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Short Paper's 
Using Discriminant Eigenfeatures 

for Image Retrieval 

Daniel L. Swets and John (Juyang) Weng 

Abstract-This paper describes the automatic selection of features 
from an image training set using the theories of multidimensional 
discriminant analysis and the associated optimal linear projection. We 
demonstrate the effectiveness of these Most Discriminafing Features 
for view-based class retrieval from a large database of widely varying 
real-world objects presented as "well-framed" views, and compare it 
with that of the principal component analysis. 

Index Terms-Principal component analysis, discriminant analysis, 
eigenfeature, image retrieval, feature selection, face recognition, object 
recognition, content-based image retrieval. 

+ -  
1 INTRODUCTION 
THE ability of computers to rapidly and successfully retrieve in- 
formation from image databases based on the objects contained in 
the images has a direct impact on the progress of digital library 
technology [9]. The complexity in the very nature of two- 
dimensional image data gives rise to a host of problems that al- 
phanumeric information systems were never designed to handle 
[l]. A central task of these multimedia information systems is the 
storage, retrieval, and management of images [15]. In many cases, 
the operator would like to base this retrieval on objects contained 
in the images of the database. As such, content-based image re- 
trieval is fundamentally an object recsognition problem. 

The research emphasis to this end has historically been on the 
design of efficient matching algorithms from a manually designed 
feature set with hand-crafted shape rules (e.g., [7]). Hand-crafted 
shape rules can exploit the efficiency found in manually tuning 
features for a particular training image set. However, these rules 
have a severe limitation on the type of object classes that can be 
found by the image retrieval system. Objects greatly different than 
those for which the system was designed will not be retrieved 
accurately or efficiently. For example, features tuned to automati- 
cally find a human face will probably be useless for retrieving an 
image of a car. 

An alternative to hand-crafting features is the approach in 
which the machine automatically determines which features to 
use. The representation of the system is at the signal level instead 
of at the knowledge (e.g., shape) level. In this type of framework, a 
training phase finds salient features to use in the subsequent rec- 
ognition phase of the system. These types of approaches can deal 
directly with complex, real-world images [14], [20], [211 because 
the system is general and adaptive. 

The efficient selection of good features, however, is an impor- 
tant issue to consider [21. A well-known problem in pattern recog- 
nition is called "the curse of dimensionality"-more features do 
not necessarily imply a better classification success rate. For exam- 
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ple, principal component analysis, also known as the Karhunen- 
Logve projection and "eigenfeatures," has been used for face rec- 
ognition [20] and lip reading [3] .  An eigenfeature, however, may 
represent aspects of the imaging process which are unrelated to 
recognition, such as the illumination direction. An increase or de- 
crease in the number of eigenfeatures that are used does not neces- 
sarily lead to an improved success rate. The multivariate linear 
discriminant analysis we will use addresses this important issue. 

The application being studied in this paper is the query-by- 
example image retrieval problem. We base this problem on a user- 
defined labeling scheme, and produce a feature space that is tuned 
to tessellate the space covered by the samples using as few hyper- 
planes as possible. This feature space that is produced will not 
necessarily be good for a different labeling scheme. The labels 
used for a particular use scenario will determine the behavior 
patterns of the system we will describe. 

2 OPTIMAL SUBSPACE, GENERATION 
We use the theories of optimal linear projection to generate a tes- 
sellation of a space defined by the training images. This space is 
generated using two projections: a Karhunen-LoPve projection to 
produce a set of Most Expvessive Features (MEFs), and a subsequent 
discriminant analysis projection to produce a set of M o s t  Discvimi- 
nating Featuves (MDFs). 

In this work, as in [16] and [14], we require "well-framed" im- 
ages as input for training and query-by-example test probes. By 
well-framed images we mean that only a small variation in the 
size, position, and orientation of the objects in the images is al- 
lowed. The automatic selection of well-framed images is an un- 
solved problem in general. Techniques have been proposed to 
produce these types of images, using, for example, pixel-to-pixel 
search [201, hierarchical coarse-to-fine search [21], or genetic algo- 
rithm search [18]. This reliance on well-framed images is a limita- 
tion of the work; however, there are application domains where 
this limitation is not overly intrusive. In image databases, for ex- 
ample, the human operator can pre-process the image data for 
objects of interest to be stored in the database. 

2.1 The Most Expressive Features (MEF) 
Each input subimage can be treated as a high dimensional feature 
vector by concatenating the rows of the subimage together, using 
each pixel as a single featur'e. Thus each image is considered as a 
sample point in this high-dimensional space. Image instances of a 
particular object can be represented by an n-dimensional random 
vector X. X can be expanded exactly by X = W, where the columns 
of the n x n square matrix V are orthonormal basis vectors; Y is a 
random feature vector of the image X. Without loss of generality, 
Y can be considered as a zero-mean vector, since we could always 
redefine Y - EY as the new feature vector, and X - EX = V(Y - EY). 

2.1.1 Principal Component Analysis 
This dimension n of X is usually very large, on the order of several 
thousand for even small image sizes. Since we expect that a rela- 
tively small number of features are sufficient to characterize a 
class, it is efficient and reasonable to approximate X using m < n 
columns of V to give X ( m )  =: ~ ~ , y i v i ,  where the vis are the col- 

umn vectors of V. 
Let the effectiveness of the approximation be defined as the 

mean-square error X - X(m) . Then we can use the proven result II IJZ 
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[6], [lo], [12] that the best vectors v,, v,, ... v, to use are the unit 
eigenvectors associated with the m largest eigenvalues of the covari- 
ance matrix of X, C, = E[(X - M.JX - MJt1, where M, is the mean 

(expected) vector of X. During the training phase, C, is replaced by 
the sample scatter matrix. Then the features yl, y2, ym can be easily 

computed from y, = v:(X - Mx), i = 1, 2, m. Since these y,s give 
the minimum mean-square error, we call them the Most Expressive 
Features (MEF) in that they best express the population in the sense 
of linear transform as evidenced in reconstruction 1111. 

This projection, also called the Karhunen-Loeve projection and 
principal component analysis [SI, has been used to represent [11J 
and recognize 1201, [16] face images, and for planning the illumi- 
nation of objects for future recognition tasks [14]. 

To determine m, the number of features to use, we first rank the 
eigenvalues of &, 4, A, A,,, in non-increasing order. The resid- 
ual mean-square error in using m < n features is simply the sum of 

the eigenvalues not used, x:=m+l A, . So we can choose m such that 

the sum of these unused eigenvalues is less than some fixed per- 
centage P of the sum of the entire set. So we let m satisfy 

(EL+, ai]/(x:=l A 1 )  < P .  If P = 5%, a good reduction in the 

number of features is obtained while retaining a large proportion 
of the variance present in the original feature vector [8] ,  [201, 
thereby losing very little of their original population-capturing 
power. 

2.1.2 Computational Considerations 

We can approximate the covariance matrix C, with the sample 

scatter matrix S = UUt, where U = [U, U, . ' . U,], and Ut = Xi -x, 
for k training samples. If k < n, as is typically the case when deal- 
ing with a small number of training samples relative to the image 
dimension, we can find the eigensystem of the smaller k x k matrix 
U"U. This means that U'Uw, = kiwi, with eigenvalue Ai and associ- 

ated eigenvector wi. Premultiplying by U gives Uu'Uw, = LlUwi. 

Then v, = Uwi is the eigenvector of S = Uu' with eigenvalue Az. If 
the number of samples available is more than the image dimen- 
sions, then the eigensystem of LIU' can be computed directly. 

2.2 The Most Discriminating Features (MDF) 
Although the MEF projection is well-suited to object representa- 
tion, the features produced are not necessarily good for discrimi- 
nating among classes defined by the set of samples. The MEFs 
describe some major variations in the class, such as those due to 
lighting direction; these variations may well be irrelevant to how 
the classes are divided. Fig. 1 shows an example of a two- 
dimensional case where the MEF projection cannot separate 
classes in the population. In this figure, the MEF projection onto 
the principal component Y, is unable to separate the two obvious 
classes. A projection onto Z,, however, gives a clear separation. 
This clear separation is provided by the discriminant analysis pro- 
cedure. The features used to effect this clear separation are called 
the Most Discriminating Features (MDFs) because in a linear projec- 
tion sense, they optimally discriminate among the classes repre- 
sented in the training set, in the sense explained below. 

2.2.1 Multivariate Linear Discriminant Analysis 
Let W be a projection matrix that projects a vector into the MDF 
subspace. Vector Z = w"r is a new feature vector from samples of c 

classes with class means MI, i = 1, 2, ..., c. Then the within-class 

MDF vector 
/ 

the classes J- No separate classes MEF value the two can 

. -  ~ 

Fig. 1. Problems with the MEF projection for class separation. 

scatter matrix is defined as [SI S, = ~ ~ = , ~ ~ ~ , ( Y j  - M , ) ( Y i  - M,)' 

for n, samples from class i. 
For a grand mean vector M for all samples from all 

classes, the between-class scatter matrix is defined as 

S, = C:=,(Mi - M)(M, - MI'. 
In discriminant analysis, we want to determine the projection 

matrix W that maximizes the ratio deto. In other words, we want 

to maximize the between-class scatter while minimizing the 
within-class scatter. 

It has been proven [5], [22] that this ratio is maximized when 
the column vectors of projection matrix Ware the eigenvectors of 
S.;,'S, associated with the largest eigenvalues. Then the scalar com- 
ponents in Z are feature values of the given samples and the col- 
umn vectors of Ware the MDF feature vectors. 

detlsb I 

2.2.2 Computational Considerations 
Because the matrix Si's, need not be symmetric, the eigensystem 
computation could be unstable. To avoid this problem, the fol- 
lowing method diagonalizes two symmetric matrices, and pro- 
duces a stable eigensystem computation procedure. 

Compute H and A such that S, = HhH',  where H is orthogonal 

and A is diagonal. Then HA-- S,HA-' = I .  Now compute U and 

C such that HA-- S , H d  = LEU' where U is orthogonal and C 

is diagonal. Then 

1 :j: 
')i 

s, = HA+EU'~\+H~ (1) 

s, = HA+UIU'A+H'. (2) 
1 

Defining V = HA-'U, V diagonalizes S, and S, at the same time. 
Since 

S-' = HA-'Ht, (3) 

Equations (1) and (3) give 

s:s, = H A - ' H ~ H A + ~ U ~ A + H ~  

= HA-fDU'A*Ht  

= vzv-' 
That is, V consists of the eigenvectors of Si's, and C contains the 

eigenvalues of S:S,. Thus using the symmetric properties of the 
component scatter matrices, we have a method for finding the 
eigensystem of S:S, that is stable. 
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2.2.3 The DKL Projection 
The discriminant analysis procedure breaks down, however, when 
the within-class scatter matrix S,, becomes degenerate. This can 
happen when the number of samples is smaller than the dimen- 
sion of the sample vectors. Using discriminant analysis directly on 
the images will generally render Sizu noninvertible due to the high 
dimension of the input vector rehtive to the number of training 
samples. For example, a very small image of 64 x 64 when vector- 
ized turns into a 4,096-dimensional sample vector. The number of 
training samples available is usually much smaller than this large 
dimension. 

Our resolution to this problem is to perform two projections in- 
stead of one. The discriminant analysis projection is performed in 
the space of the Karhunen-Loeve projection (i.e., MEF space), 
where the degeneracy does not occur. 

We first project the n-dimensional image space onto the m- 
dimensional MEF space. We cho'ose m such that for s training 
samples from c classes, m + c 4 s. In fact, it is impossible for m > s - 1 
since there are a maximum of s -- 1 nonzero eigenvalues in the 
Karhunen-Loeve projection. But we further constrain the final 
dimension of the MEF space to be less than the rank of S, in order 
to make S,, nondegenerate. On the other hand, m cannot be smaller 
than the number of classes, c. 

Since there are at most c - 1 nonzero eigenvalues of S:S,,, we 

choose k 5 c - 1 to be the final dimension of the MDF space. So we 
relate the dimensions of the MEF- ;and the MDF-spaces as k + 1 5 c 
< m I s  -c .  

Thus, the new overall discriminant projection is decomposed 
into two projections, the Karhunein-Loeve projection followed by 
the discriminant projection. We call this new projection the Dis- 
criminant Karhunen-Loeve projection (DKL projection). 

DEFINITION 1 (DKL projection). Tht DKL projection to the Most Dis- 
criminating Feature (MDF) space is Z = W'V'X, where V is the 
projection matrix from the image space to the MEF space, and W 
is the projection matrix from the MEF spuce to the MDF space. 

5" 

MEF 1 MEF 2 MEF 3 MEF4 

MDF 1 MDF 2 MDF 3 MDF 4 

Fig. 2. A sample of MEF and MDF vectors treated as images. The MEF 
vectors show the tendency of the principal components to capture 
major variations in the training set, such as lighting direction. The MDF 
vectors show the ability of the MDFs to discount those factors unre- 
lated to classification. The training images used to produce these vec- 
tors are courtesy of the Weizmann Institute. 

2.2.4 Explanation of the MDFs 
The Most Discriminating Features are not directly tied to the ab- 

solute intensity values of the input images. Fig. 2 shows a set of 
MEF and MDF features obtained from a large training set of hu- 
man faces. As can be seen from the figure, the features encapsu- 
lated in the MDF vectors show directional edges found in the 
training set and have discarded the imaging artifacts, such as 
lighting direction, to a large extent. 

2.2.5 The Clustering Effect of the MDF Subspace Using the 
DKL Projection 

To show how the MDF subspace effectively discounts factors un- 
related to classification, am experiment was performed to obtain 
the MEF and the MDF vectors for a collection of training images. 
Fig. 3 shows samples of the data in the space of the best (in terms 
of the largest eigenvalues) two MEFs and MDFs for the experi- 
ment. From Fig. 3, it is clear that the MDF subspace has a signifi- 
cantly higher capability than the MEF subspace to correctly clas- 
sify an input image that is considerably different from those used 
in training, because classes in the MDF subspace have larger be- 
tween-class distance and smaller within-class scatter. 
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Fig. 3. Distribution of some samples using the best two features in the 
MEF and the MDF spaces. In the MDF subspace, objects of the same 
class are clustered much more tightly than in the MEF space. 

Though the human operator may assign a semantic "closeness" 
measure to particular sets of classes (e.g., a bus is closer to a car 
than a face), the linear discriminant analysis procedure does not 
take this into account. The distance between clusters of points in 
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Fig. 3 is not intended to proportionally carry any meaning for se- 
mantic closeness of classes. The linear discriminant analysis pro- 
cedure merely tries to separate each class from the others as well 
as possible. 

2.3 Image Matching 
The set of Most Expressive Features and Most Discriminating 
Features are generated for each image in the training set and 
stored in the recognition module. When an image query is pre- 
sented to the recognition module, it is projected to these same 
subspaces. A simple Euclidean distance in this feature space is 
computed to find a the set of k nearest neighbors for retrieval. It 
has been shown that the probability of error for this nearest neigh- 
bor decision rule is bounded above by twice the Bayes probability 
of error 141 if we have an infinite number of samples. This simple 
measure of similarity is used because it does not require estima- 
tion of the distribution function, which is impractical for our high 
dimensional space. 

3 RESULTS 
In this section, we demonstrate the ability of the MDF space to 
tolerate within-class variations and to discount such imaging arti- 
facts as lighting direction. 

3.1 A Comparison Between the MEF and the MDF Feature 
Spaces 

To demonstrate the superiority of the MDF space over the MEF 
space, we designed an experiment to compare the performance of 
the system using the MEF space alone versus using the MDF 
space. The number of features from each subspace was varied to 
show how the system performed. Fig. 4 shows the correct recogni- 
tion rates for the system using these two subspaces. The images for 
this experiment came from the Weizmann Institute and contained 
well-framed faces with different expressions taken under different 
lighting conditions. Each individual in the set of images used had 
two expressions; each expression image was taken with three dif- 
ferent lighting conditions. An example of the pool of available 
images for a sample individual is given in Fig. 5. This set of images 
seemed particularly suited to testing the ability of the MDF space 
to discount factors unrelated to classification residing in labeled 
image samples (such as lighting direction); thus it outperforms 
MEF space in recognition. The MEF space has a distance metric 
that attempts to preserve the Euclidean distance metric. This met- 
ric is not tuned to any particular labeling scheme. The MDF space 
is tuned to the labeling scheme given by the user. Of course, this 
labeling scheme may not be good for a different labeling scheme. 
This experiment showed an improved performance with the MDF 
space, due in large part to the fact that for the labeling scheme 
chosen for this experiment, we had enough training images with 
sufficient within-class variation. With fewer training images, or 
training images that do not sufficiently capture the desired varia- 
tions, the performance difference between the MEF and the MDF 
spaces will be smaller. For this experiment, a disjoint test set was 
utilized. This test set was formed by randomly choosing one image 
from the set of images available for each individual. Therefore, 
each individual was trained with all of the different lighting con- 
ditions except for the expression image in the test set. 

3.2 Combination Database: Faces and Other Objects 
To show the general applicability of the method, we have trained the 
system on a diverse set of objects from natural scenes, ranging from 
human faces to street signs to aerial photographs. A list of some 
examples from the various classes learned is given in Fig.6. The 
classes were established by labeling the images with the name of the 
object in the image (or in the case of faces, naming the individual in 
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".I 

6 8 10 12 14 16 18 
Number of fealures used 

Fig. 4. The performance of the system for different numbers of MEF 
and MDF features, respectively. The number of features from the sub- 
space used was varied to show how the MDF subspace outperforms 
the MEF subspace. 95% of the variance for the MDF subspace was 
attained when 15 features were used; 95% of variance for the MEF 
subspace did not occur until 37 features were used. Using 95% of the 
MEF variance resulted in an 89% recognition rate, and that rate was 
not improved using more features. 

p l ,  exl, i l l  p l  , ex1 , i12 p l  , ex1 , i13 

p l ,  ex2, i l l  p l ,  ex2, i12 p l ,  ex2, i13 

Fig. 5. A sample of the Weizmann Institute face data. The frontal im- 
ages for an individual contain two expressions; for each expression, a 
set of three images with differing lighting conditions forms the set of 
images available for an individual. 

the image). The reason for this choice of labeling scheme is because 
the main usage of the database was to retrieve images classified by 
object name. Labeling is application dependent-no single labeling 
scheme can possibly fit all applications. Given a labeling scheme 
designed by the user, the system automatically finds the best sub- 
space to provide the capability indicated by the labels given to the 
training images. Each stored image can maintain pointers to a rela- 
tiunal database to provide retrievals under various other desired 
organizations [171 such as gender, age group, etc. 

For this experiment, the database consisted of predominantly 
pairs of images to describe each class. Most classes in the database 
were represented by two images, and 19% of the classes had three 
or more images, up to 12 for some objects. Each image consisted of 
a well-framed object of interest. The different images from each 
class were taken either in a different setting or from a slightly dif- 
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ferent angle; where possible a change in the lighting arrangement 
was used to provide variation in the training images. 

Following training, the system was tested using a disjoint test 
set. A summary of the makeup of the test and the results are 
shown in Table 1. The instances where the retrieval failed were 
due in large part to significant differences in object shape and 
three-dimensional (3D) rotation. Fig. 7 shows an example of a face 
image which the system failed to properly retrieve. This search 
probe failed because the training data for this class did not include 
any 3D object rotation and the search probe did. The recognition 
results for this system rely heaviily on the assumption that the 
training images are representative of image class variation which 
will be seen during the recognition phase. 

TABLE 1 
SUMMARY OF LARGE NATUIRAL SCENE EXPERIMENT 

I Numberof I Numberof I 

emplars. This example supports the claim that those features un- 
important for subclass selection are weighted down appropriately 
or discarded by the Most Discriminating Feature selection process. 
For example, the change in the shape of the mouth among the 
different expressions is unimportant for determining to which 
subclass these images belong. As long as the variation in a class is 
sufficiently present in the training set for MDF feature computa- 
tion, the approach performs well. 

(a) Search probe (b) Training images 

Fig. 7. Example of a failed search probe. The retrieval failed to select 
the appropriate class due to a lack of 3D rotation in the set of training 
images. 

- -  

with the remaining images serving as a disjoint set of test images. (a) The- (a) List of trainina imaaes 
training set contaii 
class. This table shc 
number of training 
set were given to tl 

isign 

led predominantly classes with two training images in each 
~ w s  the number of classes that contain the corresponding 
images. (bi A list of 298 test images from the disjoint test 

IC system to find a closest match. 

monitor phone renault 

seated sharpener sidewalk dbody 

Fig. 6. Representatives of training irnages from some of the various 
classes learned. Objects of interest are at the center of the fovea im- 
ages. In the learning phase for this experiment, the training images 
were generated using manual extraction of the areas of interest. 

3.3 The Power for Handling Within-Class Variation Using 

The capability of the system for handling large within-class varia- 
tion is demonstrated in Fig. 8. Each of these search probes re- 
trieved samples from the correct cllass defined by the training ex- 

the MDF Subspace 

- -  

(b) List of search probes 

Fig. 8. Example of how well within-class variation is handled. The sys- 
tem correctly retrieved images from the class defined by the training 
samples for each of the search probes. 

4 CONCLUSIONS AND FUTURE WORK 

The Most Discriminating Features described in this paper provides 
an effective feature space to be used for classification. This MDF 
space discounts factors unrelated to classification, such as lighting 
direction and facial expression when such variations are present in 
the training data. Respectable recognition results were obtained 
for a large database of images. 

In the experiments described in this paper, a comparison must 
be made between a test probe and every image in the database. 
The average time required for a query image to obtain a set of 
matches in this manner was 400.7 seconds (including projection) 
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running on a Sun SPARC 20. When this Most Discriminating Fea- 
ture subspace computation is placed into a hierarchy and the re- 
sulting spaces decomposed into a hierarchical Voronoi tessellation 
as described in [19], the average time required for a test probe fell 
to 9.1 seconds; at the same time, the recognition rate rose to 95% 
for an image from the correct class being retrieved as the top 
choice and 99% for the correct class being in the top 10 retrieved 
images. 

The work reported in this paper only investigates the use of 
intensity images as input to the system. In order to make our sys- 
tem nearly insensitive to lighting conditions, it may also be valu- 
able to use edge images as well as intensity images. It is desirable 
to investigate the utility of intensity in combination with edge map 
images [13] in the Most Discriminating Features space. 
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