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Abstract—In this paper we introduce a parallel implementation 
of locally- and feature-adaptive diffusion based (LFAD) 
method for image denoising using NVIDIA CUDA framework 
and graphics processing units (GPUs). LFAD is a novel method 
for removing additive white Gaussian (AWG) noise in images 
reported to yield high quality denoised images [1]. It 
approaches each image region separately and uses different 
number of nonlinear anisotropic diffusion iterations for each 
region to attain best peak signal to noise ratio (PSNR). The 
inverse difference moment (IDM) feature is embedded into a 
modified diffusion function. As the method has attained 
highest performance in the class of advanced diffusion based 
methods and it is competitive with all the state-of-the-art 
methods, however computationally intensive when executed on 
the general purpose CPU. To improve the performance, we 
implemented using the CUDA computational framework. In 
order to minimize GPU kernel access to the global memory, we 
use shared memory and the texture memory per 
multiprocessor. The performance of the GPU implementation 
of the LFAD has been tested on the standard benchmark 
images. We demonstrate that with a single NVIDIA Tesla 
C2050 GPU we can expedite the sequential CPU 
implementation in most cases from 13 to 20 times.   

Keywords- LFAD, Image Denoising, CUDA Implementation, 
NVIDIA, GPU  

I. INTRODUCTION 
A certain level of noise can be present in images due to 

imperfection in formation, transmission, or recording 
processes and thus denoising methods are demanded to 
enhance image quality prior to visualization or analysis. 
However, none of the denoising methods can cope with the 
noise without degrading the original quality of the image.  
These degradations either affect edges, which are blurry or 
create artifacts, also introduce new “false” edges. If the 
denoising method is based on the block transformations, the 
inevitable a certain  ”blocking” effect is observed. 

The locally- and feature- adaptive diffusion based image 
denoising (LFAD) method [1] has demonstrated highest 
performance in the class of advanced diffusion based 
methods and is competitive with all the state-of-the-art 
methods. However, the iterative LFAD process demands 
intensive computations which lower its efficiency for on-line 
applications.    

Graphics processing units (GPUs) are efficient for highly 
parallel and computationally-intensive applications. GPUs 
architecture has evolved from application-specific 
architectures into general-purpose GPU architectures 
(GPGPUs) that can run any arbitrary computation. The 
Compute Unified Device Architectures (CUDA) platform by 
NVIDIA enables the GPU to solve complex computing 
problems. It also greatly simplifies the GPU programming 
[2]. CUDA has many unique properties that are very suitable 
for real time image processing applications. 

In this paper we present a CUDA implementation for 
LFAD denoising algorithm and demonstrate that with a 
single NVIDIA Tesla C2050 GPU the speedup ranges from 
13 to 20 when compared to the optimal sequential 
implementation. 

The rest of the paper is organized as follows. Section 2, 
describes the phases of the LFAD image denoising method 
and associated algorithms.  Section 3, presents the GPU 
hardware interface and programming model in the CUDA 
environment. Section 4, introduces the CUDA 
implementation and the GPU optimization. Section 5, 
presents results of the experiments. In Section 6, we draw the 
conclusions.  

 

II. LFAD : LOCALLY- AND FEATURE- ADAPTIVE 
DIFFUSION 

 
The LFAD denoising method is performed as follows:  
 

a) Image is over-segmented into k approximately 
equally-sized patches(regions);  
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b) each patch is diffused individually until best PSNR 
is attained;  

c) adjacent regions are merged based on a similarity 
metric;  

d) diffusion repeats for merged regions until PSNR 
shows improvement. Subsections below discuss each of the 
above steps in more details. 

 
 

A. Image Over-segmentation 
 

As stated above, we need to start with an over-segmented 
image. For this purpose, we use the superpixel segmentation 
method. It groups pixels into perceptually meaningful 
regions that can be used instead of the rigid structure of the 
pixel grid.  

The superpixel segmentation method works with a 
parameter k which is a desired number of approximately 
equally-sized superpixels. The procedure begins with an 
initialization step in which k initial cluster centers Ci are 
sampled on a regular S- pixel grid space. To produce roughly 
equally sized superpixels, the grid interval, S is set: 

k
NS = , where N is the total number of pixels, The 

centers are moved to seed locations corresponding to the 
lowest gradient position in a 3x3 neighborhood, and thus 
avoid centering a superpixel on an edge. This reduces the 
chance of seeding a superpixel with a noisy pixel. Next, in 
the assignment step, each pixel i is associated with the 
nearest cluster center whose search region overlaps its 
location. The distance measure D, determines the nearest 
cluster center for each pixel. Since the expected spatial 
extent of a superpixel is a region of an approximate size 
of SS × , the search for similar pixels is carried in a region of 
size SS 22 ×  around the superpixel center. Once each pixel 
has been associated with the nearest cluster center, an update 
step adjusts the cluster centers to be the mean vector of all 
the pixels belonging to the cluster. The L2 norm is used to 
compute a residual error between center locations of the new 
and previous clusters. The assignment and update steps are 
repeated iteratively until convergence.  

 

B. Region Merging 
 

If image I is partitioned into regions (initially, 
superpixels) R1, R2,. . . , Rn�, the following properties must 
hold true: 

1. R1  R2 . . .  Rn = I; 
 

2. Ri  is connected; 
 

3. Ri  Rj is empty. 
 

The regions are merged based on the similarity metric 
which is chosen to be the intensity variance. Let us denote a 

pair of adjacent regions Ri ~ Rj and merged regions Ri Rj. 
The region merging algorithm is performed as follows: 

1. For  Ri ~ Rj , if �j
2 � �*�i

2 then Rm=Ri  Rj 
 

2. If Rm � I, Increment α. Goto Step 1; otherwise 
Goto Step 3 

 
3. Stop. 

 
Here � is a constant multiplier, determined experimentally. 

C. Diffusion 
 

The equation below describes the diffusion process 
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Where I(x,y,t) is an image, t is the iteration step and c(x,y,t) 
is a monotonically decreasing diffusion function of the 
magnitude gradient.  

The LFAD method uses the normalized inverse 
difference moment (IDM) feature in the equation (1) for 
c(x,y,t) .  
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where � is referred to as a diffusion constant [3], and IDM is 
calculated as in (3). 
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A value of IDM equal to zero indicates a pixel being part 
of a homogenous neighborhood. A value close to one 
indicates that the pixel belongs to texture or an object 
boundary.                  

Consider MxN neighborhood containing G gray levels, 
let f(m,n) be the intensity at sample m, line n of the 
neighborhood. Then 
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D. LFAD Algorithm code 
Let us denote I as the input image, k  the number of 

regions, m – number of merging steps, Var –intensity 
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variance and  n is a number of diffusion steps. The method 
performs according to the following steps: 

 
 

1. Initialize m=0, � = 1.1, � =10. Segment image into k 
(k�1)  regions. 
 

2. Initialize n=0. Calculate PSNR for each region of 
initial partition, i.e., [PSNRk 

(0)]0  . 
 

3. Iteration step: Diffuse image pixel Ii,j  using Eq.(7). 
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Subscripts N, S, E, and W (North, South, East, and West) 
describe the direction of the local gradient, and the local 
gradient is calculated using nearest-neighbor differences as 

jijijiN III ,,1, −=∇ − ;  

jijijiS III ,,1, −=∇ + jijijiE III ,1,, −=∇ + ;                       
                       jijijiW III ,1,, −=∇ −                           (8) 

 
4. For ∀ Ri : if  [PSNRk 

(n+1)]m >[ PSNRk 
(n)]m, Goto 

Step 3; else Goto Step 6. 
 

5. While Rm � I, for ∀  Ri ~ Rj, if Var(Rj) � �* Var(Ri),  
then Ri ∪ Rj; m=m+1; update k;, Goto Step 2, else 
Repeat Step 5 with � = �+0.1. 
 

6. Stop. 
 

Here, PSNR is calculated according to Eq. (9) 
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where maxI is the maximum intensity of the image, 
and MSE is the mean square error: 

           ( )[ ]2
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(10) 
The denoising result of the LFAD method for additive 

white Gaussian (AWG) noise with � =20 is shown in Fig. 1.  

III. CUDA ARCHITECTURE 
At the software level, the parallel codes, written in the 

CUDA environment, are divided into CPU part (host code) 
and GPU part (device code). At the beginning, a part of the 
code is executed on the CPU, then all necessary data are 
copied to the GPU and the data-parallel functions running on 
the GPU; finally, the results are copied back to CPU. 
Applications code is divided into independent tasks. These 
tasks are parallelized by scalar execution units called threads. 
A set of threads, called blocks, run on multiprocessor at a 
given time, and the threads within a block can share data. 
One can use several points of synchronization to control the 
execution flow of all the threads in each block. A set of 
blocks can be assigned to a single multiprocessor and their 
execution is time-shared. The collection of all blocks in a 

single execution is called a grid. Fig. 2 shows the CUDA 
architecture model as a collection of blocks running in 
parallel. 

 

 
Figure 1. Left: “Lena” image with AWG noise, � =20. Right: 

image results by the LFAD denoising method. 
 

At the hardware level, the CUDA boards contain a set of 
single instruction multiple data (SIMD) stream multi-
processors (SM), and each SM includes several stream 
processors (SP). GPUs have much longer RAM delay, 
smaller cache and poorer branch prediction than CPUs so if 
the parallel code doesn’t have any high concurrency degree; 
the improvement is not significant [4].  

 

 
Figure 2. CUDA architecture model 

 
The CUDA programming environment does not have any 
GPU memory restrictions, and thus the whole CUDA 
memory is available, however there will be different access 
times for different types of memory in GPU. The CUDA 
memory includes global (device) memory, shared memory, 
and Constant memory (Fig. 3). All threads can access global 
memory. For each block, shared memory is available for all 
threads within the block, while registers are the local storage 
for each SP. Register and shared memory are much faster 
than device memory that can be used to speed up the access. 
Constant memory and texture memory are read only 
memories accessible for all threads. Texture memory is a 
device memory which is cached for locality and constant 
memory is cached memory that can be written by the CPU 
and read by the GPU. Highest throughput can be achieved by 
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accessing consecutive memory locations by the threads 
simultaneously, that is with the memory access coalescing.   

 
Figure 3. CUDA memory model. 

 

IV. CUDA IMPLEMENTATION AND  GPU OPTIMIZATION  
In our implementation, we assign each thread process to 

a single pixel to have all pixels simultaneously processed. 
The GPU version was implemented using four CUDA 
kernels: (1) Superpixel Segmentation, (2) Diffusion, (3) 
PSNR Calculation (4) Region merging. The IDM is 
calculated on the CPU. The flow chart is shown in Fig. 4. 
Memory transfers are shown by wide arrows. The kernels 
running in GPU are called by host.  

To increase the performance, we have used two general 
optimization techniques such as memory management 
overhead reduction and the memory transfer overhead 
reduction [5]. 

In CUDA, memory allocation (cudaMalloc and 
cudaFree) are more intensive operations than standard C 
functions (malloc and free). Therefore we have allocated the 
GPU memory just once at the beginning and then we 
accessed and changed that memory in any kernel calls, 
finally at the end we just brought the results back from the 
GPU memory to the host just one time.  For memory transfer 
overhead reduction, we have to avoid unnecessary data 
transfers between GPU and CPU during the execution of the 
method. So we performed most of the computationally 
expensive procedures in GPU.  

In the following subsections we describe the CUDA 
implementation of each stage of the LFAD algorithm.  

 

A. IDM Feature Calculation 
Since the IDM (Fig. 5) is calculated once only and it is 

based on the input image, we execute this stage on CPU and 
transfer the feature values to the GPU at the beginning of the 
algorithm. We load the IDM values as an one dimensional 
texture memory per thread. 

By loading the IDM values to texture memory, we can 
take advantage of a special architecture of the GPU which 
provides an on-chip caching that is secure and more efficient 
off-chip memory access. 

 

 
Figure 4. CUDA-based LFAD algorithm flow chart. 

 

 
Figure 5. Left to right: input and IDM image for AWG noise �=20 

 

B. Superpixel Segmentation 
In this stage the SLIC (Simple Linear Iterative 

Clustering) method is employed that efficiently groups pixels 
to nearly uniform superpixels [6,7]. In [8], authors 
introduced an optimized CUDA implementation of the SLIC 
superpixel method. They achieved speedups of 10x to 20x 
times. Due to simplicity and efficiency of this method we 
have adopted this implementation on CUDA for our 
algorithm. Figure 6, shows the result of the application of the 
method on Lena benchmark image. 

C. Diffusion 
Due to repetitive iterations in the LFAD diffusion 

process, we store neighborhood pixel values in four 
directions (N,S,W,E) in 2D texture memory. The diffusion 
procedure updates all the pixel values simultaneously due to 
processing of multiple threads in parallel. Listing 1, provides 
an example of 2D texture memory definition for the 
diffusion procedure. 
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Figure 6. SLIC superpixel method result 

 
The texturing hardware in CUDA has a boundary 

handling property for image processing kernels. Basically, 
when one defines a texture reference, the address mode is 
specified. This mode describes the behavior when textures 
are accessed out of bounds and can be set to clamp or repeat 
accesses.  

 
 
 
 
 
 
 
 
 

Listing 1. 2D texture memory definition for diffusion process 
 
The diffusion kernel is implemented on a grid of 

W/32×H/32 thread blocks (H & W are the image 
dimensions). Before doing any arithmetic operation, data 
accessed by each thread block are read first from the global 
memory into the texture memory because being an on-chip 
memory the latter has lower than of the global memory 
latency and a much higher bandwidth. In the diffusion 
kernel, as illustrated by Fig.7 (a), in every iteration, for 
minimizing the repetitive access to off-chip memory, each 
thread reads neighborhood pixels from the four-connected  
neighborhood, N,S,W, E into texture caches and applies the 
corresponding diffusion equation. 

 

D. PSNR calculation 
To calculate the patch-based PSNR values in parallel, we 

have used the shared memory on the GPU. We have assigned 
a region per block and pixel values to the threads inside the 
blocks. For the MSE calculation, because the result needs to 
be the sum squared of all pairwise subtractions, each thread 
keeps a running sum of the pairs it has subtracted. 
We have declared two buffers of the shared memory, one 
used to store each thread’s running subtraction and the other 
one for comparison and the maximum value of the 
intensities. In CUDA, the variables in shared memory are 
handled different from ordinary variables. CUDA generates 
a copy of a variable for each block launched on the board. In 
this case, we can declare a shared memory array using the 
__device__ __shared__ qualifiers in CUDA. Since the 

shared memory variables reside physically on the GPU, the 
latency to access this memory is considerably lower than 
ordinary variables. 

 

 
Figure 7. 2D texture memory in a) diffusion and b) region merging stages. 

 
E. Region Merging 

The region merging kernel is also implemented on a grid 
of H/32×W/32 thread blocks. Based on LFAD method, we 
are merging the adjacent region that hold this condition: 
Var(Rj) � �* Var(Ri). First, in order to find the adjacency 
map for the image, we used the approach used in the 
diffusion stage, but here each thread reads values from the 
eight- neighborhood (Fig.7 (b)) into the texture caches. The 
class labels in the adjacency map are updated in parallel.  

 

V. PERFORMANCE EVALUATION 
In this section, we present the performance evaluation of 

the LFAD algorithm on both CPU and GPU. As for the CPU 
implementation, the algorithm is tested using single-threaded 
implementation in Matlab. Both CPU and CUDA 
implementations of the algorithm have been performed on a 
workstation whose characteristics are as in Table I. In Table 
II we provide the properties of NVIDIA Tesla C2050 used in 
this work. 

 

TABLE I.  TEST SYSTEM MAIN CONFIGURATION 

Parameters Values 

CPU Intel core 2 Duo E8400 (3.00GHz) 

RAM 4 GB 

GPU architechture  NVIDIA Tesla C2050 

OS Microsoft Windows 7 

CUDA V4.0 

 
We compare the execution times of the CPU and CUDA 

versions of the LFAD method in Fig. 8 to illustrate the 
accelerating performance of CUDA. Both execution times of 
CPU and CUDA versions are average values of execution 

texture<float, 2, cudaReadModeElementType> textImage; 
float x=(float)ix+0.5f;       // ix = each threadIdx.x 
float y=(float)iy+0.5f;      // iy = each threadIdx.y 
float  t     = tex2D(textImage, x, y); 
float  tN  = tex2D(textImage, x-1, y);  
float  tW = tex2D(textImage, x, y-1); 
float  tS   = tex2D(textImage, x+1, y); 
float  tE  = tex2D(textImage, x, y+1); 
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over multiple runs. We can see that the execution time of 
CPU version grows rapidly as the noise level (�) increases, 
while the CUDA version grows slowly. The speedups 
achieved with the proposed CUDA implementation range 
from 13x to 20x, as illustrated in Fig. 9. 

According to the experimental results in Fig. 8 and 9, we 
observe that: (a) compared to the serial single-threaded 
algorithm running on the CPU, the parallel algorithm on the 
GPU through the CUDA environment improved the 
performance significantly. For the input image of 512 x 512 
pixels, the speed up is up to 20 times. 

Because GPU has high parallel architecture, multiple 
input data blocks can be processed simultaneously. (b) The 
speed up is increases with the increase in noise level. When 
the noise level is low, the computation load of CUDA 
threads is low. When noise level is high, the threads 
computation load is sufficient and context switch cost is 
reduced. Although there is an improvement of the speed for 
the method, the iterative nature of the diffusion process is 
creating a bottleneck for parallel implementation. The future 
research will be conducted on finding modifications of the 
method and algorithms for better runtime on the given 
architecture without or with a minimum degradation of the 
original image quality. 

 

TABLE II.  PROPERTIES OF NVIDIA TESLA C2050 

Parameters Values 

Number of  CUDA cores 448 

Memory Speed 1.5GHz  

Dedicated Memory 3GB  

Clock Rate 1.15 GHz 

Memory Bandwidth 144 Gb/sec 

VI. CONCLUSIONS 
In this paper, we have presented a novel parallel 

implementations of locally- and feature-adaptive diffusion 
based LFAD method for image denoising using NVIDIA 
CUDA framework and graphics processing units. The final 
CUDA implementation of this method provides a speedup of 
13x to 20x over the single-threaded Matlab implementation. 
By assuming perfectly linear scaling, for matching the 
performance of this CUDA implementation, would require 
about 14 - 20 CPU cores equivalent to the cores used in our 
experiment. The speedup is achieved by different 
optimization techniques such as memory management 
overhead reduction, memory transfer overhead reduction and 
by taking advantage of the CUDA memory patterns , such as 
shared and texture memories. 
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Figure 8. Execution times for Lena image using CUDA and Matlab under 

different noise levels. 
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Figure 9. Speedup by CUDA vs the image noise level. 
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