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Using Self-Organizing Maps to Learn Geometric Hash Functions
for Model-Based Object Recognition
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Abstract—A major problem associated with geometric hashing
and methods which have emerged from it is the nonuniform dis-
tribution of invariants over the hash space. This has two serious
effects on the performance of the method. First, it can result
in an inefficient storage of data which can increase recognition
time. Second, given that geometric hashing is highly amenable
to parallel implementation, a nonuniform distribution of data
poses difficulties in tackling the load-balancing problem. Find-
ing a “good” geometric hash function which redistributes the
invariants uniformly over the hash space is not easy. Current
approaches make assumptions about the statistical characteristics
of the data and then use techniques from probability theory to
calculate a transformation that maps the nonuniform distribution
of invariants to a uniform one. In this paper, a new approach is
proposed based on anelastic hash table. In contrast to existing
approaches which try to redistribute the invariants over the hash
bins, we proceed oppositely by distributing the hash bins over
the invariants. The key idea is to associate the hash bins with the
output nodes of a self-organizing feature map (SOFM) neural net-
work which is trained using the invariants as training examples.
In this way, the location of a hash bin in the space of invariants
is determined by the weight vector of the node associated with
the hash bin. During training, the SOFM spreads the hash bins
proportionally to the distribution of invariants (i.e., more hash
bins are assigned to higher density areas while less hash bins
are assigned to lower density areas) and adjusts their size so
that they eventually hold almost the same number of invariants.
The advantage of the proposed approach is that it is a process
that adapts to the invariants through learning. Hence, it makes
absolutely no assumptions about the statistical characteristics
of the invariants and the geometric hash function is actually
computed through learning. Furthermore, SOFM’s “topology
preserving” property ensures that the computed geometric hash
function should be well behaved. The proposed approach, was
shown to perform well on both artificial and real data.

Index Terms—Geometric hashing, neural networks, object
recognition, self-organization.

I. INTRODUCTION

DURING the last two decades, there has been a variety of
approaches to tackle the problem of object recognition.

The most successful approach is probably in the context of
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model-basedobject recognition [1], where the environment is
rather constrained and recognition relies upon the existence of
a set of predefined object models. The indexing based approach
to object recognition has been prevalent for quite a number
of years. According to this approach, a model database is
built first by establishing proper associations between features
and models. Then, during the recognition stage, scene features
are used to retrieve the right associations stored in the model
database. Efficient indexing schemes are used for both organiz-
ing and searching the model database effectively. Geometric
hashing [2] is a well-known technique which belongs into
this category. It is based on the idea of storing information
about the models in a table, using a hashing scheme. The
indexing of the appropriate hash bin where this information
must be stored is performed using transformation invariant
object features calledinvariants. During recognition, the same
hashing scheme is used in order to retrieve the most feasible
models from the model database.

Geometric hashing and approaches which have emerged
from it suffer from a major problem: the nonuniform distri-
bution of invariants over the hash space. Taking into con-
sideration that geometric hashing is amenable to parallel
implementation [6], [7], a uniform distribution of data is
highly desirable for solving the load-balancing problem (i.e.,
distributing the data over the processors) [6]. Also, the nonuni-
form nature of the distribution of invariants results in an
inefficient storage of the data over the hash table which can
slow down recognition significantly. The key solution to the
problem is the selection of a “good” geometric hash function
which can redistribute the data uniformly over the hash table.
In addition, it is very important that the hash function is
proximity preserving, that is, it it maps similar data to hash
bins located close together. Hash functions which preserve
proximity are very desirable because partial voting, a heuristic
which increases geometric hashing’s noise tolerance, can be
implemented efficiently (see Section IV).

It is well known, however, that “good” hash functions
are difficult to find. In [11], several hash functions were
considered and evaluated to find which one performs best.
The conclusion was that the selection of a good hash function
is data dependent. Rehashing is a different approach which
has been recently suggested [4], [5]. The idea is to compute
a transformation which maps the distribution of invariants
to a uniform one, using techniques from probability theory.
Although rehashing is an interesting approach, it has two
drawbacks: first, it is based on the assumption that the prob-
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ability density function (pdf) of the model point features is
known a priori (the pdf of model point features is required in
the calculation of the distribution of invariants). Second, the
derivation of the rehashing transformation involves complex
calculations which, in certain cases, are even intractable [5].

In this paper, a new approach is presented which does not
make any assumption about the statistical characteristics of the
distribution of model points and does not require the estimation
of the pdf of invariants. A shorter version of this work was
presented in [8]. In geometric hashing, hash bins correspond
to locations in the space of invariants. The location of a hash
bin is very critical because it determines which invariants will
access the hash bin. Common approaches distribute the hash
bins in a way that does not always resemble the distribution of
invariants. More efficient approaches, like rehashing, distribute
the hash bins uniformly but then try to distribute the invariants
uniformly over the hash bins. In contrast to these approaches,
we proceed oppositely by distributing the hash bins over the
invariants, without redistributing the invariants. In other words,
the hash table used is not static but ratherelastic. The key
idea is to associate the hash bins with the output nodes of
a self organizing feature map (SOFM) neural network which
is trained using the invariants as training examples. In this
way, the location of a hash bin is determined by the weight
vector of the node associated with the hash bin. The behavior
of the SOFM during training resembles anelastic gridwhich
deforms over the space of invariants. The objective of the
deformation process is to distribute the weight vectors (i.e.,
hash bins’ locations) according to the distribution of invariants.
The training of the SOFM is performed using a variation of
the Kohonen algorithm [9], motivated by [13], which we call
the Kohonen algorithm with conscience.

The proposed approach has the advantage that the hash
function, implemented by the SOFM, is actually computed
through learning. Since the choice of a proper hash function
seems to be problem dependent, the availability of a scheme
which automatically finds a “good” hash function for a given
problem, through learning, is highly desirable. Also, the topol-
ogy preserving property [9] implies that the computed hash
function should be well behaved, that is, it should be piece-
wise continuous and should not have singularities. Thus, the
learned hash function will be proximity preserving. Finally,
the proposed approach is notable for its simplicity and it is
inherently parallelizable.

The organization of this paper is as follows: Section II dis-
cusses geometric hashing. Section III presents a brief overview
of the SOFM. In Section IV we show how the SOFM can
be used to solve the problems caused by the nonuniformity
of invariants. In Section V, we discuss the problem of node
underutilization and we present an experimental study in-
volving a number of variations of the Kohonen algorithm.
Implementation details, experimental results, and comparisons
with existing approaches are given in Section VI. Finally,
Section VII presents our conclusions.

II. GEOMETRIC HASHING AND REHASHING

Geometric hashing is based on the idea of storing redundant,
transformation-invariant, information about an object in a

Fig. 1. An illustration of the computation of invariants.pi � p1

= u(p2 � p1) + v(p3 � p1).

database. During preprocessing, a number of feature points are
extracted and the objects are represented in an affine invariant
way. This is performed as follows: first, three noncollinear
points (basis triplet) are chosen from the set of feature points
and a coordinate frame based on these points is defined. Then,
the coordinates of all other feature points are recomputed in
terms of the new coordinate frame defined. Fig. 1 shows the
new coordinates of point , computed in the coordinate
system defined by and . The new coordinates are
called invariants because they remain unchanged to affine
transformations of the object, assuming that the same basis
triplet is chosen [2]. The same procedure is repeated for all
possible triplets which can be formed by changing the order
of the points in the triplet or choosing new points from the set
of feature points. The recomputed coordinates are used,
after proper quantization, as an index into a hash table where
an entry (composed of thebasis-tripletandmodel) is recorded.

During the recognition step, the hash table is used to
determine which models are present in the scene. First, an
arbitrary ordered triplet of noncollinear points is chosen from
the scene. Then, the coordinates of the remaining scene points
are recomputed in terms of the coordinate frame defined by this
triplet. The recomputed coordinates of each point are used as
an index into the hash table and for each entry(basis-triplet,
model) recorded there, a vote is cast. Entries(basis-triplet,
model) which score a large number of votes imply possible
matches between the model triplets they store and the scene
triplet chosen. These possible matches (hypotheses) are then
verified by seeking further evidence to support them. Fig. 2
demonstrates the preprocessing and recognition steps.

The efficiency of the geometric hashing technique relies
heavily on the distribution of invariants over the hash space.
The number of hypotheses generated depends on the dis-
tribution of invariants. In the extreme case where all the
invariants hash into the same hash bin, geometric hashing will
be very inefficient since all possible matches will have to be
considered. In general, the invariants are heavily nonuniformly
distributed which implies that the hash entries will also be
stored nonuniformly over the hash table. Rehashing [4], [5]
has been proposed as an effective approach for dealing with
the nonuniformity of invariants. Specifically, rehashing is a
transformation which maps the distribution of invariants to
a uniform distribution. This is performed by assuming that
the model points are generated by either a Gaussian random
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Fig. 2. A demonstration of the geometric hashing algorithm. In the preprocessing step, a model basis triplet is chosen and the coordinates (invariants)
of each other point are computed in the coordinate system defined by this triplet. Then, the hash table is accessed using the coordinates as indexes. In
the recognition step, a scene triplet is chosen and the coordinates of all other scene points are computed in the coordinate frame defined by the scene
triplet. Then, the hash table is accessed again using the coordinates as indexes. If the scene triplet chosen during the recognition step correspondsto a
model triplet chosen during the preprocessing step, then the same hash bins will be accessed. This is illustrated in the example where the scene triplet
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corresponds to the model tripletp1; p2; and p3.

process or a process that is uniform over the unit disc or the
unit square. Based on these assumptions, the distribution of
invariants was calculated.

Three classes of transformations were considered: rigid,
similarity, and affine. The transformation which maps point
features to invariants can be found easily for each of these
cases. Once the pdf of invariants was known for a given
geometric transformation, another transformation that maps
the pdf of invariants to a uniform distribution was calculated
using probability theory techniques again. However, analytical
formulas could not be derived in every case because of the
intractability of the computations involved [5]. In particular,
analytical expressions were derived for all three cases of trans-
formations, only under the assumption that the pdf of model
point features was Gaussian with zero mean. In these cases,
the distributions of invariants were shown to be variations of
the Cauchy distribution with zero mean.

Although rehashing is a mathematically sound approach, it
has two drawbacks: first, it is based on the assumption that
the model point features are drawn from a known distribution.
However, this assumption is not always valid, especially when
the number of models is not very large or there is not much
variance in the database. Section VI provides a number of
examples. Second, the steps involved in the derivation of the
rehashing transformation are complex.

III. T HE SELF-ORGANIZING FEATURE MAP

In this section, we present a brief overview of the SOFM and
its properties. The SOFM consists of an input layer and a single
output layer of nodes which usually form a two-dimensional
array. The training of the SOFM is usually performed using the
Kohonen algorithm [9]. The are two phases of operation: the
similarity matching phase and the weight adaptation phase.
Initially, the weights are set to small random values and a
pattern is presented to the input nodes of the network. During
the similarity matching phase, the distancesbetween the
inputs and the weights are computed

where is the th training pattern and is the weight
from input node to output node at step . Next, the output
node having the minimum distance is chosen and is
declared as the “winner” node. In the weight adaptation phase,
the weights from the inputs to the “winner” node are adapted.
In addition, a topological neighborhood of the win-
ning node is defined and the weights connecting the inputs
to the nodes contained in this topological neighborhood are
also adapted. The weight changes are based on the following
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Fig. 3. Partioning the space of invariants into regions.

rule:

for . The parameter is the learning rate of
the algorithm. Generally, the neighborhood and the
learning rate are decreasing functions of time [9]. A typical
choice for is

which is equal to one for and decreases with the distance
between units and in the two-dimensional array

is the location of the node in the array and is a
width parameter that is gradually decreased) [15]. A common
choice for and is

where and are constants [15]. The
training procedure is repeated for a number of steps
which is specifieda priori.

The SOFM possesses some very useful properties. Kohonen
[9] has argued that the density of the weight vectors assigned to
an input region approximates the density of the inputs occupy-
ing this region. In fact, the weight vectors converge to cluster
centroids or probability extrema [10]. In other words, after
training has been completed, the map will reflect the statistical
characteristics of the inputs. Second, the weight vectors tend
to be ordered according to their mutual similarity (topology
preserving property). This property is a direct consequence
of the use of topological neighborhoods during training. The
importance of this property is that at the end of learning,
nearby nodes will respond to similar inputs. This implies that
the mapping from the input space to the space of nodes should
be well behaved.

IV. A LLEVIATING THE NONUNIFORMITY

OF INVARIANTS USING THE SOFM

In order to demonstrate the suitability of the SOFM for al-
leviating the nonuniformity of invariants, we need to examine
carefully the hash function employed by geometric hashing.
It is a very simple hash function which consists of a linear
scaling of the invariants followed by quantization to yield an
integer index that fits the dimensions of the hash table. In this

case, hashing merely implies a quantization of the space of
invariants. Assuming that denotes the space of invariants,
hashing defines a partition of such that

Each group is associated with a hash bin, that is, if
belongs to , then hashing will assign to the hash

bin associated with . In order for the hash entries to be
distributed uniformly over the hash table, hashing should be
able to divide the space of invariants into equiprobable regions.

A simple way to form these regions is by splitting the
space of invariants into equal size squared regions. This
can be done by projecting a grid of fixed cell size onto
the space of invariants. Then if we associate each cell to a
hash bin, the invariants falling into the same cell will all be
hashed into the hash bin associated with the cell. Partitioning
the space of invariants in this way will yield good results
only if the distribution of invariants is uniform. In this case,
each cell will contain almost the same number of invariants
[see Fig. 3(a)]. Obviously, a grid with a fixed cell size will
not yield good results when the distribution of invariants
is nonuniform. In this case, certain cells will become over-
populated while other cells will remain almost empty. One
way to deal with this problem is by choosing a variable cell
size. For example, assuming that the distribution of invariants
resembles a Gaussian distribution, it is reasonable to make
the cell size proportional to the distance of the cell from the
center of the distribution. Hence, cells close to the center
of the distribution will be given small sizes while cells far
away will be given large sizes as is illustrated in Fig. 3(b).
This approach was followed in [2]. A variable cell size will
work well as far as the invariants are distributed uniformly
around the center of the distribution. However, the shape of
the distribution of invariants varies from case to case and in
fact, it depends on the number of objects in the database and
their geometrical characteristics. Fig. 3(c) shows an example
of a possible distribution.

In this paper, a new approach is proposed based on anelastic
grid. According to this approach, the cell size as well as the
locations of the cells are not chosen in ana-priori manner,
based on assumptions that might not be true, but through a
learning procedure which extracts the statistical characteristics
of the distribution of invariants and determines the size and
location of the cells adaptively. The idea is to move the
cells of the grid over the populated regions of the space of



564 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 3, MAY 1998

Fig. 4. An illustration of the regions formed by the SOFM.

invariants and adjust their size in a way that eventually every
cell encloses almost the same number of invariants. That is,
the cells should be distributed according to the density of the
invariants in a particular region.

The key idea in implementing the above approach is to
associate the cells of the grid (i.e., hash bins) with the output
nodes of a SOFM, which is trained using the invariants as
training examples. In this way, the location of a hash bin in
the space of invariants is determined by the weight vector
of the node associated with the hash bin. During training,
sample invariants are presented to the network and the weight
vectors change positions according to Kohonen’s learning rule
given is Section III. The learning procedure distributes the
weight vectors (i.e., hash bins) according to the distribution of
invariants. After training, the SOFM implements a nonlinear
mapping from the input space (i.e., space of invariants) to
the space of nodes. This mapping actually quantizes the space
of invariants by partitioning it into a number of regions .
To understand this better, one can visualize the nodes of the
network as points in the space of invariants. In general, nodes
can be visualized as points in two different spaces: the space of
nodes and the input space. A node’s location in the space of
nodes is just the physical location of the node in the two-
dimensional grid of nodes, while a node’s location in the
input space is the location determined by the weight vector
associated with this node. After the locations of the nodes
have been plotted in the space of invariants, two points are
connected if their corresponding nodes are physical neighbors
(i.e., neighbors in the space of nodes) [9]. Fig. 4 shows an
example in the case of nodeand its neighbors. Each node’s
location has been plotted in the input space and’s location
has been connected with the locations of all the other nodes
since they are physical neighbors ofin the space of nodes.
The region defined by node contains all the points which
are closer to the vector than to any other vector .

By representing the nodes of the SOFM as points in the
space of invariants and connecting them together according to
the procedure described above, the nodes of the SOFM form
an elastic grid over the space of invariants. During training,
the locations of the nodes change since the weights of the
network change. Thus, training can be seen as a deformation
of an elastic grid over the space of invariants. The objective of
the deformation process is to distribute the nodes of the elastic
grid proportionally to the distribution of invariants, that is, to

assign more nodes in the more crowded areas and less nodes
in the lower density areas. It should be mentioned that by
changing the locations of the hash bins, their sizes change as
well. This is because the size of a hash bin depends on the
locations of its neighboring hash bins as Fig. 4 illustrates. The
importance of the proposed approach is that no assumptions
about the distribution of invariants need to be made and that
it is a process that adapts to the invariants.

The SOFM possesses two properties which make it very
suitable for the problem at hand. First, the density of the
weight vectors approximates the density of the inputs and
second, the mapping implemented by the SOFM preserves
the topology of the map (see Section III). The first property
implies that the space of invariants should be partioned into
a number of equiprobable regions. Ideally, the probability of
a randomly selected invariant (selected according to the pdf
of invariants), being closest to any given weigh vector should
be where is the number of output nodes. As a result,
each hash bin is expected to hold almost the same number
of entries. Unfortunately, this is not quite true in practice
and certain heuristics must be incorporated in the the training
algorithm to improve results (see next section). The second
property implies that the mapping from the space of invariants
to the space of “nodes” or “hash bins,” will be proximity
preserving. Thus, similar invariants will be mapped to hash
bins located close together. This property is very desirable for
implementing partial voting efficiently. Very briefly, partial
voting is a heuristic for improving the noise tolerance of
geometric hashing. When noisy data are used to retrieve
data from the model data base, it is quite unlikely that the
correct hash bins will be accessed. In partial voting, instead
of voting for a single hash bin, multiple votes are cast for
hash bins in a neighborhood around the targeted hash bin.
Although this heuristic increases the number of hypotheses
during recognition, it has be shown to be very beneficial and
its use is imperative [2], [5].

V. ADDING CONSCIENCE TO THE

KOHONEN LEARNING ALGORITHM

A serious problem with competitive learning algorithms is
that they often lead to solutions where several nodes of the
network remain underutilized or completely unutilized. For
example, if some region of the input space is more crowded
than others and the initial density of weight vectors is too low
in this region, specific nodes will be winning the competitions
consistently. The Kohonen learning algorithm attempts to
overcome this problem by using topological neighborhoods.
Although this approach is very effective, it does not alleviate
the problems completely. There are a number of approaches in
the literature which try to deal with these problem [9]. Three
of them, which are quite representative, have been considered
here.

The first approach is based on aconvex combinationof the
inputs [12]. According to this method, all the initial weights
are set to the same value , where is the dimensionality
of the input vectors. Then, each componentof the input
vector is substituted by the value where
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Fig. 5. The data sets.

TABLE I
STANDARD DEVIATION OF THE VOTESRECEIVED BY THE NODES OF THENETOWRKS

is turned up gradually from zero to one giving the opportunity
to the input vectors to attract the weight vectors slowly. The
second approach is calledcompetitive learning with conscience
[13]. The idea is to associate a threshold with each node of
the network. If a node has won more than of the time
(where is the number of nodes in the network), its chance
of winning again is reduced by raising its corresponding
threshold. The third method is calledcompetitive learning
with attention[14]. This approach is very similar to [13]. In
particular, a counter is assigned to each node of the network
which keeps track of the number of times the node wins
the competition. Weight vectors are adjusted according to the
frequency at which nodes have won in the past. Each of the
above methods adapts the weights of the winning node only
and the learning rate is assumed to be constant in [13].

All of the above methods were tested using the data sets
shown in Fig. 5. The number of training epochs was chosen
to be 6000 for the convex combination approach and 1000 for
the other approaches. To estimate the utilization of nodes after
training, we presented to the networks all the training patterns
once (without changing the weights) and we recorded how
many times each node became a winner. We call this procedure
“voting” (each input votes for a node), relating it implicitly to
the voting scheme of geometric hashing (each invariant votes
for a hash bin). Then, we computed the standard deviation of
the votes received by each node. The standard deviation is
a measure of the utilization of nodes since a small standard
deviation indicates that all the nodes are utilized (i.e., every
node receives almost the same number of votes) whereas a
large standard deviation implies that certain nodes have been
underutilized and others have been overutilized. Table I shows
the standard deviation of the votes received by the nodes of the
networks. For comparison purposes, we also included results
using the Kohonen algorithm. Clearly, the competitive learning
with conscience approach performed best in all the cases.

Fig. 6 shows the maps obtained by each approach. As it was
expected, only the Kohonen algorithm preserves the topology.

TABLE II
STANDARD DEVIATION OF THE VOTESRECEIVED BY THE NODES OF THENETWORKS

This is a direct consequence of the fact that all other algorithms
change the weights of the winning node only. However,
Kohonen algorithm’s performance as far as node utilization is
concerned is not satisfactorily. Since the topology preserving
property is very critical in the computation of a well-behaved
hash function, we decided to combine the Kohonen algo-
rithm, which preserves the topology, with each one of the
other three approaches, which improve node utilization. Our
objective was to strengthen the performance of the Kohonen
algorithm in terms of node utilization, while preserving the
topology at the same time. Three variations were created in
this way for comparison: the Kohonen algorithm using convex
combination of inputs (SOFM-CV), the Kohonen algorithm
with attention (SOFM-A), and the Kohonen algorithm with
conscience (SOFM-C).

Since it was not evident from the beginning whether the in-
corporation of these heuristics into the Kohonen algorithm will
affect the topology forming process or not, all the variations
were consistently tested using the same data sets and the same
number of training epochs. The results obtained show that
all the variations were able to find solutions which preserve
the topology. A slight distortion in the computed maps might
occur, but it does not seem to be very significant. Among the
three variations, the SOFM-C gave the best results in terms of
node utilization. Table II shows the standard deviation of the
votes for each case. Clearly, the node utilization exhibited by
the Kohonen algorithm with conscience is superior to the node
utilization exhibited by the Kohonen algorithm itself as can
be seen by comparing the last rows of Tables I and II. Fig. 7
shows the maps found by the SOFM-C. Fig. 8 shows the steps
involved in the SOFM-C. and are constants associated
with the biasing term added to the distance measure of the
algorithm.

VI. EXPERIMENTAL RESULTS

In this section, we present a number of experimental results
which demonstrate the effectiveness of the proposed approach.
Comparisons with rehashing are also provided.
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Fig. 6. The maps obtained using the convex combination (first row), competitive learning with attention (second row), competitive learning with conscience
(third row) and Kohonen (last row) algorithms.

Fig. 7. The maps produced using the SOFM-C.

A. Experiment 1

The purpose of this experiment is to examine the per-
formance of rehashing. Similarity transformations have been
considered in this experiment. First, we considered the objects
shown in Fig. 9(a). The distribution of invariants for this data
set is shown in Fig. 9(c). Applying the rehashing transforma-
tion derived for the case of similarity transformations yields
the distribution shown in Fig. 9(e). Obviously, rehashing per-

forms quite satisfactorily in this case. Next, we considered
the objects shown in Fig. 9(b). The distribution of invariants
computed for this data set is shown in Fig. 9(d) while the
rehashed distribution is shown in Fig. 9(f). Obviously, re-
hashing does not perform well in this case. According to the
theoretical in [4], the rehashing transformation computed for
the case of similarity transformations was based on distribution
of invariants very similar to the Cauchy distribution. Although
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Fig. 8. The Kohonen algorithm with conscience (SOFM-C).

the distribution of Fig. 9(c) resembles the Cauchy distribution,
the distribution of Fig. 9(d) is very different. This is the reason
rehashing does not perform well in this case. Fig. 10(a) and
(c) show the distribution of hash entries over a 2020
hash table in the case of the original and rehashed invariants
correspondingly.

Next, we trained a SOFM-C with two inputs and 400 output
nodes, arranged on a 2020 grid. The network was trained for
500 epochs. The number of invariants used during training was
31 572 and they were normalized in the range The
initial weights of the SOFM were also chosen from the same
range. The parameters of the network were chosen as follows:

(equal to the maximum of the dimensions
of the feature map), and

The feature map to which the network converged is
shown in Fig. 11(a). The structure of the feature map illustrates
the way the hash bins were distributed over the invariants.
Fig. 10(e) shows the distribution of entries over the hash
table. To estimate the hash table utilization, we computed the
standard deviation (SD) of the number of entries stored at
each hash bin. The first row of Table III shows the results.
Obviously, the SOFM-C has found a superior solution. At the
beginning of the training process, the SD was 422. Then, it
gradually decreased during training as shown in Fig. 12(a).

B. Experiment 2

In this experiment, we consider the case of affine trans-
formations. Fig. 13 shows the set of the real objects used.
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(a) (b)

(c) (d)

(e) (f)

Fig. 9. (a) The set of numbers. (b) The set of knives. (c) The distribution of
invariants for the set of numbers. (d) The distribution of invariants for the set
of knives. (e) The rehashed distribution of invariants for the set of numbers.
(f) The rehashed distribution of invariants for the set of knives.

Invariants based on unstable basis triplets were rejected using
the area-based criterion [11]. Fig. 14(a) shows the distribution
of invariants in this case. The application of the rehashing
transformation, derived under the assumption of affine trans-
formations, does not yield good results, as is demonstrated
in Fig. 14(b). To explain why, let us observe that the third
quadrant of the distribution of invariants in Fig. 14(a) is less
crowded than any the other quadrant. This is in agreement with
the qualitative results of [4], [5], under the assumption that the
distribution of model points is uniform over a convex domain.
However, no rehashing transformation was derived under this
assumption because of the intractability of the computations
involved. The only rehashing transformation derived in the
case of affine transformations is based on the assumption that
the distribution of model features is Gaussian over a convex
domain and this is the one used here. We believe that this is
the reason rehashing did not perform well in this example.

Fig. 10(b) and (d) shows the distribution of hash entries over
a 20 20 hash table, for the case of the original invariants
and rehashed invariants correspondingly. A SOFM-C with the
same architecture as in the previous experiment was utilized
in order to demonstrate the performance of our approach. The
same network parameters were chosen as before except for the
number of epochs which was chosen to be 100. The number of

(a) (b)

(c) (d)

(e) (f)

Fig. 10. (a), (c), (e) The distribution of hash entries under similarity transfor-
mations [Fig. 9(d)] using the original approach, rehashing, and the SOFM-C
correspondingly, (b), (d), (f) The distribution of hash entries under affine
transformations [Fig. 14(a)] using the original approach, rehashing, and the
SOFM-C correspondingly.

(a) (b)

Fig. 11. The structure of the SOFM-C for the case of (a) similarity trans-
formations [Fig. 9(d)] and (b) affine transformations [Fig. 14(a)].

(a) (b)

Fig. 12. The improvement of the standard deviation during training in the
case of (a) the objects shown in Fig. 9(b) (assuming similarity transformations)
and (b) the objects shown in Fig. 13 (assuming affine transformations).

invariants used to train the SOFM-C was 41 292, normalized in
the range The initial weights were chosen from
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Fig. 13. The set of different models.

TABLE III
STANDARD DEVIATION OF THE NUMBER OF HASH ENTRIES

the same range. The map to which the network converged
is shown in Fig. 11(b). Fig. 10(f) illustrates the distribution
of hash entries over the hash table while the second row
of Table III shows the computed SD’s (for the hash table
utilization). It can be be noticed from Fig. 10(f) that several
hash bins are still over-populated, especially in the boundaries
of the hash table, but most hash bins hold almost the same
number of entries. Fig. 12(b) shows the decreasing behavior
of the SD during training (initial value was 224).

C. Experiment 3

One of the goals in redistributing the data over the hash table
is to reduce the number of hypotheses during recognition. To
illustrate this we have performed a number of recognition ex-
periments. Here, we report two of them. In the first experiment,
we considered the scene shown in Fig. 15(a). A Laplacian
edge detector separated the objects from the background and
a boundary following routine extracted their boundaries [see
Fig. 15(c)]. The interest points shown correspond to curvature
maxima and zero-crossings of the boundary (22 interest points
were extracted) [16]. The recognition results are shown in
Fig. 15(e) (the correctly recognized models have been back-
projected on the scene).

The first two rows of Table IV show the number of hy-
potheses tried by each approach until both models recognized
correctly (60% or more of the model points were required
to match with the scene). As can be observed, the proposed
approach verified fewer hypotheses. Next, we considered the
scene of Fig. 15(b). This is a fairly complicated scene. The

(a) (b)

Fig. 14. (a) The distribution of (affine) invariants for the set of different
objects. (b) The rehashed distribution of invariants.

same procedure, as above, was applied in order to extract the
object boundaries (only the outer boundaries were used in our
experiment) and the interest shown in Fig. 15(c) (45 interest
points were extracted). The recognition results are shown in
Fig. 15(f) and the number of hypotheses verified by each
approach is shown in the last three rows of Table IV. Clearly,
the proposed approach has verified fewer hypotheses. Overall,
the proposed approach verified about 35–50% less hypotheses
than the hypotheses verified by geometric hashing without
rehashing and 20–30% less hypotheses than the hypotheses
verified by geometric hashing with rehashing.

VII. D ISCUSSION AND CONCLUSIONS

In this paper, we considered the geometric hashing tech-
nique, an indexing based object recognition method which
suffers from the problem of the nonuniform distribution of
the data over the hash table. A new approach for alleviating
this problem was presented based on the SOFM. The proposed
approach has a number of advantages. First, it is not based on
any assumption about the characteristics of the distribution of
invariants. Second, the hash function is implemented by the
SOFM and is actually computed through learning. Third, the
topology preserving property of the SOFM guarantees that
the computed hash function should be well behaved. The
availability of a learning scheme which can be used to find
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(a) (b)

(c) (d)

(e) (f)

Fig. 15. (a) and (b) Two real scenes with overlapped models. (c) and
(d) The boundary contours with the interest points (curvature maxima and
zero-crossings) marked. (e) and (f) The recognition results.

TABLE IV
NUMBER OF HYPOTHESESTRIED DURING VERIFICATION

a geometric hash function having nice properties, indepen-
dently of the problem at hand, is particularly attractive. The
independence of the proposed approach from any assumption
and the good behavior of the solutions obtained suggest that
it might be a useful tool in helping us to derive approximate
analytical rehashing functions in cases where a closed-form
solution cannot be found using traditional approaches.

One disadvantage of the proposed approach is that the
solutions obtained are sensitive to the selection of certain
parameter values, namely, the number of training epochs

and the parameter used in the modified distance
measure of the SOFM-C. Both parameters were chosen by
trial and error during our experimentation. We believe that
further improvements in the solutions found by the SOFM-C
are possible (i.e., solutions with lower SD’s). However, this
requires extensive experimentation. It is should be mentioned
that after the completion of our work, a new improved version
of the competitive learning with conscience approach came to
our attention [17]. Specifically, it was shown that the choice
of the parameter is data dependent and a new algorithm
which chnages adaptively during learning was introduced.
We strongly believe that this approach can further improve our
results (i.e., obtain smaller SD’s).
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