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Using Self-Organizing Maps to Learn Geometric Hash Functions
for Model-Based Object Recognition

George Bebis, Michael Georgiopoulos, and Niels da Vitoria Lobo

Abstract—A major problem associated with geometric hashing model-baseabject recognition [1], where the environment is
and methods which have emerged from it is the nonuniform dis- rather constrained and recognition relies upon the existence of
tribution of invariants over the hash space. This has two serious a set of predefined object models. The indexing based approach

effects on the performance of the method. First, it can result to obiect ition has b lent f it b
in an inefficient storage of data which can increase recognition 0 object recognition has been prevalent for quite a number

time. Second, given that geometric hashing is highly amenable Of years. According to this approach, a model database is
to parallel implementation, a nonuniform distribution of data  built first by establishing proper associations between features
poses difficulties in tackling the load-balancing problem. Find- and models. Then, during the recognition stage, scene features
ing a "good” geometric hash function which redistributes the 5.0 e 9 retrieve the right associations stored in the model
invariants uniformly over the hash space is not easy. Current - . . .
approaches make assumptions about the statistical characteristics Qatabase. Eﬁ'c'?m indexing schemes are used_for both organl.z-
of the data and then use techniques from probability theory to iNg and searching the model database effectively. Geometric
calculate a transformation that maps the nonuniform distribution  hashing [2] is a well-known technique which belongs into
of invariants to a uniform one. In this paper, a new approach is  this category. It is based on the idea of storing information

proposed based on arelastic hash tableln contrast to existing g+ the models in a table, using a hashing scheme. The
approaches which try to redistribute the invariants over the hash

bins, we proceed oppositely by distributing the hash bins over INdexing of the appropriate hash bin where this information
the invariants. The key idea is to associate the hash bins with the must be stored is performed using transformation invariant
output nodes of a self-organizing feature map (SOFM) neural net- object features callemhvariants During recognition, the same

work which is trained using the invariants as training examples. hashing scheme is used in order to retrieve the most feasible
In this way, the location of a hash bin in the space of invariants models from the model database.

is determined by the weight vector of the node associated with . . .
the hash bin. During training, the SOFM spreads the hash bins ~ G€ometric hashing and approaches which have emerged

proportionally to the distribution of invariants (i.e., more hash  from it suffer from a major problem: the nonuniform distri-
bins are assigned to higher density areas while less hash binsbution of invariants over the hash space. Taking into con-
are assigned to lower density areas) and adjusts their size sOgjderation that geometric hashing is amenable to parallel

that they eventually hold almost the same number of invariants. . . . s .
The advantage of the proposed approach is that it is a process implementation [6], [7], a uniform distribution of data is

that adapts to the invariants through learning. Hence, it makes highly desirable for solving the load-balancing problem (i.e.,
absolutely no assumptions about the statistical characteristics distributing the data over the processors) [6]. Also, the nonuni-
of the invariants and the geometric hash function is actually form nature of the distribution of invariants results in an
computed through learning. Futtnermore, SOFMs 10pology inefficient storage of the data over the hash table which can
?unction Shozldpbeywell behaved. The pr(f)posedgapproach, was SIow dovyn recognitio'n significantly. The key.solution to the
shown to perform well on both artificial and real data. problem is the selection of a “good” geometric hash function
which can redistribute the data uniformly over the hash table.
In addition, it is very important that the hash function is
proximity preserving, that is, it it maps similar data to hash
bins located close together. Hash functions which preserve
. INTRODUCTION proximity are very desirable because partial voting, a heuristic

URING the last two decades, there has been a varietyWhich increases geometric hashing’s noise tolerance, can be
approaches to tackle the problem of object recognitioiinplemented efficiently (see Section IV).

The most successful approach is probably in the context oflt is well known, however, that “good” hash functions

_ , , are difficult to find. In [11], several hash functions were
Manuscript received August 18, 1995; revised December 30, 1996, Ma

10, 1997, and January 4, 1998. This work was supported by a grant from gén&dered _and evaluated to find _Wh'Ch one performs b?St'
FSGC (Florida Space Grant Consortium) and TRDA (Technological Researthe conclusion was that the selection of a good hash function

Index Terms—Geometric hashing, neural networks, object
recognition, self-organization.

and Development Authority). _ ersin 45 data dependent. Rehashing is a different approach which
G. Bebis is with the Department of Computer Science, University ch been r ntl ted [41. [51. The id is t mout

Nevada, Reno, NV 89557 USA. as been recently suggeste [4], [ ].. e idea is to compute
M. Georgiopoulos is with the Department of Electrical and Computed transformation which maps the distribution of invariants

Engineering, University of Central Florida, Orlando, FL 32816 USA. to a uniform one, using techniques from probability theory.
N. da Vitoria Lobo is with the Department of Computer Science, Universit%‘ . . . . .

of Central Florida, Orlando, FL 32816 USA. lthough rehashing is an interesting approach, it has two
Publisher Item Identifier S 1045-9227(98)02993-2. drawbacks: first, it is based on the assumption that the prob-

1045-9227/98%$10.001 1998 IEEE



IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 3, MAY 1998 561

ability density function (pdf) of the model point features is P;
known a priori (the pdf of model point features is required in
the calculation of the distribution of invariants). Second, the
derivation of the rehashing transformation involves complex
calculations which, in certain cases, are even intractable [5].

In this paper, a new approach is presented which does not
make any assumption about the statistical characteristics of the
distribution of model points and does not require the estimation
of the pdf of invariants. A shorter version of this work was
presented in [8]. In geometric hashing, hash bins correspond
to locations in the space of invariants. The location of a hash o
bin is very critical because it determines which invariants wi,:Ii L. An ilustration of the computation of invariants; — |
access the hash bin. Common approaches distribute the h_a%nI;Q Zp1) + v(ps — p1). o
bins in a way that does not always resemble the distribution of
invariants. More efficient approaches, like rehashing, distributiatabase. During preprocessing, a number of feature points are
the hash bins uniformly but then try to distribute the invariantsxtracted and the objects are represented in an affine invariant
uniformly over the hash bins. In contrast to these approachegy. This is performed as follows: first, three noncollinear
we proceed oppositely by distributing the hash bins over tiints pasis triple} are chosen from the set of feature points
invariants, without redistributing the invariants. In other word&ind a coordinate frame based on these points is defined. Then,
the hash table used is not static but ratetastic The key the coordinates of all other feature points are recomputed in
idea is to associate the hash bins with the output nodestefms of the new coordinate frame defined. Fig. 1 shows the
a self organizing feature map (SOFM) neural network whiatew coordinate$u, v) of point p;, computed in the coordinate
is trained using the invariants as training examples. In thégstem defined by, p», and ps. The new coordinates are
way, the location of a hash bin is determined by the weigbtlled invariants because they remain unchanged to affine
vector of the node associated with the hash bin. The behavicinsformations of the object, assuming that the same basis
of the SOFM during training resembles alastic gridwhich triplet is chosen [2]. The same procedure is repeated for all
deforms over the space of invariants. The objective of thmssible triplets which can be formed by changing the order
deformation process is to distribute the weight vectors (i.@f the points in the triplet or choosing new points from the set
hash bins’ locations) according to the distribution of invariantsf feature points. The recomputed coordinatesy) are used,

The training of the SOFM is performed using a variation adfter proper quantization, as an index into a hash table where
the Kohonen algorithm [9], motivated by [13], which we calbn entry (composed of tHesis-tripletandmode} is recorded.
the Kohonen algorithm with conscience During the recognition step, the hash table is used to

The proposed approach has the advantage that the hdstermine which models are present in the scene. First, an
function, implemented by the SOFM, is actually computearbitrary ordered triplet of noncollinear points is chosen from
through learning. Since the choice of a proper hash functitiie scene. Then, the coordinates of the remaining scene points
seems to be problem dependent, the availability of a scheare recomputed in terms of the coordinate frame defined by this
which automatically finds a “good” hash function for a givetriplet. The recomputed coordinates of each point are used as
problem, through learning, is highly desirable. Also, the topokn index into the hash table and for each erbgsis-triplet,
ogy preserving property [9] implies that the computed hashodel) recorded there, a vote is cast. Entrigmasis-triplet,
function should be well behaved, that is, it should be piecearodel) which score a large number of votes imply possible
wise continuous and should not have singularities. Thus, theatches between the model triplets they store and the scene
learned hash function will be proximity preserving. Finallytriplet chosen. These possible matches (hypotheses) are then
the proposed approach is notable for its simplicity and it igerified by seeking further evidence to support them. Fig. 2
inherently parallelizable. demonstrates the preprocessing and recognition steps.

The organization of this paper is as follows: Section Il dis- The efficiency of the geometric hashing technique relies
cusses geometric hashing. Section Il presents a brief overviegavily on the distribution of invariants over the hash space.
of the SOFM. In Section IV we show how the SOFM caiThe number of hypotheses generated depends on the dis-
be used to solve the problems caused by the nonuniformitibution of invariants. In the extreme case where all the
of invariants. In Section V, we discuss the problem of nodavariants hash into the same hash bin, geometric hashing will
underutilization and we present an experimental study ibe very inefficient since all possible matches will have to be
volving a number of variations of the Kohonen algorithmconsidered. In general, the invariants are heavily nonuniformly
Implementation details, experimental results, and comparisafistributed which implies that the hash entries will also be
with existing approaches are given in Section VI. Finallystored nonuniformly over the hash table. Rehashing [4], [5]
Section VII presents our conclusions. has been proposed as an effective approach for dealing with
the nonuniformity of invariants. Specifically, rehashing is a
transformation which maps the distribution of invariants to

Geometric hashing is based on the idea of storing redundamtuniform distribution. This is performed by assuming that
transformation-invariant, information about an object in the model points are generated by either a Gaussian random

p:

Il. GEOMETRIC HASHING AND REHASHING
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Fig. 2. A demonstration of the geometric hashing algorithm. In the preprocessing step, a model basis triplet is chosen and the coordinate} (invariant

of each other point are computed in the coordinate system defined by this triplet. Then, the hash table is accessed using the coordinates as indexes. In
the recognition step, a scene triplet is chosen and the coordinates of all other scene points are computed in the coordinate frame defined by the scene
triplet. Then, the hash table is accessed again using the coordinates as indexes. If the scene triplet chosen during the recognition steptecaresponds
model triplet chosen during the preprocessing step, then the same hash bins will be accessed. This is illustrated in the example where thé scene triple
pi.ph, and p} corresponds to the model triplet , p2, and p3.

process or a process that is uniform over the unit disc or the lll. THE SELF-ORGANIZING FEATURE MAP

unit square. Based on these assumptions, the distribution Ofy, hjs section, we present a brief overview of the SOFM and
invariants was calculated. _ , __its properties. The SOFM consists of an input layer and a single
_Three classes of transformations were considered: rigigly it layer of nodes which usually form a two-dimensional
similarity, and affine. The transformation which maps poini 5y The training of the SOFM is usually performed using the
features to invariants can be found easily for each of theggponen algorithm [9]. The are two phases of operation: the
cases. Once the pdf of invariants was known for a giVefimijarity matching phase and the weight adaptation phase.
geometric transformation, another transformation that Mapstially, the weights are set to small random values and a
the pdf of invariants to a uniform distribution was calculategattern is presented to the input nodes of the network. During

using probability theory techniques again. However, analyticgle similarity matching phase, the distanegsbetween the
formulas could not be derived in every case because of ti*ﬁ%uts and the weights are computed

intractability of the computations involved [5]. In particular,
analytical expressions were derived for all three cases of trans-

formations, only under the assumption that the pdf of model di = Z(xf — wi;(1))?

point features was Gaussian with zero mean. In these cases, i

the distributions of invariants were shown to be variations of

the Cauchy distribution with zero mean. wherez* is the pth training pattern andv;;(¢) is the weight

Although rehashing is a mathematically sound approach fiibm input node; to output node at stept. Next, the output
has two drawbacks: first, it is based on the assumption thtde :* having the minimum distancé;. is chosen and is
the model point features are drawn from a known distributiodeclared as the “winner” node. In the weight adaptation phase,
However, this assumption is not always valid, especially whehe weights from the inputs to the “winner” node are adapted.
the number of models is not very large or there is not mudh addition, a topological neighborhoal(¢,¢*) of the win-
variance in the database. Section VI provides a number mihg node:i* is defined and the weights connecting the inputs
examples. Second, the steps involved in the derivation of tteethe nodes contained in this topological neighborhood are
rehashing transformation are complex. also adapted. The weight changes are based on the following
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Fig. 3. Partioning the space of invariants into regions.
rule: case, hashing merely implies a quantization of the space of

u invariants. Assuming thak* denotes the space of invariants,
wi(t + 1) = wij(8) +n(ej — wig(1) hashing defines a partitioP;, Do, - - -, D5 of R such that
for ¢ € N(i,i*). The parameter is the learning rate of
the algorithm. Generally, the neighborhodd,:*) and the
learning ratey are decreasing functions of time [9]. A typicalEach groupD; is associated with a hash bin, that is, if
choice for N(i,*) is z belongs toD;, then hashing will assign: to the hash
— |7 — 7o |? bin associated withD;. In order for the hash entries to be
N(i,i*) = exp 721 3 . distributed uniformly over the hash table, hashing should be
o2(t) > . . . . .
able to divide the space of invariants into equiprobable regions.
which is equal to one for = ¢* and decreases with the distance A simple way to form these regions is by splitting the
(r; —ri») between unitg and¢* in the two-dimensional array space of invariants into equal size squared regions. This
(r; is the location of the node in the array ands(¢) is @ can be done by projecting a grid of fixed cell size onto
width parameter that is gradually decreased) [15]. A commaine space of invariants. Then if we associate each cell to a
choice forn(t) and o(t) is hash bin, the invariants falling into the same cell will all be
et hashed into the hash bin associated with the cell. Partitioning
n(t) = the space of invariants in this way will yield good results
o(t) =ogoc " only if the distribution of invariants is uniform. In this case,
each cell will contain almost the same number of invariants
[see Fig. 3(a)]. Obviously, a grid with a fixed cell size will
not yield good results when the distribution of invariants

which is specifieda priori. . i In thi tai s will b
The SOFM possesses some very useful properties. Kohofig/ionunriorm. n this case, certain cells will become over-
%oulated while other cells will remain almost empty. One

[9] has argued that the density of the weight vectors assigne . : . . .
an input region approximates the density of the inputs occup ay to deal with this problem is by choosing a variable cell

ing this region. In fact, the weight vectors converge to clust jze- For example, assuming that the distribution of invariants

centroids or probability extrema [10]. In other words, af,[erresembles a Gaussian distribution, it is reasonable to make

training has been completed, the map will reflect the statistictgF t(:a?”osflZt(ra]eprg'z(t)rr'ttl)o?iLtol-:Zﬁc%IStgglfs glfotsZG tgeltlhféocme:'::r
characteristics of the inputs. Second, the weight vectors te the distributi In \IN|lIJI Ib ' ven m Il sizes whil lls far
to be ordered according to their mutual similaritpgology ot the distributio € given small Sizes € cells fa

. ; . . way will be given large sizes as is illustrated in Fig. 3(b).
preserving property This property is a direct consequenc his approach was followed in [2]. A variable cell size will

of the use of topological neighborhoods during training. The ) . L )
importance of this property is that at the end of learnin ,ork well as far as the myan_ant; are distributed uniformly
nearby nodes will respond to similar inputs. This implies th ouqd t'he .center.of the d|str|bgt|on. However, the shape .Of
the mapping from the input space to the space of nodes sho 8 d.|str|but|on of invariants varies frpm case to case and in
be well behaved. ac'g, it depenc_is on the nun_wb(_ar of quects in the database and
their geometrical characteristics. Fig. 3(c) shows an example

of a possible distribution.

In this paper, a new approach is proposed based eteatic
grid. According to this approach, the cell size as well as the

In order to demonstrate the suitability of the SOFM for allocations of the cells are not chosen in aspriori manner,
leviating the nonuniformity of invariants, we need to examinkased on assumptions that might not be true, but through a
carefully the hash function employed by geometric hashinigarning procedure which extracts the statistical characteristics
It is a very simple hash function which consists of a lineaf the distribution of invariants and determines the size and
scaling of the invariants followed by quantization to yield afocation of the cells adaptively. The idea is to move the
integer index that fits the dimensions of the hash table. In thislls of the grid over the populated regions of the space of

R¥=D, U Dy U--- U Dy.

wherey = 1/tmax, and o, o9, b, ¢ are constants [15]. The
training procedure is repeated for a number of steps,

IV. ALLEVIATING THE NONUNIFORMITY
OF INVARIANTS USING THE SOFM
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assign more nodes in the more crowded areas and less nodes
in the lower density areas. It should be mentioned that by
changing the locations of the hash bins, their sizes change as
well. This is because the size of a hash bin depends on the
locations of its neighboring hash bins as Fig. 4 illustrates. The
importance of the proposed approach is that no assumptions
about the distribution of invariants need to be made and that
it is a process that adapts to the invariants.

The SOFM possesses two properties which make it very
suitable for the problem at hand. First, the density of the
weight vectors approximates the density of the inputs and
second, the mapping implemented by the SOFM preserves
the topology of the map (see Section IIl). The first property
implies that the space of invariants should be partioned into
invariants and adjust their size in a way that eventually evegynumber of equiprobable regions. Ideally, the probability of
cell encloses almost the same number of invariants. That &fandomly selected invariant (selected according to the pdf
the cells should be distributed according to the density of tie invariants), being closest to any given weigh vector should
invariants in a particular region. be 1/m wherem is the number of output nodes. As a result,

The key idea in implementing the above approach is &ach hash bin is expected to hold almost the same number
associate the cells of the grid (i.e., hash bins) with the outpeit entries. Unfortunately, this is not quite true in practice
nodes of a SOFM, which is trained using the invariants &d certain heuristics must be incorporated in the the training
training examples. In this way, the location of a hash bin ialgorithm to improve results (see next section). The second
the space of invariants is determined by the weight vectproperty implies that the mapping from the space of invariants
of the node associated with the hash bin. During trainintp the space of “nodes” or “hash bins,” will be proximity
sample invariants are presented to the network and the weigrgserving. Thus, similar invariants will be mapped to hash
vectors change positions according to Kohonen'’s learning rdis located close together. This property is very desirable for
given is Section Ill. The learning procedure distributes thHgplementing partial voting efficiently. Very briefly, partial
weight vectors (i.e., hash bins) according to the distribution ¥pting is a heuristic for improving the noise tolerance of
invariants. After training, the SOFM implements a nonlineggeometric hashing. When noisy data are used to retrieve
mapping from the input space (i.e., space of invariants) ¢ata from the model data base, it is quite unlikely that the
the space of nodes. This mapping actually quantizes the spge#ect hash bins will be accessed. In partial voting, instead
of invariants by partitioning it into a number of regiod. of voting for a single hash bin, multiple votes are cast for
To understand this better, one can visualize the nodes of tish bins in a neighborhood around the targeted hash bin.
network as points in the space of invariants. In general, nodghough this heuristic increases the number of hypotheses
can be visualized as points in two different spaces: the spacdlgfing recognition, it has be shown to be very beneficial and
nodes and the input space. A node’s location in the spaceitsfuse is imperative [2], [5].
nodes is just the physical location of the node in the two-
dimensional grid of nodes, while a node’s location in the
input space is the location determined by the weight vector
associated with this node. After the locations of the nodes
have been plotted in the space of invariants, two points areA serious problem with competitive learning algorithms is
connected if their corresponding nodes are physical neighbtiiat they often lead to solutions where several nodes of the
(i.e., neighbors in the space of nodes) [9]. Fig. 4 shows aetwork remain underutilized or completely unutilized. For
example in the case of nodeand its neighbors. Each node’sexample, if some region of the input space is more crowded
location has been plotted in the input space @docation than others and the initial density of weight vectors is too low
has been connected with the locations of all the other nodasghis region, specific nodes will be winning the competitions
since they are physical neighbors in the space of nodes. consistently. The Kohonen learning algorithm attempts to
The regionD; defined by nodé contains all the points which overcome this problem by using topological neighborhoods.
are closer to the vectap; than to any other vectap,,< # j.  Although this approach is very effective, it does not alleviate

By representing the nodes of the SOFM as points in tlilee problems completely. There are a number of approaches in
space of invariants and connecting them together accordingtte literature which try to deal with these problem [9]. Three
the procedure described above, the nodes of the SOFM foofithem, which are quite representative, have been considered
an elastic grid over the space of invariants. During traininghere.
the locations of the nodes change since the weights of theThe first approach is based orcanvex combinationf the
network change. Thus, training can be seen as a deformatioputs [12]. According to this method, all the initial weights
of an elastic grid over the space of invariants. The objective afe set to the same valig./n, wheren is the dimensionality
the deformation process is to distribute the nodes of the elagifcthe input vectors. Then, each componentof the input
grid proportionally to the distribution of invariants, that is, tosector is substituted by the valuer; + (1 — «)/+/n, wherea

i7

Fig. 4. An illustration of the regions formed by the SOFM.

V. ADDING CONSCIENCE TO THE
KOHONEN LEARNING ALGORITHM
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Fig. 5. The data sets.

TABLE | TABLE I
STANDARD DEVIATION OF THE VOTES RECEIVED BY THE NODES OF THENETOWRKS ~ STANDARD DEVIATION OF THE VOTES RECEIVED BY THE NODES OF THENETWORKS
Standard deviation Standard deviation

Uniform | Gaussian | Circle Uniform | Gaussian | Circle
Convex 3.93 10.49 43.57 SOFM-CV 3.79 6.52 11.73
Attention 0.77 1.63 3.89 SOFM-A 0.88 1.61 3.85
Conscience 0.72 1.0 2.18 SOFM-C 0.60 0.92 1.38
Kohonen 3.68 7.30 10.90

This is a direct consequence of the fact that all other algorithms
is turned up gradually from zero to one giving the opportunitghange the weights of the winning node only. However,
to the input vectors to attract the weight vectors slowly. Th€ohonen algorithm’s performance as far as node utilization is
second approach is calledmpetitive learning with conscienceconcerned is not satisfactorily. Since the topology preserving
[13]. The idea is to associate a threshold with each node mbperty is very critical in the computation of a well-behaved
the network. If a node has won more thafim of the time hash function, we decided to combine the Kohonen algo-
(wherem is the number of nodes in the network), its chanadéthm, which preserves the topology, with each one of the
of winning again is reduced by raising its correspondingther three approaches, which improve node utilization. Our
threshold. The third method is callecbmpetitive learning objective was to strengthen the performance of the Kohonen
with attention[14]. This approach is very similar to [13]. Inalgorithm in terms of node utilization, while preserving the
particular, a counter is assigned to each node of the netwaeolpology at the same time. Three variations were created in
which keeps track of the number of times the node wirthis way for comparison: the Kohonen algorithm using convex
the competition. Weight vectors are adjusted according to thembination of inputs (SOFM-CV), the Kohonen algorithm
frequency at which nodes have won in the past. Each of thdth attention (SOFM-A), and the Kohonen algorithm with
above methods adapts the weights of the winning node omlynscience (SOFM-C).
and the learning rate is assumed to be constant in [13]. Since it was not evident from the beginning whether the in-

All of the above methods were tested using the data setrporation of these heuristics into the Kohonen algorithm will
shown in Fig. 5. The number of training epochs was choseffect the topology forming process or not, all the variations
to be 6000 for the convex combination approach and 1000 fwere consistently tested using the same data sets and the same
the other approaches. To estimate the utilization of nodes afteimber of training epochs. The results obtained show that
training, we presented to the networks all the training patteralf the variations were able to find solutions which preserve
once (without changing the weights) and we recorded hawe topology. A slight distortion in the computed maps might
many times each node became a winner. We call this procedueeur, but it does not seem to be very significant. Among the
“voting” (each input votes for a node), relating it implicitly tothree variations, the SOFM-C gave the best results in terms of
the voting scheme of geometric hashing (each invariant votesde utilization. Table Il shows the standard deviation of the
for a hash bin). Then, we computed the standard deviationwajtes for each case. Clearly, the node utilization exhibited by
the votes received by each node. The standard deviationttie Kohonen algorithm with conscience is superior to the node
a measure of the utilization of nodes since a small standardlization exhibited by the Kohonen algorithm itself as can
deviation indicates that all the nodes are utilized (i.e., evebe seen by comparing the last rows of Tables | and II. Fig. 7
node receives almost the same number of votes) whereashaws the maps found by the SOFM-C. Fig. 8 shows the steps
large standard deviation implies that certain nodes have béewlved in the SOFM-CC and D are constants associated
underutilized and others have been overutilized. Table | showih the biasing term added to the distance measure of the
the standard deviation of the votes received by the nodes of tiigorithm.
networks. For comparison purposes, we also included results
using the Kohonen algorithm. Clearly, the competitive learning
with conscience approach performed best in all the cases. In this section, we present a number of experimental results

Fig. 6 shows the maps obtained by each approach. As it walsich demonstrate the effectiveness of the proposed approach.
expected, only the Kohonen algorithm preserves the topologgomparisons with rehashing are also provided.

VI. EXPERIMENTAL RESULTS



566 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 3, MAY 1998

NOFMAL - CONVEX

Fig. 6. The maps obtained using the convex combination (first row), competitive learning with
(third row) and Kohonen (last row) algorithms.

NORMAL - KOHONEN WITH CONSCIENCE' —

Fig. 7. The maps produced using the SOFM-C.

A. Experiment 1 forms quite satisfactorily in this case. Next, we considered

The purpose of this experiment is to examine the pet,he objects shown in Fig. 9(b). The distribution of invariants
formance of rehashing. Similarity transformations have be§fmputed for this data set is shown in Fig. 9(d) while the
considered in this experiment. First, we considered the objet@fashed distribution is shown in Fig. 9(f). Obviously, re-
shown in Fig. 9(a). The distribution of invariants for this dathashing does not perform well in this case. According to the
set is shown in Fig. 9(c). Applying the rehashing transform&heoretical in [4], the rehashing transformation computed for
tion derived for the case of similarity transformations yieldthe case of similarity transformations was based on distribution
the distribution shown in Fig. 9(e). Obviously, rehashing peof invariants very similar to the Cauchy distribution. Although
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1. Initialize the network
Define wi; (1 < j< n, 1 <i<m)to be the weight from input j to node i, where n is the dimensionality
of inputs and m is the number of nodes of the network. Set the initial weights to small random values.

Set the biases p;(0) equal to 1/m. Choose the number of training steps tyy.

2. Similarity matching phase
Present an input pattern and compute the biased distance between the input and each weight vector

associated with the output nodes
# 2 1
d; = 2(x —wy ()" - C— = pi®)
J

3. Select the minimum distance d;+
di* = mini d i
4. Update the bias associated with the winning node

pir(t+1)=ppr(@)+ D( — pi(2))

5. Weight adaptation phase

Update weights for node i" and nodes contained in the neighborhood N(i, i) of the winning node
wii(t +1) = wig(t) + ()N G, i )(xf = wy(0)

6. if t = 1,5, then stop; otherwise repeat by going to step 2.

Fig. 8. The Kohonen algorithm with conscience (SOFM-C).

the distribution of Fig. 9(c) resembles the Cauchy distributiod) = 0.01. The feature map to which the network converged is
the distribution of Fig. 9(d) is very different. This is the reasoshown in Fig. 11(a). The structure of the feature map illustrates
rehashing does not perform well in this case. Fig. 10(a) atfte way the hash bins were distributed over the invariants.
(c) show the distribution of hash entries over a 020 Fig. 10(e) shows the distribution of entries over the hash
hash table in the case of the original and rehashed invariai@Ble. To estimate the hash table utilization, we computed the
correspondingly. standard deviation (SD) of the number of entries stored at
Next, we trained a SOFM-C with two inputs and 400 outpLﬁaCh hash bin. The first row of Table Ill shows the results.
nodes, arranged on a 2020 grid. The network was trained for Obviously, the SOFM-C has found a superior solution. At the
500 epochs. The number of invariants used during training wag9inning of the training process, the SD was 422. Then, it
31572 and they were normalized in the rafge]x [0, 1]. The gradually decreased during training as shown in Fig. 12(a).
initial weights of the SOFM were also chosen from the same )
range. The parameters of the network were chosen as follofs; Experiment 2
1o = 1.0, 00 = 20 (equal to the maximum of the dimensions In this experiment, we consider the case of affine trans-
of the feature map)h = ¢ = 1.0/15t4.,,C = 1.0 and formations. Fig. 13 shows the set of the real objects used.
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vast][thaLe oisTHIBUTION - Similarity

.o INVARINTS numbers’ +

© ©)

Fig. 10. (&), (c), (e) The distribution of hash entries under similarity transfor-
mations [Fig. 9(d)] using the original approach, rehashing, and the SOFM-C
(e) ® correspondingly, (b), (d), (f) The distribution of hash entries under affine
transformations [Fig. 14(a)] using the original approach, rehashing, and the
Fig. 9. (a) The set of numbers. (b) The set of knives. (c) The distribution FOFM-C correspondingly.
invariants for the set of numbers. (d) The distribution of invariants for the set
of knives. (e) The rehashed distribution of invariants for the set of numbers.
(f) The rehashed distribution of invariants for the set of knives. w0

SOFMG-NN - Afine —

Invariants based on unstable basis triplets were rejected usitig
the area-based criterion [11]. Fig. 14(a) shows the distributior
of invariants in this case. The application of the rehashing
transformation, derived under the assumption of affine trans
formations, does not yield good results, as is demonstrated
in Fig. 14(b). To explain why, let us observe that the third (b)
guadrant of the distribution of invariants in Fig. 14(a) is less o

L Fig. 11.  The structure of the SOFM-C for the case of (a) similarity trans-
crowded than any the other quadrant. This is in agreement Witfhations [Fig. 9(d)] and (b) affine transformations [Fig. 14(a)].
the qualitative results of [4], [5], under the assumption that the
distribution of model points is uniform over a convex domain,,

However, no rehashing transformation was derived under this e = o
assumption because of the intractability of the computationg w
involved. The only rehashing transformation derived in the -
case of affine transformations is based on the assumption that g

the distribution of model features is Gaussian over a conve

domain and this is the one used here. We believe that this .

the reason rehashing did not perform well in this example. == & & & &% = TR e e e
Fig. 10(b) and (d) shows the distribution of hash entries over (@ (b)

a 20 x 20 hash table, for the case of the original invariantsg. 12. The improvement of the standard deviation during training in the

and rehashed invariants correspondingly. A SOFM-C with tisase of (a) the pbjects show_n in'Fig. 9(b) (assgming _similarity transfprmations)

same architecture as in the previous experiment was utilizZ& () the objects shown in Fig. 13 (assuming affine transformations).

in order to demonstrate the performance of our approach. The

same network parameters were chosen as before except foritlvariants used to train the SOFM-C was 41 292, normalized in

number of epochs which was chosen to be 100. The numbettoé range0, 1] x [0, 1]. The initial weights were chosen from

Oy
¥ 85 28 8
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Fig. 13. The set of different models.

TABLE Il
STANDARD DEVIATION OF THE NUMBER OF HASH ENTRIES

. | INVARIANTS diforent objects REWASHED, INVARIANTS dillrent_objects »

Standard deviation

Unrehashed | Rehashed | SOFM-C
Similarity transf. 62.31 35.33 13.40
Affine transf. 194.20 86.06 25.38

B
0 o1 02 03 04 05 06 07 D& 08

the same range. The map to which the network converged @ ®

is shown in Fig. 11(b). Fig. 10(f) illustrates the distributiorig- 14. (a) The distribution of (affine) invariants for the set of different
. . o\t,)\'}ects. (b) The rehashed distribution of invariants.

of hash entries over the hash table while the second ro

of Table Il shows the computed SD’s (for the hash table

utilization). It can be be noticed from Fig. 10(f) that severasdame procedure, as above, was applied in order to extract the

hash bins are still over-populated, especially in the boundari@gject boundaries (only the outer boundaries were used in our

of the hash table, but most hash bins hold almost the sagxperiment) and the interest shown in Fig. 15(c) (45 interest

number of entries. Fig. 12(b) shows the decreasing behaviwints were extracted). The recognition results are shown in

of the SD during training (initial value was 224). Fig. 15(f) and the number of hypotheses verified by each
approach is shown in the last three rows of Table 1V. Clearly,
C. Experiment 3 the proposed approach has verified fewer hypotheses. Overall,

ifi — 0,
One of the goals in redistributing the data over the hash tai[:ee proposed approach verified about 35-50% less hypotheses

. . o an the hypotheses verified by geometric hashing without
is to reduce the number of hypotheses during recognition. 1Shashin d 20-300
. ; " g and 20-30% less hypotheses than the hypotheses
illustrate this we have performed a number of recognition &= rified by geometric hashing with rehashing
periments. Here, we report two of them. In the first experiment, '
we considered the scene shown in Fig. 15(a). A Laplacian
edge detector separated the objects from the background and VII. DISCUSSION AND CONCLUSIONS
a boundary following routine extracted their boundaries [seeln this paper, we considered the geometric hashing tech-
Fig. 15(c)]. The interest points shown correspond to curvatun@ue, an indexing based object recognition method which
maxima and zero-crossings of the boundary (22 interest poistgfers from the problem of the nonuniform distribution of
were extracted) [16]. The recognition results are shown the data over the hash table. A new approach for alleviating
Fig. 15(e) (the correctly recognized models have been batkis problem was presented based on the SOFM. The proposed
projected on the scene). approach has a number of advantages. First, it is not based on
The first two rows of Table IV show the number of hy-any assumption about the characteristics of the distribution of
potheses tried by each approach until both models recognizedariants. Second, the hash function is implemented by the
correctly (60% or more of the model points were requireBOFM and is actually computed through learning. Third, the
to match with the scene). As can be observed, the proposedology preserving property of the SOFM guarantees that
approach verified fewer hypotheses. Next, we considered the computed hash function should be well behaved. The
scene of Fig. 15(b). This is a fairly complicated scene. Thavailability of a learning scheme which can be used to find
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(@)

Soanet —
Teiaros porix

(e) ®
Fig. 15.

zero-crossings) marked. (e) and (f) The recognition results.

TABLE IV
NUMBER OF HYPOTHESESTRIED DURING VERIFICATION

(@) and (b) Two real scenes with overlapped models. (c) and
(d) The boundary contours with the interest points (curvature maxima an&s]

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 9, NO. 3, MAY 1998

tmax and the paramete€ used in the modified distance
measure of the SOFM-C. Both parameters were chosen by
trial and error during our experimentation. We believe that
further improvements in the solutions found by the SOFM-C
are possible (i.e., solutions with lower SD’s). However, this
requires extensive experimentation. It is should be mentioned
that after the completion of our work, a new improved version
of the competitive learning with conscience approach came to
our attention [17]. Specifically, it was shown that the choice
of the parametelC is data dependent and a new algorithm
which chnages” adaptively during learning was introduced.
We strongly believe that this approach can further improve our
results (i.e., obtain smaller SD’s).
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