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Abstract-Most automatic systems for fingerprint comparison are based on minutiae matching. Minutiae are essentially 
terminations and bifurcations of the ridge lines that constitute a fingerprint pattern. Automatic minutiae detection is an extremely 
critical process, especially in low-quality fingerprints where noise and contrast deficiency can originate pixel configurations similar to 
minutiae or hide real minutiae. Several approaches have been proposed in the literature; although rather different from each other, 
all these methods transform fingerprint images into binary images. In this work we propose an original technique, based on ridge 
line following, where the minutiae are extracted directly from gray scale images. The results achieved are compared with those 
obtained through some methods based on image binarization. In spite of a greater conceptual complexity, the method proposed 
performs better both in terms of efficiency and robustness. 

Index Terms-Fingerprints, minutiae, feature extraction, gray scale images, directional image 

1 INTRODUCTION 
INGERPRINT-BASED identification has been known and F used for a very long time 151, 191, [ l l ]  and 1241. Owing 

to their uniqueness and immutability 1191, fingerprints are 
today the most widely used biometric features. Most auto- 
matic systems for fingerprint comparison are based on mi- 
nutiae matching 1121, [22], [26] and 1361. Minutiae, or Gal- 
ton’s characteristics 191, are local discontinuities in the fin- 
gerprint pattern. The American National Standards Insti- 
tute has proposed a minutiae classification based on four 
classes: terminations, bifurcations, frifurcations (or crossovers) 
and undetermined [l]. In this work we adopt the identifica- 
tion model used by the Federal Bureau of Investigation [36]. 
This model, adopted in most automatic systems, is based 
on a two-class minutiae classification: termination and bi- 
furcation. For each minutia we store the membership class, 
the coordinates and the angle that the tangent to the minutia 
forms with the horizontal direction (Fig. 1). The problem of 
automatic minutiae extraction has been thoroughly studied 
but never completely solved. The main difficulty is that fin- 
gerprint quality is often too low ; noise and contrast defi- 
ciency can produce false minutiae and hide valid minutiae. 
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1. The fingerprint acquisition process is rather critical. The most famous 
technique, known as the ”ink technique”, often produces images including 
regions which miss some information due to excessive inkiness or to ink 
deficiency. The techniques which use optical prisms [lo] and holograms 
[15] require a high degree of accuracy during the acquisition process, that 
is, the finger pressure on the optical surface must be adequate. Further- 
more, in some subjects, especially manual workers and elderly people, the 
prominence of the ridge lines can be considerably lower and the fingerprint 
pattern can be unreadable. 
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Fig. 1. Minutiae representation. Fig. la shows a termination minutia; 
(xo, yo) are the minutia coordinates; 8 is the angle that the minutia 
tangent forms with the horizontal direction. Fig. 1 b shows a bifurcation 
minutia; 8 is now defined by means of the termination minutia existing in 
the complementary image in correspondence with the original bifurcation. 

Several approaches to automatic minutiae extraction 
have been proposed: although rather different from one 
other, most of these methods transform fingerprint images 
into binary images through an ad hoc algorithm. The im- 
ages obtained are submitted to a thinning process which 
allows for the ridge line thickness to be reduced to one 
pixel (Fig. 2). Finally, a simple image scan allows for locat- 
ing the pixels that correspond to minutiae. 

The FBI minutiae reader 1291 binarizes the image 
through a composite approach based on a local threshold- 
ing and a ”slit comparison” formula that compares pixel 
alignment along discrete directions. Moayer and Fu 1231 
proposed a binarization technique based on the iterative 
application of a laplacian operator and a dynamic thresh- 
old. A fuzzy approach to image enhancement and the use 
of an adaptive threshold, aimed to preserve the same num- 
ber of 1 and 0 pixels for each neighborhood, form the basis 
of the binarization technique proposed by Verma, et al. in 
1311. OGorman and Nickerson present, in [251, a technique 
for enhancement and binarization based on the convolution 
of the image with a filter oriented according to the direc- 
tional image. The directional image may be conceived as a 
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matrix whose elements represent the tangent direction to 
the ridge lines of the original image. E. Szekely and 
V. Szhkely [30], starting from binary images, suggest a mi- 
nutiae detection technique based on the computation of the 
directional image divergence. Sherlock, et al. 1271 U281 define 
a technique for fingerprint enhancement and binarization, 
which performs a frequency-domain filtering through po- 
sition-dependent filters. Coetzee and Botha [6] propose a 
binarization technique based on the use of the edges in 
conjunction with the gray scale image. In their work, an 
interesting technique for improving the binary image ob- 
tained is introduced. 

(a) (b) ( 4  
Fig. 2. Fig. 2a shows a fingerprint gray scale image; Fig. 2b shows the 
image obtained after a binarization process of the image 2a. Fig. 2c 
shows the image obtained after a thinning process of the image 2b. 

Mehtre [20] describes a complete Automating Fingerprint 
Identification System (AFIS) which includes a useful en- 
hancement/restoration step to control noise in the starting 
gray scale image, and implements the thinning step by 
means of a parallel algorithm. In the same work an exhaus- 
tive discussion about noise in fingerprint images can be 
found. In the work [35] by Weber, the gray scale finger- 
prints are enhanced by a bandpass filtering in the frequency 
domain and binarized via a local threshold; instead of using 
a conventional thinning the author proposes an algorithm 
which detects the minutiae starting from the thick-ridges in 
the binary image. M.T. Leung, et al. introduce in [17] a neu- 
ral network based approach to the minutiae detection 
where a multilayer perceptron analyzes the output of a 
rank of Gabor's filters applied to the gray scale image. An- 
other neural network schema is presented in [18]; in this 
work a tree layer perceptron is trained to extract the minu- 
tiae starting from skeletonized binary images. Among the 
techniques proposed, some provide good results when ap- 
plied to high-quality fingerprints, but they are not robust 
enough in the presence of noise. Post-processing tech- 
niques, based on simple structural considerations, [13], [37] 
can be used to discard many false minutiae, thus giving 
better results. 
In this work we present a direct gray scale minutiae detec- 
tion approach (i.e. without binarization and thinning). In 
the field of image processing, some approaches to direct 
gray scale feature extraction have been proposed, see for 
instance 171, [161, 1321 and 1331. We have chosen to extract 
the features directly from the gray scale image without bi- 
narization and thinning for the following reasons: 

e A lot of information may be lost during the binariza- 
tion process. 
Binarization and thinning are time-consuming. 

e The binarization techniques which we experimented 
proved to be unsatisfactory when applied to low- 
quality images. 

The basic idea of our method is to follow the ridge lines 
on the gray scale image, by "sailing" according to the fin- 
gerprint directional image. A set of starting points is deter- 
mined by superimposing a square-meshed grid on the gray 
scale image. For each starting point, the algorithm keeps 
following the ridge lines until they terminate or intersect 
other ridge lines (minutiae detection). A labeling strategy is 
adopted to examine each ridge line only once and locate the 
intersections between ridge lines. 

In Section 2 we present the basic definitions and sketch 
the ridge line following algorithm. In Section3 we show 
how the ridge line following algorithm can be used for 
automatic minutiae detection. Section 4 presents the results 
obtained and compares our approach with the techniques 
described in [23], [25], [29] and [31]. Finally, in Section5 
some conclusions are drawn. 

2 RIDGE LINE FOLLOWING 
Let I be an a x b gray scale image with g gray levels, and 
gray(i, j) be the gray level of pixel (i, j) of I, i = 1, ... a, j = 1, ... 
b. Let z = S(i, j) be the discrete surface corresponding to the 
image I: S(i, j) = gray(i, j), i = 1, ... a, j = 1, ... b. By associating 
bright pixels with gray levels near zero and dark pixels 
with gray levels near g - 1, the fingerprint ridge lines 
(appearing dark in I) correspond to surface ridges, and the 
spaces between the ridge lines (appearing bright in I) corre- 
spond to surface ravines (Fig. 3).  

ridge 

Fig 3 A surface S, corresponding to a small area of a fingerprint is 
shown (the surface is depicted as continuous due to representation 
problems) 

From a mathematical point of view, a ridge line is de- 
fined as a set of points which are local maxima along one 
direction. The ridge line extraction algorithm attempts to 
locate, at each step, a local maximum relative to a section 
orthogonal to the ridge direction. By connecting the con- 
secutive maxima, a polygonal approximation of the ridge 
line can be obtained. 
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Let (is, j,) be a local maximum of a ridge line of I, and cpo 
be the direction of the tangent to the ridge line in (is, jJ; a 
pseudo-code version of the ridge line following algorithm is: 

ridge line following(is, j,, 'po) 
{ end := f a l s e  ; 

(i, , j, ) := (is , j, ) ;  
cpc := 'Po ; 
while (-I end) 

{ (it , j, ) := (i, , j, ) + p pixel 
along direction cpc ; 

R := section set centered in 
(it, j ,) with direction (P,+z/~ 
and length 20+1; 

(in , j, ) := local maximum over R ; 
store (in , j, ) ; 
end := check stop criteria on 

( i , ,  j,) := ( i n ,  j,) ; 
'pc := tangent direction in (i, , j, 

(i, , j ,  ) ,  (it, j, ) ,  ( i n ,  j,) ; 

) ;  

} 
} 

The algorithm runs until a stop criterion becomes true. At 
each step it computes a point (it, j,), moving /.L pixels from 
(i,, j,) along direction cp,. Then, it computes the section set s2 
as the set of points belonging to the section segment lying 
on the ij-plane and having median point (it, j,), direction 
orthogonal to cpc and length 20 + 1. A new point (in, j,), be- 
longing to the ridge line, is chosen among the local maxima 
of the set a. The point (in, j,) becomes the current point (i,, 
j,) and a new direction cp, is computed (Fig. 4). p and o are 
parameters whose optimal value can be determined ac- 
cording to the average thickness of the image ridge lines. 

The main algorithm steps, namely, sectioning and 
maximum determination, computation of the direction cp, 
and testing of the stop criteria, are discussed in detail in the 
following sub-sections. 

2.1 Sectioning and Maximum Determination 
The sectioning of the surface S corresponding to the image I 
can be achieved by intersecting S with a cutting plane par- 
allel to the z direction. The section set !2((it, j,), @, O) cen- 
tered in (it, j,), with direction @ = cp, + ~ / 2 ,  and length 20 + 1 
pixels (in the following simply a), is defined as: 

C;Z = { (i, j) I (i, j) E I ,  (i, j) E segment( (istart, jstart), (iend, jend) ) I 

x + 0.51 if x 2 0 
+ 0.51 otherwise uound(x) = 

segment( (is,,, jstart), (iend, jend) ) is the set of points belonging 
to the discrete segment whose extremes are (istart, jstart) and 
(iend, jend). By sorting the points of n from (istart, Istart) to (iendr 
Jend), we obtain: (i&) (istart, Istart), (i2, ]&,... (imT 1,) E (iendr 
jend), m = 20+1. A graphic rgresentation of a section is de- 

-_ - pitted in Fig. 5. - 

0 

Fig. 4. Some ridge line following steps. On the right, some sections are 
shown. 

Fig. 5. A section is graphically represented by reporting the gray levels 
gray&, jk) of the pixels (ik, jk), k=l  ,... m belonging to Q. 

Determining a local maximum of the section set C l  is a 
very important step. In principle, the maximum can be 
computed simply by comparing the gray levels of the 
points belonging to a. Noise and contrast deficiency make 
this technique unsuitable, except for excellent-quality im- 
ages. Fig. 6 shows two sections which intersect five and six 
ridges, respectively. 

Fig. 6. The figure shows two sections, belonging to regions with differ- 
ent ridge line density. The dotted line denotes the point where a ridge 
center (hence, a local maximum) should exist. On the contrary, the 
image noise originates, in that point, a local minimum which produces 
a typical volcano silhouette. 
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In both sections we are able to easily locate the ridges, but 
detecting the corresponding maxima is not straightforward; 
sometimes, in the middle of a ridge (where a local maxi- 
mum should exist) there is a local minimum which pro- 
duces a typical volcano silhouette. Hereafter we describe an 
approach, aimed at regularizing the section silhouette, 
which makes the determination of the local maxima more 
reliable. During the ridge line following, each time a new 
section is determined we regularize its silhouette by means 
of two steps: 

al.The first step is based on a local average of the gray 
levels of the pixels belonging to a number of parallel 
adjacent sections. This can be obtained by sectioning S 
with 2k + 1 parallel planes ( k  2 01, distant one pixel 
from each other, and by computing m local averages 
to determine the new gray levels. The section pro- 
duced by the plane k + 1 (the central one) originates the 
section set !2, but the gray level E ( i ,  j) of each point 
(i, j) E Q is computed as the average of the gray levels 
of corresponding points over the 2k + 1 sections (Fig. 7 ) .  

a2.The second step is based on a convolution with a con- 
stant mask d resembling the gaussian silhouette 
(Fig. 8). Let (i,, j,), ... (i,, j,) be the points belonging to 
SZ and 8Yay(i,, j,), . . . 8Yay(i,, j,) be the gray levels 

computed at step (all; let d,, k = 1, ... 2p + 1, ( p  2 0, dk 
2 0, Cd, = 1) be the elements of the mask d. The new 

puted as: 

k = p+l , . . ,m- (p )  

The local regularization process described has been di- 
vided into two parts for clarity; actually, this processing can 
be conceived as a convolution of a little portion of the im- 
age with a three-dimensional mask obtained by shifting the 
two-dimensional mask d by 2h+l pixels along the direction 
orthogonal to the ridge line direction. OGorman and Nick- 
erson in [251 and Mehtre in 1201 performed the image en- 
hancement in a similar way, but they carried out the en- 
hancement throughout the image whereas we regularize 
only a subset of points which are determined during the 
ridge line following. Fig. 9 compares the sections shown in 
Fig. 6 with the corresponding ones after they have been 
regularized. 

Fig. 7. The surface has been sectioned with three parallel planes 
(h  = 1). The section set L2 is determined by plane 2 The gray level of 
each point belonging to L2 is computed as the average of the gray lev- 
els of the three corresponding points over the sections produced by 
planes 1, 2, and 3. 

Fig. 8. The mask d has a symmetric Gaussian silhouette. The figure shows 
the mask adopted: p= 3, d = [1/23,2/23,5/23,7/23, 5/23, 2/23, 1/23]. 

Fig. 9. The figure shows the comparison between the sections repre- 
sented in Fig. 6 (top) and the same sections after regularization 
(bottom). The dotted line shows how, after regularization, a local 
maximum corresponding to the ridge center can be located. 

After the regularization process, the local maximum re- 
quired can be easily located by comparing the gray levels 
gYay(i,, jk) ,  k = p + 1, ... m - p and choosing the weak local 

maximum closest to the center (it, it). We recall that 

gYay(i,,j,), is a weak local maximum if and only if 

__ ~ 

- __ 

=(i,.,, j, ,) 5 =(ik, j,) 5 =(ik+,, j,,,). By using weak 
maxima instead of strong maxima the ridge line following 
is guaranteed to work correctly even when a ridge line pre- 
sents a flat profile. 

We would like to point out the relevance of the regulari- 
zation of the section silhouettes for correctly tracking the 
maxima points along the ridge lines. If regularization were 
not adopted the ridge following algorithm could be trapped 
by noise artifacts such as volcano profiles, small ridge 
breaks, ridge linking, etc. 

2.2 Tangent Direction Computation 
At each step, the algorithm computes a new point (it, j,) by 
moving p pixels from the current point (ic, j,) along direc- 
tion cpc. The direction 'pc represents the ridge line local di- 
rection and can be computed as the tangent to the ridge in 
the point (ic, j,). 

Several methods for estimating image directional infor- 
mation have been proposed in the literature. The simplest 
approach is based on gradient computation. It is well 
known that the gradient phase angle denotes the direction 
of the intensity maximum change. Therefore, the direction 
cpc of a hypothetical edge which crosses the region centered 
in pixel (ic, j,) is orthogonal to the gradient phase angle in 
(ic, jc). This method, although simple and efficient, suffers 
from the non-linearity due to the computation of the gradi- 
ent phase angle. Kawagoe and Tojo, in their work [14], use 
a different method. For each 2 x 2 pixel neighborhood, they 
make a straight comparison against four edge templates to 
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extract a rough directional estimate, which is then arith- 
metically averaged over a larger region to obtain a more 
accurate estimate. Stock and Swonger [29], Mehtre, et al. 
1211, following similar approaches, evaluate the tangent 
direction on the basis of pixel alignments relative to a fixed 
number of reference directions. The method used in this 
work, proposed by Donahue and Rokhlin 181, uses a gradi- 
ent type operator to extract a directional estimate from each 
2 x 2 pixel neighborhood, which is then averaged over a 
local window by least-squares minimization to control 
noise. In Appendix A, the basic steps of this method are 
described; more details can be found in 181. This method 
allows for an unoriented direction to be computed. The 
computation of an oriented direction is subordinate to the 
choice of an orientation. For each step of the ridge line fol- 
lowing, we choose the orientation in such a way that cpc 
comes closest to the direction computed at the previous 
step. The technique used to compute the tangent directions, 
although rather efficient and robust, can become computa- 
tionally expensive if the local windows used are large (if 
their side is 19 or more pixels) and the number of directions 
to be computed is very high. A more efficient implementa- 
tion schema can be obtained by precomputing the direc- 
tional image over a discrete grid (Fig. 10) and then deter- 
mining the direction 'pc through lagrangian interpolation. 

Fig. 10. A fingerprint and the corresponding directional image com- 
puted over a grid whose granularity is eight pixels. 

2.3 Stop criteria 
The stop criteria (i.e. the events which stop the ridge line 
following) are: 

1) Exit from interest area. The new point (it, j,) is external 
to a rectangular window W which represents the sub- 
image whose minutiae are to be detected. 

2) Termination. No local maxima, such that the segments 
having extremes (i,, j,) (in, j,) form angles less than 
(threshold value) with the direction qC, could be 
found in Q. According to this criterion the ridge line 
following stops independently on the gray level of the 
current region, and the algorithm can work both on 
saturated regions and on contrast-deficient regions 
with no need for a particular tuning. In practice, by 
using the simple criterion stated above, the ridge line 

following could sometimes be trapped by small ridge 
breaks induced by the noise. Hence, we adopt a more 
sophisticated schema which tries to section the ridge 
line again through new planes adjacent to the initial 
one, before decreeing a stop by termination. 

3) Intersection. The point (in, j,) has been previously la- 
beled as belonging to another ridge line. The point (in, 
j,) is named intersection point. 

4) Excessive bending. The segment delimited by (ic, j,) (in, 
j,) forms with the ridge line local direction an angle 
greater than w (threshold value). The ridge line local 
direction is defined as the average of the directions of 
the segments (ic, j,) (in, j,) relative to the last k steps 
(k = 2, ... 4). This criterion allows for the ridge line fol- 
lowing to be stopped when the ridge line direction 
changes suddenly. In fact, due to the ridge line conti- 
nuity, excessive bending always denotes an error in 
the ridge line following. 

3 MINUTIAE DETECTION 
In the previous section we have introduced an algorithm 
capable of extracting a ridge line given a starting point and 
an oriented direction. When a ridge line terminates or inter- 
sects another ridge line (originating a minutia) the algo- 
rithm stops and gives the characteristics (coordinates and 
direction) of the minutia found. It is now necessary to de- 
fine a schema for extracting all the ridge lines in the image 
and, consequently, detecting all the minutiae. 

The main problems arise from the difficulty of examin- 
ing each ridge line only once and locating the intersections 
with the ridge lines already extracted. Our technique uses 
an auxiliary image T of the same dimension as I. T is ini- 
tialized by setting its pixel values to 0. Every time a new 
ridge line is extracted from I, the pixels of T corresponding to 
the ridge line are labeled by assigning them an identifier. 

Fig. 11. A ridge line and the corresponding polygonal (&-pixels thick). 

The pixels of T corresponding to a ridge line are the pixels 
belonging to the polygonal, e-pixels thick, which links the 
consecutive maximum points (in, j,) located by the ridge 
line following algorithm on the ridge line (Fig. 11). The algo- 
rithm find minutia searches for a minutia by following the 
ridge line nearest to the starting point (is, j,) in both direc- 
tions: 
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find minutia ( is, j, ) 
{ esc := false ; 
(i,, j,) := nearest ridge l i n e  maximum 

if ( (ic, 3 , )  E discovered ridge lines 

if (1 esc ) 

(is, j,) i 

( T ) )  then esc := true ; 

{qc := tangent direction in (ic, j,) ; 
ridge line following (i,, j,, 9,) ; 
if (termination v excessive 
bending) then 

/ / termination minutia has 
been found 
store termination minutia ; 1 
(intersection) then 
/ /  bifurcation minutia may 
exist 
if (intersection point is 

valid) then 
store bifurcation minutia 

else delete false termination 
minutia : 

store polygonal ( T ) ;  
/ /  Perform similar operations in 
direction q, + n: ; 

ridge line following (ic, j,, Cp, + ‘ I C )  

. . . .  
3 

1 

The algorithm starts by computing (procedure nearest ridge 
line maximum( )) a point (i,, j,) belonging to the ridge line 
nearest to the starting point (is, j,). This operation can be 
carried out as follows: 

1) Compute the tangent direction cps in (is, js). 
2) Section S in (is, j,), along direction cps + n/2 and with 

3) Regularize the section determined in Step 2 and com- 

4) Choose, from the local maxima determined in Step 3, 

The computation of the tangent direction, the sectioning, 
the regularization and the determination of the maximum 
are performed as in the ridge line following algorithm. 
Fig. 12 shows an example. 

length 20 + 1. 

pute all the local maxima. 

the local maximum (ic, j,) nearest to (is, jJ. 

Fig. 12. The Fig. shows the point (i,, j,) belonging to the ridge line 
nearest to the starting point (is, is). 

termination 
minutia 

current 
ridge lin 

( 4  
Fig. 13. Fig. 13a shows the detection of a termination minutia; Fig. 13b 
shows the detection of a bifurcation minutia; Fig. 13c shows the detec- 
tion of a false intersection. 

Once (i,, j,) has been determined, the algorithm verifies, 
on T, that the pixel (i,, j,) has not been labeled, or equiva- 
lently that the ridge line has not yet been examined 
(starting from a different starting point). If (i,, j,) is not la- 
beled, the algorithm continues by computing the tangent 
direction cp,, and following the ridge line through the algo- 
rithm ridge line following previously described. In this con- 
text the stop criteria can be interpreted as follows: 

0 Exit from interest area: no minutiae have been found. 
0 Termination: a termination minutia has been found 

(Fig. 13.a). 
e Intersection: a ridge line already examined has been 

intersected. During the ridge line following, every 
time a new point (il,, j,) is computed, the algorithm 
checks whether the corresponding point in T has al- 
ready been labeled. In this case the point (in, j,) be- 
longs to two ridge lines (i.e., it is an intersection 
point). This event can occur either when the current 
ridge line and the intersected ridge line form a bifur- 
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cation (Fig. 13.b), or when the intersected ridge line 
has been previously truncated due to the detection of 
a false termination minutia (Fig. 13.c). In the former 
case the intersection point originates a bifurcation mi- 
nutia. In the latter case, both ridge lines belong to the 
same ridge line, and the intersection does not origi- 
nate a minutia. Furthermore, in this case, it is neces- 
sary to remove the false termination minutia detected 
previously in correspondence with the ridge line ter- 
mination. 
Excessive bending. The algorithm behaves in the same 
way as it does for a ridge line termination, and origi- 
nates a termination minutia. Excessive bending ter- 
mination can be due, although very rarely, to the loss 
of a ridge line being followed. This event does not 
constitute a serious problem because, probably, later 
on the algorithm will discover a situation similar to 
Fig. 13.c and the false termination minutia will be re- 
moved. 

The polygonal trace (E-pixels thick), corresponding to the 
portion of ridge line just extracted, is then stored in T. 
The second part of the algorithm is analogous to the first 
one: in fact, the ridge line is now followed along the oppo- 
site direction (9, + n), starting from the same point (ic, jc). 

The algorithm find minutia presented above enables all 
the fingerprint minutiae within a window W to be detected. 
Let G be a regular square-meshed grid, with granularity v 
pixels, superimposed on the window W; by executing find 
minutia for each node of G we extract all the ridge lines in- 
side W and consequently we detect all the minutiae. Fig. 14 
shows the results obtained by applying our approach to a 
sample fingerprint. 

Fig. 14. Minutiae detection on a sample fingerprint. The ridge lines are 
represented through the corresponding polylines of T. The termination 
minutiae are denoted by circles while the bifurcation minutiae are de- 
noted by squares. The parameter values adopted are: p = 3, (T = 7, h = l ,  
p = w = 30", E = 3, v = 2. 

4 PERFORMANCE EVALUATION 
AND COMPARISON 

The technique proposed in this paper has been adopted 
within a prototype of a biometric system for fingerprint 
identification, which has been widely tested and experi- 
mented in real environments. The aim of this section is to 
demonstrate that the proposed direct gray scale approach 

performs better than approaches which require binarization 
and thinning as intermediate steps. To this purpose we 
have implemented our technique (A) and four different 
schemes based on binarization and thinning, which have 
been derived from 1291 (B), 1231 (0, 1311 (D), and [251 (E), 
respectively. It is worth remarking that the primary goal of 
papers [29] and [251 is the minutiae detection, while in [23] 
and [31] binarization and thinning are steps for the classifi- 
cation and/or recognition of fingerprint patterns. In order 
to compare our approach with other approaches known in 
the literature, we have assembled a sample set of finger- 
prints belonging to different sources and exhibiting a dif- 
ferent degree of image quality. 

The sample set has the following composition: seven fin- 
gerprints (no. 3, no. 4, no. 5, no. 11, no. 12, no. 13, and no. 14 
in Fig. 15) taken from the NIST fingerprint database [34], 
four fingerprints (no. 1, no. 2, no. 9 and no. 10 in Fig. 15) 
from an FBI sample set, and three fingerprints (no. 6, no. 7 
and no. 8 in Fig. 15) acquired through an opto-electronic 
device based on a prism. A remark is perhaps in order: 
conducting a reliable analysis of the results produced by 
the different approaches requires a human expert and a 
great deal of time. This justifies the small size of the sample 
set used in our comparison. 

1 2 3 4 1  

5 6 7 8 

11 12 I 10 9 

13 14 

Fig. 15. The sample set of fingerprints used in our experiments. Fin- 
gerprints 1 ,  ..., 8 belong to the class good, fingerprints 9, ... 14 belong 
to the class poor. All the fingerprints (except no. 6, no. 7 and no. 8) 
have dimensions 256 x 256, with 256 gray levels. The fingerprints 
no. 6, no. 7 and no. 8 have dimensions 190 x 250, 256 gray levels. 
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By using the contrast and consistency index proposed in 
[8], the fingerprints have been coarsely classified according 
to their quality into good and poor. On each fingerprint the 
expert has marked the certain minutiae, neglecting the mi- 
nutiae located in regions with poor contrast, where minu- 
tiae detection cannot even be performed manually. Auto- 
matic minutiae detection has been achieved through our 
technique (A) and through the binarization-based tech- 
niques (B), (C), (D) and (E), respectively. The parameter 
values used in our approach are: 0 = 7, h = 1, p = y~ = 30°, 
E = 3, v = 2 for all the fingerprints in the sample set; 1-1 = 3 
for fingerprints no. 6, no. 7 and no. 8; 1-1 = 5 for the other 
fingerprints in the sample set. Two different values for the 
parameter p (the step of the ridge line following) are 
needed to process images taken at a different resolution. 

In approaches B and C the binarization process has been 
preceded by a smoothing operation based on the convolu- 
tion with a gaussian 5 x 5 pixels mask. This operation 
regularizes the starting image, so that the approaches B and 
C give better results. Approach E has been implemented 
without the post-processing noise reduction proposed in 
[25]; in that paper, the post-processing is applied on the 
binary image produced by the enhancement jbinarization 
step, and it is useful to reduce artifacts in noisy background 
region outside the fingerprint or along the boundaries be- 
tween the ridge region and the background. In our sample 
set we use only fingerprint images which exclusively con- 
tain ridges and for this reason that post processing step is 
not necessary. In approaches B, C, D and E the thinning 
process has been carried out through the algorithm pre- 
sented in [3], which provides good results on fingerprints. 
In B, C, D and E, the minutiae detection on the binary 
skeleton has been performed by labelling as minutiae those 
pixels whose crossing number is different from 2. The 
crossing number [21 cn(P) at a point P is defined as half of 
cumulative successive differences between pairs of adjacent 
pixels belonging to the 8-neighborhood of P: 

where Po, PI, ... P, are the pixels belonging to the 8- 
neighborhood of P and val(P,) is the value (0, 1) of the pixel 
P,. In particular, the pixels having cn(P) = 1 correspond to 
termination minutiae, while the pixels which have cn(P) 2 3 
correspond to bifurcation minutiae. In all approaches, A, B, 
C, D and E, the minutiae detected have been filtered by 
removing: 

the minutiae belonging to regions where the image 
contrast (computed as in [SI) is less than half of the 
average image contrast. 
the pairs of termination minutiae which are less than 
k pixels (k = 6) distant from each other. 

0 the sets of bifurcation minutiae (except one minutia 
for each set) belonging to a neighborhood with di- 
ameter k pixels (k = 6). 

Fig. 16 shows the certain minutiae manually detected on 
fingerprints no. 1 and no. 13 of the sample set. Figures 17, 

18 and 19 show the automatic extraction through ap- 
proaches A, B, C, D, and E on the same fingerprints. 

Fig. 16. The figure shows the certain minutiae detected manually by a 
human expert on fingerprints no. 1 (on the left) and no. 13 (on the right) 
of the  sample set. 

Table 1 reports the results in terms of undetected minutiae 
(dropped), non-existent minutiae $%false) and type-exchanged 
minutiae (exchanged). Tables 2, 3, and 4 report the average 
error percentage relative to the classes good, poor and to the 
whole sample set, respectively. 

Table 5 reports the average computational times spent in 
automatic minutiae extraction measured on a PC 80486-DX 
50 Mhz. The graphics in Fig. 20 compare the average error 
percentage and the average computational times obtained 
with the different approaches. 

The results achieved by the proposed technique on a real 
sample of 150 fingerprints, acquired through an opto- 
electronic device based on a prism, are very similar to those 
obtained for the class good of the sample set considered here 
(Table 2, Approach A). 

The following conclusions can be drawn: 
the average error percentage, in terms of dropped and 
exchanged minutiae, as produced by our approach is 
comparable to the errors produced by the other ap- 
proaches, although slightly larger. 
the average error percentage, in terms of false minu- 
tiae, as produced by our approach is considerably 
lower than the errors produced by the other ap- 
proaches. 
the average computational time of our approach is 
considerably lower than the time of the other ap- 
proaches. 
approach E, whose performance in terms of total error 
is comparable with that of our approach, is one order 
of magnitude slower than our approach. 

The large number of false minutiae determined by ap- 
proaches B, C and D (especially on class poor) is due to the 
irregularity of the binary traces produced by the binariza- 
tion process. Regularization techniques, similar to that pre- 
sented in [6], can substantially reduce the number of false 
minutiae. Structural considerations about minutiae position 
1131, [37] can be applied to all the approaches in order to 
decrease the number of false minutiae. 
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’ fingerprint minutiae 

1 33 
‘ 2  29 

3 28 
4 37 
5 22 
6 23 
7 31 

I 

I 

I 8 31 
9 21 
10 22 
11 32 
12 33 
13 20 
14 37 

35 

A B C D E 

d f x d f x d f x d f x d f x 

0 2 7 0 2 5 2  1 1 0 2 7  0 5 3 6  0 5 4 
3 1 4 0 2 0 2 2 2 4 1 1 3 4 2 2 4 0  
1 2  4 0 24 0 1 3 5  1 1 2 8  2 0 4 4 
3 0 4 0 1 5 3 4 3 2 0 1 4 2 3 2 2 2  
0 0 3 0 3 8 1 0 8 0 2 1 1 8 0 0 8 2  
0 0 4 0 3 2 0 2 5 3 0 1 9 2 0 2 1  
2 1  2 3 1 3 2 2 2 7 2 0 4 0 3 2 0 2  
1 0  3 0 2 0 1 1 0  3 0 5 4 0 0 3 
1 10 1 1 115 1 0 180 1 0 153 1 0 24 2 
1 0 4 0 53 1 0 1 0 4 3  0 1 0 0 1  0 8 4 
3 5 4 1 2 2 4 2 2 2 3 3 7 3 4 1  5 2  
3 8 2 0 2 3 3 4 4 5 1  I 7 9 3 0 1 0 5  
0 0 4 0 4 8 2 0 5 7 3 0 8 1 2 0 7 5  
0 5 6 1 4 3  5 3 67 5 1 5 7  4 0 11 2 

The second 

dropped minutiae 
false minutiae 
exchanged minutiae 

total error 

TABLE 1 
AUTOMATIC MINUTIAE DETECTION. 

A B C D E 

4.27% 1.28% 4.70% 1.71 yo 2.56% 
2.56% 59.83% 143.16% 102.14% 10.68% 
13.25% 5.13% 8.12% 9.40% 7.69% 

20.09% 66.24% 155.98% 11 3.25% 20.94% 

a 
dropped minutiae 4.51 % 
false minutiae 8.52% 
exchanged minutiae 13.03% 

total error 26.07% 

changed minutiae, respectively. 
TABLE 2 

AVERAGE ERROR PERCENTAGE RELATIVE TO THE FINGERPRINTS OF THE CLASS GOOD. 

B C D E 

1.50% 5.01 % 2.26% 1.75% 
11 1.28% 203.01 ‘30 195.99% 22.56% 
7.02% 8.77% 9.27% 9.52% 

11 9.80% 21 6.79% 207.52% 33.83% 

dropped minutiae 
false minutiae 
exchanged minutiae 

4.85% 3.03% 
16.97% 39.39% 

12.12% 12.73% 9.70% 9.09% 

total error I 34.55% I 195.76% I 303.03% I 341.21% I 52.12% 

TABLE 4 
AVERAGE ERROR PERCENTAGE RELATIVE TO THE FINGERPRINTS OF THE WHOLE SAMPLE SET. 
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Fig. 17. Automatic minutiae detection in fingerprints no. 1 and no. 13 
using our approach (A). Inside the arrow-box a snapshot of a direct 
gray scale ridge line following is shown. In the output image the ridge 
lines are represented through the corresponding polylines of T. The 
minutiae are denoted by small white circles (termination minutiae) and 
squares (bifurcation minutiae). Both black squares and black circles 
denote filtered minutiae. 

Fig. 19. Automatic minutiae detection in fingerprint no.13 (belonging to 
the class poor) using approaches B, C, D and E. Each column shows 
the results of the processing steps of the corresponding approach. The 
minutiae are denoted by small white circles (termination minutiae) and 
squares (bifurcation minutiae). Both black squares and black circles 
denote filtered minutiae. 

Average error percentage 

1 250% ~ ~ - __ 

I [ - -  - -  ~~~ 

1 1  Average computational time (sec ) 

I 1.20. A comparison between the average error percentage and the 
average computational times of the five different approaches. 

Fig. 18. Automatic minutiae detection in fingerprint no.1 (belonging to 
the class good) using approaches B, C, D and E. Each column shows 
the results of the processing steps of the corresponding approach. The 
minutiae are denoted by small white circles (termination minutiae) and 
squares (bifurcation minutiae). Both black squares and black circles 
denote filtered minutiae. 
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A B C D E 
directional image 0.51 0.51 
smoothing 3.90 3.90 
brnarization 2.25 3.08 2.64 15.73 
thinning 3.11 3.11 3.15 2.45 
min. detection and 2.22 0.51 0.67 0.66 0.33 
filtering 

total time 2.73 9.77 10.76 6.45 19.03 

TABLE 5 
AVERAGE COMPUTATIONAL TIME (IN SECONDS) TAKEN FOR THE MINUTIAE DETECTION ON Pc 80486-DX 50 MHZ ARCHITECTURE. 

28 + (20 + 1)(2h + 3) 
+ E (21.1 + 7) Total 

18+(2p+1)(20+1) 1 0 + 2 ( 2 0 - 1 ) + 3 ~  
+ 2 &  

and E is the thickness of the polygonal traces used to update T. 

Most of the errors of our approach are minutiae ex- 
changes. These errors are mainly due to some termination 
minutiae which are detected as bifurcation minutiae. In 
particular, if a termination minutia is very close to another 
ridge line the algorithm may skip the termination and in- 
tersect the adjacent ridge line. A local analysis of the gray 
scale image in each minutia neighborhood could be 
adopted to substantially reduce the type-exchanged errors. 
To train a neural network to verify the type of minutiae 
detected could be a promising approach. 

Let us now make some considerations about the com- 
putational complexity of the proposed technique. We as- 
sume, for simplicity, that a fingerprint pattern is made up 
of a set of straight horizontal segments, which are 5-pixels 
thick and {-pixels distant from each other (Fig. 21). In fact, 
even if in reality the ridge line thickness may vary from 
about 4-5 pixel to 12-15 pixel (at the resolution we have 
used), 5 can be assumed to be the mean value. Under this 
assumption, the number of ridge lines in a nxn image is 
n/2c. If p is the step of the ridge line following algorithm, 
n /p  steps are necessary to extract a whole ridge line. There- 
fore, the algorithm performs n /(25p.) steps in order to ex- 
tract all the ridge lines and then all the minutiae. 

2 

L 
Fig. 21. A simplified fingerprint pattern. 

At each step the algorithm performs the following operatic 

1) computation of the new point (it, j,), 
2)  construction of the section segment C l ,  
3) convolution with the gaussian mask d, 
4) maxima searching, 
5) checking the stop criteria, 
6) update of T, 
7) computation of the new direction cpc. 

3ns: 
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By using Bresenham’s algorithm [4] to compute Q and to 
update T, and by representing the angles through discrete 
values, all the computations can be performed by means of 
integer arithmetic. Table 6 summarizes the elementary op- 
erations carried out at each ridge line following step. 

All the parameter values can be approximately estimated 
according to the ridge thickness 5; in the following we as- 
sume: o = 2p+l = \ and p = E = 2h+l = % \. The computa- 
tional complexity of the technique presented (except for the 
computation of the directional image) is then: 

2 [ sum, ( = 3 n  if 6=8) n 
3 / 2 6’ ,“8 5 + 30 

2 n multiplication, ( = 2.5 n if 5 = 8 ) 

Hence, the total number of operations executed for the di- 
rect gray scale minutiae detection is only a few times the 
number of pixels of the whole image. It is important to note 
that, by using techniques based on binarization apd thin- 
ning, the binarization step alone requires n pixel- 
neighborhoods to be processed, so that the time taken for the 
whole detection is undoubtedly longer than in our approach. 

5 CONCLUSION 
Minutiae represent the most discriminant features of fin- 
gerprints, so that they are employed by most automatic 
systems for fingerprint comparison. In this paper we have 
presented an original approach to automatic minutiae de- 
tection, which detects the minutiae directly in gray scale 
images, This technique is based on a ridge line following 
algorithm that follows the image ridge lines until a termi- 
nation or a bifurcation occurs. In spite of a greater concep- 
tual complexity, we have shown that our technique has less 
computational complexity than the complexity of the tech- 
niques which require binarization and thinning. The results 
achieved have been compared with those obtained through 
some known approaches. The comparison shows the superi- 
ority of our technique in terms of efficiency and robustness. 

The low computational complexity makes this method 
particularly suitable for applications where efficiency is a 
primary issue (i.e., on-line access control, low-cost biomet- 
ric-systems, etc.). 

Future work in this direction will include the following 
topics: 

a Investigating the feasibility of a neural network ap- 
proach to verify the type of minutiae detected by the 
approach presented in this work. 

0 Developing a new ridge line following algorithm ca- 
pable of dynamically adapting the parameters 1-1 and 
o according to the local ridge line width. 

0 Defining local criteria to evaluate the reliability of 
each minutia detection, in order to associate each mi- 
nutia with a confidence value, which is particularly 
useful during fingerprint matching. 

a Adopting more sophisticated identification models, 
for instance extending minutiae definition by includ- 
ing trifurcations, islands, spurs, bridges, etc. 

* Analyzing the behavior of our approach on chance- 
prints, which are partial fingerprints, normally poor 
quality images, picked up from scene of crime. Proc- 
essing chanceprints is very important for police in- 
vestigation purposes, and is a real challenge. 

Finally, we would like to point out that our ridge line fol- 
lowing algorithm, though developed ad hoc to extract the 
fingerprint ridge lines, can also be more generally used for 
the detection of lines and curves in gray scale images. 

APPENDIX A 
COMPUTATION OF THE TANGENT DIRECTION 

Let (io,jo) be the pixel of the image I where the tangent di- 
rection ‘po must be computed. Let the tangent window be a 
squared window centered in (io,jo) with side length a pixels. 
For each pixel (ih,jk) belonging to the tangent window, a 
vector nhk orthogonal to the surface z = s(i, j) is defined. 
The tangent vector in each pixel (ih,jk) (when defined) lies 
on the ij-plane and is orthogonal to the corresponding vec- 
tor nhk. The average tangent vector t, which represents the 
required direction cpo, is the unit vector lying on the ij-plane 
which is the ”most orthogonal” to all the vectors nhk com- 
puted. 

Fig. 22 shows the tangent direction t on a surface S in- 
cluding a ridge parallel to direction j. 

tangent window 

Fig. 22. A surface S including a ridge in direction J The figure shows 
the tangent window (a  = 9) centered in (iojo), the normal vectors nhk 
and the average tangent vector t The normal vectors nhk (computed 
for simplicity only in one row, h=5, k=l , .  9) are the normal vectors to 
the surface S The average tangent vector t is the “most orthogonal” to 
the normal vectors n, ,  .ng of the unit vectors lying on the ij-plane. 

The average tangent vector computation takes place as 
follows: 

Let (ihil, jk+J, (ih.l, jk+l), (ih-,, jk.l) and (ih+l, jk.J be the pix- 
els belonging to the 2x2 pixel neighborhood of each tan- 
gent-window pixel (ih, jk). Let a,=gmy(ih+l, jk+l), a2=gray(ih-l, 
jk+l), a3=gray(ih-l, jk.l), and a4=gray(ih+l, jk.l). For each neigh- 
borhood the normal vector nhk to the plane surface deter- 
mined by (al, a2, a3, a4) can be computed via least-squares 
minimization: 

nhk  bhk’ ‘1 
where 
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~ 

39 

-a, + a2 + a3 - a4 -a, - a2 + a3 + a4 

4 
U41 

[I51 
5 bhk = ahk = 4 

Then, the average tangent vector t is determined as the 
unit vector lying on the ij-plane which is the ”most or- 
thogonal” to all the normal vectors nhk, h=l, ... a, k=l, ... a, 
computed over the tangent window. Let vhk=(ahk, bhk), 
h=l, ... a, k=l, ... a be the vectors obtained by removing the z 
component from the corresponding normal vectors n h k  and 
let t = (tl, t2). Formally it is a least-squares minimization: 

[I61 

1171 

min 
2 

“hk subject to t =1 
h=l..a 
k=l..a 

Neglecting the mathematical details, which can be found in [81: 
[201 

1211 

t = (  [. [231 1, 01 if C = 0, A 5 B 
C = O , A  > B 

1241 

P51 

[261 
finally, the tangent direction ‘po can be simply computed as: 

otherwise P 
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