPRINTS FOR PERSONAL IDENTIFICATION 1297

Some biometric approaches are more suitable for operating
in the identification mode than the others. For example,
although significant progress has been made in fingerprint
identification and a number of fingerprint classification and
matching techniques have been proposed, it is still not
practical to conduct a real-time search even on a relatively
small-size fingerprint database (several thousand images)
without dedicated hardware matchers, external alignment,
and multiple-fingerprint indexing mechanism [21]. On the
other hand, it is feasible to design a face-recognition system
operating in the identification mode, because

1)� face comparison is a relatively less expensive opera-
tion and

2)� efficient indexing techniques are available and the
performance is admissible [23].

1.2 Identification Accuracy
Due to intraclass variations in the biometric characteristics,
the identity can be established only with certain confidence.
A decision made by a biometric system is either a “genuine
individual” type of decision or an “impostor” type of deci-
sion [7], [17]. For each type of decision, there are two possi-
ble outcomes, true or false. Therefore, there are a total of four
possible outcomes:

1)�a genuine individual is accepted,
2)�a genuine individual is rejected,
3)�an impostor is rejected, and
4)�an impostor is accepted.

Outcomes 1 and 3 are correct, whereas outcomes 2 and 4 are
incorrect. The confidence associated with different deci-
sions may be characterized by the genuine distribution and
the impostor distribution, which are used to establish two
error rates:

1)� false acceptance rate (FAR), which is defined as the
probability of an impostor being accepted as a genu-
ine individual and

2)� false reject rate (FRR), which is defined as the prob-
ability of a genuine individual being rejected as an
impostor.

FAR and FRR are dual of each other. A small FRR usually
leads to a larger FAR, while a smaller FAR usually implies a
larger FRR. Generally, the system performance requirement
is specified in terms of FAR [17]. A FAR of zero means that
no impostor is accepted as a genuine individual.

In order to build a biometric system that is able to op-
erate efficiently in identification mode and achieve desir-
able accuracy, an integration scheme which combines two
or more different biometric approaches may be necessary.
For example, a biometric approach that is suitable for op-
erating in the identification mode may be used to index
the template database and a biometric approach that is
reliable in deterring impostors may be used to ensure the
accuracy. Each biometric approach provides a certain con-
fidence about the identity being established. A decision
fusion scheme which exploits all the information at the
output of each approach can be used to make a more reli-
able decision.

We introduce a prototype integrated biometric system
which makes personal identification by integrating both
faces and fingerprints. The prototype integrated biometric
system shown in Fig. 3 operates in the identification mode.
The proposed system integrates two different biometric
approaches (face recognition and fingerprint verification)
and incorporates a decision fusion module to improve the
identification performance.

In the following sections, we will describe each compo-
nent of the proposed integrated system. Section 2 addresses
the face-recognition technique being employed. Section 3
presents the fingerprint-verification module along with mi-
nutiae extraction and minutiae matching. A decision fusion
framework which integrates faces and fingerprints is formu-
lated in Section 4. Experimental results on the MSU finger-
print database captured with an online fingerprint scanner
and public-domain face databases are described in Section 5.
Finally, the summary and conclusions are given in Section 6.

2 FACE RECOGNITION

Face recognition is an active area of research with applica-
tions ranging from static, controlled mug-shot verification
to dynamic, uncontrolled face identification in a cluttered
background [5]. In the context of personal identification,
face recognition usually refers to static, controlled full-
frontal portrait recognition [5]. By static, we mean that the
facial portraits used by the face-recognition system are still
facial images (intensity or range). By controlled, we mean
that the type of background, illumination, resolution of the
acquisition devices, and the distance between the acquisi-
tion devices and faces, etc. are essentially fixed during the
image acquisition process. Obviously, in such a controlled
situation, the segmentation task is relatively simple and the
intraclass variations are small.

During the past 25 years, a substantial amount of research
effort has been devoted to face recognition [5], [25], [1]. In the
early 1970s, face recognition was mainly based on measured
facial attributes such as eyes, eyebrows, nose, lips, chin
shape, etc. [5]. Due to lack of computational resources and
brittleness of feature extraction algorithms, only a very lim-
ited number of tests were conducted and the recognition
performance of face-recognition systems was far from desir-
able [5]. After the dormant 1980s, there was a resurgence in
face-recognition research in the early 1990s. In addition to con-
tinuing efforts on attribute-based techniques [5], a number of
new face-recognition techniques were proposed, including:

•� principle component analysis (PCA) [22], [12], [24],
•� linear discriminant analysis (LDA) [23],
•� singular value decomposition (SVD) [10], and
•� a variety of neural network-based techniques [25].

The performance of these approaches is impressive. It was
concluded that “face-recognition algorithms were devel-
oped and were sufficiently mature that they can be ported
to real-time experimental/demonstration system” [19].

Generally, there are two major tasks in face recognition:

1)� locating faces in input images and
2)� recognizing the located faces.
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Face location itself continues to be a challenging problem
for uncontrolled and cluttered images [5]. Fortunately, in
the context of personal identification, the background is
controlled or almost controlled, so face location is generally
not considered to be a difficult problem. Face recognition
from a general viewpoint also remains an open problem
because transformations such as position, orientation, and
scale and changes in illumination produce large intraclass
variations [19]. Again, in the context of personal identifica-
tion, the variations in acquired face images can be restricted
to a certain range which enables the current techniques to
achieve a desirable performance [5], [19].

In our system, the eigenface approach is used for the
following reasons:

1)� in the context of personal identification, the back-
ground, transformations, and illumination can be
controlled,

2)� eigenface approach has a compact representation—a
facial image can be concisely represented by a feature
vector with a few elements,

3)� it is feasible to index an eigenface-based template da-
tabase using different indexing techniques such that
the retrieval can be conducted efficiently [23],

4)� the eigenface approach is a generalized template
matching approach which was demonstrated to be
more accurate than the attribute-based approach in
one study [4].

The eigenface-based face recognition consists of the fol-
lowing two stages [24]:

1)� training stage, in which a set of N training face images
are collected; eigenfaces that correspond to the M
highest eigenvalues are computed from the training
set; and each face is represented as a point in the M-
dimensional eigenspace, and

2)� operational stage, in which each test image is first pro-
jected onto the M-dimensional eigenspace; the M-
dimensional face representation is then deemed as a
feature vector and fed to a classifier to establish the
identity of the individual.

A W ¥ H face image I(x, y) can be represented as a W ¥ H-
dimensional feature vector by concatenating the rows of I(x, y)
together. Thus, each W ¥ H face image becomes a point in
the W ¥ H-dimensional space. The total number of pixels in
a face image is typically large, on the order of several thou-
sands for even small image sizes. Face images in such a
high-dimensional space are not randomly distributed.
Therefore, it is efficient and beneficial to project them to a
lower-dimensional subspace using principle component
analysis [24]. Let Y1, Y2, ..., YN denote the N W ¥ H-
dimensional training vectors with zero-mean. Let the M
basis vectors, u1, u2, ..., uM be a set of orthonormal vectors
that best describe, the distribution of face images in the M-
dimensional subspace (eigenspace), M £ N. The kth eigen-
vector, uk, k = 1, 2, ..., M, is computed such that [24]

λ k k
T

i
i

N

N=
=
∑1 2

1

u Ψ4 9                                (1)

is maximum, subject to

Fig. 3. System architecture of the prototype integrated biometric identification system.
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The value lk is the kth largest eigenvalue of the covariance
matrix S which can be estimated using the training samples
by

$Σ Ψ Ψ=
=
∑1

1
N i i

T

i

N

.                                 (3)

The vector uk is the kth eigenvector of the covariance matrix
S corresponding to lk.

With the M-dimensional eigenspace defined, training
vectors, Y1, Y2, L, YN, can be represented as a set of M-
dimensional feature vectors, F1, F2, L, FN:

Fk = uTYi,       i = 1, 2, L, N,                     (4)

where u = (u1, u2, ..., uM). Fig. 4 shows the first 10 eigenfaces
corresponding to the 10 largest eigenvalues, which were
computed based on 542 training images (of size 92 ¥ 112).

In the operational phase, a detected face image, G, which
is normalized to zero mean, is vectorized and projected
onto the eigenvectors according to P = uTG. With both
training samples and test samples being projected onto an
M-dimensional eigenspace, face recognition can be accom-
plished by a classifier operating in the eigenspace. In the
context of personal identification, only a very limited num-
ber of training samples are available for each individual
[17]. Thus, a k-nearest neighbor classifier is typically used,
in which the distance, d, called Distance From Feature
Space (DFFS) [24] between a template, F, and a test pattern,
P, is defined as iF - Pi, where i•i denotes L2 norm.

3 FINGERPRINT VERIFICATION

A fingerprint is the pattern of ridges and furrows on the
surface of a fingertip. It is formed by the accumulation of
dead, cornified cells that constantly slough as scales from
the exposed surface [14]. Its formation is determined in the

fetal period [15]. Humans have used fingerprints for per-
sonal identification for a long time. The biological proper-
ties of fingerprints are well understood which are summa-
rized as follows:

1)� individual epidermal ridges and furrows have differ-
ent characteristics for different fingerprints;

2)� the configuration types are individually variable, but
they vary within limits which allow for systematic
classification;

3)� the configurations and minute details of individual
ridges and furrows are permanent and do not change
with time except by routine injury, scratches, and
scarring, as may be seen in Fig. 5 and Fig. 9 [15].

The uniqueness of a fingerprint is exclusively deter-
mined by the local ridge characteristics and their relation-
ships. Fingerprint matching generally depends on the
comparison of local ridge characteristics and their rela-
tionships [14], [11], [17]. A total of 150 different local ridge
characteristics, called minute details, have been identified
[14]. These local ridge characteristics are not evenly dis-
tributed. Most of them depend heavily on the impression
conditions and quality of fingerprints and are rarely ob-
served in fingerprints. The two most prominent ridge
characteristics, called minutiae, are ridge ending and ridge
bifurcation. A ridge ending is defined as the point where a
ridge ends abruptly. A ridge bifurcation is defined as the
point where a ridge forks or diverges into branch ridges.
A fingerprint typically contains about 40 to 100 minutiae.
Examples of minutiae are shown in Fig. 5c. For a given
fingerprint, a minutia can be characterized by its type, its
x and y coordinates, and its direction, q, whose definitions
are also shown in Fig. 5c.

Fingerprint verification consists of two main stages [11],
[14]:

1)�minutiae extraction and
2)�minutiae matching.

Fig. 4. First 10 eigenfaces obtained from 542 images of size 92 ¥ 112, which are listed from left to right and top to bottom in a decreasing order of
the corresponding eigenvalues.
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Due to a number of factors such as aberrant formations of
epidermal ridges of fingerprints, postnatal marks, occupa-
tional marks, problems with acquisition devices, etc., ac-
quired fingerprint images may not always have well-
defined ridge structures. Thus, a reliable minutiae extrac-
tion algorithm should not assume perfect ridge structures
and should degrade gracefully with the quality of finger-
print images. We have developed a minutiae extraction al-
gorithm [11] based on the algorithm proposed in [20]. It
mainly consists of three steps:

1)� orientation field (ridge flow) estimation, in which the ori-
entation field of input fingerprint images is estimated
and the region of interest is located,

2)� ridge extraction, in which ridges are extracted and
thinned, and

3)�minutiae detection and postprocessing, in which minutiae
are extracted from the thinned ridge maps and refined.

For each detected minutia, the following parameters are
recorded:

•� x-coordinate,
•� y-coordinate,
•� orientation, which is defined as the local ridge orien-

tation of the associated ridge, and
•� the associated ridge.

The recorded ridges which are used for alignment in the
minutiae matching are represented as one-dimensional dis-
crete signals which are normalized by the average inter-
ridge distance. In an automatic fingerprint identification,
ridge endings and ridge bifurcations are usually not dif-
ferentiated from one another. Therefore, no minutiae type

information is recorded. A minutia is completely deter-
mined by its position and orientation. Fig. 6 shows the re-
sults of our minutiae extraction algorithm on a fingerprint
image captured with an optical scanner.

The minutiae matching determines whether two minu-
tiae patterns are from the same finger or not. A similarity
metric between two minutiae patterns is defined and a
thresholding on the similarity value is performed. By rep-
resenting minutiae patterns as two-dimensional “elastic”
point patterns, the minutiae matching may be accom-
plished by an “elastic” point pattern matching as long as it
can automatically establish minutiae correspondences (in
the presence of translation, rotation, and deformations)
and detect spurious minutiae and missing minutiae. We
have developed an alignment-based “elastic” matching
algorithm [11], which is capable of finding the correspon-
dences between minutiae without resorting to an exhaus-
tive search and has the ability to adaptively compensate
for the nonlinear deformations and inexact transforma-
tions between different fingerprints. The alignment-based
matching algorithm decomposes the minutiae matching
into two stages:

1)�Alignment stage, where transformations such as trans-
lation, rotation, and scaling between an input and a
template in the database are estimated, and the input
minutiae are aligned with the template minutiae ac-
cording to the estimated parameters; and

2)�Matching stage, where both the input minutiae and the
template minutiae are converted to “strings” in the polar
coordinate system, and an “elastic” string matching al-
gorithm is used to match the resulting strings, and

                                                    (a)                                                      (b)                                                        (c)

Fig. 5. Fingerprints and minutiae. (a) and (b) Two different impressions of the same finger. (c) Ridge ending and ridge bifurcation.

                                   (a)                                                (b)                                                 (c)                                                (d)

Fig. 6. Results of our minutiae extraction algorithm on a fingerprint image (512 ¥ 512) captured with an optical scanner. (a) Input image. (b) Ori-
entation field. (c) Ridge map. (d) Extracted minutiae.
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finally, the normalized number of corresponding mi-
nutiae pairs is reported.

Let

P x y x yP P P T

p
P

p
P

p
P T

= ��
�
�1 1 1, , , . . . , , ,θ θ4 9 4 9

and

Q x y x yQ Q Q T

q
Q

q
Q

q
Q T

= ��
�
�1 1 1, , , . . . , , ,θ θ4 9 4 9

denote the p minutiae in the template and the q minutiae in
the input image, respectively. The alignment-based match-
ing algorithm is depicted as follows:

1)�Estimate the translation and rotation parameters be-
tween the ridge associated with each input minutia
and the ridge associated with each template minutia
and align the two minutiae patterns according to the
estimated parameters.

2)�Convert the template pattern and input pattern into
the polar coordinate representations with respect to
the corresponding minutiae on which alignment is
achieved and represent them as two symbolic strings
by concatenating each minutia in an increasing order
of radial angles:

P r e r eP P P T

p
P

p
P

p
P T* , , , . . . , , ,= ��
�
�1 1 1θ θ4 9 4 9             (5)

Q r e r eQ Q Q T

q
Q

q
Q

q
Q T* , , , . . . , , ,= ��
�
�1 1 1θ θ4 9 4 9 ,          (6)

where r ei
P

i
P

i
P, , and θ  represent the corresponding

radius, radial angle, and normalized minutiae orien-
tation with respect to the reference minutiae, (x, y, q),
respectively.

3)�Match the resulting strings P* and Q* with a modified
dynamic-programming algorithm to find the “edit
distance” between P* and Q*.

4)�Use the minimum edit distance between P* and Q* to
establish the correspondence of the minutiae between
P* and Q*. The matching score, S, is then defined as:

S
M
pq

PQ=
100 2

,                                  (7)

where MPQ is the number of minutiae which fall in the
bounding boxes of template minutiae. The bounding
box of a minutia specifies the allowable tolerance in
the positions of the corresponding input minutiae
with respect to the template minutiae. Fig. 7 shows an
example of minutiae matching.

4 DECISION FUSION

Decision fusion which integrates multiple cues has proved
beneficial for improving the accuracy of a recognition sys-
tem [2], [3], [13]. Generally, multiple cues may be integrated
at one of the following three different levels [3]:

1)�Abstract level; the output from each module is only a
set of possible labels without any confidence associ-
ated with the labels; in this case, the simple majority

rule may be employed to reach a more reliable deci-
sion [26];

2)�Rank level; the output from each module is a set of
possible labels ranked by decreasing confidence val-
ues, but the confidence values themselves are not
specified;

3)�Measurement level; the output from each module is a
set of possible labels with associated confidence val-
ues; in this case, more accurate decisions can be made
by integrating different confidence measures to a
more informative confidence measure.

In our system, the decision fusion is designed to operate at
the measurement level. Each of the top n possible identities
established by the face recognition module is verified by
the fingerprint verification module. In order to carry out
such a decision fusion scheme, we need to define a measure
that indicates the confidence of the decision criterion and a
decision fusion criterion.

As discussed in Section 1, the confidence of a given deci-
sion criterion may be characterized by its FAR (false accep-
tance rate). In order to estimate FAR, the impostor distribu-
tion needs to be computed. How should we compute the
impostor distribution? In practice, it can only be estimated
from empirical data. But, this estimation problem requires
some care. In the context of personal identification, the re-
quired FAR value is often a very small number (! 1 per-
cent) [17]. If the parametric form of the underlying impos-
tor distribution is not known, nonparametric techniques
need to be used. In order to guarantee that the estimated
impostor distribution is reliable for characterizing the small
FARs, a large representative test set that satisfies the fol-
lowing two requirements is needed: It should be large
enough to represent the population, and it should contain
enough samples from each category of the population. The
above requirements are not easily satisfied in practice. An
extrapolation based on the knowledge of the parametric
form of the underlying impostor distribution is needed.

4.1 Impostor Distribution for Fingerprint Verification
A model that can precisely characterize the impostor distri-
bution of a minutia matching algorithm is not easy, since:

1)� the minutiae in a fingerprint are distributed randomly
in the region of interest;

Fig. 7. Fingerprint matching.
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2)� the region of interest of each input fingerprint may be
different;

3)� each input fingerprint tends to have a different num-
ber of minutiae;

4)� there may be a significant number of spurious minu-
tiae and missing minutiae;

5)� sensing, sampling, and feature extraction may result
in errors in minutiae positions; and

6)� sensed fingerprints may have different distortions.

However, it is possible to obtain a general model of the
overall impostor distribution by making some simplifying
assumptions.

Let us assume that the input fingerprint and the tem-
plate have already been registered and the region of interest
of both the input fingerprint and the template is of the same
size, a W ¥ W (for example, 500 ¥ 500) region. The W ¥ W
region is tessellated into small cells of size w ¥ w which are
assumed to be sufficiently large (for example, 40 ¥ 40) such
that possible deformation and transformation errors are
within the bound specified by the cell size. Therefore, there
are a total of W

w
W
w cN× =2 7 different cells in the region of

interest of a fingerprint. Further, assume that each finger-
print has the same number of minutiae, Nm (£ Nc), which are
distributed randomly in different cells and each cell con-
tains at most one minutiae. Each minutia is directed to-
wards one of the D (for example, eight) possible orienta-
tions with equal probability. Thus, for a given cell, the
probability, Pempty, that the cell is empty with no minutiae

present is N
N

m

c
 and the probability, P, that the cell has a mi-

nutia that is directed toward a specific orientation is 
1−P

D
empty .

A pair of corresponding minutiae between a template and
an input is considered to be identical if and only if they are
in the cells at the same position and directed in the same
direction (see Fig. 8). With the above simplifying assump-
tions, the number of corresponding minutiae pairs between
any two randomly selected minutiae patterns is a random
variable, Y, which has a binomial distribution with pa-
rameters Nm and P [18]:

g Y y
N

y N y
P Pm

m

y N ym= =
−

− −1 6 2 7 0 52 7!

! !
1 .              (8)

The probability that the number of corresponding minutiae
pairs between any two sets of minutiae patterns is less than
a given threshold value, y, is

G y g Y y g k
k

y

1 6 1 6 1 6= < =
=

−

∑
0

1

.                          (9)

The decision made by the proposed minutiae matching
algorithm for an input fingerprint and a template is based
on the comparison of the “normalized” number of corre-
sponding minutiae pairs against a threshold. Therefore,
under the assumption that minutiae in the region of interest
of fingerprints of different individuals are randomly dis-
tributed, the probability that an impostor, I, is accepted is
{1 - G(yI)}, where yI is the number of corresponding minu-
tiae pairs between the impostor and the individual whom
the impostor claims to be.

4.2 Impostor Distribution for Face Recognition
The characterization of impostor distribution for face rec-
ognition is more difficult. Due to the relatively low dis-
crimination capability of face recognition, this module
needs to keep the top n matches to improve the likelihood
that the genuine individual will be identified if he or she is
in the database.

Let F1, F2, ..., FN be the N face templates stored in the
database. The top n matches, Φ Φ Φ1 2

r r
n
r, , . . . , ,  are obtained

by searching through the entire database, in which N com-
parisons are conducted explicitly (in the linear search case)
or implicitly (in organized search cases such as the tree
search). The top n matches are arranged in the increasing
order of DFFS (Distance From Feature Space, Section 2)
values. The smaller the DFFS value, the more likely it is that
the match is correct. Since the relative distances between
consecutive DFFSs are invariant to the mean shift of the
DFFSs, it is beneficial to use relative instead of absolute
DFFS values. The probability that a retrieved top n match is
incorrect is different for different ranks. The impostor dis-
tribution should be a decreasing function of rank order and
it is a function of both the relative DFFS values, D, and the
rank order, i:

Fi(D)Porder(i),                                   (10)

where Fi(D) represents the probability that the consecutive
DFFS values between impostors and their claimed indi-
viduals at rank i are larger than a value D, and Porder(i) repre-
sents the probability that the retrieved match at rank i is an
impostor. In practice, Fi(D) and Porder(i) need to be estimated
from empirical data.

In order to simplify the analysis, we assume that each
individual has only one face template in the database. Thus,
there are a total of N individuals enrolled in the database
and I1, I2, ..., IN are used as identity indicators. Let Xa denote
the DFFS between an individual and his/her own template
which is a random variable with density function fa(Xa) and
let X X XN1 2 1

β β β, , . . . , −  denote the DFFS values between an
individual and the templates of the other individuals in the
database, which are random variables with density functions,

Fig. 8. Minutiae matching model, where a solid line indicates a match
and a dashed line indicates a mismatch.
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f X f X f XN N1 1 2 2 1 1
β β β β β β4 9 4 9 4 9, , . . . , − − , respectively. Assume that

Xa and X X XN1 2 1
β β β, , . . . , −  are statistically independent and

f X f X f X f XN N1 1 2 2 1 1
β β β β β β β β4 9 4 9 4 9 4 9= = =− −. . . . For an individ-

ual, P, which has a template stored in the database, {F1, F2,
..., FN}, the rank, I, of Xa among X X XN1 2 1

β β β, , . . . , −  is a ran-
dom variable with probability

P I i
N

i N i
p pi N i= =

−
− −

− − −0 5 0 5
0 5 1 60 51

1
1

1!
! !

,           (11)

where

p f X f X dX dX
X

=
−∞−∞

∞ α α β β β αα 4 9 4 9 .                 (12)

When p ! 1 and N is sufficiently large, P(I) may be ap-
proximated by a Poisson distribution [18],

P I
e a

I

a I

0 5
0 5

& !=
−

,                                  (13)

where a 8 np. Obviously, P(I) is exactly the probability that
matches at rank i are genuine individuals. Therefore,

Porder(i) = 1 - P(I = i).                                 (14)

Although the assumption that X X XN1 2 1
β β β, , . . . , −  are i.i.d.

may not be true in practice, it is still reasonable to use the
above parametric form to estimate the probability that re-
trieved matches at rank i are impostors. Our experimental
results support this claim.

Without any loss of generality, we assume that, for a
given individual, P, X X XN1 2 1

β β β, , . . . , −  are arranged in in-
creasing order of values. Define the non-negative distance
between the (i+1)th and ith DFFS values as the ith DFFS
distance,

∆i i iX X i N= − ≤ ≤ −+1 1 1β β , .                     (15)

The distribution, fi(Di), of the ith distance, Di, is obtained
from the joint distribution wi(X

b, Di) of the ith value, Xb, and
the ith distance, Di,

f w X dXi i i i∆ ∆2 7 4 9=
−∞

∞ β β, ,                        (16)

wi(X
b, Di) = CFb(Xb)i-1[1 - Fb(Xb + Di)]

N-ifb(Xb)fb (Xb + Di),   (17)

C
N

i N i
=

−
− − −

1
1 2
0 5

0 5 0 5
!

! !
,                           (18)

where F X f X dX
Xβ β β β β

β

4 9 4 9=
−∞

 [9]. With the distribution,

fi(Di), of the ith distance defined, the probability that the
DFFS of the impostor at rank i is larger than a threshold
value, D, is

F f di i i i∆ ∆ ∆
∆

0 5 2 7=
∞

.                               (19)

The above equations do not make any assumptions
about the distributions of X X XN1 2 1

β β β, , . . . , −  as long as they
are i.i.d. The equations also hold even if the mean values of
X X XN1 2 1

β β β, , . . . , −  shift. Therefore, it can tolerate, to a cer-
tain extent, DFFS variations which is a desirable property.

In our system, we assume that X X XN1 2 1
β β β, , . . . , −  are dis-

tributed with a Gaussian distribution with unknown mean
and variance.

4.3 Decision Fusion
The impostor distribution for face recognition and the im-
postor distribution for fingerprint verification provide con-
fidence measures for each of the top n matches retrieved by
face recognition module. Without a loss of generality, we
assume that at most one of the n possible identities estab-
lished by the face recognition module for a given individual
is the genuine identity of the individual. The final decision
by integration either rejects all the n possibilities or accepts
only one of them as the genuine identity. In practice, it is
usually specified that the FAR of the system should be less
than a given value [17]. Therefore, the goal of decision fu-
sion, in essence, is to derive a decision criterion which satis-
fies the FAR specification.

It is reasonable to assume that the DFFS between two
different individuals is statistically independent of the fin-
gerprint matching score between them; facial similarity
between two individuals does not imply that they have
similar fingerprints, and vice versa. This assumption
should not be confused with the situation where an im-
postor tries to fool the system by counterfeiting the face
and/or fingerprints of the genuine individual. Let
Fi(D)Porder(i) and G(Y) denote the impostor distribution at
rank i for face-recognition and fingerprint-verification mod-
ules, respectively. The composite impostor distribution at
rank i may be defined as

Hi(D, Y) = Fi(D)Porder(i)G(Y).                          (20)

Let I1, I2, ..., In denote the n possible identities established
by face recognition, {X1, X2, ..., Xn} denote the corresponding
n DFFSs, {Y1, Y2, ..., Yn} denote the corresponding n finger-
print matching scores, and FARo denote the specified value
of FAR. The final decision, ID(P), for a given individual P
is determined by the following criterion:

ID

I
H Y FAR

H Y H Y H Yk
k k k o

k k k n n n

Π

∆
∆ ∆ ∆

0 5
2 7
2 7 2 7 2 7= B

=

<
=

%
&K
'K

%
&K

'K
if

and

imposter otherwise

, ,

, min , , . . . , ,1 1 1

(21)

where Di = Xi+1 - Xi. Since Hi(D, Y) defines the probability
that an impostor is accepted at rank i with consecutive
relative DFFS, D, and fingerprint matching score, Y, the
above decision criterion satisfies the FAR specification.

Note that the decision criterion in (21) depends on the
number of individuals, N, enrolled in the database, since Fi

depends on N. However, it does not mean that Fi has to be
recomputed whenever a new individual is enrolled in the
database. In fact, if N @ 1, the corresponding Fis for differ-
ent values of N are quite similar to one another. On the
other hand, the decision criterion still satisfies the FAR
specification when N increases, though it may not be able to
take full advantage of the information contained in the N
comparisons. In practice, an update scheme which re-
computes the decision criterion whenever the number of
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added individuals is larger than a prespecified value can be
used to guarantee that the decision criterion exploits all the
available information.

5 EXPERIMENTAL RESULTS

The integrated biometric system was tested on the MSU
fingerprint database and a public domain face database.
The MSU fingerprint database contains a total of 1,500 fin-
gerprint images (640 ¥ 480) from 150 individuals with 10
images per individual, which were captured with an optical
scanner manufactured by Digital Biometrics. When these
fingerprint images were captured, no restrictions on the
position, orientation, and impression pressure were im-
posed. The fingerprint images vary in quality. Approxi-
mately 90 percent of the fingerprint images in the MSU da-
tabase are of reasonable quality similar to the images
shown in Fig. 9b and Fig. 9d. Images of poor quality with
examples shown in Fig. 9f and Fig. 9h are mainly due to
large creases and smudges in ridges, dryness of the im-
pressed finger, and high impression pressure. The face da-
tabase contains a total of 1,132 images of 86 individuals; 400
images of 40 individuals with 10 images per individual are
from the Olivetti Research Lab, 300 images of 30 individu-
als with 10 images per individual are from the University of
Bern, and 432 images of 16 individuals with 27 images per
individual are from the MIT Media Lab. The images were
resampled from the original sizes to a fixed size of 92 ¥ 112
and normalized to zero mean.

We randomly selected 640 fingerprints of 64 individuals
as the training set and the remaining as the test set. The
mean and standard deviation of the impostor distribution
(Fig. 10a) were estimated to be 0.70 and 0.64 from the
403,200 (640 ¥ 630) impostor matching scores of “all against

all” verification test by fitting the probability model de-
scribed in Section 4.1, respectively. A total of 542 face im-
ages were used as training samples. Since variations in po-
sition, orientation, scale, and illumination exist in the face
database, the 542 training samples were selected such that
the representative views are included. Eigenfaces were esti-
mated from the 542 training samples and the first 64 eigen-
faces were used for face recognition. The top n = 5 impostor
distributions were approximated. Generally, the larger the
value of n, the lower the false reject rate of face recognition.
However, as n increases, more candidates need to be verified
by fingerprint verification. There is obviously a trade-off
between the accuracy and speed of a biometric system. Fig. 10b
shows the impostor distribution at rank no. 1.

We randomly assigned each of the remaining 86 indi-
viduals in the MSU fingerprint database to an individual in
the face database (see Fig. 9 for some examples). Since the
DFFS value between two different individuals is statisti-
cally independent of the fingerprint matching scores be-
tween the two individuals, such a random assignment of a
face to a fingerprint is admissible. One fingerprint for each
individual is randomly selected as the template for the in-
dividual. To simulate the practical identification scenario,
each of the remaining 590 faces was paired with a finger-
print to produce a test pair. In the test, with a prespecified
confidence value (FAR), for each of the 590 fingerprint and
face pairs, the top five matches are retrieved using face rec-
ognition. Then fingerprint verification is applied to each of
the top five matches, and a final decision is made by deci-
sion fusion.

The prespecified FAR for a biometric system is usually
very small (< 0.0001). In order to demonstrate that the
biometric system does meet such a specification, a large
number of representative samples are needed. Unfortunately,

                               (a)                                                  (b)                                                  (c)                                                 (d)

                                 (e)                                                 (f)                                                   (g)                                                (h)

Fig. 9. Face and fingerprint pairs; the face images (92 ¥ 112) are from the Olivetti Research Lab; the fingerprint images (640 ¥ 480) are captured
with a scanner manufactured by Digital Biometrics.
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obtaining such a large number of test samples is both ex-
pensive and time consuming. In our test, we reuse faces by
different assignment practices—each time, a different fin-
gerprint is assigned to a given face to form a face and fin-
gerprint probe pair. Obviously, such a reuse scheme might
result in unjustified performance improvement. In order to
diminish the possible gain in performance due to such a
reuse scheme, we multiplied the estimated impostor distri-
bution for face recognition by a constant of 1.25, which es-
sentially reduces contribution of face recognition to the fi-
nal decision by a factor of 1.25. On the other hand, finger-
print verification operates in the one-to-one verification
mode, so different assignments may be deemed as different
impostor forgeries. Therefore, the test results using such a
random assignment scheme are able to reasonably estimate
the underlying performance numbers. In our test, 1,000 dif-
ferent assignments were tried. A total of 590,000 (590 ¥ 1,000)
face and fingerprint test pairs were generated and tested.
The FRRs of our system with respect to different prespeci-
fied FARs, as well as the FRRs obtained by “all-to-all” verifi-
cations using only fingerprints (2,235,000 = 1,500 ¥ 1,490
tests) or faces (342,750 = 350 ¥ (590 - 5) + 240 ¥ (590 - 15)
tests) are listed in Table 1. Note that the FRRs in integration
column include the error rate (1.8 percent) of genuine indi-
viduals not present in the top five matches. The receiver
operating curves are plotted in Fig. 11, in which the
authentic acceptance rate (the percentage of genuine indi-
viduals being accepted, i.e., 1 - FRR) is plotted against FAR.
We can conclude from these test results that the integration
of fingerprints and faces does result in a significantly better
recognition performance.

In order for an automatic personal identification system to
be acceptable in practice, the response time of the system
needs to be within a few seconds. Table 2 shows that our im-
plemented system does meet the response time requirement.

6 SUMMARY AND CONCLUSIONS

We have developed a prototype biometric system which
integrates faces and fingerprints in authenticating a per-
sonal identification. The proposed system overcomes the
limitations of both face-recognition systems and finger-
print-verification systems. The integrated system operates
in the identification mode. The decision-fusion scheme
formulated in the system enables performance improve-
ment by integrating multiple cues with different confi-
dence measures. Experimental results demonstrate that
our system performs very well. It meets the response time
as well as the accuracy requirements.

TABLE 1
FALSE REJECT RATES (FRR) ON THE TEST SET WITH

DIFFERENT VALUES OF FAR

FAR False Reject Rates (FRR)

Face Fingerprint Integration
1% 15.8% 3.9% 1.8%

0.1% 42.2% 6.9% 4.4%
0.01% 61.2% 10.6% 6.6%
0.001% 64.1% 14.9% 9.8%

The false reject rates of face recognition are obtained based on 342,750 pair-
wise comparisons; the false reject rates of fingerprint verification are obtained
based on 2,235,000 pairwise comparisons; the false reject rates of the inte-
grated system are obtained based on 590,000 probes.

TABLE 2
AVERAGE CPU TIME FOR ONE TEST ON A

SUN SPARC 20 WORKSTATION.

Face
Recognition
(seconds)

Fingerprint
Verification
(seconds)

Total
(seconds)

0.9 3.2 4.1

  
                                                         (a)                                                                                                              (b)

Fig. 10. Impostor distributions. (a) Impostor distribution for fingerprint verification; the mean and standard deviation of the impostor distribution are
estimated to be 0.70 and 0.64, respectively. (b) The impostor distribution for face recognition at rank No. 1, where the stars (*) represent empirical
data and the solid curve represents the fitted distribution; the mean square error between the empirical distribution and the fitted distribution is 0.0014.
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The decision-fusion scheme formulated in this paper may
be applied to similar scenario in other domains to provide a
better discrimination performance. For example, in image
database retrieval, a less reliable but computationally attrac-
tive algorithm may be used to retrieve the top n matches;
then a more reliable, but computationally more expensive
algorithm may be used to verify the top n matches; and fi-
nally an integrated decision criterion may be used to reach a
more reliable decision.

We must point out that the proposed system has been
designed for a template database containing several thou-
sand templates. Since it has not yet been shown that face
recognition is sufficiently efficient in correctly retrieving a
small number of top matches from a huge template data-
base with millions of templates, our approach may not scale
up very well. In addition, our decision fusion scheme as-
sumes that the similarity values between faces are statisti-
cally independent of the similarity values between finger-
prints. While the assumption is valid for fingerprints and
faces, it may not be true for other biometric characteristics.

The specified FAR of a deployed biometric system is
usually a very small number (! 1 percent). In order to pro-
vide a more convincing demonstration that the system can
meet such a specification, large representative test samples
are needed. We are in the process of conducting such a test
on a larger face and fingerprint database.

ACKNOWLEDGMENTS

We gratefully acknowledge our many useful discussions
with Sharath Pankanti and Ruud Bolle of the IBM T. J. Wat-
son Research Lab.

REFERENCES

[1]� J. Atick, P. Griffin, and A. Redlich, “Statistical Approach to Shape
From Shading: Reconstruction of 3D Face Surfaces From Single
2D Images,” Neural Computation, to appear.

[2]� E.S. Bigun, J. Bigun, B. Duc, and S. Fischer, “Expert Conciliation
for Multi Modal Person Authentication Systems by Bayesian Sta-
tistics,” Proc. First Int’l Conf. Audio Video-Based Personal Authentica-
tion, pp. 327–334, Crans-Montana, Switzerland, Mar. 1997.

[3]� R. Brunelli and D. Falavigna, “Personal Identification Using Mul-
tiple Cues,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 17, no. 10, pp. 955–966, Oct. 1995.

[4]� R. Brunelli and T. Poggio, “Face Recognition: Features Versus
Templates,” IEEE Trans. Pattern Analysis and Machine Intelligence,
vol. 15, no. 10, pp. 1,042–1,052, Oct. 1993.

[5]� R. Chellappa, C. Wilson, and A. Sirohey, “Human and Machine
Recognition of Faces: A Survey,” Proc. IEEE, vol. 83, no. 5, pp. 705–
740, 1995.

[6]� R. Clarke, “Human Identification in Information Systems: Man-
agement Challenges and Public Policy Issues,” Information Tech-
nology & People, vol. 7, no. 4, pp. 6–37, 1994.

[7]� J.G. Daugman, “High Confidence Visual Recognition of Persons
by a Test of Statistical Independence,” IEEE Trans. Pattern Analy-
sis and Machine Intelligence, vol. 15, no. 11, pp. 1,148–1,161, Nov.
1993.

[8]� S.G. Davies, “Touching Big Brother: How Biometric Technology
Will Fuse Flesh and Machine,” Information Technology & People,
vol. 7, no. 4, pp. 60–69, 1994.

[9]� E.J. Gumbel, Statistics of Extremes. New York: Columbia Univ.
Press, 1958.

[10]� Z. Hong, “Algebraic Feature Extraction of Image for Recogni-
tion,” Pattern Recognition, vol. 24, no. 2, pp. 211–219, 1991.

[11]� A. Jain, L. Hong, and R. Bolle, “On-Line Fingerprint Verification,”
IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 19, no. 4,
pp. 302–314, Apr. 1997.

[12]� M. Kirby and L. Sirovich, “Application of the Karhunen-Loeve
Procedure for the Characterization of Human Faces,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 12, no. 1, pp. 103–
108, Jan. 1990.

[13]� J. Kittler, Y. Li, J. Matas, and M.U. Sanchez, “Combining Evidence
in Multimodal Personal Identity Recognition Systems,” Proc. First
Int’l Conf. Audio Video-Based Personal Authentication, pp. 327–334,
Crans-Montana, Switzerland, Mar. 1997.

[14]� H.C. Lee and R.E. Gaensslen, Advances in Fingerprint Technology.
New York: Elsevier, 1991.

[15]� A. Moenssens, Fingerprint Techniques. London: Chilton Book
Company, 1971.

[16]� V. Nalwa, “Automatic On-Line Signature Verification,” Proc. IEEE,
vol. 85, no. 2, pp. 213–239, 1997.

[17]� E. Newham, The Biometric Report. New York: SJB Services, 1995.
[18]� A. Papoulis, Probability, Random Variables, and Stochastic Processes.

New York: McGraw-Hill, 1965.
[19]� P.J. Phillips, P.J. Rauss, and S.Z. Der, FERET (Face Recognition Tech-

nology) Recognition Algorithm Development and Test Results. Adel-
phi, Md.: U.S. government publication, ALR-TR-995, Army Re-
search Laboratory, 1996.

[20]� N. Ratha, S. Chen, and A.K. Jain, “Adaptive Flow Orientation
Based Feature Extraction in Fingerprint Images,” Pattern Recogni-
tion, vol. 28, no. 11, pp. 1,657–1,672, 1995.

[21]� N. Ratha, K. Karu, S. Chen, and A.K. Jain, “A Real-Time Matching
System for Large Fingerprint Database,” IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 18, no. 8, pp. 799–813, Aug.
1996.

[22]� L. Sirovich and M. Kirby, “Low Dimensional Procedure for Char-
acterization of Human Faces,” J. Optical Soc. Am., vol. 4, no. 3,
pp. 519–524, 1987.

[23]� D.L. Swets and J. Weng, “Using Discriminant Eigenfeatures for
Image Retrieval,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 18, no. 8, pp. 831–836, Aug. 1996.

[24]� M. Turk and A. Pentland, “Eigenfaces for Recognition,” J. Cogni-
tive Neuroscience, vol. 3, no. 1, pp. 71–86, 1991.

[25]� D. Valentin, H. Abdi, A.J. O’Toole, and G. Cottrell, “Connectionist
Models of Face Processing: A Survey,” Pattern Recognition, vol. 27,
no. 9, pp. 1,209–1,230, 1994.

[26]� Y.A. Zuev and S.K. Ivanov, “The Voting as a Way to Increase the
Decision Reliability,” Proc. Foundations of Information/Decision Fu-
sion With Applications to Eng. Problems, pp. 206–210, Washington,
D.C., Aug. 1996.

[27]� A.K. Jain, R. Bolle, and S. Pankanti, eds., Biometrics: Personal Iden-
tification in Networked Society. Norwell, Mass.: Kluwer Academic
Publishers, in press.

Fig. 11. Receiver operating curves; the vertical axis is (1-FRR).
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