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This paper examines automated iris recognition as a biometri-
cally based technology for personal identification and verification.
The motivation for this endeavor stems from the observation that
the human iris provides a particularly interesting structure on
which to base a technology for noninvasive biometric assessment.
In particular, the biomedical literature suggests that irises are as
distinct as fingerprints or patterns of retinal blood vessels. Further,
since the iris is an overt body, its appearance is amenable to remote
examination with the aid of a machine vision system. The body
of this paper details issues in the design and operation of such
systems. For the sake of illustration, extant systems are described
in some amount of detail.
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I. INTRODUCTION

A. Motivation

Technologies that exploit biometrics have the potential
for application to the identification and verification of
individuals for controlling access to secured areas or ma-
terials.1 A wide variety of biometrics have been marshaled
in support of this challenge. Resulting systems include
those based on automated recognition of retinal vascula-
ture, fingerprints, hand shape, handwritten signature, and
voice [24], [40]. Provided a highly cooperative operator,
these approaches have the potential to provide acceptable
performance. Unfortunately, from the human factors point
of view, these methods are highly invasive: Typically, the
operator is required to make physical contact with a sensing
device or otherwise take some special action (e.g., recite
a specific phonemic sequence). Similarly, there is little
potential for covert evaluation. One possible alternative to
these methods that has the potential to be less invasive
is automated face recognition. However, while automated
face recognition is a topic of active research, the inherent
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difficulty of the problem might prevent widely applicable
technologies from appearing in the near term [9], [45].
Automated iris recognition is yet another alternative for
noninvasive verification and identification of people. Inter-
estingly, the spatial patterns that are apparent in the human
iris are highly distinctive to an individual [1], [34] (see,
e.g., Fig. 1). Like the face, the iris is an overt body that is
available for remote (i.e., noninvasive) assessment. Unlike
the human face, however, the variability in appearance
of any one iris might be well enough constrained to
make possible an automated recognition system based on
currently available machine vision technologies.

B. Background

The wordiris dates from classical times ( , a rainbow).
As applied to the colored portion of the exterior eye, iris
seems to date to the sixteenth century and was taken to
denote this structure’s variegated appearance [50]. More
technically, the iris is part of the uveal, or middle, coat of
the eye. It is a thin diaphragm stretching across the anterior
portion of the eye and supported by the lens (see Fig. 2).
This support gives it the shape of a truncated cone in three
dimensions. At its base, the iris is attached to the eye’s
cilliary body. At the opposite end, it opens into the pupil,
typically slightly to the nasal side and below center. The
cornea lies in front of the iris and provides a transparent
protective covering.

To appreciate the richness of the iris as a pattern for
recognition, it is useful to consider its structure in a bit
more detail. The iris is composed of several layers. Its
posterior surface consists of heavily pigmented epithelial
cells that make it light tight (i.e., impenetrable by light).
Anterior to this layer are two cooperative muscles for
controlling the pupil. Next is the stromal layer, consisting
of collagenous connective tissue in arch-like processes.
Coursing through this layer are radially arranged corkscrew-
like blood vessels. The most anterior layer is the anterior
border layer, differing from the stroma in being more
densely packed, especially with individual pigment cells
called chromataphores. The visual appearance of the iris
is a direct result of its multilayered structure. The an-
terior surface of the iris is seen to be divided into a
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Fig. 1. The distinctiveness of the human iris. The two panels
show images of the left iris of two individuals. Even to casual
inspection, the imaged patterns in the two irises are markedly
different.

central pupillary zone and a surrounding cilliary zone.
The border of these two areas is termed the collarette;
it appears as a zigzag circumferential ridge resulting as
the anterior border layer ends abruptly near the pupil. The
cilliary zone contains many interlacing ridges resulting from
stromal support. Contractile lines here can vary with the
state of the pupil. Additional meridional striations result
from the radiating vasculature. Other assorted variations in
appearance owe to crypts (irregular atrophy of the border
layer), nevi (small elevations of the border layer), and

freckles (local collections of chromataphores). In contrast,
the pupillary zone can be relatively flat. However, it often
shows radiating spoke-like processes and a pigment frill
where the posterior layer’s heavily pigmented tissue shows
at the pupil boundary. Last, iris color results from the
differential absorption of light impinging on the pigmented
cells in the anterior border layer. When there is little
pigmentation in the anterior border layer, light reflects back
from the posterior epithelium and is scattered as it passes
through the stroma to yield a blue appearance. Progressive
levels of anterior pigmentation lead to darker colored irises.
Additional details of iris structure can be found in the
biomedical literature (e.g., [1], [16]).

Claims that the structure of the iris is unique to an
individual and is stable with age come from two main
sources. The first source of evidence is clinical obser-
vations. During the course of examining large numbers
of eyes, ophthalmologists [20] and anatomists [1] have
noted that the detailed pattern of an iris, even the left
and right iris of a single person, seems to be highly
distinctive. Further, in cases with repeated observations,
the patterns seem to vary little, at least past childhood.
The second source of evidence is developmental biology
[35], [38]. There, one finds that while the general structure
of the iris is genetically determined, the particulars of its
minutiae are critically dependent on circumstances (e.g., the
initial conditions in the embryonic precursor to the iris).
Therefore, they are highly unlikely to be replicated via the
natural course of events. Rarely, the developmental process
goes awry, yielding only a rudimentary iris (aniridia) or
a marked displacement (corectopia) or shape distortion
(colobloma) of the pupil [35], [42]. Developmental evi-
dence also bears on issues of stability with age. Certain
parts of the iris (e.g., the vasculature) are largely in place at
birth, whereas others (e.g., the musculature) mature around
two years of age [1], [35]. Of particular significance for
the purposes of recognition is the fact that pigmentation
patterning continues until adolescence [1], [43], [51]. Also,
the average pupil size (for an individual) increases slightly
until adolescence [1]. Following adolescence, the healthy
iris varies little for the rest of a person’s life, although
slight depigmentation and shrinking of the average pupillary
opening are standard with advanced age [1], [42]. Various
diseases of the eye can drastically alter the appearance of
the iris [41], [42]. It also appears that intensive exposure to
certain environmental contaminants (e.g., metals) can alter
iris pigmentation [41], [42]. However, these conditions are
rare. Claims that the iris changes with more general states
of health (iridology) have been discredited [4], [56]. On
the whole, these lines of evidence suggest that the iris is
highly distinctive and, following childhood, typically stable.
Nevertheless, it is important to note that large-scale studies
that specifically address the distinctiveness and stability of
the iris, especially as a biometric, have yet to be performed.

Another interesting aspect of the iris from a biometric
point of view has to do with its moment-to-moment dy-
namics. Due to the complex interplay of the iris’ muscles,
the diameter of the pupil is in a constant state of small
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Fig. 2. Anatomy of the human iris. (a) The structure of the iris seen in a transverse section. (b)
The structure of the iris seen in a frontal sector. The visual appearance of the human iris derives
from its anatomical structure.

oscillation [1], [16]. Potentially, this movement could be
monitored to make sure that a live specimen is being
evaluated. Further, since the iris reacts very quickly to
changes in impinging illumination (e.g., on the order of
hundreds of milliseconds for contraction), monitoring the
reaction to a controlled illuminant could provide similar
evidence. In contrast, upon morbidity, the iris contracts and
hardens, facts that may have ramifications for its use in
forensics.

Apparently, the first use of iris recognition as a basis for
personal identification goes back to efforts to distinguish
inmates in the Parisian penal system by visually inspecting
their irises, especially the patterning of color [5]. More
recently, the concept of automated iris recognition was

proposed by Flom and Safir [20] It does not appear,
however, that this team ever developed and tested a working
system. Early work toward actually realizing a system
for automated iris recognition was carried out at Los
Alamos National Laboratories, CA [32]. Subsequently, two
research groups developed and documented prototype iris-
recognition systems [14], [52]. These systems have shown
promising performance on diverse data bases of hundreds of
iris images. Other research into automated iris recognition
has been carried out in North America [48] and Europe
[37]; however, these efforts have not been well documented
to date. More anecdotally, a notion akin to automated
iris recognition came to popular attention in the James
Bond film Never Say Never Again, in which characters are
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Fig. 3. Schematic diagram of iris recognition. Given a subject to be evaluated (left of upper row)
relative to a data base of iris records (left of lower row), recognition proceeds in three steps. The
first step is image acquisition, which yields an image of the subject’s eye region. The second step is
iris localization, which delimits the iris from the rest of the acquired image. The third step is pattern
matching, which produces a decision, “D.” For verification, the decision is a yes/no response relative
to a particular prespecified data base entry; for identification, the decision is a record (possibly null)
that has been indexed relative to a larger set of entries.

depicted having images of their eye captured for the purpose
of identification [22].

C. Outline

This paper subdivides into four major sections. This first
section has served to introduce the notion of automated iris
recognition. Section II describes the major technical issues
that must be confronted in the design of an iris-recognition
system. Illustrative solutions are provided by reference to
the two systems that have been well documented in the
open literature [14], [52]. Section III overviews the status
of these systems, including test results. Last, Section IV
provides concluding observations.

II. TECHNICAL ISSUES

Conceptually, issues in the design and implementation
of a system for automated iris recognition can be subdi-
vided into three parts (see Fig. 3). The first set of issues
surrounds image acquisition. The second set is concerned
with localizing the iris per se from a captured image. The
third part is concerned with matching an extracted iris
pattern with candidate data base entries. This section of
the paper discusses these issues in some detail. Throughout
the discussion, the iris-recognition systems of Daugman
[12]–[14] and Wildes et al. [52]–[54] will be used to
provide illustrations.

A. Image Acquisition

One of the major challenges of automated iris recognition
is to capture a high-quality image of the iris while remaining
noninvasive to the human operator. Given that the iris is
a relatively small (typically about 1 cm in diameter), dark
object and that human operators are very sensitive about

their eyes, this matter requires careful engineering. Several
points are of particular concern. First, it is desirable to
acquire images of the iris with sufficient resolution and
sharpness to support recognition. Second, it is important
to have good contrast in the interior iris pattern without
resorting to a level of illumination that annoys the operator,
i.e., adequate intensity of source (W/cm) constrained by
operator comfort with brightness (W/sr-cm). Third, these
images must be well framed (i.e., centered) without unduly
constraining the operator (i.e., preferably without requiring
the operator to employ an eye piece, chin rest, or other
contact positioning that would be invasive). Further, as
an integral part of this process, artifacts in the acquired
images (e.g., due to specular reflections, optical aberrations,
etc.) should be eliminated as much as possible. Schematic
diagrams of two image-acquisition rigs that have been
developed in response to these challenges are shown in
Fig. 4.

Extant iris-recognition systems have been able to answer
the challenges of image resolution and focus using standard
optics. The Daugman system captures images with the iris
diameter typically between 100 and 200 pixels from a
distance of 15–46 cm using a 330-mm lens. Similarly, the
Wildeset al.system images the iris with approximately 256
pixels across the diameter from 20 cm using an 80-mm lens.
Due to the need to keep the illumination level relatively
low for operator comfort, the optical aperture cannot be
too small (e.g., -stop 11). Therefore, both systems have
fairly small depths of field, approximately 1 cm. Video
rate capture is exploited by both systems. Typically, this
is sufficient to guard against blur due to eye movements
provided that the operator is attempting to maintain a steady
gaze. Empirically, the overall spatial resolution and focus
that results from these designs appear to be sufficient to sup-
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Fig. 4. Image-acquisition rigs for automated iris recognition. (a) A schematic diagram of the
Daugman image-acquisition rig. (b) A schematic diagram of the Wildeset al. image-acquisition rig.

port iris recognition. Interestingly, additional investigations
have shown that images of potential quality to support iris
recognition can be acquired in rather different settings. For
example, iris images can be acquired at distances up to a
meter (using a standard video camera with a telephoto lens)
[54]. Further, iris images can be acquired at very close range

while an operator wears a head-mounted display equipped
with light emitting diode (LED) illuminants and micro-
miniature optics and camera [47]. However, iris images
acquired in these latter fashions have received only very
preliminary testing with respect to their ability to support
recognition.
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Illumination of the iris must be concerned with the trade-
off between revealing the detail in a potentially low contrast
pattern (i.e., due to dense pigmentation of dark irises) and
the light sensitivity of human operators. The Daugman and
Wildes et al. systems illustrate rather different approaches
to this challenge. The former makes use of an LED-based
point light source in conjunction with a standard video
camera. The latter makes use of a diffuse source and
polarization in conjunction with a low-light level camera.
The former design results in a particularly simple and
compact system. Further, by careful positioning of the light
source below the operator, reflections of the point source
off eyeglasses can be avoided in the imaged iris. Without
placing undue restriction on the operator, however, it has
not been possible to reliably position the specular reflection
at the eye’s cornea outside the iris region. Therefore, this
design requires that the region of the image where the
point source is seen (the lower quadrant of the iris as
the system has been instantiated) must be omitted during
matching since it is dominated by artifact. The latter design
results in an illumination rig that is more complex; however,
certain advantages result. First, the use of matched circular
polarizers at the light source and the camera essentially
eliminates the specular reflection of the light source.2 This
allows for more of the iris detail to be available for
subsequent processing. Second, the coupling of a low light
level camera (a silicon intensified camera [26]) with a
diffuse illuminant allows for a level of illumination that
is entirely unobjectionable to human operators. In terms of
spectral distribution, both systems make use of light that is
visible to human operators. It has been suggested, however,
that infrared illumination would also suffice [14], [47].
Further, both systems essentially eschew color information
in their use of monochrome cameras with 8-b gray-level
resolution. Presumably, color information could provide
additional discriminatory power. Also, color could be of
use for initial coarse indexing through large iris data bases.
For now, it is interesting to note that empirical studies to
date suggest the adequacy of gray-level information alone
(see, e.g., Section III).

The positioning of the iris for image capture is concerned
with framing all of the iris in the camera’s field of view
with good focus. Both the Daugman and Wildeset al.
systems require the operator to self-position his eye region
in front of the camera. Daugman’s system provides the
operator with live video feedback via a miniature liquid-
crystal display placed in line with the camera’s optics via
a beam splitter. This allows the operator to see what the
camera is capturing and to adjust his position accordingly.

2Light emerging from the circular polarizer will have a particular sense
of rotation. When this light strikes a specularly reflecting surface (e.g., the
cornea), the light that is reflected back is still polarized but has reversed
sense. This reversed-sense light is not passed through the camera’s filter
and is thereby blocked from forming an image. In contrast, the diffusely
reflecting parts of the eye (e.g., the iris) scatter the impinging light. This
light is passed through the camera’s filter and is subsequently available
for image formation [31]. Interestingly, a similar solution using crossed
polarizers (e.g., vertical at the illuminant and horizontal at the camera) is
not appropriate for this application: the birefringence of the eye’s cornea
yields a low-frequency artifact in the acquired images [10].

During this process, the system is continually acquiring
images. Once a series of images of sufficient quality is
acquired, one is automatically forwarded for subsequent
processing. Image quality is assessed by looking for high-
contrast edges marking the boundary between the iris and
the sclera.

In contrast, the Wildeset al. system provides a reticle to
aid the operator in positioning. In particular, a square con-
tour is centered around the camera lens so that it is visible to
the operator. Suspended in front of this contour is a second,
smaller contour of the same shape. The relative sizes and
positions of these contours are chosen so that when the eye
is in an appropriate position, the squares overlap and appear
as one to the operator. As the operator maneuvers, the
relative misalignment of the squares provides continuous
feedback regarding the accuracy of the current position.
Once the operator has completed the alignment, he activates
the image capture by pressing a button.

Subjectively, both of the described approaches to posi-
tioning are fairly easy for a human operator to master. Since
the potential for truly noninvasive assessment is one of the
intriguing aspects of iris recognition, however, it is worth
underlining the degree of operator participation that is re-
quired in these systems. While physical contact is avoided,
the level of required cooperativity may still prevent the
systems from widespread application. In fact, it appears that
all extant approaches to automated iris recognition require
operator assistance for this purpose (i.e., as additionally
reported in [32], [37], and [48]). Therefore, an interesting
direction for future research involves the development of
a system that automatically frames an operator’s iris over
a larger three-dimensional volume with minimal operator
participation. For example, the ability to locate a face within
a range of about a meter and then to point and zoom a
camera to acquire an image of the eye region has been
demonstrated using available computer vision technology
[23]. While this work is quite preliminary, it suggests the
possibility of acquiring iris images in scenarios that are
more relaxed than those required by current iris-recognition
systems. The ability to perform this task in an effective and
efficient manner is likely to have great implications for the
widespread deployment of iris recognition.

For graphical illustration, an image of an iris, including
the surrounding eye region, is shown in Fig. 5. The quality
of this image, acquired from the Wildeset al. system, could
be expected from either of the systems under discussion.

B. Iris Localization

Without placing undue constraints on the human operator,
image acquisition of the iris cannot be expected to yield an
image containing only the iris. Rather, image acquisition
will capture the iris as part of a larger image that also
contains data derived from the immediately surrounding eye
region. Therefore, prior to performing iris pattern matching,
it is important to localize that portion of the acquired image
that corresponds to an iris. In particular, it is necessary
to localize that portion of the image derived from inside
the limbus (the border between the sclera and the iris) and
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Fig. 5. Example of captured iris image. Imaging of the iris must acquire sufficient detail for
recognition while being minimally invasive to the operator. Image acquisition yields an image of
the iris as well as the surrounding eye region.

outside the pupil. Further, if the eyelids are occluding part
of the iris, then only that portion of the image below the
upper eyelid and above the lower eyelid should be included.
Typically, the limbic boundary is imaged with high contrast,
owing to the sharp change in eye pigmentation that it
marks. The upper and lower portions of this boundary,
however, can be occluded by the eyelids. The pupillary
boundary can be far less well defined. The image contrast
between a heavily pigmented iris and its pupil can be
quite small. Further, while the pupil typically is darker
than the iris, the reverse relationship can hold in cases
of cataract: the clouded lens leads to a significant amount
of backscattered light. Like the pupillary boundary, eyelid
contrast can be quite variable depending on the relative
pigmentation in the skin and the iris. The eyelid boundary
also can be irregular due to the presence of eyelashes. Taken
in tandem, these observations suggest that iris localization
must be sensitive to a wide range of edge contrasts, robust
to irregular borders, and capable of dealing with variable
occlusion.

Reference to how the Daugman and Wildeset al. iris-
recognition systems perform iris localization further illus-
trates the issues. Both of these systems make use of first
derivatives of image intensity to signal the location of
edges that correspond to the borders of the iris. Here,
the notion is that the magnitude of the derivative across
an imaged border will show a local maximum due to
the local change of image intensity. Also, both systems
model the various boundaries that delimit the iris with
simple geometric models. For example, they both model
the limbus and pupil with circular contours. The Wildes
et al. system also explicitly models the upper and lower
eyelids with parabolic arcs, whereas the Daugman system
simply excludes the upper- and lower-most portions of the
image, where eyelid occlusion is expected to occur. In both
systems, the expected configuration of model components is
used to fine tune the image intensity derivative information.
In particular, for the limbic boundary, the derivatives are
filtered to be selective for vertical edges. This directional
selectivity is motivated by the fact that even in the face of
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occluding eyelids, the left and right portions of the limbus
should be visible and oriented near the vertical (assuming
that the head is in an upright position). Similarly, the deriva-
tives are filtered to be selective for horizontal information
when locating the eyelid borders. In contrast, since the
entire (roughly circular) pupillary boundary is expected to
be present in the image, the derivative information is used
in a more isotropic fashion for localization of this structure.
In practice, this fine tuning of the image information has
proven to be critical for accurate localization. For example,
without such tuning, the fits can be driven astray by
competing image structures (e.g., eyelids interfering with
limbic localization, etc.).

The two systems differ mostly in the way that they search
their parameter spaces to fit the contour models to the image
information. To understand how these searches proceed,
let represent the image intensity value at location

and let circular contours (for the limbic and pupillary
boundaries) be parameterized by center location
and radius . The Daugman system fits the circular contours
via gradient ascent on the parameters so as to
maximize

where is a radial Gauss-
ian with center and standard deviation that smooths
the image to select the spatial scale of edges under con-
sideration, symbolizes convolution, is an element of
circular arc, and division by serves to normalize the
integral. In order to incorporate directional tuning of the
image derivative, the arc of integration is restricted to
the left and right quadrants (i.e., near vertical edges) when
fitting the limbic boundary. This arc is considered over a
fuller range when fitting the pupillary boundary; however,
the lower quadrant of the image is still omitted due to
the artifact of the specular reflection of the illuminant in
that region (see Section II-A). In implementation, the con-
tour fitting procedure is discretized, with finite differences
serving for derivatives and summation used to instantiate
integrals and convolutions. More generally, fitting contours
to images via this type of optimization formulation is a
standard machine vision technique, often referred to as
active contour modeling (see, e.g., [33] and [57]).

The Wildeset al. system performs its contour fitting in
two steps. First, the image intensity information is con-
verted into a binary edge-map. Second, the edge points vote
to instantiate particular contour parameter values. The edge-
map is recovered via gradient-based edge detection [2],
[44]. This operation consists of thresholding the magnitude
of the image intensity gradient, i.e., ,
where while

is a two-dimensional Gaussian with center and
standard deviation that smooths the image to select the

spatial scale of edges under consideration. In order to in-
corporate directional tuning, the image intensity derivatives
are weighted to favor certain ranges of orientation prior to
taking the magnitude. For example, prior to contributing
to the fit of the limbic boundary contour, the derivatives
are weighted to be selective for vertical edges. The voting
procedure is realized via Hough transforms [27], [28] on
parametric definitions of the iris boundary contours. In
particular, for the circular limbic or pupillary boundaries
and a set of recovered edge points ,
a Hough transform is defined as

where

if
otherwise

with

For each edge point for
every parameter triple that represents a circle
through that point. Correspondingly, the parameter triple
that maximizes is common to the largest number of edge
points and is a reasonable choice to represent the contour
of interest. In implementation, the maximizing parameter
set is computed by building as an array that
is indexed by discretized values for and . Once
populated, the array is scanned for the triple that defines its
largest value. Contours for the upper and lower eyelids are
fit in a similar fashion using parameterized parabolic arcs
in place of the circle parameterization .
Just as the Daugman system relies on standard techniques
for iris localization, edge detection followed by a Hough
transform is a standard machine vision technique for fitting
simple contour models to images [2], [44].

Both approaches to localizing the iris have proven to be
successful in the targeted application. The histogram-based
approach to model fitting should avoid problems with local
minima that the active contour model’s gradient descent
procedure might experience. By operating more directly
with the image derivatives, however, the active contour
approach avoids the inevitable thresholding involved in
generating a binary edge-map. Further, explicit modeling
of the eyelids (as done in the Wildeset al. system) should
allow for better use of available information than sim-
ply omitting the top and bottom of the image. However,
this added precision comes with additional computational
expense. More generally, both approaches are likely to
encounter difficulties if required to deal with images that
contain broader regions of the surrounding face than the
immediate eye region. For example, such images are likely
to result from image-acquisition rigs that require less oper-
ator participation than those currently in place. Here, the
additional image “clutter” is likely to drive the current,
relatively simple model fitters to poor results. Solutions to
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Fig. 6. Illustrative results of iris localization. Given an acquired image, it is necessary to separate
the iris from the surround. The input to the localization process was the captured iris image of
Fig. 5. Following iris localization, all but the iris per se is masked out.

this type of situation most likely will entail a preliminary
coarse eye localization procedure to seed iris localization
proper. In any case, following successful iris localization,
the portion of the captured image that corresponds to the
iris can be delimited. Fig. 6 provides an example result of
iris localization as performed by the Wildeset al. system.

C. Pattern Matching

Having localized the region of an acquired image that
corresponds to the iris, the final task is to decide if this
pattern matches a previously stored iris pattern. This matter
of pattern matching can be decomposed into four parts:

1) bringing the newly acquired iris pattern into spatial
alignment with a candidate data base entry;

2) choosing a representation of the aligned iris patterns
that makes their distinctive patterns apparent;

3) evaluating the goodness of match between the newly
acquired and data base representations;

4) deciding if the newly acquired data and the data base
entry were derived from the same iris based on the
goodness of match.

1) Alignment: To make a detailed comparison between
two images, it is advantageous to establish a precise corre-
spondence between characteristic structures across the pair.
Both of the systems under discussion compensate for image
shift, scaling, and rotation. Given the systems’ ability to aid
operators in accurate self-positioning, these have proven to
be the key degrees of freedom that required compensation.
Shift accounts for offsets of the eye in the plane parallel to
the camera’s sensor array. Scale accounts for offsets along
the camera’s optical axis. Rotation accounts for deviation
in angular position about the optical axis. Nominally, pupil
dilation is not a critical issue for the current systems
since their constant controlled illumination should bring
the pupil of an individual to the same size across trials
(barring illness, etc.). For both systems, iris localization is
charged with isolating an iris in a larger acquired image and
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thereby essentially accomplishes alignment for image shift.
Daugman’s system uses radial scaling to compensate for
overall size as well as a simple model of pupil variation
based on linear stretching. This scaling serves to map
Cartesian image coordinates to dimensionless polar
image coordinates according to

where lies on and is cyclic over , while
and are the coordinates of

the pupillary and limbic boundaries in the direction.
Rotation is compensated for by explicitly shifting an iris
representation in by various amounts during matching.

The Wildes et al. system uses an image-registration
technique to compensate for both scaling and rotation.
This approach geometrically warps a newly acquired image

into alignment with a selected data base image
according to a mapping function

such that for all , the image intensity value at
in is close to that at in . More

precisely, the mapping function is taken to minimize

while being constrained to capture a similarity transforma-
tion of image coordinates to , i.e.,

with a scaling factor and a matrix representing
rotation by . In implementation, given a pair of iris images

and , the warping parametersand , are recovered
via an iterative minimization procedure [3].

As with much of the processing that the two iris-
recognition systems perform, the methods for establishing
correspondences between acquired and data base iris images
seem to be adequate for controlled assessment scenarios.
Once again, however, more sophisticated methods may
prove to be necessary in more relaxed scenarios. For
example, a simple linear stretching model of pupil
dilation does not capture the complex physical nature
of this process, e.g., the coiling of blood vessels and the
arching of stromal fibers. Similarly, more complicated
global geometric compensations will be necessary if
full perspective distortions (e.g., foreshortening) become
significant.

2) Representation:The distinctive spatial characteristics
of the human iris are manifest at a variety of scales. For
example, distinguishing structures range from the overall
shape of the iris to the distribution of tiny crypts and
detailed texture. To capture this range of spatial detail, it
is advantageous to make use of a multiscale representation.
Both of the iris-recognition systems under discussion make
use of bandpass image decompositions to avail themselves
of multiscale information. The Daugman system makes use
of a decomposition derived from application of a two-
dimensional version of Gabor filters [21] to the image data.

Since the Daugman system converts to polar coordinates
during alignment, it is convenient to give the filters

in a corresponding form as

where and covary in inverse proportion to to
generate a set of quadrature pair frequency-selective filters
with center locations specified by . These filters
are particularly notable for their ability to achieve good
joint localization in the spatial and frequency domains.
Further, owing to their quadrature nature, these filters
can capture information about local phase. Following the
Gabor decomposition, Daugman’s system compresses its
representation by quantizing the local phase angle according
to whether the real, , and imaginary, , filter outputs
are positive or negative. For a filter given with bandpass
parameters and and location , a pair of bits

is generated according to

if

if

if

if

The parameters and are sampled so as to
yield a 256-byte representation that serves as the basis
for subsequent processing. In implementation, the Gabor
filtering is performed via a relaxation algorithm [11], with
quantization of the recovered phase information yielding
the final representation.

The Wildeset al. system makes us of an isotropic band-
pass decomposition derived from application of Laplacian
of Gaussian filters [25], [29] to the image data. These filters
can be specified as

with the standard deviation of the Gaussian andthe
radial distance of a point from the filter’s center. In practice,
the filtered image is realized as a Laplacian pyramid [8],
[29]. This representation is defined procedurally in terms
of a cascade of small Gaussian-like filters. In particular,
let be a one-dimensional mask and

be the two-dimensional mask that results from
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Fig. 7. Multiscale representation for iris pattern matching. Distinctive features of the iris are
manifest across a range of spatial scales. Pattern matching is well served by a bandpass decom-
position spanning high to low spatial frequency. A compact representation results from successive
subsampling of lower frequency bands. The localized iris of Fig. 6 is shown under such a multiscale
representation.

taking the outer product of with itself. Given an image of
interest , construction of a Laplacian pyramid begins with
convolution of with so as to yield a set of low-pass
filtered images according to

with and symbolizing down sampling by a
factor of two in each image dimension. Theth level of the
Laplacian pyramid is formed as the difference between

and , with expanded before subtraction so
that it matches the sampling rate of. The expansion is
accomplished by upsampling and interpolation

where indicates upsampling by a factor of two via
insertion of a row and column of zeros between each
row and column of the original image. The generating
kernel is used as the interpolation filter, and the factor
of four is necessary because 3/4 of the samples in the
image are newly inserted zeros. The resulting Laplacian
pyramid, constructed with four levels, serves as the basis
for subsequent processing. The difference of Gaussians that
the construction of this representation entails yields a good
approximation to Laplacian of Gaussian filtering [39]. Ad-
ditionally, it is of note for efficient storage and processing as
lower frequency bands are subsampled successively without
loss of information beyond that introduced by the filtering.
In implementation, Laplacian pyramid construction follows
in a straightforward fashion from its procedural definition.

By quantizing its filter outputs, the representational ap-
proach that is used in the Daugman system yields a re-
markably parsimonious representation of an iris. Indeed,

a representation with a size of 256 bytes can be accom-
modated on the magnetic stripe affixed to the back of
standard credit/debit cards [7]. In contrast, the Wildeset al.
representation is derived directly from the filtered image for
size on the order of the number of bytes in the iris region
of the originally captured image. By retaining more of the
available iris information, however, the Wildeset al.system
might be capable of making finer grained distinctions
between different irises. Since large-scale studies of iris
recognition are currently lacking, it is too early to tell
exactly how much information is necessary for adequate
discrimination in the face of sizable samples from the
human population. In any case, in deriving their represen-
tations from bandpass filtering operations, both approaches
capitalize on the multiscale structure of the iris. For the sake
of illustration, an example multiscale representation of an
iris as recovered by the Wildeset al. system, is shown in
Fig. 7.

3) Goodness of Match:Given the systems’ controlled
image acquisitions and abilities to bring data base entry and
newly acquired data into precise alignment, an appropriate
match metric can be based on direct point-wise comparisons
between primitives in the corresponding representations.
The Daugman system quantifies this matter by computing
the percentage of mismatched bits between a pair of iris
representations, i.e., the normalized Hamming distance
[30]. Letting and be two iris representations to be
compared, this quantity can be calculated as
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with subscript indexing bit position and denoting the
exclusive-OR operator. (The exclusive-OR is a Boolean
operator that equals one if and only if the two bits and

are different.) The result of this computation is then used
as the goodness of match, with smaller values indicating
better matches. The exclusive-OR of corresponding bits
in the acquired and data base iris representations can
be calculated with negligible computational expense. This
allows the system to compare an acquired representation
with interesting numbers of data base entries (e.g., on the
order of 10) in under a second. The system exploits this
comparison rate as a brute force solution to identification,
not just verification of an operator, i.e., sequential exam-
ination of each record in moderate-size data bases. While
this search ability is impressive, identification in the face
of significantly larger data bases might require a cleverer
indexing strategy.

The Wildes et al. system employs a somewhat more
elaborate procedure to quantify the goodness of match. The
approach is based on normalized correlation between the
acquired and data base representations. In discrete form,
normalized correlation can be defined in the following
fashion. Let and be two image arrays of size

. Further, let and

be the mean and standard deviation for the intensities of,
respectively. Also, let and be similarly defined with
reference to . Then, the normalized correlation between

and can be defined as

Normalized correlation captures the same type of infor-
mation as standard correlation (i.e., integrated similarity
of corresponding points in the regions); however, it also
accounts for local variations in image intensity that corrupt
standard correlation [2]. This robustness comes about as
the mean intensities are subtracted in the numerator of the
correlation ratio, while the standard deviations appear in
the denominator. In implementation, the correlations are
performed discretely over small blocks of pixels (88) in
each of the four spatial frequency bands that are instantiated
in the Laplacian pyramid representations. These operations
result in multiple correlation values for each band. Subse-
quent processing combines the block correlations within
a band into a single value via the median statistic. In
sum, this yields a set of four goodness-of-match values,
one for each frequency band. Blocking combined with the
median operation allows for local adjustments of matching
and a degree of outlier rejection, and thereby provides
robustness against mismatches due to noise, misalignment,
and occlusion (e.g., a stray eyelash). This method has been
applied to the verification task only.

4) Decision: The final task that must be performed for
current purposes is to evaluate the goodness-of-match val-
ues into a final judgment as to whether the acquired data
does (authentic) or does not (imposter) come from the
same iris as does the data base entry. For the Daugman
system, this amounts to choosing a separation point in
the space of (normalized) Hamming distances between iris
representations. Distances smaller than the separation point
will be taken as indicative of authentics; those larger will
be taken as indicative of imposters.3 An appeal to statistical
decision theory [36], [49] is made to provide a principled
approach to selecting the separation point. There, given
distributions for the two events to be distinguished (i.e.,
authentic versus imposter), the optimal decision strategy
is defined by taking the separation as the point at which
the two distributions cross over. This decision strategy is
optimal in the sense that it leads to equal probability of
false accept and false reject errors. (Of course, even with a
theoretically “optimal” decision point in hand, one is free to
choose either a more conservative or more liberal criterion
according to the needs of a given installation.) In order
to calculate the cross-over point, sample populations of
imposters and authentics were each fit with parametrically
defined distributions. This was necessary since no data, i.e.,
Hamming distances, were observed in the cross-over region.
Binomial distributions [17] were used for the empirical fits.
A binomial distribution is given as

where

is the number of combinations of distinguishable items.
This formula gives the probability of successes in
independent Bernoulli trials. A Bernoulli trial, in turn, is
defined to generate an experimental value of a discrete
random variable according to the distribution

otherwise

with an outcome of taken as a success and an
outcome of taken as a failure. The use of a binomial
distribution was justified for the case of imposter matches
based on the distinctiveness of different irises. That is, the
matching of bits between a pair of representations from
different irises was taken to be a series of Bernoulli trials.
Not all of the bit matches were taken as independent,
however, due to the presence of inherent correlations in
iris structure as well as correlations introduced during
processing. Significantly, no such justification was given
for the modeling of the authentics.

3As documented, both the Daugman and Wildeset al. systems remain
agnostic about how to deal with cases that lie at their separation points,
where the goodness of match is supposed to be equally supportive of
deciding “authentic” or “imposter.” In empirical evaluations, it appears that
neither system has been confronted with this situation (see Section III).
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For the Wildeset al.system, the decision-making process
must combine the four goodness-of-match measurements
that are calculated by the previous stage of processing (i.e.,
one for each pass band in the Laplacian pyramid represen-
tation) into a single accept/reject judgement. Recourse is
had in standard techniques from pattern classification. In
particular, the notion that is appealed to is to combine the
values in a fashion so that the variance within a class of
iris data is minimized while the variance between different
classes of iris data is maximized. The linear function that
provides such a solution is well known and is given by
Fisher’s linear discriminant [18], [19]. This function can
be defined in the following fashion. Let there be -
dimensional samples of which are from a set and

of which are from a set . For example, in the current
application, each sample corresponds to a set of multiscale
goodness-of-match measurements, while the classes to be
distinguished are the authentics and imposters. Fisher’s
linear discriminant defines a weight vectorsuch that the
ratio of between class variance to within class variance is
maximized for the transformed samples . To formalize
this notion, let be the -dimensional
mean for and similarly for . A measure of variance
within a class of data can be given in terms of a scatter
matrix with the form

for and with similarly defined for . The total within
class scatter is given as . A corresponding
measure of variance between classes can be defined in terms
of the scatter matrix

With the preceding definitions in hand, the expression

describes the ratio of between to within class variance of the
transformed samples . Last, the use of a bit of calculus
and linear algebra leads to the conclusion that thethat
maximizes this ratio is given as

Interestingly, does not appear in this formula for
since it simply scales the overall result without otherwise
changing the separation. To apply this discriminant function
to classification, a separation point must be defined in its
range. Values above this point will be taken as derived from
class ; values below this point will be taken as derived
from class . In the current application, the separation point
is taken as the midpoint between the transformed means
of the samples from and , i.e., . If
the probabilities of the measurements given either class
are normally distributed and have equal variance, (i.e.,

with the variance
[17], and similarly for ), then this choice of separation

point can be shown to be optimal (i.e., equal probability
of false accept and false reject errors). It is heuristic for
the case of iris match measurements, however, where these
assumptions are not known to hold. In implementation, the
discriminant was defined empirically based on a set of iris
training data.

While both of the decision methods have performed well
to date, the underlying data-modeling assumptions need to
be rigorously evaluated against a larger corpus of data.
Both of the methods rely on the assumptions that the
imposter and authentic populations can each be modeled
with single distributions. A basic tenet of iris recognition
is that different irises are highly distinct. Therefore, it
is reasonable to view the distribution of imposters as
varying about a central tendency dictated by some notion
of independence, e.g., a 50% chance of individual bits’
matching in the Daugman representation or poor correlation
for the multiscale matches in the Wildeset al. system.
Indeed, empirically, this seems to be the case for both
systems. However, there is no such theoretical underpining
for modeling the authentics with a single distribution.
In fact, one might argue that authentics would be best
modeled by a mixture of distributions, perhaps even one
distribution for repeat occurrences of each iris. From an
empirical point of view, it is of concern that the current
decision strategies are derived from rather small samples
of the population (i.e., on the order of 10). This matter is
exacerbated by the fact that little data has been reported in
the cross-over regions for the decisions, exactly the points
of most concern. To resolve these issues properly, it will
be necessary to consider a larger sample of iris data than
the current systems have employed.

5) A Caveat: Both of the reviewed approaches to pattern
matching are based on methods that are closely tied to the
recorded image intensities. More abstract representations
may be necessary to deal with greater variation in the
appearance of any one iris, e.g., as might result from more
relaxed image acquisition. One way to deal with greater
variation would be to extract and match sets of features
that are expected to be more robust to photometric and
geometric distortions in the acquired images. In particular,
features that bear a closer and more explicit relationship
to physical structures of the iris might exhibit the desired
behavior. For example, preliminary results indicate that
multiscale blob matching could be valuable in this regard
[54]. This approach relies on the correspondence between
the dark and light blob structures that typically are apparent
in iris images and iris structures such as crypts, freckles,
nevi, and striations. If current methods in iris pattern
matching begin to break down in future applications, then
such symbolic approaches will deserve consideration. It
is worth noting, however, that the added robustness that
these approaches might yield will most likely come with
increased computational expense.

D. Recapitulation

The main functional components of extant iris-
recognition systems consist of image acquisition, iris
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localization, and pattern matching. In evaluating designs
for these components, one must consider a wide range
of technical issues. Chief among these are the physical
nature of the iris, optics, image processing/analysis, and
human factors. All these considerations must be combined
to yield robust solutions even while incurring modest
computational expense and compact design. Example
solutions to these issues are in place. These solutions
have proven to be reliable in preliminary evaluations.
More challenging operational scenarios (e.g., acquisition
of images with less operator participation) might require
somewhat different or at least more elaborate approaches.

III. SYSTEMS AND PERFORMANCE

The image-acquisition, iris-localization, and pattern-
matching components developed by Daugman [12]–[14]
and Wildes et al. [52]–[54] have been assembled into
prototype iris-recognition systems. Both of these systems
have been awarded U.S. patents [15], [55]. Further, both
systems have been the subject of preliminary empirical
evaluation. In this section, the system and performance
aspects of the two approaches are described.

The Daugman iris-recognition system consists of
an image-acquisition rig (standard video camera, lens,
framegrabber, LED illuminator and miniature video display
for operator positioning) interfaced to a standard computer
workstation (a Sun 4). The image-analysis software for
the system has been implemented in optimized integer
code. The system is capable of three functional modes
of operation: enrollment, verification, and identification.
In enrollment mode, an image of an operator is captured
and a corresponding data base entry is created and stored.
In verification mode, an image of an operator is acquired
and is evaluated relative to a specified data base entry. In
identification mode, an image is acquired and evaluated
relative to the entire data base via sequential comparisons.
Both the enrollment and verification modes take under 1 s
to complete. The identification mode can evaluate against a
data base of up to 4000 entries in the same amount of time.
A commercial version of this system also is available
through IriScan [46]. This version embodies largely
the same approach, albeit with further optimization and
special-purpose hardware for a more compact instantiation.

The Daugman system has been subjected to two sets
of empirical tests. In the first study, 592 irises were rep-
resented as derived from 323 persons [14]. An average
of approximately three images were taken of each iris.
(The time lag involved in repeat captures of a single iris
has not been reported.) The irises involved spanned the
range of common iris colors: blue, hazel, green, and brown.
This preparation allows for evaluation of authentics and
imposters across a representative range of iris pigmen-
tations and with some passage of time. In the face of
this data set, the system exhibited no false accepts and
no false rejects. In an attempt to analyze the data from
this experiment, binomial distributions were fit to both the
observed authentic and imposter scores, i.e., as previously

described during the discussion of pattern matching. The
fits were used to calculate several statistics. The cross-
over error rate for false accepts and false rejects was
found to be 1 in 131 000. Further, based on the means
of the fits, typical matching statistics were calculated.
For the “typical” imposter comparison, the confidence
with which the operator was rejected corresponded to a
conditional false reject probability of 1 in 10. For the
“typical” authentic comparison, the confidence with which
the operator was accepted corresponded to a conditional
false accept probability of 1 in 10. Interpretation of
these inferences requires caution. As noted during the
discussion of pattern matching, justification for fitting the
observed data with binomial distributions is problematic.
From a theoretical point of view, it is not clear why such
a distribution is appropriate for the case of authentics.
From an empirical point of view, the fits are based on
small samples of the populations, and data is lacking in the
critical cross-over region. Nevertheless, it is worth noting
that qualitatively, the data for authentics and imposters were
well separated in this study.

In a second study, a preproduction version of the com-
mercial IriScan system was evaluated [6]. In this study, the
system was installed in a public space at Sandia National
Laboratories, NM. Operators consisted of volunteers from
the Sandia community. The study was conducted in two
phases. In the first phase, 199 irises were represented
as derived from 122 people. Following enrollment, the
operators made a total of 878 attempts to use the system
in identification mode over a period of eight days. Of these
attempts, 89 false rejects were recorded. For 47 of these
cases, however, the operator made a retry, and all but 16
of these were accepted. All of these errors were traced
to either reflections from eye wear that obscured the iris
or user difficulty (e.g., difficulty in self-positioning). No
false accepts were recorded. In the second phase, 96 of the
people involved in the first phase attempted an identification
relative to a data base with 403 entries, none of which
corresponded to the operators in question. Once again, no
false accepts were recorded. This study is of particular
interest since of the reported iris-recognition tests, it comes
closest to approximating an actual deployment of a system.
In both studies of the Daugman system, operators found
it to be generally unobjectionable in subjective evaluation.
However, some reports of discomfort with the illuminant
were recorded in the second study.

The Wildes et al. iris-recognition system consists of
an image-acquisition rig (low light video camera, lens,
framegrabber, diffuse polarized illuminator, and reticle for
operator positioning) interfaced to a standard computer
workstation (a Sun SPARCstation 20). The image-analysis
software for the system has been implemented in the C
or UNIX C Shell languages without optimization. This
system is capable of two functional modes of operation:
enrollment and verification. These modes operate analo-
gously to those described for the Daugman system. Both
of these modes require approximately 10 s to complete.
A significant speed-up of execution should be possible,
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however, via optimization of the image-analysis software.
No commercial version of this system is available.

The Wildeset al. system has not been evaluated to the
same degree as has the Daugman system. In particular, the
system has been the subject of one empirical study [52].
In this study, a total of 60 different irises were represented
as derived from 40 persons. For each iris, ten images were
captured: five at an initial session and five approximately
one month latter. Of note is the fact that this sample
included identical twins. Again, the common range of iris
colors (blue, hazel, green, and brown) were represented.
This preparation allowed for the same types of comparisons
as the previously described experiments. There were no
observed false positives or false negatives in the evaluation
of this corpus of data. In this case, statistical analysis was
eschewed owing to the small sample size. At a qualitative
level, however, the data for authentics and imposters were
well separated. In subjective reports, operators found the
system to be unobjectionable.

Overall, the two iris-recognition systems that are being
used for illustration have performed remarkably well under
preliminary testing. Given that the experiments were con-
ducted on samples on the order of 10or less (i.e., number
of irises in the experiments) from a population on the
order of 10 (i.e., total number of human irises), however,
one must be cautious in the extrapolation of these results.
Nevertheless, the results speak in favor of iris recognition
as a promising biometric technology.

IV. CONCLUSION

For at least a century, it has been suggested that the
iris can subserve biometrically based recognition of human
individuals. Recent efforts in machine vision have yielded
automated systems that take strides toward realizing this
potential. As currently instantiated, these systems are rel-
atively compact and efficient and have shown promising
performance in preliminary testing. Extant systems require
a fair amount of operator participation and work at rather
close range. Therefore, they are best suited to controlled
assessment scenarios (e.g., portal entry and the like).

The notion that the iris is a useful biometric for recog-
nition stems largely from anecdotal clinical and indirect
developmental evidence. This body of evidence suggests
that the structure of individual irises is highly distinctive
and stable with age. Empirical testing of documented iris-
recognition systems provide additional support for these
claims; however, these tests were limited in scope. An
important direction for future efforts is the design and exe-
cution of controlled, large-scale, longitudinal studies. Only
via reference to such studies can the true accuracy of iris
recognition be determined for both the verification and iden-
tification tasks. Another potentially rich direction for future
research would be to relax the constraints under which
current iris-recognition systems operate. In this regard, it
would be particularly desirable to decrease the required
level of operator participation even while increasing the
physical distance from which evaluation takes place. If such

goals can be achieved, then iris recognition can provide the
basis for truly noninvasive biometric assessment. Further, if
these enhancements can be had while maintaining compact,
efficient, and low-cost implementations, then iris recogni-
tion will be well positioned for widespread deployment.
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