
A CUDA BASED IMPLEMENTATION OF LOCALLY- AND FEATURE- ADAPTIVE
DIFFUSION BASED IMAGE DENOISING ALGORITHM

Ali Pour Yazdanpanah, Ajay K.Mandava, Emma E. Regentova, Venkatesan Muthukumar,
Department of Electrical and Computer Engineering

University of Nevada, Las Vegas
Las Vegas, NV 89154, USA

Email: pouryazd@unlv.nevada.edu

George Bebis.
Department of Computer Science and Engineering,

 University of Nevada, Reno,
 NV 89557, USA

bebis@cse.unr.edu

Abstract—In this paper we introduce a parallel implementation
of locally- and feature-adaptive diffusion based (LFAD)
method for image denoising using NVIDIA CUDA framework
and graphics processing units (GPUs). LFAD is a novel method
for removing additive white Gaussian (AWG) noise in images
reported to yield high quality denoised images [1]. It
approaches each image region separately and uses different
number of nonlinear anisotropic diffusion iterations for each
region to attain best peak signal to noise ratio (PSNR). The
inverse difference moment (IDM) feature is embedded into a
modified diffusion function. As the method has attained
highest performance in the class of advanced diffusion based
methods and it is competitive with all the state-of-the-art
methods, however computationally intensive when executed on
the general purpose CPU. To improve the performance, we
implemented using the CUDA computational framework. In
order to minimize GPU kernel access to the global memory, we
use shared memory and the texture memory per
multiprocessor. The performance of the GPU implementation
of the LFAD has been tested on the standard benchmark
images. We demonstrate that with a single NVIDIA Tesla
C2050 GPU we can expedite the sequential CPU
implementation in most cases from 13 to 20 times.

Keywords- LFAD, Image Denoising, CUDA Implementation,
NVIDIA, GPU

I. INTRODUCTION
A certain level of noise can be present in images due to

imperfection in formation, transmission, or recording
processes and thus denoising methods are demanded to
enhance image quality prior to visualization or analysis.
However, none of the denoising methods can cope with the
noise without degrading the original quality of the image.
These degradations either affect edges, which are blurry or
create artifacts, also introduce new “false” edges. If the
denoising method is based on the block transformations, the
inevitable a certain ”blocking” effect is observed.

The locally- and feature- adaptive diffusion based image
denoising (LFAD) method [1] has demonstrated highest
performance in the class of advanced diffusion based
methods and is competitive with all the state-of-the-art
methods. However, the iterative LFAD process demands
intensive computations which lower its efficiency for on-line
applications.

Graphics processing units (GPUs) are efficient for highly
parallel and computationally-intensive applications. GPUs
architecture has evolved from application-specific
architectures into general-purpose GPU architectures
(GPGPUs) that can run any arbitrary computation. The
Compute Unified Device Architectures (CUDA) platform by
NVIDIA enables the GPU to solve complex computing
problems. It also greatly simplifies the GPU programming
[2]. CUDA has many unique properties that are very suitable
for real time image processing applications.

In this paper we present a CUDA implementation for
LFAD denoising algorithm and demonstrate that with a
single NVIDIA Tesla C2050 GPU the speedup ranges from
13 to 20 when compared to the optimal sequential
implementation.

The rest of the paper is organized as follows. Section 2,
describes the phases of the LFAD image denoising method
and associated algorithms. Section 3, presents the GPU
hardware interface and programming model in the CUDA
environment. Section 4, introduces the CUDA
implementation and the GPU optimization. Section 5,
presents results of the experiments. In Section 6, we draw the
conclusions.

II. LFAD : LOCALLY- AND FEATURE- ADAPTIVE
DIFFUSION

The LFAD denoising method is performed as follows:

a) Image is over-segmented into k approximately
equally-sized patches(regions);

2014 11th International Conference on Information Technology: New Generations

978-1-4799-3187-3/14 $31.00 © 2014 IEEE

DOI 10.1109/ITNG.2014.113

388

b) each patch is diffused individually until best PSNR
is attained;

c) adjacent regions are merged based on a similarity
metric;

d) diffusion repeats for merged regions until PSNR
shows improvement. Subsections below discuss each of the
above steps in more details.

A. Image Over-segmentation

As stated above, we need to start with an over-segmented
image. For this purpose, we use the superpixel segmentation
method. It groups pixels into perceptually meaningful
regions that can be used instead of the rigid structure of the
pixel grid.

The superpixel segmentation method works with a
parameter k which is a desired number of approximately
equally-sized superpixels. The procedure begins with an
initialization step in which k initial cluster centers Ci are
sampled on a regular S- pixel grid space. To produce roughly
equally sized superpixels, the grid interval, S is set:

k
NS = , where N is the total number of pixels, The

centers are moved to seed locations corresponding to the
lowest gradient position in a 3x3 neighborhood, and thus
avoid centering a superpixel on an edge. This reduces the
chance of seeding a superpixel with a noisy pixel. Next, in
the assignment step, each pixel i is associated with the
nearest cluster center whose search region overlaps its
location. The distance measure D, determines the nearest
cluster center for each pixel. Since the expected spatial
extent of a superpixel is a region of an approximate size
of SS × , the search for similar pixels is carried in a region of
size SS 22 × around the superpixel center. Once each pixel
has been associated with the nearest cluster center, an update
step adjusts the cluster centers to be the mean vector of all
the pixels belonging to the cluster. The L2 norm is used to
compute a residual error between center locations of the new
and previous clusters. The assignment and update steps are
repeated iteratively until convergence.

B. Region Merging

If image I is partitioned into regions (initially,
superpixels) R1, R2,. . . , Rn�, the following properties must
hold true:

1. R1 R2 . . . Rn = I;

2. Ri is connected;

3. Ri Rj is empty.

The regions are merged based on the similarity metric
which is chosen to be the intensity variance. Let us denote a

pair of adjacent regions Ri ~ Rj and merged regions Ri Rj.
The region merging algorithm is performed as follows:

1. For Ri ~ Rj , if �j
2 � �*�i

2 then Rm=Ri Rj

2. If Rm � I, Increment α. Goto Step 1; otherwise
Goto Step 3

3. Stop.

Here � is a constant multiplier, determined experimentally.

C. Diffusion

The equation below describes the diffusion process

)),,((),,(ItyxctyxI
t

∇•∇=
∂
∂ , (1)

Where I(x,y,t) is an image, t is the iteration step and c(x,y,t)
is a monotonically decreasing diffusion function of the
magnitude gradient.

The LFAD method uses the normalized inverse
difference moment (IDM) feature in the equation (1) for
c(x,y,t) .

�
�
�

�
�
�
�

�
�
�
�

�
�
�−=

2)(exp
λ

IIDMc (2),

where � is referred to as a diffusion constant [3], and IDM is
calculated as in (3).

 ��
−

=

−

= −+
−=

1

0

1

0
2),(

)(1
11

G

i

G

j
jiP

ji
IDM (3)

A value of IDM equal to zero indicates a pixel being part
of a homogenous neighborhood. A value close to one
indicates that the pixel belongs to texture or an object
boundary.

Consider MxN neighborhood containing G gray levels,
let f(m,n) be the intensity at sample m, line n of the
neighborhood. Then

),|,(),|,(yxjiQWyxjiP ΔΔ⋅=ΔΔ (4),

where

� �

Δ−

=

Δ−

=

=ΔΔ

Δ−Δ−
=

yN

n

xM

m

AyxjiQ

yNxM
W

1 1

),|,(

;
))((

1

 (5)
and

	

	
�
�=Δ+Δ+=

�
�

=
.

),(),(
,0
,1

elsewhere

jynxmfandinmiff
A (6).

D. LFAD Algorithm code
Let us denote I as the input image, k the number of

regions, m – number of merging steps, Var –intensity

389

variance and n is a number of diffusion steps. The method
performs according to the following steps:

1. Initialize m=0, � = 1.1, � =10. Segment image into k
(k�1) regions.

2. Initialize n=0. Calculate PSNR for each region of
initial partition, i.e., [PSNRk

(0)]0 .

3. Iteration step: Diffuse image pixel Ii,j using Eq.(7).

()
() ()
() () �

�
�

�

�
�
�

�

∇•∇+∇•∇

+∇•∇+∇•∇
•∇+=+

n
jiW

n
jiWW

n
jiE

n
jiEE

n
jiS

n
jiSS

n
jiN

n
jiNNn

ji
n

ji IIcIIc

IIcIIc
tII

,,,,

,,,,
,

1
,

 (7)

Subscripts N, S, E, and W (North, South, East, and West)
describe the direction of the local gradient, and the local
gradient is calculated using nearest-neighbor differences as

jijijiN III ,,1, −=∇ − ;

jijijiS III ,,1, −=∇ + jijijiE III ,1,, −=∇ + ;
 jijijiW III ,1,, −=∇ − (8)

4. For ∀ Ri : if [PSNRk

(n+1)]m >[PSNRk
(n)]m, Goto

Step 3; else Goto Step 6.

5. While Rm � I, for ∀ Ri ~ Rj, if Var(Rj) � �* Var(Ri),
then Ri ∪ Rj; m=m+1; update k;, Goto Step 2, else
Repeat Step 5 with � = �+0.1.

6. Stop.

Here, PSNR is calculated according to Eq. (9)

�
�
�

�
�
�
�

�
=

MSE
I

PSNR
2

max
10log10 (9)

where maxI is the maximum intensity of the image,
and MSE is the mean square error:

 ()[]2
DenoisedOriginal IIEMSE −=

(10)
The denoising result of the LFAD method for additive

white Gaussian (AWG) noise with � =20 is shown in Fig. 1.

III. CUDA ARCHITECTURE
At the software level, the parallel codes, written in the

CUDA environment, are divided into CPU part (host code)
and GPU part (device code). At the beginning, a part of the
code is executed on the CPU, then all necessary data are
copied to the GPU and the data-parallel functions running on
the GPU; finally, the results are copied back to CPU.
Applications code is divided into independent tasks. These
tasks are parallelized by scalar execution units called threads.
A set of threads, called blocks, run on multiprocessor at a
given time, and the threads within a block can share data.
One can use several points of synchronization to control the
execution flow of all the threads in each block. A set of
blocks can be assigned to a single multiprocessor and their
execution is time-shared. The collection of all blocks in a

single execution is called a grid. Fig. 2 shows the CUDA
architecture model as a collection of blocks running in
parallel.

Figure 1. Left: “Lena” image with AWG noise, � =20. Right:

image results by the LFAD denoising method.

At the hardware level, the CUDA boards contain a set of
single instruction multiple data (SIMD) stream multi-
processors (SM), and each SM includes several stream
processors (SP). GPUs have much longer RAM delay,
smaller cache and poorer branch prediction than CPUs so if
the parallel code doesn’t have any high concurrency degree;
the improvement is not significant [4].

Figure 2. CUDA architecture model

The CUDA programming environment does not have any
GPU memory restrictions, and thus the whole CUDA
memory is available, however there will be different access
times for different types of memory in GPU. The CUDA
memory includes global (device) memory, shared memory,
and Constant memory (Fig. 3). All threads can access global
memory. For each block, shared memory is available for all
threads within the block, while registers are the local storage
for each SP. Register and shared memory are much faster
than device memory that can be used to speed up the access.
Constant memory and texture memory are read only
memories accessible for all threads. Texture memory is a
device memory which is cached for locality and constant
memory is cached memory that can be written by the CPU
and read by the GPU. Highest throughput can be achieved by

390

accessing consecutive memory locations by the threads
simultaneously, that is with the memory access coalescing.

Figure 3. CUDA memory model.

IV. CUDA IMPLEMENTATION AND GPU OPTIMIZATION
In our implementation, we assign each thread process to

a single pixel to have all pixels simultaneously processed.
The GPU version was implemented using four CUDA
kernels: (1) Superpixel Segmentation, (2) Diffusion, (3)
PSNR Calculation (4) Region merging. The IDM is
calculated on the CPU. The flow chart is shown in Fig. 4.
Memory transfers are shown by wide arrows. The kernels
running in GPU are called by host.

To increase the performance, we have used two general
optimization techniques such as memory management
overhead reduction and the memory transfer overhead
reduction [5].

In CUDA, memory allocation (cudaMalloc and
cudaFree) are more intensive operations than standard C
functions (malloc and free). Therefore we have allocated the
GPU memory just once at the beginning and then we
accessed and changed that memory in any kernel calls,
finally at the end we just brought the results back from the
GPU memory to the host just one time. For memory transfer
overhead reduction, we have to avoid unnecessary data
transfers between GPU and CPU during the execution of the
method. So we performed most of the computationally
expensive procedures in GPU.

In the following subsections we describe the CUDA
implementation of each stage of the LFAD algorithm.

A. IDM Feature Calculation
Since the IDM (Fig. 5) is calculated once only and it is

based on the input image, we execute this stage on CPU and
transfer the feature values to the GPU at the beginning of the
algorithm. We load the IDM values as an one dimensional
texture memory per thread.

By loading the IDM values to texture memory, we can
take advantage of a special architecture of the GPU which
provides an on-chip caching that is secure and more efficient
off-chip memory access.

Figure 4. CUDA-based LFAD algorithm flow chart.

Figure 5. Left to right: input and IDM image for AWG noise �=20

B. Superpixel Segmentation
In this stage the SLIC (Simple Linear Iterative

Clustering) method is employed that efficiently groups pixels
to nearly uniform superpixels [6,7]. In [8], authors
introduced an optimized CUDA implementation of the SLIC
superpixel method. They achieved speedups of 10x to 20x
times. Due to simplicity and efficiency of this method we
have adopted this implementation on CUDA for our
algorithm. Figure 6, shows the result of the application of the
method on Lena benchmark image.

C. Diffusion
Due to repetitive iterations in the LFAD diffusion

process, we store neighborhood pixel values in four
directions (N,S,W,E) in 2D texture memory. The diffusion
procedure updates all the pixel values simultaneously due to
processing of multiple threads in parallel. Listing 1, provides
an example of 2D texture memory definition for the
diffusion procedure.

391

Figure 6. SLIC superpixel method result

The texturing hardware in CUDA has a boundary

handling property for image processing kernels. Basically,
when one defines a texture reference, the address mode is
specified. This mode describes the behavior when textures
are accessed out of bounds and can be set to clamp or repeat
accesses.

Listing 1. 2D texture memory definition for diffusion process

The diffusion kernel is implemented on a grid of

W/32×H/32 thread blocks (H & W are the image
dimensions). Before doing any arithmetic operation, data
accessed by each thread block are read first from the global
memory into the texture memory because being an on-chip
memory the latter has lower than of the global memory
latency and a much higher bandwidth. In the diffusion
kernel, as illustrated by Fig.7 (a), in every iteration, for
minimizing the repetitive access to off-chip memory, each
thread reads neighborhood pixels from the four-connected
neighborhood, N,S,W, E into texture caches and applies the
corresponding diffusion equation.

D. PSNR calculation
To calculate the patch-based PSNR values in parallel, we

have used the shared memory on the GPU. We have assigned
a region per block and pixel values to the threads inside the
blocks. For the MSE calculation, because the result needs to
be the sum squared of all pairwise subtractions, each thread
keeps a running sum of the pairs it has subtracted.
We have declared two buffers of the shared memory, one
used to store each thread’s running subtraction and the other
one for comparison and the maximum value of the
intensities. In CUDA, the variables in shared memory are
handled different from ordinary variables. CUDA generates
a copy of a variable for each block launched on the board. In
this case, we can declare a shared memory array using the
__device__ __shared__ qualifiers in CUDA. Since the

shared memory variables reside physically on the GPU, the
latency to access this memory is considerably lower than
ordinary variables.

Figure 7. 2D texture memory in a) diffusion and b) region merging stages.

E. Region Merging

The region merging kernel is also implemented on a grid
of H/32×W/32 thread blocks. Based on LFAD method, we
are merging the adjacent region that hold this condition:
Var(Rj) � �* Var(Ri). First, in order to find the adjacency
map for the image, we used the approach used in the
diffusion stage, but here each thread reads values from the
eight- neighborhood (Fig.7 (b)) into the texture caches. The
class labels in the adjacency map are updated in parallel.

V. PERFORMANCE EVALUATION
In this section, we present the performance evaluation of

the LFAD algorithm on both CPU and GPU. As for the CPU
implementation, the algorithm is tested using single-threaded
implementation in Matlab. Both CPU and CUDA
implementations of the algorithm have been performed on a
workstation whose characteristics are as in Table I. In Table
II we provide the properties of NVIDIA Tesla C2050 used in
this work.

TABLE I. TEST SYSTEM MAIN CONFIGURATION

Parameters Values

CPU Intel core 2 Duo E8400 (3.00GHz)

RAM 4 GB

GPU architechture NVIDIA Tesla C2050

OS Microsoft Windows 7

CUDA V4.0

We compare the execution times of the CPU and CUDA

versions of the LFAD method in Fig. 8 to illustrate the
accelerating performance of CUDA. Both execution times of
CPU and CUDA versions are average values of execution

texture<float, 2, cudaReadModeElementType> textImage;
float x=(float)ix+0.5f; // ix = each threadIdx.x
float y=(float)iy+0.5f; // iy = each threadIdx.y
float t = tex2D(textImage, x, y);
float tN = tex2D(textImage, x-1, y);
float tW = tex2D(textImage, x, y-1);
float tS = tex2D(textImage, x+1, y);
float tE = tex2D(textImage, x, y+1);

392

over multiple runs. We can see that the execution time of
CPU version grows rapidly as the noise level (�) increases,
while the CUDA version grows slowly. The speedups
achieved with the proposed CUDA implementation range
from 13x to 20x, as illustrated in Fig. 9.

According to the experimental results in Fig. 8 and 9, we
observe that: (a) compared to the serial single-threaded
algorithm running on the CPU, the parallel algorithm on the
GPU through the CUDA environment improved the
performance significantly. For the input image of 512 x 512
pixels, the speed up is up to 20 times.

Because GPU has high parallel architecture, multiple
input data blocks can be processed simultaneously. (b) The
speed up is increases with the increase in noise level. When
the noise level is low, the computation load of CUDA
threads is low. When noise level is high, the threads
computation load is sufficient and context switch cost is
reduced. Although there is an improvement of the speed for
the method, the iterative nature of the diffusion process is
creating a bottleneck for parallel implementation. The future
research will be conducted on finding modifications of the
method and algorithms for better runtime on the given
architecture without or with a minimum degradation of the
original image quality.

TABLE II. PROPERTIES OF NVIDIA TESLA C2050

Parameters Values

Number of CUDA cores 448

Memory Speed 1.5GHz

Dedicated Memory 3GB

Clock Rate 1.15 GHz

Memory Bandwidth 144 Gb/sec

VI. CONCLUSIONS
In this paper, we have presented a novel parallel

implementations of locally- and feature-adaptive diffusion
based LFAD method for image denoising using NVIDIA
CUDA framework and graphics processing units. The final
CUDA implementation of this method provides a speedup of
13x to 20x over the single-threaded Matlab implementation.
By assuming perfectly linear scaling, for matching the
performance of this CUDA implementation, would require
about 14 - 20 CPU cores equivalent to the cores used in our
experiment. The speedup is achieved by different
optimization techniques such as memory management
overhead reduction, memory transfer overhead reduction and
by taking advantage of the CUDA memory patterns , such as
shared and texture memories.

ACKNOWLEDGMENT
This material is based upon work supported by NASA

EPSCoR under Cooperative Agreement No. NNX10AR89A.

0

5000

10000

15000

20000

25000

30000

35000

10 20 30 50 100

Noise Level (Sigma)

El
ap

se
d

Ti
m

e
(s

ec
)

GPU

CPU

Figure 8. Execution times for Lena image using CUDA and Matlab under

different noise levels.

0

5

10

15

20

25

10 20 30 50 100
Noise Level (Sigma)

Sp
ee

du
p

Figure 9. Speedup by CUDA vs the image noise level.

REFERENCES
[1] A. K. Mandava, E. E. Regentova, G.Bebis, “LFAD: Locally- and

Feature-Adaptive Diffusion Based Image Denoising,“ Applied
Mathematics & Information Sciences, No. 1, 1-12 (2014).

[2] CUDA Programming Guide, 2013. http://docs.nvidia.com/cuda/cuda-
c-programming-guide/

[3] P. Perona and J. Malik, “Scale-space and edge detection using
anisotropic diffusion,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 12, no. 7, 1990.pp. 629–639

[4] Bo Shan, Jianjun Qi,and WeiLiu, “A CUDA-Based Algorithm for
Constructing Concept Lattices”, RSCTC 2012, pp. 297–302, 2012.

[5] Boyer M., Tarjan, D., Acton, S.T., Skadron, K,
“Accelerating leukocyte tracking using CUDA: A casestudy in levera
ging manycore coprocessors,” IEEE International Symposium
on Parallel & Distributed Processing, pp. 1–12, 2009

[6] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi,
Pascal Fua, and Sabine Süsstrunk,SLIC Superpixels Compared to
State-of-the-art Superpixel Methods, IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 34, num. 11, p. 2274 - 2282,
May 2012.

[7] Radhakrishna Achanta, Appu Shaji, Kevin Smith, Aurelien Lucchi,
Pascal Fua, and Sabine Süsstrunk,SLIC Superpixels, EPFL Technical
Report no. 149300, June 2010.

[8] Carl Yuheng Ren and Ian Reid, gSLIC: a real-time implementation of
SLIC superpixel segmentation, University of Oxford, Department of
Engineering Science, 2011.

393

